1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Lan Q, Gu ZB. Data-independent acquisition-based proteome profiling of red blood cells from dairy buffaloes under different types of heat stress. Vet Anim Sci 2025; 28:100437. [PMID: 40125290 PMCID: PMC11928860 DOI: 10.1016/j.vas.2025.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Heat stress (HS) induces hypoxia and oxidative stress, reducing animal health and livestock production. Red blood cells (RBCs) are responsible for oxygen delivery, and are susceptible to HS. In this study, 12 healthy buffaloes with a similar body condition, lactation, and parity were raised under thermal-neutral (TN) conditions. After the collection of blood samples, buffaloes were randomly and equally divided into two groups. Six buffaloes underwent acute HS conditions for eight days (AHS group). Subsequently, these six AHS buffaloes were subjected to chronic HS conditions (AHS-CHS group). The other six TN buffaloes were raised under chronic HS conditions (CHS group). RBCs were isolated for data-independent acquisition-based proteomics to identify differentially expressed proteins involved in the HS response. Results showed that blood clotting factors, complements, immunoglobulins, and vasoconstriction proteins in RBCs were consistently decreased under the three types of HS conditions (AHS, AHS-CHS, and CHS). Moreover, the immunity of buffaloes experiencing AHS (AHS and AHS-CHS) was severely decreased when compared to those subjected to CHS. Due to high heat sensitivity of RBCs, AHS conditions should be avoided for dairy buffaloes in summer.
Collapse
Affiliation(s)
- Qin Lan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming 650201, China
| | - Zhao-bing Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming 650201, China
| |
Collapse
|
3
|
Mishra S, Botlagunta M, Rajasekaran S. Arsenic-Induced Inflammatory Response via ROS-Dependent Activation of ERK/NF-kB Signaling Pathways: Protective Role of Natural Polyphenol Tannic Acid. J Appl Toxicol 2025; 45:795-807. [PMID: 39832189 DOI: 10.1002/jat.4748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro. Further, the anti-inflammatory effects of a natural dietary polyphenol tannic acid (TA) were also explored. In human normal bronchial (BEAS-2B), adenocarcinoma alveolar basal (A549), and murine macrophages (J774) cell lines, a trivalent form of As (as As3+) exposure markedly induced the expression of various pro-inflammatory mediators (cytokines and chemokines). Additionally, it was found that As3+ exposure induced reactive oxygen species (ROS) generation and activation of the nuclear factor-kappa B (NF-kB) p65 and extracellular signal-regulated kinase (ERK)1/2 pathways in BEAS-2B cells. As expected, the blockade of either ERK1/2 (PD98059) or NF-kB p65 (IMD0354), or both pathways attenuated As3+-induced pro-inflammatory mediators release. Interestingly, pre-treatment with ROS inhibitor N-acetylcysteine (NAC) attenuated activation of ERK/NF-kB pathways, suggesting that ROS have a critical role in pathway's activation and subsequent inflammatory response. Further, TA pre-treatment effectively attenuated As3+-induced inflammatory response by suppressing ROS production and ERK/NF-kB signaling pathways activation. Therefore, this study provides scientific evidence for the anti-inflammatory activities of TA and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sehal Mishra
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- School of Bioengineering, VIT Bhopal University, Sehore, Madhya Pradesh, India
| | | | - Subbiah Rajasekaran
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Wang Z, Wang S, Liu Y, Wang X, Li W, Qi H, You H. 6PPD induces apoptosis and autophagy in SH-SY5Y cells via ROS-mediated PI3K/AKT/mTOR pathway: In vitro and in silico approaches. Toxicology 2025; 513:154091. [PMID: 39983890 DOI: 10.1016/j.tox.2025.154091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), an extensively employed antioxidant in rubber materials, is considered as an emerging contaminant. 6PPD was proven to have potential neurotoxicity, which poses risks to human health. However, the research on its neurotoxicity is still limited. This work explored the neurotoxicity of 6PPD to SH-SY5Y cells and in-depth mechanisms with a combination of in vitro and in silico approaches. Our results indicated that 6PPD could reduce cell viability and cause oxidative damage by increasing reactive oxygen species (ROS) accumulation and altering the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA). 6PPD induced neuronal apoptosis of mitochondrial pathway and autophagy dysfunction, as characterized by the increased expressions of Cleaved caspase-3, Bax/Bcl-2, Beclin-1, LC3-II/I, and P62. 6PPD downregulated the expression of PI3K, p-AKT, and p-mTOR, while the PI3K inhibitor suppressed PI3K/AKT/mTOR pathway and promoted both apoptosis and autophagy, indicating that PI3K/AKT/mTOR pathway was involved in 6PPD-induced apoptosis and autophagy. The inhibition of this pathway was attributed to ROS accumulation in SH-SY5Y cells. Molecular docking analysis further revealed that 6PPD exhibits strong binding affinity to PI3K, AKT, and mTOR protein molecules, which could effectively interfere with downstream signaling pathways. These findings enrich the understanding of 6PPD-induced neurotoxicity and contribute to the evaluation of ecological risks associated with 6PPD.
Collapse
Affiliation(s)
- Ziwei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yingying Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xingyu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wanlun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hou You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
de Camargo RW, Joaquim L, Machado RS, de Souza Ramos S, da Rosa LR, de Novais Junior LR, Mathias K, Maximiano L, Strickert YR, Nord R, Gava ML, Scarpari E, Martins HM, Lins EMF, Chaves JS, da Silva LE, de Oliveira MP, da Silva MR, Fernandes BB, Tiscoski ADB, Piacentini N, Santos FP, Inserra A, Bobinski F, Rezin GT, Yonamine M, Petronilho F, de Bitencourt RM. Ayahuasca Pretreatment Prevents Sepsis-Induced Anxiety-Like Behavior, Neuroinflammation, and Oxidative Stress, and Increases Brain-Derived Neurotrophic Factor. Mol Neurobiol 2025; 62:5695-5719. [PMID: 39613951 DOI: 10.1007/s12035-024-04597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 12/01/2024]
Abstract
The psychoactive decoction Ayahuasca (AYA) used for therapeutic and religious purposes by indigenous groups and peoples from Amazonian regions produces anti-inflammatory and neuroprotective effects. Thus, it may be useful to attenuate the neuroinflammation and related anxiety- and depressive-like symptoms elicited by inflammatory insults such as sepsis. Rats were pretreated for 3 days with different doses of AYA. Twenty-four hours after, cecal ligation and puncture (CLP) was performed. On days 1-4, post-CLP behavioral tests to assess anxiety-like behavior were performed. After 24-h, neuroinflammation, oxidative stress, myeloperoxidase activity, and mitochondrial metabolism were assessed in the prefrontal cortex (PFC), hippocampus (HP), and cortex. AYA pretreatment increased the time spent in the open arms of the elevated plus maze and prevented the sepsis-induced hyper-grooming and -rearing behavior, suggesting an anxiolytic effect. AYA pretreatment increased the levels of the anti-inflammatory interleukin 4, in the PFC and the cortex, and brain-derived neurotrophic factor in the cortex. Moreover, AYA pretreatment increased myeloperoxidase activity in the PFC and the HP and decreased nitrite/nitrate concentration in the PFC, HP, and cortex of septic rats, suggesting enhanced neutrophil activation and decreased nitric oxide signaling. Furthermore, AYA pretreatment prevented lipid peroxidation in the PFC, HP, and cortex of septic rats as measured by decreased levels of thiobarbituric acid reactive substances. Levels of protein carbonyls and activity of superoxide dismutase, citrate synthase, succinate dehydrogenase, and mitochondrial respiratory chain were not affected. Together, AYA represents a promising approach to prevent sepsis-induced neuroinflammatory and oxidative stress and associated anxiety-like symptoms.
Collapse
Affiliation(s)
- Rick Wilhiam de Camargo
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Larissa Joaquim
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Richard Simon Machado
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Suelen de Souza Ramos
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Lara Rodrigues da Rosa
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Linério Ribeiro de Novais Junior
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Lara Maximiano
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Yasmin Ribeiro Strickert
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Rafael Nord
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Maria Laura Gava
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Eduarda Scarpari
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Helena Mafra Martins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Elisa Mitkus Flores Lins
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Jéssica Schaefer Chaves
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Bruna Barros Fernandes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Natália Piacentini
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Fabiana Pereira Santos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Antonio Inserra
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
- Previous Affiliation: Department of Psychiatry, McGill University, Montreal, Canada
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Palhoça, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fabrícia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Santa Catarina, Brazil.
| |
Collapse
|
6
|
Chaturvedi V, Kumari R, Sharma P, Pati AK. Diverse Fluorescent Probe Concepts for Detection and Monitoring of Reactive Oxygen Species. Chem Asian J 2025; 20:e202401524. [PMID: 39924450 PMCID: PMC11980770 DOI: 10.1002/asia.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
World-wide research on reactive oxygen species (ROS) continues to reveal new information about the role and impact of ROS on human health and disease. ROS are generated in live cells as a byproduct of aerobic metabolism. Physiological concentrations of cellular ROS are important for signaling and homeostasis, but excessive generation of ROS causes apoptotic and necrotic cell death and various health disorders. Fluorescence technology is a powerful tool to detect, monitor, and image cellular ROS. The present review provides an overview of diverse organic dye-based fluorescent probe concepts that involve modifications of traditional fluorescent dyes utilizing basic principles of dye chemistry and photophysics. Fluorescence responses of the probes and their specificity towards ROS are discussed through analyses of their photophysical and photochemical parameters. We also provide an outlook on future directions of ROS-responsive fluorescent dyes, which could enable the design and development of advanced probes for gaining deeper insights into redox biology.
Collapse
Affiliation(s)
- Vineeta Chaturvedi
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Ritu Kumari
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Prakriti Sharma
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Avik K. Pati
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| |
Collapse
|
7
|
Xu M, Li W, Xu R, Liu L, Wu Z, Li W, Ma C, Xue L. Gp93 safeguards tissue homeostasis by preventing ROS-JNK-mediated apoptosis. Redox Biol 2025; 81:103537. [PMID: 39965405 PMCID: PMC11875814 DOI: 10.1016/j.redox.2025.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in maintaining tissue homeostasis, yet their overabundance can impair normal cellular functions, induce cell death, and potentially lead to neurodegenerative disorders. This study identifies Drosophila Glycoprotein 93 (Gp93) as a crucial factor that safeguards tissue homeostasis and preserves normal neuronal functions by preventing ROS-induced, JNK-dependent apoptotic cell death. Firstly, loss of Gp93 induces JNK-dependent apoptosis primarily through the induction of ROS. Secondary, neuro-specific depletion of Gp93 results in ROS-JNK-mediated neurodegeneration. Thirdly, overexpression of Gp93 effectively curtails oxidative stress and neurodegeneration caused by paraquat exposure or the aging process. Furthermore, these functions of Gp93 can be substituted by its human ortholog, HSP90B1. Lastly, depletion of HSP90B1 in cultured human cells triggers ROS production, JNK activation, and apoptosis. Thus, this study not only unveils a novel physiological function of Gp93, but also provides valuable insights for understanding the physiological and pathological functions of human HSP90B1.
Collapse
Affiliation(s)
- Meng Xu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wanzhen Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruihong Xu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lixia Liu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhihan Wu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chao Ma
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai 10th People's Hospital, 200072, Shanghai, China.
| |
Collapse
|
8
|
Zhang L, Wang Q, Guan W. Inhibition of 15-PGDH by SW033291 ameliorates age-related heart failure in mice. Exp Gerontol 2025; 202:112710. [PMID: 39952309 DOI: 10.1016/j.exger.2025.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Chronic loss of cardiomyocyte integrity underlies human heart failure associated with aging that often involves progression of acute myocardial infarction and the maladaptive response of cardiomyopathy. SW033291, an inhibitor of 15-prostaglandin dehydrogenase (15-PGDH), has been shown to mitigate fibrosis of mice heart. Whether it has cardioprotective effect remain unknown. Young and aged C57BL/6 J mice were treated with either the vehicle or SW033291 for four weeks. The expression of the target gene was assessed by RT-qPCR, Western blotting, and ELISA. Cardiac function was measured by echocardiography. Our study demonstrated that SW033291 induced a notable upregulation of prostaglandin E2 while concurrently downregulated the expression of both 15-PGDH and troponin I in cardiac tissues, encompassing both young and aged mice. Notably, the administration of SW033291 resulted in a significant improvement in systolic and diastolic function among aged mice, although this effect was not observed in their younger counterparts. Subsequent investigations focusing on exploring the mechanisms, revealed that repetitive administration of SW033291 effectively mitigated age-induced oxidative stress and curtailed chronic inflammation within the cardiac tissues of aged mice. These pivotal findings establish a solid foundation for contemplating the prospective therapeutic application of SW033291 in addressing age-related heart failure.
Collapse
Affiliation(s)
- Li Zhang
- Special Wards, Jingzhou Hospital, Yangtze University, No. 55 Jianghan North Road, Shashi District, Jingzhou 434000, Hubei, China
| | - Qiang Wang
- Cardiovascular Department, Jingzhou Hospital, Yangtze University, No. 55 Jianghan North Road, Shashi District, Jingzhou 434000, Hubei, China
| | - Wenjun Guan
- Cardiovascular Department, Jingzhou Hospital, Yangtze University, No. 55 Jianghan North Road, Shashi District, Jingzhou 434000, Hubei, China.
| |
Collapse
|
9
|
Zeinali Nia E, Najjar Sadeghi R, Ebadi M, Faghihi M. ERK1/2 gene expression and hypomethylation of Alu and LINE1 elements in patients with type 2 diabetes with and without cataract: Impact of hyperglycemia-induced oxidative stress. J Diabetes Investig 2025; 16:689-706. [PMID: 39804191 PMCID: PMC11970314 DOI: 10.1111/jdi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 04/05/2025] Open
Abstract
AIMS This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract. METHODS This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP. ERK1/2 gene expression was analyzed through real-time PCR. Total antioxidant capacity (TAC), and fasting plasma glucose (FPG) were measured using colorimetric methods. Statistical analysis was performed with SPSS23, setting the significance level at P < 0.05. RESULTS The TAC levels were significantly lower for cataract and diabetic groups than controls (259.31 ± 122.99, 312.43 ± 145.46, 372.58 ± 132.95 nanomole of Trolox equivalent) with a significant correlation between FPG and TAC levels in both the cataract and diabetic groups (P < 0.05). Alu and LINE-1 sequences were found to be statistically hypomethylated in diabetic and cataract patients compared to controls. In these groups, TAC levels were directly correlated with Alu methylation (P < 0.05) but not LINE-1. ERK1/2 gene expression was significantly higher in diabetic and cataract patients, showing increases of 2.41-fold and 1.43-fold for ERK1, and 1.27-fold and 1.5 for ERK2, respectively. ERK1 expression correlated significantly with FPG levels. A reverse correlation was observed between TAC levels and ERK1/2 expression. CONCLUSIONS Our findings indicate that hyperglycemia-induced oxidative stress may alter ERK1/2 gene expression patterns and induce aberrant hypomethylation in Alu and LINE-1 sequences. These aberrant changes may play a contributing role in diabetic complications such as cataracts.
Collapse
Affiliation(s)
- Elham Zeinali Nia
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Ruhollah Najjar Sadeghi
- Department of Clinical Biochemistry, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Mostafa Ebadi
- Department of Biochemistry, Faculty of Basic SciencesIslamic Azad University Damghan BranchDamghanIran
| | - Mohammad Faghihi
- Department of Medical SciencesShahid Beheshti UniversityTehranIran
| |
Collapse
|
10
|
Li K, Ji X, Tian S, Li J, Tian Y, Ma X, Li H, Zhang H, Chen CT, Gu W. Oxidative stress in asthma pathogenesis: mechanistic insights and implications for airway smooth muscle dysfunction. Cell Tissue Res 2025; 400:17-34. [PMID: 39918765 DOI: 10.1007/s00441-025-03953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 04/04/2025]
Abstract
Airway smooth muscle (ASM) dysfunction is a key factor in the narrowing of airways in asthma patients, characterized by excessive secretion of inflammatory factors, increased mass, and amplified contractile responses. These pathological features are instrumental in the propagation of airway inflammation, structural remodeling, and the escalation of airway hyperresponsiveness (AHR), which are also principal factors underlying the limitations of current therapeutic strategies. In asthmatic ASM, an imbalance between oxidant production and antioxidant defenses culminates in oxidative stress, which is involved in the excessive secretion of inflammatory factors, increased mass, and amplified contractile responses of ASM, and is a critical etiological factor implicated in the dysregulation of ASM function. The molecular pathways through which oxidative stress exerts its effects on ASM in asthma are multifaceted, with the Nrf2/HO-1, MAPK, and PI3K/Akt pathways being particularly noteworthy. These characteristic pathways play a potential role by connecting with different upstream and downstream signaling molecules and are involved in the amplification of ASM inflammatory responses, increased mass, and AHR. This review provides a comprehensive synthesis of the phenotypic expression of ASM dysfunction in asthma, the interplay between oxidants and antioxidants, and the evidence base and molecular underpinnings linking oxidative stress to ASM dysfunction. Given the profound implications of ASM dysfunction on the airflow limitation in asthma and the seminal role of oxidative stress in this process, a deeper exploration of these mechanisms is essential for unraveling the pathogenesis of asthma and may offer novel perspectives for its prophylaxis and management.
Collapse
Affiliation(s)
- Kangxia Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiang Ji
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Shan Tian
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, People's Republic of China
| | - Jian Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China
| | - Yizhu Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoqing Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Huanping Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Hong Zhang
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China
| | - Cai-Tao Chen
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, People's Republic of China.
| | - Wei Gu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, People's Republic of China.
| |
Collapse
|
11
|
McLarnon T, Watterson S, McCallion S, Cooper E, English AR, Kuan Y, Gibson DS, Murray EK, McCarroll F, Zhang S, Bjourson AJ, Rai TS. Sendotypes predict worsening renal function in chronic kidney disease patients. Clin Transl Med 2025; 15:e70279. [PMID: 40147025 PMCID: PMC11949504 DOI: 10.1002/ctm2.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Senescence associated secretory phenotype (SASP) contributes to age-related pathology, however the role of SASP in Chronic Kidney Disease (CKD) is unclear. Here, we employ a variety of omic techniques to show that senescence signatures can separate CKD patients into distinct senescence endotypes (Sendotype). METHODS Using specific numbers of senescent proteins, we clustered CKD patients into two distinct sendotypes based on proteomic expression. These clusters were evaluated with three independent criteria assessing inter and intra cluster distances. Differential expression analysis was then performed to investigate differing proteomic expression between sendotypes. RESULTS These clusters accurately stratified CKD patients, with patients in each sendotype having different clinical profiles. Higher expression of these proteins correlated with worsened disease symptomologies. Biological signalling pathways such as TNF, Janus kinase-signal transducers and activators of transcription (JAK-STAT) and NFKB were differentially enriched between patient sendotypes, suggesting potential mechanisms driving the endotype of CKD. CONCLUSION Our work reveals that, combining clinical features with SASP signatures from CKD patients may help predict whether a patient will have worsening or stable renal trajectory. This has implications for the CKD clinical care pathway and will help clinicians stratify CKD patients accurately. KEY POINTS Senescent proteins are upregulated in severe patients compared to mild patients Senescent proteins can stratify patients based on disease severity High expression of senescent proteins correlates with worsening renal trajectories.
Collapse
Affiliation(s)
- Thomas McLarnon
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Steven Watterson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Sean McCallion
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Eamonn Cooper
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Andrew R. English
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
- School of Health and Life SciencesTeesside University, Campus HeartMiddlesbroughUK
| | - Ying Kuan
- Western Health and Social Care Trust, Altnagelvin Area HospitalLondonderryUK
| | - David S. Gibson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Elaine K. Murray
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Frank McCarroll
- Western Health and Social Care Trust, Altnagelvin Area HospitalLondonderryUK
| | - Shu‐Dong Zhang
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Anthony J. Bjourson
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| | - Taranjit Singh Rai
- School of MedicinePersonalised Medicine CentreUlster UniversityLondonderryUK
| |
Collapse
|
12
|
Sahoo BS, Pradhan LK, Sarangi P, Digal J, Bhoi S, Sahoo PK, Aparna S, Raut S, Das SK. Chronic exposure to bisphenol S is associated with antagonistic neurobehavioral transformation and cleaved caspase 3 induced neurodegeneration in zebrafish brain. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110200. [PMID: 40174735 DOI: 10.1016/j.cbpc.2025.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Bisphenol S (BPS), a widely used bisphenol analogue, has been increasingly detected in aquatic environments, raising concerns about its potential neurotoxic effects. However, the mechanism underlying the neurotoxicity induced by BPS remains elusive. In this context, our present study was aimed to investigate the impact of temporal BPS exposure towards precocious development of neurobehavioral transformation and neurodegeneration in zebrafish brain. Heightened monoamine oxidase (MAO) activity is associated with induction of aggressive behavioural response. In line with earlier report, our findings following mirror biting test advocated that temporal BPS exposure is associated with gradual genesis of aggressive neurobehavioral response and is correlated with augmented MAO activity and downregulation of tyrosine hydroxylase (TH) expression in zebrafish brain. Our further observation towards native neurobehavioral response as regulated by periventricular grey zone (PGZ) of optic tectum (TeO) of brain showed that duration dependent exposure to BPS is associated with gross transformation in scototaxis and explorative behaviour of zebrafish. Concurrently, our objective was also predestined to emphasize the detrimental effect of BPS on brain biochemistry and neuromorphology. In this line, our findings showed that BPS-persuaded heightened oxidative stress is linked with augmented chromatin condensation and apoptotic cell death as depicted through cleaved caspase-3 expression in zebrafish brain. To understand neuromorphological integrity of PGZ region through expression of NeuN, our findings advocated a significant downregulation following temporal exposure to BPS. In a nutshell, the gross observation delineates the strong neurodegenerative potential of BPS coupled through neurobehavioral transformation, oxidative stress and neuromorphological alteration in zebrafish brain.
Collapse
Affiliation(s)
- Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India; Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha-751023, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India; Spinal Cord and Brain Injury Research Group, Department of Neurological Surgery, Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202, USA
| | - Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India
| | - Jayashree Digal
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India
| | - Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India
| | - Sai Aparna
- Department of Zoology, School of Life Sciences, Central University of Odisha, Koraput, Odisha-753004, India
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha-756003, India.
| |
Collapse
|
13
|
Bai S, Yao Z, Cai Z, Ma Q, Guo Q, Zhang P, Zhou Q, Gu J, Liu S, Lemaitre B, Li X, Zhang H. Bacterial-induced Duox-ROS regulates the Imd immune pathway in the gut by modulating the peritrophic matrix. Cell Rep 2025; 44:115404. [PMID: 40053451 DOI: 10.1016/j.celrep.2025.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/19/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
The Duox-reactive oxygen species (ROS) system and the immune deficiency (Imd) pathway play a major role in insect gut immunity. However, their interaction to accomplish an effective immune response is still unclear. Here, we show that Duox regulates the peritrophic matrix (PM) and further affects the Imd immune response to pathogens in Bactrocera dorsalis. This regulation requires a nuanced ROS balance: low H2O2 increases PM permeability, while higher H2O2 damages the PM during infection. Importantly, we found that gut commensal bacteria ensured proper Duox-dependent ROS production and PM stability, thus preventing Imd pathway overactivation in response to pathogens. We conclude that gut commensal bacteria-induced Duox-ROS is crucial for maintaining PM structural homeostasis, and the PM, in turn, regulates Imd pathway activation and protects intestinal epithelial cells. Thus, our study reveals a crosstalk between the PM barrier and Imd-mediated antibacterial function to ensure host defense in the gut.
Collapse
Affiliation(s)
- Shuai Bai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Qiongke Ma
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiongyu Guo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ping Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qi Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jian Gu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Siying Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
14
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
15
|
He H, Yuan K, Pan J, Weng S, Li C, Chen Y, He J. Shrimp Virus Regulates ROS Dynamics via the Nrf2 Pathway to Facilitate Viral Replication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407695. [PMID: 40091388 DOI: 10.1002/advs.202407695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Reactive oxygen species (ROS) of hosts are widely involved in intracellular signaling and against pathogens. Viruses manipulate ROS homeostasis of hosts as a strategy to evade ROS-mediated negative effects of their infection, but the mechanisms remain unclear. The economically important aquaculture shrimp, Litopenaeus vannamei, is selected to investigate the molecular mechanism of how white spot syndrome virus (WSSV) regulates ROS dynamics and enhances viral replication. WSSV protein wsv220 binds to the repressor of shrimp nuclear factor erythroid 2-related factor 2 (LvNrf2), called Kelch-like ECH-associated protein 1 (LvKeap1), disrupting LvNrf2/LvKeap1 complex and facilitating LvNrf2 nuclear translocation. This activation of LvNrf2 causes up-regulation of antioxidant genes, including glucose-6-phosphate dehydrogenase (LvG6PDH), which increases nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) production, effectively eliminating excessive ROS. Moreover, WSSV exploits LvNrf2 to establish a positive feedback loop by up-regulating viral immediate early gene wsv051, which further enhances wsv220 expression. Knockdown of LvNrf2 or LvG6PDH reduces WSSV replication and increases host ROS levels. Therefore, WSSV hijacks LvNrf2 pathway to maintain ROS homeostasis and establishes a positive feedback loop to facilitate WSSV replication. These findings reveal a novel molecular mechanism of viral manipulation of host ROS dynamics and suggest potential antiviral strategies targeting LvNrf2 pathway.
Collapse
Affiliation(s)
- Honghui He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519000, China
| | - Kai Yuan
- School of Life Sciences, Huizhou University, Huizhou, Guangdong, 516007, China
| | - Junming Pan
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519000, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519000, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519000, China
| | - Yihong Chen
- Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519000, China
| |
Collapse
|
16
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
17
|
Shi J, Peng X, Huang J, Zhang M, Wang Y. Dihydromyricetin Alleviated Acetaminophen-Induced Acute Kidney Injury via Nrf2-Dependent Anti-Oxidative and Anti-Inflammatory Effects. Int J Mol Sci 2025; 26:2365. [PMID: 40076982 PMCID: PMC11899924 DOI: 10.3390/ijms26052365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Acute kidney injury (AKI) is a common side effect of acetaminophen (APAP) overdose. Dihydromyricetin (DHM) is the most abundant flavonoid in rattan tea, which has a wide range of pharmacological effects. In the current study, APAP-induced AKI models were established both in vivo and in vitro. The results showed that DHM pretreatment remarkably alleviated APAP-induced AKI by promoting antioxidant capacity through the nuclear factor erythroid-related factor 2 (Nrf2) signaling pathway in vivo. In addition, DHM reduced ROS production and mitochondrial dysfunction, thereby alleviating APAP-induced cytotoxicity in HK-2 cells. The way in which DHM improved the antioxidant capacity of HK-2 cells was through promoting the activation of the Nrf2-mediated pathway and inhibiting the expression levels of inflammation-related proteins. Furthermore, Nrf2 siRNA partially canceled out the protective effect of DHM against the cytotoxicity caused by APAP in HK-2 cells. Altogether, the protective effect of DHM on APAP-induced nephrotoxicity was related to Nrf2-dependent antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
| | | | | | | | - Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, China; (J.S.); (X.P.); (J.H.); (M.Z.)
| |
Collapse
|
18
|
Shi Z, Gong S, Li Y, Yan K, Bao Y, Ning K. Neutrophil Extracellular Traps in Atherosclerosis: Research Progress. Int J Mol Sci 2025; 26:2336. [PMID: 40076955 PMCID: PMC11900999 DOI: 10.3390/ijms26052336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/15/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Atherosclerosis (AS) is a disease characterised by the accumulation of atherosclerotic plaques on the inner walls of blood vessels, resulting in their narrowing. In its early stages, atherosclerosis remains asymptomatic and undetectable by conventional pathological methods. However, as the disease progresses, it can lead to a series of cardiovascular diseases, which are a leading cause of mortality among middle-aged and elderly populations worldwide. Neutrophil extracellular traps (NETs) are composed of chromatin and granular proteins released by neutrophils. Upon activation by external stimuli, neutrophils undergo a series of reactions, resulting in the release of NETs and subsequent cell death, a process termed NETosis. Research has demonstrated that NETosis is a means by which neutrophils contribute to immune responses. However, studies on neutrophil extracellular traps have identified NETs as the primary cause of various inflammation-induced diseases, including cystic fibrosis, systemic lupus erythematosus, and rheumatoid arthritis. Consequently, the present review will concentrate on the impact of neutrophil extracellular traps on atherosclerosis formation, analysing it from a molecular biology perspective. This will involve a systematic dissection of their proteomic components and signal pathways.
Collapse
Affiliation(s)
- Zhonghong Shi
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Sihe Gong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yanni Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Kaijie Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; (Z.S.); (S.G.); (Y.L.); (K.Y.)
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Preston Research Building, Room 359, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Yao L, Gu C, Ge R, Zhang X, Meng X, Wang L, Peng D, Li G. Acetylated Dendrobium huoshanense polysaccharide: a novel inducer of apoptosis in colon cancer cells via Fas-FasL pathway activation and metabolic reprogramming. Front Oncol 2025; 15:1529868. [PMID: 40104499 PMCID: PMC11913854 DOI: 10.3389/fonc.2025.1529868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction Not all polysaccharides function as antitumor drugs, nor do they universally possess the same advantages regarding safety and biocompatibility. Those polysaccharides that are effective antitumor agents typically demonstrate superior safety profiles and biocompatibility compared to synthetic anticancer drugs, which can exhibit high toxicity and harmful side effects. Dendrobium huoshanense polysaccharide (DHP) has been recognized for its potential bioactive properties, particularly in anti-tumor treatment. This study investigates the effects of DHP on the proliferation and apoptosis of HCT116 colon cancer cells. Methods DHP was extracted according to previously published experimental methods. The inhibitory effects of DHP were evaluated using IEC6, Caco-2, and HCT116 cell lines, with changes in cell morphology observed via transmission electron microscopy. After establishing the conditions for DHP administration, flow cytometry was employed to assess its effects on apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential of HCT116 cells. Additionally, immunoprecipitation, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and biomarker detection were utilized to investigate the mechanisms underlying DHP's inhibition of HCT116 cells and its impact on metabolic reprogramming. Results In the present study, we observed that DHP treatment at 600 μg/ml for 24 h reduced HCT116 cell viability to 54.87%. In contrast, the inhibitory effect of DHP on the viability of IEC6 and Caco-2 cells was relatively mild. The specific mechanism involves DHP activating the mitochondrial apoptotic pathway leading to the downregulation of key metabolic intermediates and enzymes such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and ST6Gal-I. By inhibiting ST6Gal-I activity, DHP activates the Fas/FasL signaling pathway. Additionally, DHP-induced ROS production effectively triggers apoptosis in HCT116 cells. Conclusion Our study demonstrates that DHP effectively inhibits the proliferation and induces apoptosis in HCT116 colon cancer cells through the activation of the Fas-FasL signaling pathway and metabolic reprogramming. The selective inhibitory effect of DHP on HCT116 cells, the activation of both death receptor and mitochondrial apoptotic pathways, and the modulation of metabolic reprogramming provide novel insights into the potential therapeutic strategies for colon cancer.
Collapse
Affiliation(s)
- Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Chen Gu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Ruipeng Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Xinqian Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Key Laboratory for Research and Development of Research and Development of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
- Ministry of Education (MOE)-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Key Laboratory for Research and Development of Research and Development of Chinese Medicine, Hefei, China
| | - Guozhuan Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
20
|
Teng Y, He J, Shen Y, Chen J, Qian Y, Huang Y, Tao X, Xu D, Fan Y. TIMP3 deficiency accelerates UVB-induced HaCaT cell senescence by regulating ferroptosis. Photochem Photobiol Sci 2025; 24:499-509. [PMID: 40117061 DOI: 10.1007/s43630-025-00701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
Prolonged exposure to ultraviolet B (UVB) light leads to the accumulation of reactive oxygen species (ROS), a key contributor to skin aging. Previous studies have demonstrated that UVB exposure results in a deficiency in the expression of TIMP3 in keratinocytes. The objective of this study was to investigate the specific role of TIMP3 in keratinocytes. UVB-treated HaCaT cells were utilized to establish a cellular photoaging model. We found that UVB significantly increased levels of ROS, promoted senescence and ferroptosis, and inhibited the expression of TIMP3 in HaCaT. This inhibition was notably alleviated by Fer-1, a ferroptosis inhibitor. In addition, the knockdown of TIMP3 in HaCaT enhanced senescence by inducing the ferroptosis. Mechanistically, UVB exposure also led to a decrease in the expression of KLF4, a transcription factor that regulated TIMP3 expression. Futhermore, UVB-induced reduced expression of KLF4 and TIMP3 in vivo. Our results suggest that deletion of the KLF4/TIMP3 axis promotes HaCaT cell senescence by facilitating the progression of ferroptosis. TIMP3 may serve as an effective therapeutic target for preventing skin photoaging.
Collapse
Affiliation(s)
- Yan Teng
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Junjia He
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yeyu Shen
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jie Chen
- Zhuji Sixth People's Hospital, Zhuji, Zhejiang, People's Republic of China
| | - Ye Qian
- Department of Gastroenterology, Chun'an County First People's Hospital (Zhejiang Provincial People's Hospital, Chun'an Branch), Hangzhou, Zhejiang, People's Republic of China
| | - Youming Huang
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Xiaohua Tao
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Danfeng Xu
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China.
| | - Yibin Fan
- Center for Plastic and Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Ye W, Liao Y, Liu X, Wang Y, Li T, Zhao Y, He Z, Chen J, Yin M, Sheng Y, Du Y, Ji Y, He H. Dectin-2 depletion alleviates osteoclast-induced bone loss in periodontitis via Syk/NOX2/ROS signaling. Free Radic Biol Med 2025; 229:13-29. [PMID: 39800085 DOI: 10.1016/j.freeradbiomed.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Periodontitis is the sixth most common disease worldwide and is closely associated with various systemic diseases, impacting overall health. It is characterized by the over-differentiation and activity of osteoclasts, leading to increased bone resorption and subsequent bone loss. Current treatments for bone loss are not ideal, highlighting the need for new targeted therapeutic strategies. Dectin-2, a member of the C-type lectin receptor (CLR) family, has recently been reported to play an important role in immune regulation, but its role in osteoclastogenesis has not been documented. This study identified a significant upregulation of Dectin-2 expression during osteoclast differentiation through single-cell sequencing and transcriptomic analysis. Knocking down Dectin-2 significantly inhibits the differentiation of RAW264.7 cells and bone marrow-derived macrophages (BMDMs) into osteoclasts, while overexpressing Dectin-2 enhances osteoclast differentiation and function. Mechanistically, transcriptomic analysis indicates that Dectin-2 deficiency disrupts redox homeostasis and affects the MAPK signaling pathway. Furthermore, the study demonstrates that Dectin-2 promotes osteoclastogenesis via the Syk/NOX2/ROS/MAPK signaling axis. In vivo, Dectin-2 knockout mice show reduced osteoclast numbers and decreased alveolar bone resorption in a periodontitis model. In conclusion, these findings suggest that Dectin-2 is a key regulatory factor in osteoclast-mediated bone resorption and may serve as a promising therapeutic target for bone diseases characterized by osteoclast overactivity, such as periodontitis.
Collapse
Affiliation(s)
- Wengwanyue Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yilin Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yuting Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Ting Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoyu Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Zhenru He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Jingqiu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Mengjie Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yue Sheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yangge Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Yaoting Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
22
|
Zhai K, Liu G, Cao C, Wang X. Jujuboside B inhibits proliferation and induces apoptosis and ferroptosis in colorectal cancer cells with potential involvement of the MAPK signaling pathway. Oncol Lett 2025; 29:162. [PMID: 39911154 PMCID: PMC11795164 DOI: 10.3892/ol.2025.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening malignancies worldwide. Jujuboside B (JUB) is a bioactive compound derived from the seeds of Ziziphus jujuba, known for its potential anticancer properties. The present study aimed to investigate the association of JUB with inhibiting the proliferation, apoptosis and ferroptosis of human CRC cells with mitogen-activated protein kinase (MAPK) pathway regulation. First, the human CRC HCT116 cell line was treated with different concentrations of JUB. Subsequently, cell viability was evaluated using MTT assay and colony formation was assessed using a colony formation assay. Flow cytometry was used to detect cell apoptosis and the levels of reactive oxygen species. Western blotting was utilized to assess the expression levels of apoptosis-related proteins, ferroptosis regulators and MAPK pathway-related proteins. In addition, biochemical assay kits were used to evaluate the levels of malondialdehyde, glutathione, total iron and ferrous iron. The results demonstrated that cell viability and colony formation were markedly decreased after JUB treatment, whilst the level of apoptosis was notably increased in a concentration-dependent manner. Using electron microscopy, cells treated with JUB exhibited typical apoptotic bodies, as well as mitochondrial swelling and cristae disruption, further demonstrating JUB-induced cell apoptosis. Western blot analysis indicated that JUB treatment markedly reduced the expression of B-cell lymphoma-2 (Bcl-2) but notably increased the expression of Bcl-2 associated X-protein and cleaved caspase-3. Additionally, JUB induced ferroptosis and inhibited the MAPK signaling pathway in CRC cells. Collectively, the findings of the present study suggest that JUB has the potential to inhibit CRC cell proliferation and induce apoptosis through regulating the MAPK pathway. Therefore, JUB may be a promising therapeutic agent for the treatment of CRC.
Collapse
Affiliation(s)
- Ke Zhai
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Guodong Liu
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Ce Cao
- Department of Gastrointestinal Surgery, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Xiaolong Wang
- Department of Gastrointestinal Surgery, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
23
|
Wu X, Shao Y, Chen Y, Zhang W, Dai S, Wu Y, Jiang X, Song X, Shen H. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Med Gas Res 2025; 15:171-179. [PMID: 39324894 PMCID: PMC11515059 DOI: 10.4103/mgr.medgasres-d-24-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/27/2024] Open
Abstract
Oxygen therapy after acute lung injury can regulate the inflammatory response and reduce lung tissue injury. However, the optimal exposure pressure, duration, and frequency of oxygen therapy for acute lung injury remain unclear. In the present study, after intraperitoneal injection of lipopolysaccharide in ICR mice, 1.0 atmosphere absolute (ATA) pure oxygen and 2.0 ATA hyperbaric oxygen treatment for 1 hour decreased the levels of proinflammatory factors (interleukin-1beta and interleukin-6) in peripheral blood and lung tissues. However, only 2.0 ATA hyperbaric oxygen increased the mRNA levels of anti-inflammatory factors (interleukin-10 and arginase-1) in lung tissue; 3.0 ATA hyperbaric oxygen treatment had no significant effect. We also observed that at 2.0 ATA, the anti-inflammatory effect of a single exposure to hyperbaric oxygen for 3 hours was greater than that of a single exposure to hyperbaric oxygen for 1 hour. The protective effect of two exposures for 1.5 hours was similar to that of a single exposure for 3 hours. These results suggest that hyperbaric oxygen alleviates lipopolysaccharide-induced acute lung injury by regulating the expression of inflammatory factors in an acute lung injury model and that appropriately increasing the duration and frequency of hyperbaric oxygen exposure has a better tissue-protective effect on lipopolysaccharide-induced acute lung injury. These results could guide the development of more effective oxygen therapy regimens for acute lung injury patients.
Collapse
Affiliation(s)
- Xinhe Wu
- Department of Hyperbaric Oxygen Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yanan Shao
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yongmei Chen
- Department of Pathology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wei Zhang
- Department of Pathology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shirong Dai
- Department of Pathology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yajun Wu
- Department of Hyperbaric Oxygen Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoge Jiang
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xinjian Song
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hao Shen
- Department of Rehabilitation Medicine, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
24
|
Hao W, Huang X, Liang R, Yang C, Huang Z, Chen Y, Lu WW, Chen Y. Association between the Geriatric Nutritional Risk Index and sarcopenia in American adults aged 45 and older. Nutrition 2025; 131:112628. [PMID: 39615124 DOI: 10.1016/j.nut.2024.112628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 02/24/2025]
Abstract
OBJECTIVES Nutrition is closely related to the occurrence of sarcopenia. Evidence shows that sarcopenia has a serious impact on population health and the social economy. Geriatric Nutritional Risk Index (GNRI) is a useful prognostic predictor for several chronic diseases. Our original intention was to investigate whether GNRI correlates with sarcopenia. METHODS We included 4,709 adults aged 45 years and older from the National Health and Nutrition Examination Survey from 2009 to 2018 in this cross-sectional study. According to the level of GNRI, they were categorized into High-GNRI and Low-GNRI groups, while sarcopenia was assessed using skeletal muscle index. Multivariate logistic regression was employed to investigate the independent relevance between the GNRI and the prevalence of sarcopenia. We examined the linear or nonlinear relevance between GNRI and sarcopenia using the Restricted Cubic Spline (RCS) curve, and the threshold effect was analyzed. We explored whether some specific populations are more susceptible to GNRI affecting the occurrence of sarcopenia through subgroup analysis. RESULTS The incidence of sarcopenia was substantially reduced in the High-GNRI group (17.7% vs. 13.2%; p = 0.013). We found that GNRI is an essential predictor of sarcopenia (OR: 0.57; 95%CI: 0.41-0.79; p = 0.001). The occurrence of sarcopenia was reduced by increasing GNRI. Subgroup analysis showed that some specific populations were more susceptible to GNRI, which reduced the incidence of sarcopenia in individuals. These populations included high school graduates and above (p = 0.006), non-Hispanic white (p = 0.045), married or living with a partner (p = 0.03), and non-diabetic (p = 0.021). The RCS curve showed a non-linear inverse relevance between GNRI and sarcopenia (non-linear p = 0.033), with a threshold identified at GNRI = 91.935. CONCLUSIONS GNRI is a reliable predictor of sarcopenia in Americans aged 45 and older, with a nonlinear inverse relationship identified at a threshold GNRI of 91.935.
Collapse
Affiliation(s)
- Wenjun Hao
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiajie Huang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Rongyuan Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chaoquan Yang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiling Huang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yeping Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - William W Lu
- Department of Orthopaedics and Traumatology, the University of Hong Kong, Hong Kong, China
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
25
|
Kwon MJ, Raut PK, Jang JH, Chun KS. Isoliquiritigenin Induces Apoptosis via ROS-Mediated Inhibition of p38/mTOR/STAT3 Pathway in Human Melanoma Cells. Biomol Ther (Seoul) 2025; 33:378-387. [PMID: 39933948 PMCID: PMC11893486 DOI: 10.4062/biomolther.2024.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 02/13/2025] Open
Abstract
Isoliquiritigenin (ISL), a phenolic compound derived from licorice, exhibits various biological activities, including anti-inflammatory, anti-viral, anti-tumor, and antioxidant effects. However, the molecular mechanisms underlying its anti-cancer effects are not well understood in SK-MEL-28 melanoma cells. Melanoma, a highly aggressive and treatment-resistant cancer, remains a significant health challenge. This study investigates the anti-cancer effects of ISL, focusing on identifying reactive oxygen species (ROS)-mediated apoptosis mechanisms on SK-MEL-28 melanoma cells. Our results show that ISL treatment induces apoptosis in SK-MEL-28 cells, as evidenced by the cleavage of caspase-9, -7, -3, and PARP. ISL increased Bax expression, decreased Bcl-2 expression, and promoted cytochrome C release into the cytosol. ISL also reduced the expression of cell cycle markers, including cyclin D1, D3, and survivin. Notably, ISL treatment markedly increased intracellular ROS levels and pretreatment with N-acetyl cysteine, a ROS scavenger, abrogated the ISL-induced inhibition of the p38/mTOR/STAT3 pathway and prevented apoptosis. Moreover, ISL significantly diminished the constitutive phosphorylation of mTOR and STAT3 in SK-MEL-28 cells by blocking the phosphorylation of p38 MAPK, an upstream kinase of mTOR. Pharmacological inhibition of mTOR attenuated the STAT3 signaling, indicating that mTOR acts as an upstream kinase of STAT3 in these cells. Collectively, these findings demonstrate that ISL inhibits SK-MEL-28 cell growth by downregulating cell survival proteins and inducing apoptosis through ROS generation.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Pawan Kumar Raut
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jeong-Hoon Jang
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
26
|
Luo X, Zhang Y, Zeng Y, Yang D, Zhou Z, Zheng Z, Xiao P, Ding X, Li Q, Chen J, Deng Q, Zhong X, Qiu S, Yan W. Nanotherapies Based on ROS Regulation in Oral Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409087. [PMID: 39887942 PMCID: PMC11884622 DOI: 10.1002/advs.202409087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/28/2024] [Indexed: 02/01/2025]
Abstract
Oral diseases rank among the most prevalent clinical conditions globally, typically involving detrimental factors such as infection, inflammation, and injury in their occurrence, development, and outcomes. The concentration of reactive oxygen species (ROS) within cells has been demonstrated as a pivotal player in modulating these intricate pathological processes, exerting significant roles in restoring oral functionality and maintaining tissue structural integrity. Due to their enzyme-like catalytic properties, unique composition, and intelligent design, ROS-based nanomaterials have garnered considerable attention in oral nanomedicine. Such nanomaterials have the capacity to influence the spatiotemporal dynamics of ROS within biological systems, guiding the evolution of intra-ROS to facilitate therapeutic interventions. This paper reviews the latest advancements in the design, functional customization, and oral medical applications of ROS-based nanomaterials. Through the analysis of the components and designs of various novel nanozymes and ROS-based nanoplatforms responsive to different stimuli dimensions, it elaborates on their impacts on the dynamic behavior of intra-ROS and their potential regulatory mechanisms within the body. Furthermore, it discusses the prospects and strategies of nanotherapies based on ROS scavenging and generation in oral diseases, offering alternative insights for the design and development of nanomaterials for treating ROS-related conditions.
Collapse
Affiliation(s)
- Xin Luo
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yanli Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuting Zeng
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Dehong Yang
- Department of Orthopedics Spinal SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Zhiyan Zhou
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Ziting Zheng
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Ping Xiao
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xian Ding
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qianlin Li
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jiaping Chen
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qianwen Deng
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xincen Zhong
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Sijie Qiu
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Yan
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
27
|
Zhang X, Zhang S, Wang S, Ma W, Zhai T, Gao J, Lai C, Zhang Z, Chen Y, Lai Z, Lin Y. The ETHYLENE RESPONSE FACTOR6-GRETCHEN HAGEN3.5 module regulates rooting and heat tolerance in Dimocarpus longan. PLANT PHYSIOLOGY 2025; 197:kiaf096. [PMID: 40106655 PMCID: PMC11950727 DOI: 10.1093/plphys/kiaf096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 03/22/2025]
Abstract
Heat stress can seriously affect plant growth and development. Ethylene response factors (ERFs) play important roles in plant development and physiological responses. Here, we identified DlERF6, an ERF family transcription factor that promotes heat tolerance in Dimocarpus longan. DlERF6 was strongly induced by heat stress and IAA treatment in longan roots. Overexpression of DlERF6 generated abundant, fast-growing hairy roots and enhanced longan heat stress tolerance by promoting IAA biosynthesis and reactive oxygen species (ROS) scavenging. Additional assays indicated that DlERF6 directly binds to the DlGH3.5 promoter and represses its expression. Overexpressing DlGH3.5 reduced hairy root number, root length, and heat tolerance, concomitant with a reduction in IAA content and ROS scavenging. Collectively, these results reveal the molecular mechanism through which the DlERF6-DlGH3.5 module regulates root growth and heat stress tolerance, providing a gene network that can be used for the genetic improvement of longan.
Collapse
Affiliation(s)
- Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuting Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shuangjie Wang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wentao Ma
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tingkai Zhai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Gao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zihao Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
28
|
Kim GH, Kim MM. N-tert-Butylhydroxylamine promotes melanin production in oxidative stress conditions through the MITF signaling pathway. Arch Dermatol Res 2025; 317:508. [PMID: 40019606 DOI: 10.1007/s00403-025-04054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
During the aging process, melanogenesis is downregulated, leading to hair graying. Various agents, including α-melanocyte-stimulating hormone (α-MSH), have been evaluated for their potential to enhance melanogenesis. Among them, N-tert-Butylhydroxylamine (NtBHA) has been reported to reverse cellular aging, enhance mitochondrial function, and exhibit antioxidant properties. The effect of NtBHA on melanogenesis remains unclear. This study aimed to explore the impact of NtBHA on melanogenesis in B16F1 cells. In this study, NtBHA exhibited strong antioxidant activity, as demonstrated by antioxidant activity, lipid peroxidation assay, and hydroxyl radical assay. Importantly, NtBHA did not show any cytotoxic effects in the MTT assay. Additionally, in a melanin production experiment in the presence of H₂O₂, NtBHA increased melanin production in cells exposed to oxidative stress induced by H₂O₂. Additionally, NtBHA enhanced the expression of crucial proteins related to melanogenesis, such as MITF, TRP-2, and TYR. Therefore, NtBHA may promote melanogenesis in H₂O₂-stressed melanoma cells, which are aged, potentially supporting melanogenesis through the MITF signaling pathway. In addition to its potential role in restoring pigmentation, the robust antioxidant properties of NtBHA underscore its promise as a therapeutic agent for managing pigmentation disorders and mitigating oxidative stress-related skin aging. This study establishes a foundation for further research into the clinical application of NtBHA in anti-aging and dermatological treatments.
Collapse
Affiliation(s)
- Gyeong Hee Kim
- Department of Applied Chemistry, Dong-Eui University, Busan, 47340, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan, 47340, Republic of Korea.
| |
Collapse
|
29
|
Sirajee R, El Khatib S, Dieleman LA, Salla M, Baksh S. ImmunoMet Oncogenesis: A New Concept to Understand the Molecular Drivers of Cancer. J Clin Med 2025; 14:1620. [PMID: 40095546 PMCID: PMC11900543 DOI: 10.3390/jcm14051620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
The appearance of cancer progresses through a multistep process that includes genetic, epigenetic, mutational, inflammatory and metabolic disturbances to signaling pathways within an organ. The combined influence of these changes will dictate the growth properties of the cells; the direction of further malignancy depends on the severity of these "disturbances". The molecular mechanisms driving abnormal inflammation and metabolism are beginning to be identified and, in some cases, are quite prominent in pre-condition states of cancer and are significant drivers of the malignant phenotype. As such, utilizing signaling pathways linked to inflammation and metabolism as biomarkers of cancer is an emerging method and includes pathways beyond those well characterized to drive metabolism or inflammation. In this review, we will discuss several emerging elements influencing proliferation, inflammation and metabolism that may play a part as drivers of the cancer phenotype. These include AMPK and leptin (linked to metabolism), NOD2/RIPK2, TAK1 (linked to inflammation), lactate and pyruvate transporters (monocarboxylate transporter [MCT], linked to mitochondrial biogenesis and metabolism) and RASSF1A (linked to proliferation, cell death, cell cycle control, inflammation and epigenetics). We speculate that the aforementioned elements are important drivers of carcinogenesis that should be collectively referenced as being involved in "ImmunoMET Oncogenesis", a new tripartite description of the role of elements in driving cancer. This term would suggest that for a better understanding of cancer, we need to understand how proliferation, inflammation and metabolic pathways are impacted and how they influence classical drivers of malignant transformation in order to drive ImmunoMET oncogenesis and the malignant state.
Collapse
Affiliation(s)
- Reshma Sirajee
- Faculty of Science, 1-001 CCIS, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Sami El Khatib
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Kuwait City 32093, Kuwait
| | - Levinus A. Dieleman
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Mohamed Salla
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
| | - Shairaz Baksh
- Department of Pediatrics, Biochemistry and Division of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
- Women and Children’s Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| |
Collapse
|
30
|
An X, Sun L, Zheng H, Xiao Y, Sun W, Yu D. Mitochondria-associated non-coding RNAs and their impact on drug resistance. Front Pharmacol 2025; 16:1472804. [PMID: 40078288 PMCID: PMC11897306 DOI: 10.3389/fphar.2025.1472804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Drug resistance is a prevalent challenge in clinical disease treatment, often leading to disease relapse and poor prognosis. Therefore, it is crucial to gain a deeper understanding of the molecular mechanisms underlying drug resistance and to develop targeted strategies for its effective prevention and management. Mitochondria, as vital energy-producing organelles within cells, have been recognized as key regulators of drug sensitivity. Processes such as mitochondrial fission, fusion, mitophagy, changes in membrane potential, reactive oxygen species (ROS) accumulation, and oxidative phosphorylation (OXPHOS) are all linked to drug sensitivity. Non-coding RNAs (ncRNAs) enriched in mitochondria (mtncRNA), whether transcribed from mitochondrial DNA (mtDNA) or from the nucleus and transported to mitochondria, can regulate the transcription and translation of mtDNA, thus influencing mitochondrial function, including mitochondrial substance exchange and energy metabolism. This, in turn, directly or indirectly affects cellular sensitivity to drugs. This review summarizes the types of mtncRNAs associated with drug resistance and the molecular mechanisms regulating drug resistance. Our aim is to provide insights and strategies for overcoming drug resistance by modulating mtncRNAs.
Collapse
Affiliation(s)
- Xingna An
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lina Sun
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Huan Zheng
- Department of Hematology-Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Yinghui Xiao
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Department of Core Facility, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Silva ÁJC, de Lavor MSL. Nitroxidative Stress, Cell-Signaling Pathways, and Manganese Porphyrins: Therapeutic Potential in Neuropathic Pain. Int J Mol Sci 2025; 26:2050. [PMID: 40076672 PMCID: PMC11900433 DOI: 10.3390/ijms26052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Neuropathic pain, a debilitating condition arising from somatosensory system damage, significantly impacts quality of life, leading to anxiety, self-mutilation, and depression. Oxidative and nitrosative stress, an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and antioxidant defenses, plays a crucial role in its pathophysiology. While reactive species are essential for physiological functions, excessive levels can cause cellular component damage, leading to neuronal dysfunction and pain. This review highlights the complex interactions between reactive species, antioxidant systems, cell signaling, and neuropathic pain. We discuss the physiological roles of ROS/RNS and the detrimental effects of oxidative and nitrosative stress. Furthermore, we explore the potential of manganese porphyrins, compounds with antioxidant properties, as promising therapeutic agents to mitigate oxidative stress and alleviate neuropathic pain by targeting key cellular pathways involved in pain. Further research is needed to fully understand their therapeutic potential in managing neuropathic pain in human and non-human animals.
Collapse
Affiliation(s)
| | - Mário Sérgio Lima de Lavor
- Department of Agricultural and Environmental Sciences, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil;
| |
Collapse
|
32
|
Sun L, Cui ZG, Feng Q, Muhammad JS, Jin YJ, Zhao S, Zhou L, Wu CAI. Fenvalerate exposure induces AKT/AMPK-dependent alterations in glucose metabolism in hepatoma cells. Front Pharmacol 2025; 16:1540567. [PMID: 40070568 PMCID: PMC11893604 DOI: 10.3389/fphar.2025.1540567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Background Fenvalerate (Fen) is a synthetic pyrethroid insecticide significantly associated with an increased risk of type 2 diabetes. Tumor cells exhibit a shift in glucose metabolism, known as the Warburg effect. Accordingly, we aimed to elucidate whether Fen interferes with insulin signaling and affects hepatoma cell metabolism. Methods The cells were subjected to Fen to assess glucose uptake, acidification, oxygen consumption, and ATP production. ROS generation, mitochondrial membrane potentials, and protein expression were evaluated by flow cytometry, immunofluorescence microscopy, and western blot analyses. Results Our results demonstrated that Fen promotes glucose uptake, lactate production, and ATP generation in various cancer cells. Moreover, Fen enhanced insulin receptor phosphorylation and upregulated p-AKT/p-AMPK expression. Fen enhanced insulin receptor sensitivity and endocytosis via reactive oxygen species generation rather than the PP2B pathway. Additionally, the antioxidants N-acetyl-L-cysteine and ascorbic acid reversed the Fen-induced increase in glycolysis. Finally, chronic Fen exposure protected hepatoma cells against metformin-induced cell death via the AKT/AMPK pathway. Conclusion These findings raise concerns regarding the safety of Fen and its potential role in altering cancer cell metabolism, affecting insulin signaling and treating drug resistance, thereby necessitating further research.
Collapse
Affiliation(s)
- Lu Sun
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, Japan
| | - Qianwen Feng
- Biocytogen Phaceuticals, Daxing Bio-Medicine Industry Park, Beijing, China
| | - Jibran Sualeh Muhammad
- Department of Biomedical Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Yu-Jie Jin
- Department of General Practice, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Lingqi Zhou
- Department of Pediatric Cardiology, Heart Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Cheng-AI Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
33
|
Karampinis E, Koumaki D, Sgouros D, Nechalioti PM, Toli O, Pappa G, Papadakis M, Georgopoulou KE, Schulze-Roussaki AV, Kouretas D. Non-Melanoma Skin Cancer: Assessing the Systemic Burden of the Disease. Cancers (Basel) 2025; 17:703. [PMID: 40002296 PMCID: PMC11853326 DOI: 10.3390/cancers17040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
The emergence of systemic therapies and photoprotection against non-melanoma skin cancer (NMSC) raises questions on the broader systematic impact of the disease. Personalized medicine involves a holistic patient approach, through which the evaluation of systemic biomarkers can reveal the interconnected aspects of patient health and tailored therapies. Cumulative UV exposure disrupts redox equilibrium and triggers inflammation and cutaneous immunosuppression, processes that contribute independently or via their interplay to cutaneous carcinogenesis. This systemic impact can be further reinforced by biomolecules derived from the NMSC microenvironment, fueling a continuous cycle of oxidative stress and inflammation in the organism. Regarding investigation of the systemic burden of NMSC, we conducted a narrative review focusing on parameters related to redox status, inflammation, and immune suppression observed in the blood components (serum, plasma, and erythrocytes) of NMSC patients. Our findings revealed an association of NMSC patients with perturbations of redox homeostasis, as evidenced by the decreased antioxidant activity, lower levels of non-enzymatic antioxidants, and increased byproducts of lipid, protein, and DNA oxidative damage. Additionally, NMSC patients presented augmented levels of pro-inflammatory interleukins, reduced anti-tumor biomolecule levels, and enhanced immune response markers, as well as elevated vitamin D levels. These systemic changes may lead to the association of NMSC with a higher risk of secondary malignancies in other organs. Overall, the findings of the present study suggest that NMSC affects systemic health beyond the skin, underscoring the need for a comprehensive and individualized approach to the management and monitoring of the patient.
Collapse
Affiliation(s)
- Emmanouil Karampinis
- Second Dermatology Department, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece;
| | - Dimitra Koumaki
- Department of Dermatology, University Hospital of Heraklion, 71500 Crete, Greece;
| | - Dimitrios Sgouros
- 2nd Department of Dermatology and Venereology, “Attikon” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (D.S.); (G.P.)
| | - Paraskevi-Maria Nechalioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Olga Toli
- Department of Dermatology, Oncoderm Center One Day Clinic, 45332 Ioannina, Greece;
| | - Georgia Pappa
- 2nd Department of Dermatology and Venereology, “Attikon” General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (D.S.); (G.P.)
| | - Marios Papadakis
- Department of Surgery II, Witten/Herdecke University, Heusnerstrasse 40, 42283 Witten, Germany;
| | | | - Angeliki-Victoria Schulze-Roussaki
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University General Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece;
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| |
Collapse
|
34
|
Park JW, Kang M, Kim G, Hyun SY, Shin J, Kim SY, Lee JH, Choi WS, Lee JH, Lee K, Kim SH, Cho WS, Kim HS. The impact of atmospheric ultrafine particulate matter on IgE-mediated type 1 hypersensitivity reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136705. [PMID: 39637818 DOI: 10.1016/j.jhazmat.2024.136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
The effect of atmospheric ultrafine particulate matter (UPM) on respiratory allergic diseases has been investigated for decades; however, the precise molecular mechanisms underlying these effects remain poorly understood. In this study, we used a simulated UPM (sUPM) generated via the spark discharge method to refine black carbon, a core particle that closely mimics real-world UPM, including the size (i.e., size of agglomerates: 165 nm) and organic carbon/elemental carbon ratio (i.e., 2.62). When 25 μg/mouse of dispersed sUPM was instilled into the lungs of mice, it promoted the infiltration and degranulation response of pulmonary mast cells, and exposure to sUPM in an immunoglobulin E (IgE)-mediated passive anaphylaxis model intensified the degranulation response of peripheral mast cells. These effects of sUPM were demonstrated to amplify the downstream signaling mechanism of the high-affinity IgE receptor (FcεRI) mediated by IgE when tested using rat basophil leukemia (RBL)-2H3 and mouse bone marrow-derived mast cells (BMMCs) collected from the bone marrow of BALB/c mice. These results indicate that airborne UPM can exacerbate type 1 hypersensitivity reactions by enhancing the IgE-mediated signaling pathways within mast cells. Furthermore, this study provided mechanistic evidence on exacerbated allergic pulmonary diseases induced by UPM inhalation.
Collapse
Affiliation(s)
- Jeong Won Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Minseong Kang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seung Yeun Hyun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Juhyun Shin
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Seon Young Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Jun Ho Lee
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju 54986, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
35
|
Jurčacková Z, Hrčková G, Mudroňová D, Matiašová AA, Biedermann D. Flavonolignans silybin, silychristin and 2,3-dehydrosilybin showed differential cytoprotective, antioxidant and anti-apoptotic effects on splenocytes from Balb/c mice. Sci Rep 2025; 15:5631. [PMID: 39955331 PMCID: PMC11830019 DOI: 10.1038/s41598-025-89824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Silymarin is an extract obtained from the seeds of milk thistle (Sylibum marianum L., Asteraceae) and contains several structurally related flavonolignans and a small family of flavonoids. Mouse spleen cells represent highly sensitive primary cells suitable for studying the pharmacological potential and biofunctional properties of natural substances. Cultivation of splenocytes for 24 h under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen) resulted in decreased viability of splenocytes compared to intact cells. A cytoprotective effect of silybin (SB), silychristin (SCH) and 2,3-dehydrosilybin (DHSB) was observed at concentrations as low as 5 µmol/ml. At 50 µmol/ml, these substances restored and/or stimulated viability and mitochondrial membrane potential and had anti-apoptotic effect in the order SB > DHSB > SCH. The substances demonstrated a concentration-dependent activity in restoring the redox balance based on the changes in the concentration of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide. This was in the order DHSB > SCH > SB, which correlated with the suppressed expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase and glutathione peroxidase. The strong stimulation of the superoxide dismutase 1 gene converting ROS to H2O2 points to its dominant role in the maintaining redox homeostasis in splenocytes, which was disrupted by oxidative stress due to non-physiological culture conditions. Our study showed significant differences in the cytoprotective, antioxidant and anti-apoptotic activities of SB, SCH, and DHSB on splenocytes exposed to mild and AAPH-induced oxidative stress.
Collapse
Affiliation(s)
- Zuzana Jurčacková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001, Kosice, Slovakia
| | - Gabriela Hrčková
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001, Kosice, Slovakia.
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Kosice, Slovakia
| | - David Biedermann
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
36
|
Ahmadpour Y, Bahrami G, Arkan E, Abbaszadeh F, Aghaz F, Fakhri S, Echeverría J. Unveiling the effects of Rosa canina oligosaccharide liposome on neuropathic pain and motor dysfunction following spinal cord injury in rats: relevance to its antioxidative effects. Front Pharmacol 2025; 16:1533025. [PMID: 40028155 PMCID: PMC11868053 DOI: 10.3389/fphar.2025.1533025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background Spinal cord injury (SCI) is a leading cause of sensorimotor disorders, impacting millions of people globally. The absence of effective treatments and the side effects of existing medications highlight the need for innovative research into new therapeutic compounds. Purpose Given the critical role of oxidative stress in the development of SCI and the antioxidant properties of oligosaccharides in other neurological disorders, this study focuses on the role of oxidative stress in SCI and explores the potential of a novel oligosaccharide nanoformulation derived from Rosa canina (Oligo-L). Materials and methods Oligo-L was formulated using soy lecithin as the phospholipid and the characterization included size, zeta potential, morphology, and drug loading efficiency. Then 35 Wistar male rats were divided into five groups of Sham, SCI, and Oligo-L (10 μL intrathecal injection of 15, 30, and 45 mg/mL). An aneurysm clip was used to induce compression injury of the SCI and Oligo-L groups. Sensory-motor functions were evaluated weekly for 4 weeks using tests such as the BBB scale, inclined plane, acetone drop, hot plate, von Frey, and monitoring of weight changes. Additionally, oxidative stress markers and histological changes were examined to evaluate changes in nitrite, glutathione, catalase, and neuronal survival. Results and discussion The findings indicated that Oligo-L treatment led to significant improvements in neuropathic pain, and motor function performance and weight of the animals from the first week post-SCI. Oligo-L also enhanced catalase and glutathione levels while reducing serum nitrite levels, contributing to neuronal preservation. Additionally, Oligo-L increased neuronal survival in the both ventral (motor neurons) and dorsal (sensory neurons) horns of the spinal cord. Conclusion Overall, Oligo-L, characterized by its beneficial physicochemical properties, showed promising potential as a neuroprotective agent and facilitated the recovery of sensory and motor functions after SCI.
Collapse
Affiliation(s)
- Yasaman Ahmadpour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
37
|
Ji L, Shi Q, Shangguan Y, Chen C, Zhu J, Dong Z, Hong X, Liu X, Wei C, Zhu X, Li W. Molecular Response and Metabolic Reprogramming of the Spleen Coping with Cold Stress in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Antioxidants (Basel) 2025; 14:217. [PMID: 40002403 PMCID: PMC11852077 DOI: 10.3390/antiox14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis), as a type of warm-water reptile, could be induced to massive death by sharp temperature decline. Hence, the mechanism of spleen tissue responding to cold stress in the P. sinensis was investigated. The present results showed that the superoxide dismutase (SOD) activity declined from 4 to 16 days post-cold-stress (dps), while the catalase (CAT) and glutathione peroxidase (GSH-Px) activities increased, from 4 to 8 dps in the 14 °C (T14) and 7 °C (T7) stress groups. The spleen transcriptome in the T7 group and the control group (CG) at 4 dps obtained 2625 differentially expressed genes (DEGs), including 1462 upregulated and 1663 downregulated genes. The DEGs were enriched mainly in the pathways "intestinal immune network for IgA production" (Pigr, Il15ra, Tnfrsf17, Aicda, and Cd28), "toll-like receptor signaling pathway" (Mapk10, Tlr2, Tlr5, Tlr7, and Tlr8), and "cytokine-cytokine receptor interaction" (Cx3cl1, Cx3cr1, Cxcl14, Cxcr3, and Cxcr4). The metabolomic data showed that esculentic acid, tyrosol, diosgenin, heptadecanoic acid, and 7-ketodeoxycholic acid were obviously increased, while baccatin III, taurohyocholate, parthenolide, enterolactone, and tricin were decreased, in the CG vs. T7 comparison. Integrated analysis of the two omics revealed that "glycine, serine and threonine metabolism", "FoxO signaling pathway", and "neuroactive ligand-receptor interaction" were the main pathways responding to the cold stress. Overall, this work found that low temperature remarkably influenced the antioxidant enzyme activities, gene expression pattern, and metabolite profile in the spleen, indicating that immunity might be weakened by cold stress in P. sinensis.
Collapse
Affiliation(s)
- Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Qing Shi
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Yisen Shangguan
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Zhen Dong
- South China Sea Marine Survey Center, Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources, Guangzhou 510275, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510275, China; (L.J.); (X.L.)
| |
Collapse
|
38
|
Gambaro R, Chain CY, Scioli-Montoto S, Moreno A, Huck-Iriart C, Ruiz ME, Cisneros JS, Lamas DG, Tau J, Gehring S, Islan GA, Rodenak-Kladniew B. Phytoactive-Loaded Lipid Nanocarriers for Simvastatin Delivery: A Drug Repositioning Strategy Against Lung Cancer. Pharmaceutics 2025; 17:255. [PMID: 40006622 PMCID: PMC11858925 DOI: 10.3390/pharmaceutics17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Drug repurposing explores new applications for approved medications, such as simvastatin (SV), a lipid-lowering drug that has shown anticancer potential but is limited by solubility and side effects. This study aims to enhance SV delivery and efficacy against lung cancer cells using bioactive lipid nanoparticles formulated with plant-derived monoterpenes as both nanostructuring agents and anticancer molecules. Methods: Lipid nanoparticles were produced by ultrasonication and characterized for morphology, size, zeta potential, and polydispersity index (PDI). Monoterpenes (linalool-LN-, limonene, 1,8-cineole) or Crodamol® were used as liquid lipids. Encapsulation efficiency (EE), release profiles, stability, biocompatibility, protein adsorption, cytotoxicity, and anticancer effects were evaluated. Results: The nanoparticles exhibited high stability, size: 94.2 ± 0.9-144.0 ± 2.6 nm, PDI < 0.3, and zeta potential: -4.5 ± 0.7 to -16.3 ± 0.8 mV. Encapsulation of SV in all formulations enhanced cytotoxicity against A549 lung cancer cells, with NLC/LN/SV showing the highest activity and being chosen for further investigation. Sustained SV release over 72 h and EE > 95% was observed for NLC/LN/SV. SAXS/WAXS analysis revealed that LN altered the crystallographic structure of nanoparticles. NLC/LN/SV demonstrated excellent biocompatibility and developed a thin serum protein corona in vitro. Cellular studies showed efficient uptake by A549 cells, G0/G1 arrest, mitochondrial hyperpolarization, reactive oxygen species production, and enhanced cell death compared to free SV. NLC/LN/SV more effectively inhibited cancer cell migration than free SV. Conclusions: NLC/LN/SV represents a promising nanocarrier for SV repurposing, combining enhanced anticancer activity, biocompatibility, and sustained stability for potential lung cancer therapy.
Collapse
Affiliation(s)
- Rocío Gambaro
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
| | - Cecilia Y. Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), La Plata 1900, Buenos Aires, Argentina; (C.Y.C.); (J.S.C.)
| | - Sebastian Scioli-Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina; (S.S.-M.); (M.E.R.)
| | - Ailin Moreno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| | - Cristián Huck-Iriart
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Universidad Nacional de San Martín (UNSAM)--Investigaciones Científicas y Tecnológicas (CONICET), Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín 1650, Buenos Aires, Argentina; (C.H.-I.); (D.G.L.)
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - María Esperanza Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina; (S.S.-M.); (M.E.R.)
| | - José S. Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), La Plata 1900, Buenos Aires, Argentina; (C.Y.C.); (J.S.C.)
| | - Diego G. Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Universidad Nacional de San Martín (UNSAM)--Investigaciones Científicas y Tecnológicas (CONICET), Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín 1650, Buenos Aires, Argentina; (C.H.-I.); (D.G.L.)
| | - Julia Tau
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| | - Stephan Gehring
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
| | - Germán A. Islan
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Boris Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| |
Collapse
|
39
|
Li X, Wang X, Chen G, Tian B. Application trends of hydrogen-generating nanomaterials for the treatment of ROS-related diseases. Biomater Sci 2025; 13:896-912. [PMID: 39807026 DOI: 10.1039/d4bm01450b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis. Hydrogen gas effectively removes ROS from the body due to its good antioxidant properties, and hydrogen therapy has become a promising gas therapy strategy due to its inherent safety and stability. The combination of nanomaterials can achieve targeted delivery and effective accumulation of hydrogen, and has some ameliorating effects on diseases. Herein, we summarize the use of hydrogen-producing nanomaterials for the treatment of ROS-related diseases and talk about the prospects for the treatment of other ROS-induced disease models, such as acute kidney injury.
Collapse
Affiliation(s)
- Xiaobing Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xuezhu Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
40
|
Wang C, Liu A, Zhao Z, Ying T, Deng S, Jian Z, Zhang X, Yi C, Li D. Application and progress of 3D printed biomaterials in osteoporosis. Front Bioeng Biotechnol 2025; 13:1541746. [PMID: 39968010 PMCID: PMC11832546 DOI: 10.3389/fbioe.2025.1541746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Osteoporosis results from a disruption in skeletal homeostasis caused by an imbalance between bone resorption and bone formation. Conventional treatments, such as pharmaceutical drugs and hormone replacement therapy, often yield suboptimal results and are frequently associated with side effects. Recently, biomaterial-based approaches have gained attention as promising alternatives for managing osteoporosis. This review summarizes the current advancements in 3D-printed biomaterials designed for osteoporosis treatment. The benefits of biomaterial-based approaches compared to traditional systemic drug therapies are discussed. These 3D-printed materials can be broadly categorized based on their functionalities, including promoting osteogenesis, reducing inflammation, exhibiting antioxidant properties, and inhibiting osteoclast activity. 3D printing has the advantages of speed, precision, personalization, etc. It is able to satisfy the requirements of irregular geometry, differentiated composition, and multilayered structure of articular osteochondral scaffolds with boundary layer structure. The limitations of existing biomaterials are critically analyzed and future directions for biomaterial-based therapies are considered.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Aiguo Liu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ziwen Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ting Ying
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuang Deng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhen Jian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
41
|
Stavrovskaya I, Morin BK, Madamba S, Alexander C, Romano A, Alam S, Pavlov L, Mitaishvili E, Peixoto PM. Mitochondrial ROS modulate presynaptic plasticity in the drosophila neuromuscular junction. Redox Biol 2025; 79:103474. [PMID: 39721493 PMCID: PMC11732232 DOI: 10.1016/j.redox.2024.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The elevated emission of reactive oxygen species (ROS) from presynaptic mitochondria is well-documented in several inflammatory and neurodegenerative diseases. However, the potential role of mitochondrial ROS in presynaptic function and plasticity remains largely understudied beyond the context of disease. Here, we investigated this potential ROS role in presynaptic function and short-term plasticity by combining optogenetics, whole cell electrophysiological recordings, and live confocal imaging using a well-established protocol for induction and measurement of synaptic potentiation in Drosophila melanogaster neuromuscular junctions (NMJ). Optogenetic induction of ROS emission from presynaptic motorneuron mitochondria expressing mitokiller red (mK) resulted in synaptic potentiation, evidenced by an increase in the frequency of spontaneous mini excitatory junction potentials. Notably, this effect was not observed in flies co-expressing catalase, a cytosolic hydrogen peroxide (H2O2) scavenging enzyme. Moreover, the increase in electrical activity did not coincide with synaptic structural changes. The absence of Wnt1/Wg release from synaptic boutons suggested involvement of alternative or non-canonical signaling pathway(s). However, in existing boutons we observed an increase in the active zone (AZ) marker Brp/Erc1, which serves as docking site for the neurotransmitter vesicle release pool. We propose the involvement of putative redox switches in AZ components as the molecular target of mitochondrial H2O2. These findings establish a novel framework for understanding the signaling role of mROS in presynaptic structural and functional plasticity, providing insights into redox-based mechanisms of neuronal communication.
Collapse
Affiliation(s)
- Irina Stavrovskaya
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | | | - Stephen Madamba
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | | | - Alexis Romano
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Samia Alam
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Lucas Pavlov
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Erna Mitaishvili
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA
| | - Pablo M Peixoto
- Baruch College and CUNY Graduate Center, 1 Baruch Way, New York, NY, 10010, USA.
| |
Collapse
|
42
|
Yang L, Hu Y, Deng H, Li Y, Zhang R, Zhang Q, Yang L, Pang H, Liu F, Fu C. Water-soluble polysaccharides from Torreya grandis nuts: Structural characterization and anti-inflammatory activity. Int J Biol Macromol 2025; 291:138935. [PMID: 39701235 DOI: 10.1016/j.ijbiomac.2024.138935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Torreya grandis (T. grandis) nuts are widely consumed as a functional food in China. In this study, we investigated the structural characteristics of T. grandis nuts polysaccharides and evaluated their potential biological functions with anti-inflammatory activities. Polysaccharides (TGP) were extracted from T. grandis nuts using water extraction and alcohol precipitation methods. Through a series of purification steps, three heteropolysaccharides (TGP-0a, TGP-2a, and TGP-3a) with distinct molecular weights, monosaccharide compositions, and surface morphologies were isolated. Their anti-inflammatory activities were screened, and TGP-0a was shown to be the most effective component. By combining NMR and methylation studies, TGP-0a was predominantly composed of linear α-1,4-glucan region and linear β-1,4-(gluco)mannan region. In cellular anti-inflammatory assays, TGP-0a significantly diminished the release of pro-inflammatory cytokines. Furthermore, by lowering the levels of iNOS and COX-2, TGP-0a decreased the release of inflammatory mediators (NO and ROS), thereby reducing oxidative stress and inflammatory response. In conclusion, T. grandis nut polysaccharides, particularly TGP-0a, show strong potential as natural anti-inflammatory agents for functional foods and pharmaceutical applications.
Collapse
Affiliation(s)
- Luping Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunjie Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongdan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
43
|
Yang T, Lu Z, Song H, Chen Y, Jiang M, Zhan K, Zhao G. Knockout of hexokinase 2 regulates mitochondrial dysfunction and activates the NLRP3 signal pathway in the rumen epithelial cells of dairy cows. Int J Biol Macromol 2025; 289:138831. [PMID: 39701238 DOI: 10.1016/j.ijbiomac.2024.138831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Hexokinase 2 (HK2) plays a vital role in mitochondrial homeostasis; however, the molecular mechanisms underlying its involvement in high-concentrate diet-induced damage in the ruminal epithelium of dairy cows are poorly understood. This study aimed to explore the regulatory role of HK2 in mitochondrial function and responses to inflammation in the rumen of dairy cows fed a high-concentrate diet. Our results showed that, compared with a low-concentrate (LC) diet, feeding a high-concentrate (HC) diet increased oxidative stress and reduced relative antioxidant gene expression levels and enzyme activities in the ruminal epithelium. Furthermore, the expression of genes related to mitochondrial biosynthesis and structure decreased in the HC group, concomitant with nuclear oligomerization domain (NOD)-like receptor 3 (NLRP3) signaling pathway activation, which compromised normal rumen epithelium function. Meanwhile, transcription results showed the same trend in HK2-knockout bovine rumen epithelial cells (HK2KO BRECs) related to wild-type (WT) BRECs. Notably, the knockout of HK2 aggravated mitochondrial dysfunction, resulting in the impairment of mitochondrial morphology and quality, a reduction in mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) opening, increased reactive oxygen species (ROS) generation, and decreased expression of antioxidant genes. These changes led to upregulating genes and proteins in the NLRP3 pathway and activating proinflammatory response. In addition, metabolomic results showed that knockout HK2 altered the glycerophospholipid metabolic pathway. This study provides new strategies for mitigating high-concentrate diet-induced injury in the ruminal epithelium of dairy cows.
Collapse
Affiliation(s)
- Tianyu Yang
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, China; Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhiqi Lu
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Ningxia Dairy Science and Innovation Center of Bright Farming Company Limited, Zhongwei, China
| | - Han Song
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuhang Chen
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
Tang D, Li X, Zhang L, Xiao P, Nie Y, Qiu F, Cheng Z, Li W, Zhao Y. Reactive oxygen species-mediated signal transduction and utilization strategies in microalgae. BIORESOURCE TECHNOLOGY 2025; 418:132004. [PMID: 39710205 DOI: 10.1016/j.biortech.2024.132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Reactive oxygen species (ROS) are crucial in stress perception, the integration of environmental signals, and the activation of downstream response networks. This review emphasizes ROS-mediated signaling pathways in microalgae and presents an overview of strategies for leveraging ROS. Eight distinct signaling pathways mediated by ROS in microalgae have been summarized, including the calcium signaling pathway, the target of rapamycin signaling pathway, the mitogen-activated protein kinase signaling pathway, the cyclic adenosine monophosphate/protein kinase A signaling pathway, the ubiquitin/protease pathway, the ROS-regulated transcription factors and enzymes, the endoplasmic reticulum stress, and the retrograde ROS signaling. Moreover, this review outlines three strategies for utilizing ROS: two-stage cultivation, combined stress with phytohormones, and strain engineering. The physicochemical properties of various ROS, together with their redox reactions with downstream targets, have been elucidated to reveal the role of ROS in signal transduction processes while delineating the ROS-mediated signal transduction network within microalgae.
Collapse
Affiliation(s)
- Dexin Tang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Xu Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Pengying Xiao
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yudong Nie
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Facheng Qiu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Zhiliang Cheng
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Wensheng Li
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agriculture and Life Science, Kunming University, Kunming 650214, PR China.
| |
Collapse
|
45
|
Ju Z, Li X, Li X, Liang C, Xu Z, Chen H, Xiong D. Stranded heavy fuel oil exposure causes deformities, cardiac dysfunction, and oxidative stress in marine medaka Oryzias melastigma using an oiled-gravel-column system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:29. [PMID: 39695067 DOI: 10.1007/s10695-024-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Heavy fuel oil (HFO) stranded on the coastline poses a potential threat to the health of marine fish after an oil spill. In this study, an oiled-gravel-column (OGC) system was established to investigate the toxic effects of stranded HFO on marine medaka Oryzias melastigma. HFO 380# (sulfur content 2.9%) was chosen as one type of high sulfur fuel oil for acute toxicity tests. The marine medaka larvae were exposed to the OGC system effluents with oil loading rates of 0 (control), 400, 800, 1600, and 3200 µg HFO/g gravel for 144 h, respectively. Results showed that a prevalence of blue sac disease signs presented teratogenic effects, including decreased circulation, ventricular stretch, cardiac hemorrhage, and pericardial edema. Moreover, the treatments (800, 1600, and 3200 µg oil/g gravel) induced severe cardiotoxicity, characterized by significant bradycardia and reduced stroke volume with an overt decrease in cardiac output. Additionally, the antioxidant enzyme activities, including catalase (CAT), peroxidase (POD), and glutathione S-transferase (GST) were significantly upregulated at 800-3200 µg oil/g gravel except for a marked inhibition of CAT activity at 3200 µg oil/g gravel. Furthermore, significantly elevated protein carbonyl (PCO) levels were detected, suggesting that the organisms suffered severe protein oxidative damage subjected to the exposure. Overall, stranded HFO 380# exposure activated the antioxidant defense system (up-regulated POD and GST activities) of marine medaka and disrupted CAT activity, which could result in an oxidative stress state (elevated PCO levels) and might further contribute to cardiac dysfunction, deformities, and mortality.
Collapse
Affiliation(s)
- Zhonglei Ju
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Xin Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Cen Liang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Zhu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Huishu Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
46
|
Lee IT, Yang CC, Lin YJ, Wu WB, Lin WN, Lee CW, Tseng HC, Tsai FJ, Hsiao LD, Yang CM. Mevastatin-Induced HO-1 Expression in Cardiac Fibroblasts: A Strategy to Combat Cardiovascular Inflammation and Fibrosis. ENVIRONMENTAL TOXICOLOGY 2025; 40:264-280. [PMID: 39431643 DOI: 10.1002/tox.24429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Mevastatin (MVS) is known for its anti-inflammatory effects, potentially achieved by upregulating heme oxygenase-1 (HO-1), an enzyme involved in cytoprotection against oxidative injury. Nonetheless, the specific processes by which MVS stimulates HO-1 expression in human cardiac fibroblasts (HCFs) are not yet fully understood. In this study, we found that MVS treatment increased HO-1 mRNA and protein levels in HCFs. This induction was inhibited by pretreatment with specific inhibitors of p38 MAPK, JNK1/2, and FoxO1, and by siRNAs targeting NOX2, p47phox, p38, JNK1, FoxO1, Keap1, and Nrf2. MVS also triggered ROS generation and activated JNK1/2 and p38 MAPK, both attenuated by NADPH oxidase or ROS inhibitors. Additionally, MVS promoted the phosphorylation of FoxO1 and Nrf2, which was suppressed by p38 MAPK or JNK1/2 inhibitor. Furthermore, MVS inhibited TNF-α-induced NF-κB activation and vascular cell adhesion molecule-1 (VCAM-1) expression via the HO-1/CO pathway in HCFs. In summary, the induction of HO-1 expression in HCFs by MVS is mediated through two primary signaling pathways: NADPH oxidase/ROS/p38 MAPK, and JNK1/2/FoxO1 and Nrf2. This research illuminates the underlying processes through which MVS exerts its anti-inflammatory effects by modulating HO-1 in cardiac fibroblasts.
Collapse
Affiliation(s)
- I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Jyun Lin
- Institute of Translational Medicine and new Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Hui-Ching Tseng
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung, Taiwan
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
47
|
Sun B, Hu M, Bock C, Shao Y, Chen H, Waiho K, Liu W, Khadka K, Xu C, Wang Y. Effects of perfluorooctanoic acid and nano titanium dioxide on the immune response and energy allocation in Mytilus coruscus. CHEMOSPHERE 2025; 370:143958. [PMID: 39701318 DOI: 10.1016/j.chemosphere.2024.143958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Perfluorooctanoic acid (PFOA) functions as a surfactant, while nano-titanium dioxide (nano-TiO2) serves as an antibacterial agent. These substances are extensively utilized in industrial production and, upon release into aquatic environments, pose significant threats to the viability and development of marine organisms. However, research into the effects of PFOA and nano-TiO2 on the immune functions and cellular energy allocation (CEA) of bivalves remains limited. To investigate the impact of PFOA and nano-TiO2 on immunity and cellular energy, we exposed Mytilus coruscus individuals to different concentrations of PFOA (2 and 200 μg/L), either alone or in combination with nano-TiO2 (0.1 mg/L, particle size: 25 nm) for 14 days. We found that the co-exposure to PFOA and nano-TiO2 had significant interactive effects on multiple immune function parameters of mussels. PFOA and nano-TiO2 notably reduced the total hemocyte count (THC), esterase activity (EST), mitochondrial number (MN), lysosomal content (LYSO), and cell viability, while concurrently elevating hemocyte mortality (HM) and reactive oxygen species (ROS) levels. Some immune-related genes, such as Tumor Necrosis Factor-alpha (TNF-α) and Myeloid Differentiation Primary Response 88 (MyD88) were downregulated, while others such as Interleukin 17 (IL-17) and Transforming Growth Factor-beta (TGF-β) were upregulated after 14-day exposure to combined pollutant exposure. Furthermore, negative effects on CEA were observed under both individual and combined pollutant stress. Therefore, PFOA and nano-TiO2 regulate cellular and humoral immunity through the regulation of immune genes as mediators, while simultaneously disrupting cellular energy metabolism. The immunotoxicity of organic and particulate pollutants, and their mixtures, thus poses a significant risk to the immune defense capabilities of mussel populations in polluted coastal environments.
Collapse
Affiliation(s)
- Bingyan Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar & Marine Research, Bremerhaven, Germany
| | - Ying Shao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Haodong Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Center of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu, Terengganu, 20000, Malaysia
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland
| | - Kiran Khadka
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Chaosong Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
48
|
Niu B, An X, Chen Y, He T, Zhan X, Zhu X, Ping F, Zhang W, Zhou J. Nigella sativa L. seed extract alleviates oxidative stress-induced cellular senescence and dysfunction in melanocytes. Chin J Nat Med 2025; 23:203-213. [PMID: 39986696 DOI: 10.1016/s1875-5364(25)60824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 02/24/2025]
Abstract
Nigella sativa L. seeds have been traditionally utilized in Chinese folk medicine for centuries to treat vitiligo. This study revealed that the ethanolic extract of Nigella sativa L. (HZC) enhances melanogenesis and mitigates oxidative stress-induced cellular senescence and dysfunction in melanocytes. In accordance with established protocols, the ethanol fraction from Nigella sativa L. seeds was extracted, concentrated, and lyophilized to evaluate its herbal effects via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, tyrosinase activity evaluation, measurement of cellular melanin contents, scratch assays, senescence-associated β-galactosidase (SA-β-gal) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis for expression profiling of experimentally relevant proteins. The results indicated that HZC significantly enhanced tyrosinase activity and melanin content while notably increasing the protein expression levels of Tyr, Mitf, and gp100 in B16F10 cells. Furthermore, HZC effectively mitigated oxidative stress-induced cellular senescence, improved melanocyte condition, and rectified various functional impairments associated with melanocyte dysfunction. These findings suggest that HZC increases melanin synthesis in melanocytes through the activation of the MAPK, PKA, and Wnt signaling pathways. In addition, HZC attenuates oxidative damage induced by H2O2 therapy by activating the nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway and enhancing the activity of downstream antioxidant enzymes, thus preventing premature senescence and dysfunction in melanocytes.
Collapse
Affiliation(s)
- Ben Niu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Xiaohong An
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China
| | - Yongmei Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting He
- Drug Discovery and Development Laboratories, Ningxia Hui Medicine Research Institute, Yinchuan, 750021, China
| | - Xiao Zhan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuqi Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fengfeng Ping
- Wuxi People's Hospital, Nanjing Medical University, Wuxi 214023, China
| | - Wei Zhang
- Hospital for Skin Diseases Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China.
| | - Jia Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
49
|
Pei S, Wang Y, Yao R, Zhang Z, Yin W, Li N. Whole blood exchange ameliorates acute hemolytic anemia by reducing inflammation and oxidative stress in rats. FASEB J 2025; 39:e70358. [PMID: 39878699 PMCID: PMC11777199 DOI: 10.1096/fj.202401748rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 01/31/2025]
Abstract
Hemolytic anemia (HA) is characterized by massive destruction of red blood cells (RBCs) and insufficient oxygen supply, which can lead to shock, organ failure, even death. Recent studies have preliminarily demonstrated the therapeutic effectiveness of whole blood exchange (WBE) in the management of acute hemolytic anemia and exhibited potential for reducing the duration of corticosteroid treatment, while the underlying mechanism of WBE therapy was not investigated in preclinical study. Hence, we investigate the therapeutic mechanisms of WBE in HA through established continued WBE therapy in rats creatively. This study aims to examine the mechanism of WBE on phenylhydrazine hydrochloride-induced hemolytic anemia in SD rats to aid the development of therapeutics for drug-induced hemolytic anemia (DIHA). Research results demonstrated the efficacy of WBE therapy in reducing mortality and ameliorating anemia in DIHA, as evidenced by significant improvements in representative hematological parameters such as RBCs, hemoglobin, and lactate dehydrogenase levels. Additionally, WBE indicated the ability to suppress oxidative stress and inflammation, and it mitigated organ damage and biochemical function by stabilizing hepatic ferroportin levels and decreasing organ iron content. These results highlighted the effectiveness of WBE as an innovative treatment for HA, furnishing evidence to prioritize it over traditional blood transfusion for severe anemias.
Collapse
Affiliation(s)
- Siya Pei
- Department of Blood Transfusion, Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Transfusion Research Centre, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Clinical Laboratory, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yanjie Wang
- Department of Blood Transfusion, Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Transfusion Research Centre, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Clinical Laboratory, Xiangya HospitalCentral South UniversityChangshaChina
| | - Run Yao
- Department of Blood Transfusion, Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Transfusion Research Centre, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhimin Zhang
- Department of Blood Transfusion, Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Transfusion Research Centre, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenyu Yin
- Department of Blood Transfusion, Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Transfusion Research Centre, Xiangya HospitalCentral South UniversityChangshaChina
| | - Ning Li
- Department of Blood Transfusion, Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Transfusion Research Centre, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
50
|
Lv H, Luo H, Tan W, Zhong J, Xiong J, Liu Z, Wu Q, Lin S, Cao K. Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02244-1. [PMID: 39871069 DOI: 10.1007/s10753-025-02244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects. To address the limitations of existing therapies and enhance drug utilization, this study explores the potential of KR as a therapeutic agent for inflammatory bone resorption and delineates its underlying mechanisms. In vitro experiments reveal that KR notably inhibits osteoclastogenesis and reduces the expression of osteoclastic markers. Additionally, KR decreases the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, while downregulating NADPH oxidase 1 (NOX1) and Kelch-like ECH-associated protein 1 (Keap1) to diminish ROS production. Furthermore, KR activates the nuclear factor erythroid 2-related factor 2 (Nrf2), which enhances the activity of heme oxygenase-1 (HO-1) and catalase (CAT), facilitating the clearance of excess ROS. The compound also hinders osteoclast formation and functionality by inhibiting the PI3K/AKT/GSK-3β signaling pathway. Lentiviral knockdown of CAT can partially reverse these effects of KR. Meanwhile, in vivo experiments indicate that KR effectively mitigates bone loss in an LPS-induced inflammatory bone resorption model. In summary, KR is a promising new star in breaking through the limitations of previous drugs and treating inflammatory bone resorption.
Collapse
Affiliation(s)
- Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Wen Tan
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhiming Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qin Wu
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China
| | - Sijian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Kai Cao
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China.
| |
Collapse
|