1
|
Macho-González A, Apaza Ticona L, Redondo-Castillejo R, Hernández-Martín M, Sánchez-Muniz FJ, Hernáiz MJ, Bastida S, Benedí J, Bocanegra A, López-Oliva ME, Mateos-Vega C, Garcimartín A. The preventive and therapeutic consumption of meat enriched with carob fruit extract, rich in phenolic compounds, improves colonic antioxidant status in late-stage T2DM rats. Food Chem 2024; 450:139339. [PMID: 38657343 DOI: 10.1016/j.foodchem.2024.139339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Oxidative stress is prevalent in Type 2 Diabetes Mellitus (T2DM) and has been associated with high meat consumption. Carob Fruit Extract (CFE) contains phenolic compounds, making it a suitable functional ingredient. Current study aims to evaluate the effect of CFE-enriched meat (CFE-meat) consumption on the antioxidant status of proximal and distal colon, and its relationship with fecal phenolic compounds in late-stage T2DM rats. Three groups of eight rats were studied: 1) D, fed control-meat; 2) ED, fed CFE-meat since the beginning of the study; 3) DE, fed CFE-meat after confirming T2DM. CFE-meat consumption reduces colonic oxidative stress mainly in the proximal section and helps to ameliorate glutathione metabolism and antioxidant score. Difference between ED and DE groups were associated with colon homeostasis and T2DM progression suggesting greater fermentation but lower absorption in the DE group. CFE appears as a promising tool to improve the antioxidant status observed in late-stage T2DM.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Spain.
| | - Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - María José Hernáiz
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Spain.
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| | - Carmen Mateos-Vega
- Biomedicine Sciences Department, Pharmacy School, Alcala University, Madrid, Spain.
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Spain.
| |
Collapse
|
2
|
Corbetta P, Lonati E, Pagliari S, Mauri M, Cazzaniga E, Botto L, Campone L, Palestini P, Bulbarelli A. Flavonoids-Enriched Vegetal Extract Prevents the Activation of NFκB Downstream Mechanisms in a Bowel Disease In Vitro Model. Int J Mol Sci 2024; 25:7869. [PMID: 39063111 PMCID: PMC11277009 DOI: 10.3390/ijms25147869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel disease (IBD) incidence has increased in the last decades due to changes in dietary habits. IBDs are characterized by intestinal epithelial barrier disruption, increased inflammatory mediator production and excessive tissue injury. Since the current treatments are not sufficient to achieve and maintain remission, complementary and alternative medicine (CAM) becomes a primary practice as a co-adjuvant for the therapy. Thus, the intake of functional food enriched in vegetal extracts represents a promising nutritional strategy. This study evaluates the anti-inflammatory effects of artichoke, caihua and fenugreek vegetal extract original blend (ACFB) in an in vitro model of gut barrier mimicking the early acute phases of the disease. Caco2 cells cultured on transwell supports were treated with digested ACFB before exposure to pro-inflammatory cytokines. The pre-treatment counteracts the increase in barrier permeability induced by the inflammatory stimulus, as demonstrated by the evaluation of TEER and CLDN-2 parameters. In parallel, ACFB reduces p65NF-κB pro-inflammatory pathway activation that results in the decrement of COX-2 expression as PGE2 and IL-8 secretion. ACFB properties might be due to the synergistic effects of different flavonoids, indicating it as a valid candidate for new formulation in the prevention/mitigation of non-communicable diseases.
Collapse
Affiliation(s)
- Paolo Corbetta
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Mario Mauri
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Luca Campone
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (P.C.); (M.M.); (E.C.); (L.B.); (P.P.); (A.B.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| |
Collapse
|
3
|
Irmak E, Tunca Sanlier N, Sanlier N. Could polyphenols be an effective treatment in the management of polycystic ovary syndrome? INT J VITAM NUTR RES 2024; 94:422-433. [PMID: 38229476 DOI: 10.1024/0300-9831/a000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Polycystic ovary syndrome (PCOS), is a health problem observed in women of reproductive age. Different diets, physical activity recommendations and lifestyle changes can be effective in dealing with the symptoms of PCOS. Nutrition is indeed an essential part of the treatment of the disease as it directly affects body weight loss, insulin resistance, lipid profile, hormones, and dermatological complaints such as acne. Polyphenols, simply classified as flavonoids and non-flavonoids, are bioactive components found in plant-based foods. The most common polyphenols in the diet are flavanols, flavonols, flavanone, anthocyanins. In particular, polyphenols which are compounds naturally found in foods, have antioxidant, anticancer, anti-inflammatory, antimutagenic benefits along with many other ones. In the treatment of PCOS, polyphenols may help reduce the symptoms, improve insulin resistance and poor lipid profile, and cure hormonal disorders. It has been reported that polyphenols are influential in menstrual cycle disorders and enable a decrease in body weight, hyperandrogenism, estrogen, testosterone, luteinizing hormone (LH)/follicle stimulating hormone (FSH) ratios and LH. For adequate daily intake of polyphenols, which are found in high amounts in fruits and vegetables, at least 5 portions of fruits and vegetables should be consumed in addition to a healthy nutrition pattern. In this review, the effects of various polyphenols on polycystic ovary syndrome are discussed.
Collapse
Affiliation(s)
- Esra Irmak
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| | - Nazli Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara Bilkent City Hospital, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics Department, Ankara Medipol University, Turkey
| |
Collapse
|
4
|
Fouda K, Mabrouk AM, Abdelgayed SS, Mohamed RS. Protective effect of tomato pomace extract encapsulated in combination with probiotics against indomethacin induced enterocolitis. Sci Rep 2024; 14:2275. [PMID: 38280919 PMCID: PMC10821949 DOI: 10.1038/s41598-024-52642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tomato pomace (TP), an antioxidant-rich byproduct, may be suitable for noble applications. The regulation of ROS generation and the anti-inflammatory response can help to prevent ulceration. The purpose of this study was to examine TP for antioxidants, in silico anti-inflammatory properties, and its potential to protect against ulceration and erosion triggered by indomethacin. Tomato pomace extract (TPE) was encapsulated either alone or with probiotics to maximize its potential effect. These microcapsules were investigated in indomethacin-treated rats. TPE demonstrated antioxidant activity as well as high levels of carotenoids (15 mg/g extract) and polyphenols. Because of their binding affinity as well as hydrophobic and hydrogen bond interactions with the active sites of TNF-α and IL-1β inflammatory cytokines, ellagic acid and rutin may be implicated in the anti-inflammatory effect of TPE, according to the docking study. TPE microcapsules, either alone or in combination with probiotics, demonstrated a protective effect against enterocolitis by reducing oxidative stress and inflammation, as evidenced by the decrease in stomach and intestinal MDA, NO, IL-1β, IL-6, and TNF-α levels and the increase in CAT, SOD, and GSH activities. The produced microcapsules are suggested to be promising candidates for protection against gastric ulcers and erosion.
Collapse
Affiliation(s)
- Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed M Mabrouk
- Dairy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherein S Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Rasha S Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
5
|
Vahid F, Krischler P, Leners B, Bohn T. Effect of Digested Selected Food Items on Markers of Oxidative Stress and Inflammation in a Caco-2-Based Human Gut Epithelial Model. Antioxidants (Basel) 2024; 13:150. [PMID: 38397747 PMCID: PMC10885899 DOI: 10.3390/antiox13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The human gut epithelium presents a crucial interface between ingested food items and the host. Understanding how different food items influence oxidative stress and inflammation in the gut is of great importance. This study assessed the impact of various digested food items on oxidative stress, inflammation, and DNA/RNA damage in human gut epithelial cells. Differentiated Caco-2 cells were exposed to food items and their combinations (n = 22) selected from a previous study, including sausage, white chocolate, soda, coffee, orange juice, and curcumin. Following stimulation with TNF-α/IFN-1β/LPS and H2O2 for 4 h, the cells were exposed to digested food items or appropriate controls (empty digesta and medium) for a further 16 h. Cell viability, antioxidant capacity (ABTS, FRAP), IL-6, IL-8, F2-isoprostanes, lipid peroxidation (MDA), and DNA/RNA oxidative damage were assessed (3 independent triplicates). The ABTS assay revealed that cells treated with "white chocolate" and "sausage + coffee" exhibited significantly reduced antioxidant capacity compared to stimulated control cells (ABTS = 52.3%, 54.8%, respectively, p < 0.05). Similar results were observed for FRAP (sausage = 34.9%; white chocolate + sausage = 35.1%). IL-6 levels increased in cells treated with "white chocolate + sausage" digesta (by 101%, p < 0.05). Moreover, MDA levels were significantly elevated in cells treated with digested "sausage" or sausage in combination with other food items. DNA/RNA oxidative damage was found to be higher in digesta containing sausage or white chocolate (up to 550%, p < 0.05) compared to stimulated control cells. This investigation provides insights into how different food items may affect gut health and underscores the complex interplay between food components and the epithelium at this critical interface of absorption.
Collapse
Affiliation(s)
| | | | | | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg; (F.V.); (P.K.); (B.L.)
| |
Collapse
|
6
|
Wen X, Peng H, Zhang H, He Y, Guo F, Bi X, Liu J, Sun Y. Wheat Bran Polyphenols Ameliorate DSS-Induced Ulcerative Colitis in Mice by Suppressing MAPK/NF-κB Inflammasome Pathways and Regulating Intestinal Microbiota. Foods 2024; 13:225. [PMID: 38254526 PMCID: PMC10814686 DOI: 10.3390/foods13020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Wheat bran (WB) is the primary by-product of wheat processing and contains a high concentration of bioactive substances such as polyphenols. This study analyzed the qualitative and quantitative components of polyphenols in wheat bran and their effects on ulcerative colitis (UC) using the dextran sulfate sodium (DSS)-induced colitis model in mice. The potential mechanism of wheat bran polyphenols (WBP) was also examined. Our findings indicate that the main polyphenol constituents of WBP were phenolic acids, including vanillic acid, ferulic acid, caffeic acid, gallic acid, and protocatechuic acid. Furthermore, WBP exerted remarkable protective effects against experimental colitis. This was achieved by reducing the severity of colitis and improving colon morphology. Additionally, WBP suppressed colonic inflammation via upregulation of the anti-inflammatory cytokine IL-10 and downregulation of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in colon tissues. Mechanistically, WBP ameliorated DSS-induced colitis in mice by inhibiting activation of the MAPK/NF-κB pathway. In addition, microbiome analysis results suggested that WBP modulated the alteration of gut microbiota caused by DSS, with an enhancement in the ratio of Firmicutes/Bacteroidetes and adjustments in the number of Helicobacter, Escherichia-Shigella, Akkermansia, Lactobacillus, Lachnospiraceae_NK4A136_group at the genus level. To conclude, the findings showed that WBP has excellent prospects in reducing colonic inflammation in UC mice.
Collapse
Affiliation(s)
- Xusheng Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA;
| | - Hua Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China;
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Xin Bi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Jiahua Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| |
Collapse
|
7
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
8
|
Wang Y, Li Z, Bao Y, Cui H, Li J, Song B, Wang M, Li H, Cui X, Chen Y, Chen W, Yang S, Yang Y, Jin Z, Si X, Li B. Colon-targeted delivery of polyphenols: construction principles, targeting mechanisms and evaluation methods. Crit Rev Food Sci Nutr 2023:1-23. [PMID: 37823723 DOI: 10.1080/10408398.2023.2266842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Polyphenols have received considerable attention for their promotive effects on colonic health. However, polyphenols are mostly sensitive to harsh gastrointestinal environments, thus, must be protected. It is necessary to design and develop a colon-targeted delivery system to improve the stability, colon-targeting and bioavailability of polyphenols. This paper mainly introduces research on colon-targeted controlled release of polyphenols. The physiological features affecting the dissolution, release and absorption of polyphenol-loaded delivery systems in the colon are first discussed. Simultaneously, the types of colon-targeted carriers with different release mechanisms are described, and colon-targeting assessment models that have been studied so far and their advantages and limitations are summarized. Based on the current research on polyphenols colon-targeting, outlook and reflections are proposed, with the goal of inspiring strategic development of new colon-targeted therapeutics to ensure that the polyphenols reach the colon with complete bioactivity.
Collapse
Affiliation(s)
- Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mengzhu Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xingyue Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Nocella C, Cavarretta E, Fossati C, Pigozzi F, Quaranta F, Peruzzi M, De Grandis F, Costa V, Sharp C, Manara M, Nigro A, Cammisotto V, Castellani V, Picchio V, Sciarretta S, Frati G, Bartimoccia S, D’Amico A, Carnevale R. Dark Chocolate Intake Positively Modulates Gut Permeability in Elite Football Athletes: A Randomized Controlled Study. Nutrients 2023; 15:4203. [PMID: 37836487 PMCID: PMC10574486 DOI: 10.3390/nu15194203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Gut barrier disruption can lead to enhanced intestinal permeability, which allows endotoxins, pathogens, and other proinflammatory substances to move through the intestinal barrier into circulation. Intense exercise over a prolonged period increases intestinal permeability, which can be further worsened by the increased production of reactive oxygen species (ROS) and pro-inflammatory cytokines. The aim of this study was to assess the degree of intestinal permeability in elite football players and to exploit the effect of cocoa polyphenols on intestinal permeability induced by intensive physical exercise. Biomarkers of intestinal permeability, such as circulating levels of zonulin, a modulator of tight junctions, occludin, a tight junction protein, and LPS translocation, were evaluated in 24 elite football players and 23 amateur athletes. Moreover, 24 elite football players were randomly assigned to either a dark chocolate (>85% cocoa) intake (n = 12) or a control group (n = 12) for 30 days in a randomized controlled trial. Biochemical analyses were performed at baseline and after 30 days of chocolate intake. Compared to amateur athletes, elite football players showed increased intestinal permeability as indicated by higher levels of zonulin, occludin, and LPS. After 30 days of dark chocolate intake, decreased intestinal permeability was found in elite athletes consuming dark chocolate. In the control group, no changes were observed. In vitro, polyphenol extracts significantly improved intestinal damage in the human intestinal mucosa cell line Caco-2. These results indicate that chronic supplementation with dark chocolate as a rich source of polyphenols positively modulates exercise-induced intestinal damage in elite football athletes.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Federico Quaranta
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
| | - Mariangela Peruzzi
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Fabrizio De Grandis
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Vincenzo Costa
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Carwyn Sharp
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Massimo Manara
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Antonia Nigro
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Vittoria Cammisotto
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Valentina Castellani
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, 00161 Rome, Italy;
| | - Vittorio Picchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Simona Bartimoccia
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Alessandra D’Amico
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
10
|
Zhang B, Huang X, Niu L, Chen X, Hu B, Tang X. Lonicera caerulea Pomace Alleviates DSS-Induced Colitis via Intestinal Barrier Improvement and Gut Microbiota Modulation. Foods 2023; 12:3329. [PMID: 37761037 PMCID: PMC10528379 DOI: 10.3390/foods12183329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this investigation was to appraise the mitigative effects of Lonicera caerulea pomace (LCP)-supplemented diets on Dextran Sulfate Sodium (DSS)-induced colitis, and to discuss the potential mechanisms. LCP, a by-product of fruit juice processing, harbors a higher content of polyphenols and dietary fiber compared to the L. caerulea pulp. In a murine model of colitis, the LCP diet attenuated the symptoms of colitis, as evidenced by the reduction in the disease activity index (DAI), extension of colon length, and amelioration of histopathological damage. The anti-inflammatory attributes of LCP were substantiated by a decrease in myeloperoxidase (MPO) activity and suppression of inflammatory cytokine expressions within the colon. Meanwhile, LCP mediated the repair of the intestinal barrier, characterized by the upregulation of gene expressions of tight junction (TJ) proteins and Muc2. Furthermore, LCP altered the composition of the gut microbiota, manifested in increased alpha diversity, enhancement of the abundance of beneficial bacteria (Akkermansia, Coprococcus and Bifidobacterium), and diminishment in the abundance of pathogenic bacteria (Escherichia, Enterococcus, Mucispirillum and Clostridium). Dietary LCP also increased the concentrations of SCFAs within the intestinal luminal contents of colitis mice. Given the affirmative impact of LCP on colitis, LCP may possess great potential in promoting intestinal health.
Collapse
Affiliation(s)
- Baixi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (L.N.); (X.C.); (B.H.); (X.T.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xinwen Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (L.N.); (X.C.); (B.H.); (X.T.)
| | - Lijuan Niu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (L.N.); (X.C.); (B.H.); (X.T.)
| | - Xuemei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (L.N.); (X.C.); (B.H.); (X.T.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Bo Hu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (L.N.); (X.C.); (B.H.); (X.T.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiaoshu Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.H.); (L.N.); (X.C.); (B.H.); (X.T.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Mishima MDV, Martino HSD, Kolba N, Agarwal N, Jackson C, da Silva BP, Grancieri M, de Assis A, de São José VPB, Tako E. Chia Phenolic Extract Appear to Improve Small Intestinal Functionality, Morphology, Bacterial Populations, and Inflammation Biomarkers In Vivo ( Gallus gallus). Nutrients 2023; 15:3643. [PMID: 37630833 PMCID: PMC10458096 DOI: 10.3390/nu15163643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Phenolic compounds can act as a substrate for colonic resident microbiota. Once the metabolites are absorbed and distributed throughout the body, they can have diverse effects on the gut. The objective of this study was to evaluate the effects of the intra-amniotic administration of a chia phenolic extract on intestinal inflammation, intestinal barrier, brush border membrane functionality, intestinal microbiota, and morphology in vivo (Gallus gallus model). Cornish-cross fertile broiler eggs, at 17 days of embryonic incubation, were separated into groups as follows: non-injected (NI; this group did not receive an injection); 18 MΩ H2O (H2O; injected with ultrapure water), and 10 mg/mL (1%) chia phenolic extract (CPE; injected with phenolic extract diluted in ultrapure water). Immediately after hatch (21 days), chickens were euthanized and their small intestine, cecum, and cecum content were collected and analyzed. The chia phenolic extract reduced the tumor necrosis factor-alpha (TNF-α) and increased the sucrose isomaltase (SI) gene expression, reduced the Bifidobacterium and E. coli populations, reduced the Paneth cell diameter, increased depth crypt, and maintained villus height compared to the non-injected control group. Chia phenolic extract may be a promising beneficial compound for improving intestinal health, demonstrating positive changes in intestinal inflammation, functionality, microbiota, and morphology.
Collapse
Affiliation(s)
- Marcella Duarte Villas Mishima
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (B.P.d.S.); (M.G.); (A.d.A.); (V.P.B.d.S.J.)
| | - Nikolai Kolba
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| | - Nikita Agarwal
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| | - Cydney Jackson
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| | - Bárbara Pereira da Silva
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (B.P.d.S.); (M.G.); (A.d.A.); (V.P.B.d.S.J.)
| | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (B.P.d.S.); (M.G.); (A.d.A.); (V.P.B.d.S.J.)
| | - Andressa de Assis
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (B.P.d.S.); (M.G.); (A.d.A.); (V.P.B.d.S.J.)
| | | | - Elad Tako
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA; (M.D.V.M.); (N.K.); (N.A.); (C.J.)
| |
Collapse
|
12
|
Davila MM, Papada E. The Role of Plant-Derived Natural Products in the Management of Inflammatory Bowel Disease-What Is the Clinical Evidence So Far? Life (Basel) 2023; 13:1703. [PMID: 37629560 PMCID: PMC10455079 DOI: 10.3390/life13081703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are a major healthcare challenge worldwide. Disturbances in the immune system and gut microbiota followed by environmental triggers are thought to be part of the aetiological factors. Current treatment for IBD includes corticosteroids, immunosuppressants, and other biologic agents; however, some patients are still unresponsive, and these are also linked to high financial load and severe side effects. Plant-derived natural products are rich in phytochemicals and have been used as healing agents in several diseases since antiquity due to their antioxidant, anti-inflammatory, and immunomodulatory properties, as well as gut microbiota modulation. Numerous in vitro and in vivo studies have shown that phytochemicals act in key pathways that are associated with the pathogenesis of IBD. It is also reported that the use of plant-derived natural products as complementary treatments is increasing amongst patients with IBD to avoid the side effects accompanying standard medical treatment. This review summarises the relevant evidence around the use of plant-derived natural products in the management of IBD, with specific focus on the clinical evidence so far for Curcumin, Mastiha, Boswellia serrata, and Artemisia absinthium.
Collapse
Affiliation(s)
| | - Efstathia Papada
- Division of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
13
|
Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, Lučić B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants (Basel) 2023; 12:1141. [PMCID: PMC10294820 DOI: 10.3390/antiox12061141] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
As the world’s population grows, so does the need for more and more animal feed. In 2006, the EU banned the use of antibiotics and other chemicals in order to reduce chemical residues in food consumed by humans. It is well known that oxidative stress and inflammatory processes must be combated to achieve higher productivity. The adverse effects of the use of pharmaceuticals and other synthetic compounds on animal health and product quality and safety have increased interest in phytocompounds. With the use of plant polyphenols in animal nutrition, they are gaining more attention as a supplement to animal feed. Livestock feeding based on a sustainable, environmentally friendly approach (clean, safe, and green agriculture) would also be a win–win for farmers and society. There is an increasing interest in producing healthier products of animal origin with a higher ratio of polyunsaturated fatty acids (PUFAs) to saturated fatty acids by modulating animal nutrition. Secondary plant metabolites (polyphenols) are essential chemical compounds for plant physiology as they are involved in various functions such as growth, pigmentation, and resistance to pathogenic organisms. Polyphenols are exogenous antioxidants that act as one of the first lines of cell defense. Therefore, the discoveries on the intracellular antioxidant activity of polyphenols as a plant supplement have contributed significantly to the improvement of antioxidant activity, as polyphenols prevent oxidative stress damage and eliminate excessively produced free radicals. To achieve animal welfare, reduce stress and the need for medicines, and increase the quality of food of animal origin, the addition of polyphenols to research and breeding can be practised in part with a free-choice approach to animal nutrition.
Collapse
Affiliation(s)
- Drago Bešlo
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Nataša Golubić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Vesna Rastija
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Maja Karnaš
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Domagoj Šubarić
- Faculty of Agrobiotechnical Sciences Osijek, J. J. Strossmayer University Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia; (N.G.); (V.R.); (D.A.); (M.K.); (D.Š.)
| | - Bono Lučić
- NMR Center, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
| |
Collapse
|
14
|
Fariña E, Daghero H, Bollati-Fogolín M, Boido E, Cantero J, Moncada-Basualto M, Olea-Azar C, Polticelli F, Paulino M. Antioxidant Capacity and NF-kB-Mediated Anti-Inflammatory Activity of Six Red Uruguayan Grape Pomaces. Molecules 2023; 28:molecules28093909. [PMID: 37175319 PMCID: PMC10180250 DOI: 10.3390/molecules28093909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Grape pomaces have a wide and diverse antioxidant phenolics composition. Six Uruguayan red grape pomaces were evaluated in their phenolics composition, antioxidant capacity, and anti-inflammatory properties. Not only radical scavenging methods as DPPH· and ABTS·+ were employed but also ORAC and FRAP analyses were applied to assess the antioxidant potency of the extracts. The antioxidant reactivity of all extracts against hydroxyl radicals was assessed with ESR. The phenol profile of the most bioactive extract was analyzed by HPLC-MS, and a set of 57 structures were determined. To investigate the potential anti-inflammatory activity of the extracts, Nuclear Factor kappa-B (NF-κB) modulation was evaluated in the human colon cancer reporter cell line (HT-29-NF-κB-hrGFP). Our results suggest that Tannat grapes pomaces have higher phenolic content and antioxidant capacity compared to Cabernet Franc. These extracts inhibited TNF-alpha mediated NF-κB activation and IL-8 production when added to reporter cells. A molecular docking study was carried out to rationalize the experimental results allowing us to propose the proactive interaction between the NF-κB, the grape extracts phenols, and their putative anti-inflammatory bioactivity. The present findings show that red grape pomace constitutes a sustainable source of phenolic compounds, which may be valuable for pharmaceutical, cosmetic, and food industry applications.
Collapse
Affiliation(s)
- Emiliana Fariña
- Área Bioinformática, DETEMA, Facultad de Química, Universidad de la República, Gral. Flores 2124, C.P. 11800, C.C. 1157, Montevideo 11600, Uruguay
| | - Hellen Daghero
- Cell Biology Unit, Institut Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | | | - Eduardo Boido
- Laboratorio de Enología, DETEMA, Facultad de Química, Universidad de la República, Gral. Flores 2124, C.P. 11800, C.C. 1157, Montevideo 11600, Uruguay
| | - Jorge Cantero
- Área Bioinformática, DETEMA, Facultad de Química, Universidad de la República, Gral. Flores 2124, C.P. 11800, C.C. 1157, Montevideo 11600, Uruguay
- Medical Research Center, Facultad de Ciencias de la Salud, Universidad Nacional del Este, Minga Guazú 7420, Paraguay
| | - Mauricio Moncada-Basualto
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, San Joaquín 8940577, Chile
| | - Claudio Olea-Azar
- Facultad de Cs. Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Región Metropolitana, Santiago de Chile 8380494, Chile
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Margot Paulino
- Área Bioinformática, DETEMA, Facultad de Química, Universidad de la República, Gral. Flores 2124, C.P. 11800, C.C. 1157, Montevideo 11600, Uruguay
| |
Collapse
|
15
|
Vahid F, Wagener L, Leners B, Bohn T. Pro- and Antioxidant Effect of Food Items and Matrices during Simulated In Vitro Digestion. Foods 2023; 12:1719. [PMID: 37107513 PMCID: PMC10137800 DOI: 10.3390/foods12081719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The digestive tract can be considered a bioreactor. High levels of reactive oxygen species (ROS) during digestion may predispose for local and/or systemic oxidative stress and inflammation, e.g., inflammatory bowel diseases. Food items rich in antioxidants may prevent such aggravation. This investigation analyzed pro-and antioxidant patterns of food matrices/items following in vitro digestion. Gastrointestinal digestion reflecting typically consumed quantities was performed on nine food items (orange and tomato juice, soda, coffee, white chocolate, sausage, vitamin C and E, and curcumin) and their combinations (n = 24), using the INFOGEST model. Antioxidant potential was measured by FRAP, DPPH, and ABTS, and pro-oxidant aspects by MDA (malondialdehyde) and peroxide formation. An anti-pro-oxidant score was developed, combining the five assays. Liquid food items showed moderately high antioxidant values, except for coffee and orange juice, which exhibited a high antioxidant potential. Solid matrices, e.g., white chocolate and sausage, showed both high pro-oxidant (up to 22 mg/L MDA) and high antioxidant potential (up to 336 mg/L vitamin C equivalents) at the same time. Individual vitamins (C and E) at physiological levels (achievable from food items) showed a moderate antioxidant potential (<220 mg/L vitamin C equivalents). Overall, both antioxidant and pro-oxidant assays correlated well, with correlation coefficients of up to 0.894. The effects of food combinations were generally additive, i.e., non-synergistic, except for combinations with sausage, where strong quenching effects for MDA were observed, e.g., with orange juice. In conclusion, as especially highlighted by complex matrices demonstrating both pro- and antioxidant potential, only measuring one aspect would result in physiological misinterpretations. Therefore, it is imperative to employ a combination of assays to evaluate both pro- and antioxidant properties of food digesta to ensure physiological relevance.
Collapse
Affiliation(s)
| | | | | | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, L-1445 Strassen, Luxembourg
| |
Collapse
|
16
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
17
|
Amirshahrokhi K, Imani M. Levetiracetam attenuates experimental ulcerative colitis through promoting Nrf2/HO-1 antioxidant and inhibiting NF-κB, proinflammatory cytokines and iNOS/NO pathways. Int Immunopharmacol 2023; 119:110165. [PMID: 37068340 DOI: 10.1016/j.intimp.2023.110165] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Ulcerative colitis (UC) is a serious inflammatory disease of the colon. The pathogenic mechanisms of UC involve the activation of inflammatory and oxidative stress responses in the colon. Levetiracetam is an antiepileptic drug with anti-inflammatory and antioxidant effects. The aim of this study was to investigate the potential protective effect of levetiracetam against UC in a mouse model. UC was induced in mice by intrarectal administration of acetic acid and then mice were treated with levetiracetam (50 or 100 mg/kg/day, i.p.) for three days. The colonic tissue samples were dissected for biochemical, RT-PCR and immunofluorescence analysis. Results showed that levetiracetam treatment significantly decreased colonic mucosal injury as evidenced by the macroscopic and histopathological analysis. Levetiracetam induced Nrf2/HO-1 and antioxidants while reduced lipid peroxidation and myeloperoxidase activity in colon tissue. Levetiracetam treatment decreased NF-κB activity and the expression of proinflammatory mediators TNF-α, IL-6, IL-1β, IFN-γ, MCP-1 and ICAM-1. The colonic levels of anti-inflammatory cytokines IL-10 and TGF-β1 were increased by levetiracetam treatment. Furthermore, levetiracetam significantly diminished iNOS expression and NO production in colon tissue. These findings suggest that levetiracetam ameliorates the severity of UC in mice through the regulation of inflammatory and oxidative responses.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mahsa Imani
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
18
|
Rizzo G, Pineda Chavez SE, Vandenkoornhuyse E, Cárdenas Rincón CL, Cento V, Garlatti V, Wozny M, Sammarco G, Di Claudio A, Meanti L, Elangovan S, Romano A, Roda G, Loy L, Dal Buono A, Gabbiadini R, Lovisa S, Rusconi R, Repici A, Armuzzi A, Vetrano S. Pomegranate Extract Affects Gut Biofilm Forming Bacteria and Promotes Intestinal Mucosal Healing Regulating the Crosstalk between Epithelial Cells and Intestinal Fibroblasts. Nutrients 2023; 15:nu15071771. [PMID: 37049615 PMCID: PMC10097402 DOI: 10.3390/nu15071771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Pomegranate (Punica granatum) can be used to prepare a bioactive extract exerting anti-inflammatory activities. Clinical studies demonstrated an improvement in clinical response in inflammatory bowel disease (IBD) patients when pomegranate extract (PG) was taken as a complement to standard medications. However, the molecular mechanisms underlying its beneficial effects are still scarcely investigated. This study investigates the effect of PG on bacterial biofilm formation and the promotion of mucosal wound healing. Methods: The acute colitis model was induced in C57BL/6N mice by 3% dextran sodium sulfate administration in drinking water for 5 days. During the recovery phase of colitis, mice received saline or PG (200 mg/kg body weight) by oral gavage for 11 days. Colitis was scored daily by evaluating body weight loss, bleeding, and stool consistency. In vivo intestinal permeability was evaluated by fluorescein isothiocyanate-conjugated dextran assay, bacterial translocation was assessed by fluorescence in situ hybridization on tissues, whereas epithelial and mucus integrity were monitored by immunostaining for JAM-A and MUC-2 markers. Bacterial biofilm formation was assessed using microfluidic devices for 24 or 48 h. Primary fibroblasts were isolated from healthy and inflamed areas of 8 IBD patients, and Caco-2 cells were stimulated with or without PG (5 μg/mL). Inflammatory mediators were measured at the mRNA and protein level by RT-PCR, WB, or Bio-plex multiplex immunoassay, respectively. Results: In vivo, PG boosted the recovery phase of colitis, promoting a complete restoration of the intestinal barrier with the regeneration of the mucus layer, as also demonstrated by the absence of bacterial spread into the mucosa and the enrichment of crypt-associated fibroblasts. Microfluidic experiments did not highlight a specific effect of PG on Enterobacterales biofilm formation, even though Citrobacter freundii biofilm was slightly impaired in the presence of PG. In vitro, inflamed fibroblasts responded to PG by downregulating the release of metalloproteinases, IL-6, and IL-8 and upregulating the levels of HGF. Caco-2 cells cultured in a medium supplemented with PG increased the expression of SOX-9 and CD44, whereas in the presence of HGF or plated with a fibroblast-conditioned medium, they displayed a decrease in SOX-9 and CD44 expression and an increase in AXIN2, a negative regulator of Wnt signaling. Conclusions: These data provide new insight into the manifold effects of PG on promoting mucosal homeostasis in IBD by affecting pathogen biofilm formation and favoring the regeneration of the intestinal barrier through the regulation of the crosstalk between epithelial and stromal cells.
Collapse
Affiliation(s)
- Giulia Rizzo
- Laboratory of Gastrointestinal Immunopathology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | | | - Elisa Vandenkoornhuyse
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | | | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Unit of Microbiology and Virology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Guido Donegani, 28100 Novara, Italy
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Giusy Sammarco
- Laboratory of Gastrointestinal Immunopathology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessia Di Claudio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Lisa Meanti
- Laboratory of Gastrointestinal Immunopathology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Sudharshan Elangovan
- Wipro Life Sciences Lab, Wipro Limited, SJP2, Sarjapur Road, Bangalore 560035, Karnataka, India
| | - Andrea Romano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Giulia Roda
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Laura Loy
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Arianna Dal Buono
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Digestive Endoscopy Unit, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Stefania Vetrano
- Laboratory of Gastrointestinal Immunopathology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| |
Collapse
|
19
|
Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:4454. [PMID: 36901885 PMCID: PMC10003013 DOI: 10.3390/ijms24054454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic non-specific inflammation in the gastrointestinal (GI) tract, primarily affecting the ileum and colon. The incidence of IBD has risen sharply in recent years. Despite continuous research efforts over the past decades, the aetiology of IBD is still not fully understood and only a limited number of drugs are available for its treatment. Flavonoids, a ubiquitous class of natural chemicals found in plants, have been widely used in the prevention and treatment of IBD. However, their therapeutic efficacy is unsatisfactory due to poor solubility, instability, rapid metabolism, and rapid systemic elimination. With the development of nanomedicine, nanocarriers can efficiently encapsulate various flavonoids and subsequently form nanoparticles (NPs), which greatly improves the stability and bioavailability of flavonoids. Recently, progress has also been made in the methodology of biodegradable polymers that can be used to fabricate NPs. As a result, NPs can significantly enhance the preventive or therapeutic effects of flavonoids on IBD. In this review, we aim to evaluate the therapeutic effect of flavonoid NPs on IBD. Furthermore, we discuss possible challenges and future perspectives.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ying Liu
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
20
|
Tavares EDA, Guerra GCB, da Costa Melo NM, Dantas-Medeiros R, da Silva ECS, Andrade AWL, de Souza Araújo DF, da Silva VC, Zanatta AC, de Carvalho TG, de Araújo AA, de Araújo-Júnior RF, Zucolotto SM. Toxicity and Anti-Inflammatory Activity of Phenolic-Rich Extract from Nopalea cochenillifera (Cactaceae): A Preclinical Study on the Prevention of Inflammatory Bowel Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:594. [PMID: 36771677 PMCID: PMC9921826 DOI: 10.3390/plants12030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Phenolic compounds have been scientifically recognized as beneficial to intestinal health. The cactus Nopalea cochenillifera, used as anti-inflammatory in traditional medicine, is a rich source of these bioactive compounds. The present study aimed to investigate the phytochemical profile of N. cochenillifera extract and evaluate its acute toxicity and anti-inflammatory effect on 2,4-dinitrobenzenesulfonic acid (DNBS)-induced colitis in rats. The total phenolic content per gram of dry extract was 67.85 mg. Through HPLC-IES-MSn, a total of 25 compounds such as saccharides, organic acids, phenolic acids and flavonoids were characterized. The dose of 2000 mg/kg of extract by an oral route showed no signs of toxicity, mortality or significant changes in biochemical and hematological parameters. Regarding intestinal anti-inflammatory effects, animals were treated with three different doses of extract or sulfasalazine. Macroscopic analysis of the colon indicated that the extract decreased the disease activity index. Levels of IL-1β and TNF-α decreased, IL-10 increased and MDA and MPO enzyme levels decreased when compared with the control group. In addition, a down-regulation of MAPK1/ERK2 and NF-κB p65 pathway markers in colon tissue was observed. The epithelial integrity was improved according to histopathological and immunohistological analysis. Thus, the extract provided strong preclinical evidence of being effective in maintaining the remission of colitis.
Collapse
Affiliation(s)
- Emanuella de Aragão Tavares
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gerlane Coelho Bernardo Guerra
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Graduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| | - Nadja Maria da Costa Melo
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Renato Dantas-Medeiros
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Anderson Wilbur Lopes Andrade
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Valéria Costa da Silva
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Ana Caroline Zanatta
- Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo University, São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Thaís Gomes de Carvalho
- Program Degree in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Graduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
- Program Degree in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| | - Raimundo Fernandes de Araújo-Júnior
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Program Degree in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
- Cancer and Inflammation Research Laboratory, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Silvana Maria Zucolotto
- Graduate Program in Drug Development and Technological Innovation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Graduate Program in Pharmaceutical Science, Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
| |
Collapse
|
21
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
22
|
Ramli I, Posadino AM, Zerizer S, Spissu Y, Barberis A, Djeghim H, Azara E, Bensouici C, Kabouche Z, Rebbas K, D'hallewin G, Sechi LA, Pintus G. Low concentrations of Ambrosia maritima L. phenolic extract protect endothelial cells from oxidative cell death induced by H 2O 2 and sera from Crohn's disease patients. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115722. [PMID: 36115603 DOI: 10.1016/j.jep.2022.115722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A rising resort to herbal therapies in Crohn's disease (CD) alternative treatments has been recently observed due to their remarkable natural efficiency. In this context, the weed plant Ambrosia maritima L., traditionally known as Hachich el Aouinet in Algeria and as Damsissa in Egypt and Sudan, is widely used in North African folk medicine to treat infections, inflammatory diseases, gastrointestinal and urinary tract disturbances, rheumatic pain, respiratory problems, diabetes, hypertension and cancer. AIM OF THE STUDY To assess an Ambrosia maritima L. phenolic extract for its phenolic profile composition, its potential antioxidant activity in vitro, and its cytoprotective effect on cultured primary human endothelial cells (ECs) stressed with H2O2 and sera from CD patients. MATERIALS AND METHODS Phenolic compound extraction was performed with a low-temperature method. Extract chemical profile was attained by HPLC-DAD/ESI-MS. The extract in vitro antioxidant activity was assessed using several methods including cupric ion reducing power, DPPH radical scavenging assay, O-Phenanthroline free radical reducing activity, ABTS cation radical decolourisation assay, Galvinoxyl free radicals scavenging assay. Intracellular reactive oxygen species levels were evaluated in human endothelial cells by H2DCFDA, while cell viability was assessed by MTT. RESULTS The phenolic compounds extraction showed a yield of 17.66% with three di-caffeoylquinic acid isomers detected for the first time in Ambrosia maritima L. Using different analytical methods, a significant in vitro antioxidant activity was reported for the Ambrosia maritima L. extract, with an IC50 value of 14.33 ± 3.86 μg/mL for the Galvinoxyl antioxidant activity method. Challenged with ECs the Ambrosia maritima L. extract showed a biphasic dose-dependent effect on H2O2-treated cells, cytoprotective and antioxidant at low doses, and cytotoxic and prooxidant at high doses, respectively. Viability and ROS levels data also demonstrated a prooxidant and cytotoxic effect of CD sera on cultured ECs. Interestingly, 10 μg/mL of Ambrosia maritima L. extract was able to counteract both CD sera-induced oxidative stress and ECs death. CONCLUSION Our data indicated Ambrosia maritima L. as a source of bioactive phenolics potentially employable as a natural alternative for CD treatment.
Collapse
Affiliation(s)
- Iman Ramli
- Département de Biologie Animale, Université des Fréres Mentouri Constantine 1, 25000 Constantine, Algeria.
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Sakina Zerizer
- Département de Biologie Animale, Université des Fréres Mentouri Constantine 1, 25000 Constantine, Algeria
| | - Ylenia Spissu
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Antonio Barberis
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Hanane Djeghim
- Laboratory of Biochemistry, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, Algeria
| | - Emanuela Azara
- Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), 07100, Sassari, Italy
| | - Chawki Bensouici
- Laboratory of Biochemistry, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, Algeria
| | - Zahia Kabouche
- Laboratoire d'Obtention de Substances Thérapeutiques (LOST), Université des Frères Mentouri Constantine 1, 25000 Constantine, Algeria
| | - Khellaf Rebbas
- University of Mohamed Boudiaf, M'sila, Algeria; Laboratory of Agro-Biotechnology and Nutrition in Arid and Semi-Arid Zones Team, University of Ibn Khaldoun, Tiaret, Algeria
| | - Guy D'hallewin
- Institute of Sciences of Food Production, National Research Council, 07100, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy; Azienda Ospedaliera Universitaria, Uitità Complessa di Microbiologia e Virologia, 07100, Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, And Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
23
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
24
|
Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA, De Luca C, Kaniusas E, Papa M, Panetsos F. Vagus Nerve Stimulation: A Personalized Therapeutic Approach for Crohn's and Other Inflammatory Bowel Diseases. Cells 2022; 11:cells11244103. [PMID: 36552867 PMCID: PMC9776705 DOI: 10.3390/cells11244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Flor Negrete-Diaz
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
| | - Daniela Yucuma
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Andalusian School of Public Health, University of Granada, 18011 Granada, Spain
| | - Assunta Virtuoso
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Sohaib Ali Korai
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Ciro De Luca
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Michele Papa
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence: (M.P.); (F.P.)
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Correspondence: (M.P.); (F.P.)
| |
Collapse
|
25
|
Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022; 14:5361. [PMID: 36558520 PMCID: PMC9788597 DOI: 10.3390/nu14245361] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that the gut microbiota plays a significant role in modulating inflammatory and immune responses of their host. In recent years, the host-microbiota interface has gained relevance in understanding the development of many non-communicable chronic conditions, including cardiovascular disease, cancer, autoimmunity and neurodegeneration. Importantly, dietary fibre (DF) and associated compounds digested by the microbiota and their resulting metabolites, especially short-chain fatty acids (SCFA), were significantly associated with health beneficial effects, such as via proposed anti-inflammatory mechanisms. However, SCFA metabolic pathways are not fully understood. Major steps include production of SCFA by microbiota, uptake in the colonic epithelium, first-pass effects at the liver, followed by biodistribution and metabolism at the host's cellular level. As dietary patterns do not affect all individuals equally, the host genetic makeup may play a role in the metabolic fate of these metabolites, in addition to other factors that might influence the microbiota, such as age, birth through caesarean, medication intake, alcohol and tobacco consumption, pathogen exposure and physical activity. In this article, we review the metabolic pathways of DF, from intake to the intracellular metabolism of fibre-derived products, and identify possible sources of inter-individual variability related to genetic variation. Such variability may be indicative of the phenotypic flexibility in response to diet, and may be predictive of long-term adaptations to dietary factors, including maladaptation and tissue damage, which may develop into disease in individuals with specific predispositions, thus allowing for a better prediction of potential health effects following personalized intervention with DF.
Collapse
Affiliation(s)
- Guilherme Ramos Meyers
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
26
|
Crosstalk between Resveratrol and Gut Barrier: A Review. Int J Mol Sci 2022; 23:ijms232315279. [PMID: 36499603 PMCID: PMC9739931 DOI: 10.3390/ijms232315279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
The plant-based nutraceuticals are receiving increasing interest in recent time. The high attraction to the phytochemicals is associated with their anti-inflammatory and antioxidant activities, which can lead to reduced risk of the development of cardiovascular and other non-communicable diseases. One of the most disseminated groups of plant bioactives are phenolic compounds. It was recently hypothesized that phenolic compounds can have the ability to improve the functioning of the gut barrier. The available studies showed that one of the polyphenols, resveratrol, has great potential to improve the integrity of the gut barrier. Very promising results have been obtained with in vitro and animal models. Still, more clinical trials must be performed to evaluate the effect of resveratrol on the gut barrier, especially in individuals with increased intestinal permeability. Moreover, the interplay between phenolic compounds, intestinal microbiota and gut barrier should be carefully evaluated in the future. Therefore, this review offers an overview of the current knowledge about the interaction between polyphenols with a special emphasis on resveratrol and the gut barrier, summarizes the available methods to evaluate the intestinal permeability, discusses the current research gaps and proposes the directions for future studies in this research area.
Collapse
|
27
|
Dietary polyphenols in the treatment of inflammatory bowel diseases. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1060925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ulcerative colitis and Crohn's disease, caused by chronic inflammation in the digestive tract, are inflammatory bowel diseases and have similar symptoms. Abnormal immune responses play a pretty important role in the pathogenesis of the disease. Proinflammatory mediators trigger inflammation, stimulate cell signaling molecules, and induce disease onset. Corticosteroids, anti-tumor necrosis factor-α antibodies, and immunosuppressants are some drugs used to treat the disease. However, these drugs have some side effects. In addition, surgical methods might be used in the treatment, but these methods may have some complications. Due to the negative impact on treatment options, alternative methods for reliable, inexpensive, and effective treatment are being sought. Secondary plant compounds with an aromatic or phenolic ring structure, so-called polyphenols or phenolic compounds, may modulate cellular signaling pathways and reduce intestinal inflammation due to their antioxidant and anti-inflammatory effects. Polyphenols may be evaluated as alternative methods for inflammatory bowel disease based on these properties. This review aims to investigate the effect of some polyphenols on inflammatory bowel disease.
Collapse
|
28
|
Özsoy M, Stummer N, Zimmermann FA, Feichtinger RG, Sperl W, Weghuber D, Schneider AM. Role of Energy Metabolism and Mitochondrial Function in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1443-1450. [PMID: 35247048 DOI: 10.1093/ibd/izac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurring inflammation of the intestine which can be debilitating for those with intractable disease. However, the etiopathogenesis of inflammatory bowel disorders remains to be solved. The hypothesis that mitochondrial dysfunction is a crucial factor in the disease process is being validated by an increasing number of recent studies. Thus mitochondrial alteration in conjunction with previously identified genetic predisposition, changes in the immune response, altered gut microbiota, and environmental factors (eg, diet, smoking, and lifestyle) are all posited to contribute to IBD. The implicated factors seem to affect mitochondrial function or are influenced by mitochondrial dysfunction, which explains many of the hallmarks of the disease. This review summarizes the results of studies reporting links between mitochondria and IBD that were available on PubMed through March 2021. The aim of this review is to give an overview of the current understanding of the role of mitochondria in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Mihriban Özsoy
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Franz A Zimmermann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anna M Schneider
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
29
|
Vingrys K, Mathai M, Ashton JF, Stojanovska L, Vasiljevic T, McAinch AJ, Donkor ON. The effect of malting on phenolic compounds and radical scavenging activity in grains and breakfast cereals. J Food Sci 2022; 87:4188-4202. [PMID: 35998111 DOI: 10.1111/1750-3841.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Breakfast cereals are popular grain foods and sources of polyphenols. Malting alters polyphenol content and activity; however, effects are varied. The total polyphenol content (TPC), radical scavenging activity (RSA), and polyphenol profile were analyzed in unmalted and malted grains (wheat, barley, and sorghum) and breakfast cereals (wheat, barley) by Folin Ciocalteu Reagent (FCR), % inhibition of the free radical 2,2-diphenyl-1-picryl-hydrazyl, and high performance liquid chromatography. Higher TPC was observed in all malted grains and breakfast cereals compared with unmalted samples (p < 0.05). Higher RSA was also observed in all malted samples compared to unmalted samples (p < 0.05) except for wheat grain to malted wheat grain. In this study, malting induced additional polyphenols and antioxidant activity in grains and cereal products. Malted grain breakfast cereals may be practical sources of polyphenol antioxidants. PRACTICAL APPLICATION: This study utilized malting in a unique way to investigate potential health benefits of polyphenols and antioxidant activity in grains (wheat, barley, and sorghum) and ready-to-eat breakfast cereals (wheat and barley). This study found that grains and breakfast cereals are important sources of antioxidant polyphenols, and these were significantly increased in malted varieties. Understanding this is important as grains and breakfast cereals are widely consumed staple foods. Consuming healthier grain products may be a practical strategy in reducing the risk of noncommunicable diseases such as colorectal cancer and type-2 diabetes, where wholegrain consumption may be important in prevention.
Collapse
Affiliation(s)
- Kristina Vingrys
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,First Year College, Victoria University, Melbourne, Victoria, Australia
| | - Michael Mathai
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - John F Ashton
- Sanitarium Development and Innovation, Cooranbong, NSW, Australia
| | - Lily Stojanovska
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Todor Vasiljevic
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Osaana N Donkor
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
He J, Huo Y, Sun Y, Cheng J, Zhao Y, Li W, Wang R. Protective effects of areca nut polyphenols on hypoxic damage of rat pulmonary microvascular endothelial cells. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:405-414. [PMID: 37202103 PMCID: PMC10264980 DOI: 10.3724/zdxbyxb-2022-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To investigate the protective effects of areca nut polyphenols on hypoxic damage of rat pulmonary microvascular endothelial cells (PMVECs). METHODS Malondialdehyde and superoxide dismutase (SOD) were used to determine the optimal modeling of lung hypoxic injury cells. CCK-8 method was used to detect cell viability for determining the effective dose of areca nut polyphenols. Rat PMVECs were divided into control group, hypoxia model group and areca nut polyphenols group. BCA method was used to detect the protein concentration of each group, and the oxidative stress level in PMVECs was measured. Western blotting was used to detect the expression of inflammatory and apoptosis-related proteins. Immunofluorescence staining was used to detect the expression of occludin and zonula occludens (ZO) 1. Transwell chamber was used to detect transendothelial electrical resistance, and rhodamine fluorescent dye was used to detect PMVECs barrier permeability. RESULTS The hypobaric hypoxia-induced cell injury model was established by culturing PMVECs for 48 h at 1% oxygen concentration. The 20 μg/mL areca nut polyphenols significantly reversed the survival rate and the oxidative stress of PMVECs in hypoxia model group (all P<0.05). Areca nut polyphenols had significant inhibitory effect on the up-regulation of inflammation-related proteins, including nuclear factor-κB (NF-κB) and nuclear factor-E2-related factor (Nrf) 2 in hypoxia model group (all P<0.05). And areca nut polyphenols could reduce hypoxia-induced PMVECs apoptosis by down-regulating the expressions of apoptosis-related proteins, including cysteine aspartic acid specific protease (caspase) 3, Bcl-2 associated X protein (Bax) in PMVECs (all P<0.05). In addition, areca nut polyphenols effectively improves the transendothelial electrical resistance and barrier permeability of PMVECs through elevating the expression of occludin and ZO-1 (all P<0.05). CONCLUSION Areca nut polyphenols can inhibit the hypoxic damage of PMVECs by reducing oxidative stress and apoptosis down-regulating the expression of inflammatory proteins and reducing membrane permeability.
Collapse
Affiliation(s)
- Jiaxin He
- 1. Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China
- 2. School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan Huo
- 1. Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China
- 2. School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuemei Sun
- 1. Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China
- 2. School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junfei Cheng
- 1. Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China
- 2. School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yilan Zhao
- 1. Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China
- 2. School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wenbin Li
- 1. Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China
- 2. School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Rong Wang
- 1. Department of Pharmacy, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Key Laboratory of the Plateau Medicine, Lanzhou 730050, China
- 2. School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
31
|
库尔班乃木·卡合曼, 赵 健, 穆凯代斯·艾合买提, 王 汉, 朱 稷, 潘 文, 卡思木江·阿西木江. [E.faecium QH06 alleviates TNBS-induced colonic mucosal injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:976-987. [PMID: 35869759 PMCID: PMC9308865 DOI: 10.12122/j.issn.1673-4254.2022.07.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Enterococcus faecium QH06 on TNBS-induced ulcerative colitis (UC) in rats and explore the mechanisms in light of intestinal flora and intestinal immunity. METHODS Thirty-six male Wistar rats were randomized equally into control group, UC model group, and E.faecium QH06 intervention group. The rats in the latter two groups were subjected to colonic enema with 5% TNBS/ethanol to induce UC, followed by treatment with intragastric administration of distilled water or E.faecium QH06 at the dose of 0.21 g/kg. After 14 days of treatment, the rats were examined for colon pathologies with HE staining. The mRNA and protein expression levels of IL-4, IL-10, IL-12, and IFN-γ in the colon tissues were detected using RT-qPCR and ELISA, and the expression of TLR2 protein was detected with immunohistochemistry and ELISA. Illumina Miseq platform was used for sequencing analysis of the intestinal flora of the rats with bioinformatics analysis. The correlations of the parameters of the intestinal flora with the expression levels of TLR2 and cytokines were analyzed. RESULTS The rats with TNBS- induced UC showed obvious weight loss (P < 0.01) and severe colon tissue injury with high pathological scores (P < 0.01). The protein expression levels of IFN-γ, IL-12, and TLR2 (P < 0.01) and the mRNA expression levels of IFN-γ, IL-12 and IL-10 (P < 0.05) were significantly increased in the colon tissues of the rats with UC. Illumina Miseq sequence analysis showed that in UC rats, the Shannon index (P < 0.05) ACE (P < 0.01)and Chao (P < 0.05) index for the diversity of intestinal flora both decreased with a significantly increased abundance of Enterobacteriaceae (P < 0.01) and a lowered abundance of Burkholderiaceae (P < 0.05). Compared with the UC rats, the rats treated with E. faecium QH06 showed obvious body weight gain (P < 0.05), lessened colon injuries, lowered pathological score of the colon tissue (P < 0.05), decreased protein expressions of IFN- γ, IL- 12, and TLR2 and mRNA expressions of IFN- γ and IL-12 (P < 0.01 or 0.05), and increased protein expressions of IL- 4 (P < 0.05). The Shannon index ACE (P < 0.05) and Chao (P < 0.05) index of intestinal microflora were significantly increased, the abundance of Enterobacteriaceae was lowered and that of Burkholderiaceae and Rikenellaceae was increased in E.faecium QH06- treated rats (P < 0.01 or 0.05). Correlation analysis showed that IFN-γ was positively correlated with the abundance of Enterobacteriaceae, and IFN-γ was negatively correlated with the abundance of Prevotellaceae, Desulfovibrionaceae, norank_o_Mollicutes_RF39 and Clostridiales_vadinBB60_group; TLR2 was negatively correlated with Clostridiales_vadinBB60_group, norank_o_Mollicutes_RF39 and Prevotellaceae. CONCLUSION E.faecium QH06 can alleviate TNBS-induced colonic mucosal injury in rats, and its effect is mediated possibly by increasing the abundance of SCFA-producing bacteria such as Prevotellaceae and inhibiting abnormal immune responses mediated by TLR2.
Collapse
Affiliation(s)
- 库尔班乃木·卡合曼
- 新疆医科大学第一附属医院康复医学科,新疆 乌鲁木齐 830011Department of Rehabilitation Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - 健锋 赵
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 穆凯代斯·艾合买提
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 汉铭 王
- 新疆医科大学第二临床医学院,新疆 乌鲁木齐 830011Second Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 稷蔚 朱
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 文涛 潘
- 新疆医科大学第五临床医学院,新疆 乌鲁木齐 830011Fifth Clinical College, Xinjiang Medical University, Urumqi 830011, China
| | - 卡思木江·阿西木江
- 新疆医科大学基础医学院物生化学与分子生物学教研室,新疆 乌鲁木齐 830017Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| |
Collapse
|
32
|
Calabriso N, Scoditti E, Massaro M, Maffia M, Chieppa M, Laddomada B, Carluccio MA. Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients 2022; 14:2679. [PMID: 35807860 PMCID: PMC9268201 DOI: 10.3390/nu14132679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.
Collapse
Affiliation(s)
- Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy
| | - Maria Annunziata Carluccio
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| |
Collapse
|
33
|
Ban QY, Liu M, Ding N, Chen Y, Lin Q, Zha JM, He WQ. Nutraceuticals for the Treatment of IBD: Current Progress and Future Directions. Front Nutr 2022; 9:794169. [PMID: 35734374 PMCID: PMC9207447 DOI: 10.3389/fnut.2022.794169] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/11/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting inflammatory disease of the gastrointestinal tract. Patients are usually diagnosed in adolescence and early adulthood and need lifelong treatment. In recent years, it has been found that diet plays an important role in the pathogenesis of IBD. Diet can change intestinal barrier function, affect the structure and function of intestinal flora, and promote immune disorder, thus promoting inflammation. Many patients believe that diet plays a role in the onset and treatment of the disease and changes their diet spontaneously. This review provides some insights into how nutraceuticals regulate intestinal immune homeostasis and improve intestinal barrier function. We reviewed the research results of dietary fiber, polyphenols, bioactive peptides, and other nutraceuticals in the prevention and treatment of IBD and sought better alternative or supplementary treatment methods for IBD patients.
Collapse
Affiliation(s)
- Quan-Yao Ban
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Mei Liu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Ning Ding
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
| | - Ying Chen
- Department of Gastroenterology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Qiong Lin
- Department of Gastroenterology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Juan-Min Zha
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
- *Correspondence: Juan-Min Zha
| | - Wei-Qi He
- Department of Oncology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center of Soochow Medical School, Suzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- Wei-Qi He
| |
Collapse
|
34
|
Tea phenolics as prebiotics. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Xiao W, Zhang Q, Yu L, Tian F, Chen W, Zhai Q. Effects of vegetarian diet-associated nutrients on gut microbiota and intestinal physiology. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Yang L, Wu G, Wu Q, Peng L, Yuan L. METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. Cell Death Dis 2022; 8:62. [PMID: 35165276 PMCID: PMC8844074 DOI: 10.1038/s41420-022-00849-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
The inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic inflammatory disorders of the intestine. Dysregulated cytokine secretion and signal transduction mechanisms via intestinal epithelial cells are involved in IBD pathogenesis, in which the transcription factor NF-κB plays a critical role. In this study, METTL3, which plays a key role in inflammation regulation, has been recognized significantly up-regulated in IBD samples, DSS-induced IBD mice, and LPS-treated MODE-K cells. Within LPS-treated MODE-K cells, METTL3 knockdown promoted cell viability, inhibited cell apoptosis, decreased apoptotic caspase3/9 cleavage, and decreased the levels of proinflammatory cytokines (IL-1β, TNF-α, IL-6, and IL-18) and inflammatory enzymes (COX-2 and iNOS). Under the same conditions, METTL3 knockdown inhibited, whereas METTL3 overexpression promoted p65 phosphorylation in MODE-K cells; NF-κB inhibitor JSH-23 partially abolished the promotive effects of METTL3 overexpression upon p65 phosphorylation. Consistently, the effects of METTL3 overexpression upon LPS-stimulated MODE-K cells were partially abolished by JSH-23. Lastly, METTL3 knockdown in DSS-induced IBD mice significantly ameliorated DSS-induced IBD and inhibited DSS-induced p65 phosphorylation. In conclusion, METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. The NF-κB signaling might be involved, and the regulatory mechanism remains to be investigated in our future study.
Collapse
Affiliation(s)
- Lichao Yang
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guotao Wu
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiang Wu
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liangxin Peng
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianwen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Speciale A, Muscarà C, Molonia MS, Toscano G, Cimino F, Saija A. In Vitro Protective Effects of a Standardized Extract From Cynara Cardunculus L. Leaves Against TNF-α-Induced Intestinal Inflammation. Front Pharmacol 2022; 13:809938. [PMID: 35222027 PMCID: PMC8874283 DOI: 10.3389/fphar.2022.809938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of progressive disorders characterized by recurrent chronic inflammation of the gut. New unconventional therapies based on plant derived compounds capable of preventing and/or reducing acute or chronic inflammation could represent a valid alternative for the treatment or prevention of IBDs. Cynara cardunculus L. leaves, considered a food-waste suitable as a rich source of bioactive polyphenols including luteolin and chlorogenic acid, has been reported for its positive effects in digestive tract. The aim of the present work was to evaluate the in vitro molecular mechanisms of beneficial effects of a standardized polyphenol-rich extract obtained from the leaves of Cynara cardunculus L (CCLE) against acute intestinal inflammation induced by TNF-α on intestinal epithelial Caco-2 cells. CCLE prevented TNF-α-induced NF-κB inflammatory pathway and the overexpression of IL-8 and COX-2. In addition, CCLE was able to improve basal intracellular antioxidant power in both TNF-α-unexposed or -exposed Caco-2 cells and this effect was associated to the activation of Nrf2 pathway, a master regulator of redox homeostasis affecting antioxidant and phase II detoxifying genes, stimulating an adaptive cellular response. In conclusion, our data clearly evidenced that, although considered a waste, Cynara cardunculus leaves may be used to obtain extracts rich in bioactive polyphenols potentially useful for prevention and treatment of inflammatory intestinal diseases.
Collapse
|
38
|
Maia PDDS, Baião DDS, Nanini HF, da Silva VPF, Frambach LB, Cabral IM, Pêgo B, Ribeiro BE, Pavão MSG, Paschoalin VMF, de Souza HSP, Pierucci APTR. Bioactive Compounds from Pale Ale Beer Powder Attenuate Experimental Colitis in BALB/c Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041194. [PMID: 35208981 PMCID: PMC8877795 DOI: 10.3390/molecules27041194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Phenolic compounds (PCs) present in foods are associated with a decreased risk of developing inflammatory diseases. The aim of this study was to extract and characterize PCs from craft beer powder and evaluate their potential benefits in an experimental model of inflammatory bowel disease (IBD). PCs were extracted and quantified from pure beer samples. BALB/c mice received either the beer phenolic extract (BPE) or beer powder fortified with phenolic extract (BPFPE) of PCs daily for 20 days by gavage. Colon samples were collected for histopathological and immunohistochemical analyses. Dextran sodium sulfate (DSS)-induced mice lost more weight, had reduced colon length, and developed more inflammatory changes compared with DSS-induced mice treated with either BPE or BPFPE. In addition, in DSS-induced mice, the densities of CD4- and CD11b-positive cells, apoptotic rates, and activation of NF-κB and p-ERK1/2 MAPK intracellular signaling pathways were higher in those treated with BPE and BPFPE than in those not treated. Pretreatment with the phenolic extract and BPFPE remarkably attenuated DSS-induced colitis. The protective effect of PCs supports further investigation and development of therapies for human IBD.
Collapse
Affiliation(s)
- Paola D. D. S. Maia
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| | - Diego dos Santos Baião
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
| | - Hayandra F. Nanini
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 11th floor, Rio de Janeiro 21941-617, Brazil; (H.F.N.); (B.P.); (B.E.R.)
| | - Victor Paulo F. da Silva
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| | - Lissa Bantim Frambach
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| | - Iuri Matheus Cabral
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| | - Beatriz Pêgo
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 11th floor, Rio de Janeiro 21941-617, Brazil; (H.F.N.); (B.P.); (B.E.R.)
| | - Beatriz E. Ribeiro
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 11th floor, Rio de Janeiro 21941-617, Brazil; (H.F.N.); (B.P.); (B.E.R.)
| | - Mauro Sérgio Gonçalves Pavão
- Institute of Medical Biochemistry, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 4th floor, Rio de Janeiro 21941-617, Brazil;
| | - Vania M. F. Paschoalin
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
| | - Heitor S. P. de Souza
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 11th floor, Rio de Janeiro 21941-617, Brazil; (H.F.N.); (B.P.); (B.E.R.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
- Correspondence: ; Tel.: +55-21-3938-2669
| | - Anna Paola T. R. Pierucci
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| |
Collapse
|
39
|
Tie S, Tan M. Current Advances in Multifunctional Nanocarriers Based on Marine Polysaccharides for Colon Delivery of Food Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:903-915. [PMID: 35072455 DOI: 10.1021/acs.jafc.1c05012] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease (IBD) has been considered as a chronic disease that is difficult to cure and needs lifelong treatment. Marine polysaccharides with good biocompatibility and biodegradability, mucoadhesion, sensitivity to external stimuli, and targeting ability can be used as wall materials for oral colon-targeted delivery of polyphenols in nutrition intervention of IBD. This manuscript reviewed the latest progress in the design, preparation, and characterization of marine polysaccharides-derived multifunctional nanocarriers for polyphenol colon delivery. Chitosan, sodium alginate, chondroitin sulfate, and hyaluronic acid were discussed in the preparation of polyphenol delivery systems. The design strategy, synthesis methods, and structure characterization of multifunctional polyphenol carriers including stimuli-responsive nanocarriers, mucoadhesive and mucus-penetrating nanocarriers, colon targeted nanocarriers, and bioactive compounds codelivery nanocarriers were reviewed in the alleviation of IBD. The research perspectives in the preparation and characterization of delivery carriers using marine polysaccharide as materials were proposed for their potential application in food bioactive components.
Collapse
Affiliation(s)
- Shanshan Tie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
40
|
Vetuschi A, Battista N, Pompili S, Cappariello A, Prete R, Taticchi A, Selvaggini R, Latella G G, Corsetti A, Sferra R. The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate-induced chronic colitis. Nutrition 2022; 94:111511. [PMID: 34813981 DOI: 10.1016/j.nut.2021.111511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES After a chronic intestinal injury, several intestinal cells switch their phenotype to activated myofibroblasts, which in turn release an abnormal amount of extracellular matrix proteins, leading to the onset of the fibrotic process. To date, no resolutive pharmacological treatments are available, and the identification of new therapeutic approaches represents a crucial goal to achieve. The onset, maintenance, and progression of inflammatory bowel disease are related to abnormal intestinal immune responses to environmental factors, including diet and intestinal microflora components. This study aimed to evaluate the potential antiinflammatory and antifibrotic effect of a biologically debittered olive cream and its probiotic oral administration in an experimental model of dextran sodium sulfate (DSS)-induced chronic colitis. METHODS Chronic colitis was induced in mice by three cycles of oral administration of 2.5% DSS (5 d of DSS followed by 7 d of tap water). Mice were randomly divided into five groups: 10 control mice fed with standard diet (SD), 20 mice receiving SD and DSS (SD+DSS), 20 mice receiving an enriched diet (ED) with olive cream and DSS (ED+DSS), 20 mice receiving SD plus probiotics (PB; Lactiplantibacillus plantarum IMC513) and DSS (SD+PB+DSS), and 20 mice receiving ED plus PB and DSS (ED+ PB+DSS). Clinical features and large bowel macroscopic, histologic, and immunohistochemical findings were evaluated. RESULTS The simultaneous administration of ED and PB induced a significant reduction in macroscopic and microscopic colitis scores compared with the other DSS-treated groups. In addition, ED and PB led to a significant decrease in the expression of inflammatory cytokines and profibrotic molecules. CONCLUSIONS The concomitant oral administration of a diet enriched with biologically debittered olive cream and a specific probiotic strain (Lactiplantibacillus plantarum IMC513) can exert synergistic antiinflammatory and antifibrotic action in DSS-induced chronic colitis. Further studies are needed to define the cellular and molecular mechanisms modulated by olive cream compounds and by Lactiplantibacillus plantarum IMC513.
Collapse
Affiliation(s)
- Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Alfredo Cappariello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Roberto Selvaggini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Latella G
- Department of Life, Health and Environmental Sciences-Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, L'Aquila, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
41
|
Pérez-Navarro J, Hermosín-Gutiérrez I, Gómez-Alonso S, Kurt-Celebi A, Colak N, Akpınar E, Hayirlioglu-Ayaz S, Ayaz FA. Vitis vinifera Turkish novel table grape 'Karaerik'. Part II: Non-anthocyanin phenolic composition and antioxidant capacity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:813-822. [PMID: 34223652 DOI: 10.1002/jsfa.11416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 'Karaerik' is a novel table grape (Vitis vinifera L.) native to Turkey and widely cultivated in areas bordering the city of Erzincan. Because of the demonstrated beneficial effects on human health of the grape phenolic composition, the aim of this work was to conduct a detailed profiling of non-anthocyanin phenolic fractions from different grape tissues of the 'Karaerik' table grape. Both qualitative and quantitative characterization of phenolic compounds were achieved using high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry. Total phenolic content and oxygen radical absorbance capacity were also determined to evaluate the antioxidant properties of this table grape. RESULTS A high number of non-anthocyanin phenolic compounds was identified in 'Karaerik' table grape skins and seeds, including 11 flavonols, six hydroxycinnamic acid derivatives, two stilbenes, several monomeric and dimeric flavan-3-ols and proanthocyanidins. Quercetin-type derivatives dominated the flavonol profile of grape skins, followed by myricetin type. Tartaric acid esters of three acids (caffeic, coumaric and ferulic acids) were the main hydroxycinnamic acid derivatives in this cultivar. Qualitative and quantitative differences were observed in flavan-3-ol composition among the grape tissues. Proanthocyanidins were the most abundant class of phenolic compounds in 'Karaerik' grapes, being mainly located in seeds. Higher antioxidant capacity values were determined in grape seeds, in correlation with the total phenolic content. CONCLUSION These results provide useful information for a better understanding of phenolic antioxidants from the 'Karaerik' table grape and will contribute to promoting the varietal identity and health-related properties of this fruit. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- José Pérez-Navarro
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Isidro Hermosín-Gutiérrez
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
- Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sergio Gómez-Alonso
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Aynur Kurt-Celebi
- Graduate School of Natural and Applied Sciences, Biology Graduate Program, Karadeniz Technical University, Trabzon, Turkey
| | - Nesrin Colak
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Erdal Akpınar
- Department of Geography, Faculty of Arts and Science, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Sema Hayirlioglu-Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Faik A Ayaz
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
42
|
Li F, Yan H, Jiang L, Zhao J, Lei X, Ming J. Cherry Polyphenol Extract Ameliorated Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice by Suppressing Wnt/β-Catenin Signaling Pathway. Foods 2021; 11:foods11010049. [PMID: 35010176 PMCID: PMC8750665 DOI: 10.3390/foods11010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic and nonspecific inflammatory disease of the colon and rectum, and its etiology remains obscure. Cherry polyphenols showed potential health-promoting effects. However, both the protective effect and mechanism of cherry polyphenols on UC are still unclear. This study aimed to investigate the potential role of the free polyphenol extract of cherry in alleviating UC and its possible mechanism of action. Our study revealed that the free polyphenol extract of cherry management significantly alleviated UC symptoms, such as weight loss, colon shortening, the thickening of colonic mucous layer, etc. The free polyphenol extract of cherry treatment also introduced a significant reduction in levels of malondialdehyde (MDA), myeloperoxidase (MPO) and nitric oxide (NO), while causing a significant elevation in levels of catalase (CAT), glutathione (GSH-Px), superoxide dismutase (SOD), as well as the downregulation of pro-inflammatory cytokines. This indicated that such positive effects were performed through reducing oxidative damage or in a cytokine-specific manner. The immunofluorescence analysis of ZO-1 and occludin proteins declared that the free polyphenol extract of cherry had the potential to prompt intestinal barrier function. The reduced expression levels of β-catenin, c-myc, cyclin D1 and GSK-3β suggested that the cherry extract performed its positive effect on UC by suppressing the Wnt/β-ctenin pathway. This finding may pave the way into further understanding the mechanism of cherry polyphenols ameliorating ulcerative colitis.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Huiming Yan
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, China; (F.L.); (H.Y.); (L.J.); (J.Z.); (X.L.)
- Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, China
- Correspondence: or ; Tel.: +86-023-68251298; Fax: +86-023-68251947
| |
Collapse
|
43
|
Mediterranean Diet a Potential Strategy against SARS-CoV-2 Infection: A Narrative Review. Medicina (B Aires) 2021; 57:medicina57121389. [PMID: 34946334 PMCID: PMC8704657 DOI: 10.3390/medicina57121389] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/08/2023] Open
Abstract
Mediterranean Diet represents the traditional eating habits of populations living around the Mediterranean Sea, and it is associated with a lower risk of overall mortality and cancer incidence and cardiovascular diseases. Severe acute respiratory syndrome coronavirus 2 is a new pandemic, and represents a significant and critical threat to global human health. In this study, we aimed to review the possible effects of Mediterranean Diet against the risk of the coronavirus disease 2019. Several vitamins, minerals, fatty acids, and phytochemicals with their potential anti-COVID-19 activity are presented. Different risk factors may increase or reduce the probability of contracting the disease. Mediterranean Diet has also a positive action on inflammation and immune system and could have a protective effect against severe acute respiratory syndrome coronavirus 2. Further studies are needed to corroborate the benefits of the Mediterranean Diet protective role on infection with SARS-CoV-2.
Collapse
|
44
|
Yu X, Liu Y. Diosmetin attenuate experimental ulcerative colitis in rats via suppression of NF-κB, TNF-α and IL-6 signalling pathways correlated with down-regulation of apoptotic events. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211067292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic inflammation of colon in which the innermost tissue of colon and rectum develops deep-rooted inflammation. Diosmetin is the aglycone of the flavonoid glycoside diosmin, commonly found in citrus fruits. Therapeutically diosmetin is indicated to demonstrate anticancer, antimicrobial, antioxidant, oestrogenic and anti-inflammatory activity. Methods In this research, we studied the action of diosmetin on TNBS (2,4,6-trinitrobenzene sulfonic acid)-induced UC in rats. Male Wister rats were anesthetised with pentobarbital and TNBS introduced by performing an enema. Diosmetin treatment was provided through oral gavage for the next 28 days. Animals were sacrificed on the 29th day and colon tissues were collected for further examinations. Results Diosmetin treatment decreased colonic ulceration dramatically and decreased the percentage of inflammation in the colonic mucosa. Depletion of the TNBS assisted of superoxide dismutase and catalase was substantially restricted, while lipid peroxidation was recorded in the colonic tissue as malondialdehyde content was also decreased. After treatment with diosmetin, the occurrence of TNF-α, IL-6and NF-κB was considerably lowered and the number of apoptotic cells observed was significantly reduced. Conclusion Taken together, these observations demonstrated the potential of diosmetin against ulcer formation and development.
Collapse
Affiliation(s)
- Xiaoyan Yu
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yang Liu
- Department of Teaching Materials, Mudanjiang Medical University, Mudanjiang City, China
| |
Collapse
|
45
|
Zhang H, Ta N, Shen H, Wang H. Effects of Jian Pi Qing Chang Hua Shi decoction on mucosal injuries in a 2,4,6-trinitrobenzene sulphonic acid-induced inflammatory bowel disease rat model. PHARMACEUTICAL BIOLOGY 2021; 59:683-695. [PMID: 34110957 PMCID: PMC8204966 DOI: 10.1080/13880209.2021.1928240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 05/27/2023]
Abstract
CONTEXT Jian Pi Qing Chang Hua Shi decoction (JPQCHSD) has been considered as an effective remedy for the treatment of inflammatory bowel disease (IBD) in Chinese traditional medicine. OBJECTIVE We evaluated the efficacy of JPQCHSD on 2-4-6-trinitrobenzene sulphonic acid (TNBS)-induced IBD rats and the responsible mechanisms. MATERIALS AND METHODS Except the rats of the control group (50% ethanol), Sprague-Dawley rats (180 ± 20 g) induced by TNBS (150 mg/kg in 50% ethanol), received water extract of JPQCHSD daily at 0, 9.5, 19, or 38 g/kg for 12 days. The rats were sacrificed, and their colons were removed to evaluate the disease activity index. Malondialdehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), immunoglobulin A (IgA), tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and nuclear factor-κB were evaluated. RESULTS JPQCHSD extract significantly reduced the disease activity index of TNBS-induced colitis with a median effective dose (ED50) of 26.93 g/kg. MPO and MDA were significantly reduced in the 19 and 38 g/kg groups (ED50 values 37.38 and 53.2 g/kg, respectively). The ED50 values for the increased SOD and IgA were 48.98 and 56.3 g/kg. ED50 values for inhibition of TNF-α, IL-1β, and IL-6 were 32.66, 75.72, and 162.06 g/kg, respectively. DISCUSSION JPQCHSD promoted mucosal healing in IBD rats via its anti-inflammation, immune regulation, and antioxidation properties. CONCLUSIONS JPQCHSD has healing function on IBD. Further clinical trials are needed to demonstrate its efficacy and tolerance to IBD.
Collapse
Affiliation(s)
- Huicun Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Na Ta
- Center Hospital of Beijing Daxing District Caiyu Town, Beijing, China
| | - Hong Shen
- Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Hongbing Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Hospital of Traditional Chinese Medicine Yanqing Hospital, Beijing, China
| |
Collapse
|
46
|
Rivas F, Poblete-Aro C, Pando ME, Allel MJ, Fernandez V, Soto A, Nova P, Garcia-Diaz D. Effects of polyphenols in aging and neurodegeneration associated with oxidative stress. Curr Med Chem 2021; 29:1045-1060. [PMID: 34720075 DOI: 10.2174/0929867328666211101100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 11/22/2022]
Abstract
Aging is defined as the functional loss of tissues and organs over time. This is a biological, irreversible, progressive, and universal process that results from genetic and environmental factors, such as diet, physical activity, smoking, harmful alcohol consumption, and exposure to toxins, among others. Aging is a consequence of molecular and cellular damage built up over time. This damage begins with a gradual decrease in physical and mental capacity, thus increasing the risk of neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Neuronal, functional, and structural damage can be explained by an imbalance among free radicals, reactive oxygen species, reactive nitrogen species, and antioxidants, which finally lead to oxidative stress. Due to the key role of free radicals, reactive oxygen species, and reactive nitrogen species, antioxidant therapy may reduce the oxidative damage associated with neurodegeneration. Exogenous antioxidants are molecules that may help maintain the balance between the formation and elimination of free radicals, thus protecting the cell from their toxicity. Among them, polyphenols are a broad group of secondary plant metabolites with potent antioxidant properties. Here, we review several studies that show the potential role of polyphenol consumption to prevent, or slow down, harmful oxidative processes linked to neurodegenerative disorders.
Collapse
Affiliation(s)
- Francisca Rivas
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - Carlos Poblete-Aro
- Centro de Investigacion de Rehabilitacion en Salud, Universidad de las Americas, Santiago. Chile
| | - María Elsa Pando
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - María José Allel
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - Valentina Fernandez
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | | | - Pablo Nova
- Unidad de Anatomia Humana Normal, Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago. Chile
| | - Diego Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| |
Collapse
|
47
|
Ghadimi D, Frahm SO, Röcken C, Ebsen M, Schwiertz A, Fölster-Holst R, Bockelmann W, Heller KJ. Effects of ad libitum free-choice access to freshly squeezed domestic white asparagus juice on intestinal microbiota composition and universal biomarkers of immuno-metabolic homeostasis and general health in middle-aged female and male C57BL/6 mice. Endocr Metab Immune Disord Drug Targets 2021; 22:401-414. [PMID: 34463231 DOI: 10.2174/1871530321666210830150620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Asparagus contains different bioactive and volatile components including pyrazines, sulphur-containing compounds, and polyphenols. Asparagus juice is a new low-calorie LAB-containing natural juice product, the usage of which is expanding. Pyrazines and sulphur-containing compounds are degraded by bacteria on one hand, but on the other hand, dietary polyphenols prevent human colorectal diseases as modulators of the composition and/or activity of gut microbiota. However, the utility of these asparagus compounds for reversal of age-associated microbial dysbiosis and the immunometabolic disorders that dysbiosis incites body inflammatory reactions was not much explored so far. Hence, using middle-aged mice, we conducted the current study to verify the effect of freshly squeezed domestic white asparagus juice on the biomarkers reflecting immuno-metabolic pathways linking age-related dysbiosis and metabolic events. MATERIALS AND METHODS Thirty-two conventional Harlan Laboratories C57BL/6 mice aged between 11-12 months were randomly divided into two groups (n=16). Mice in control group 1 received sterile tap water. Animals in group 2 had 60 days ad libitum free-choice access to sterile tap water supplemented with 5% (v/v) freshly squeezed domestic white asparagus juice. Clinical signs of general health, hydration, and inflammation were monitored daily. Caecal content samples were analysed by qPCR for microbial composition. Histology of relevant organs was carried out on day 60 after sacrificing the mice. Universal markers of metabolic- and liver function were determined in serum samples. Caecal SCFAs contents were measured using HPLC. RESULTS Overall, no significant differences in general health or clinical signs of inflammation between the two groups were observed. The liver to body weight ratio in asparagus juice-drank mice was lowered. The qPCR quantification showed that asparagus juice significantly decreased the caecal Clostridium coccoides group while causing an enhancement in Clostridium leptum, Firmicutes, and bifidobacterial groups as well as total caecal bacterial count. Asparagus juice significantly elevated the caecal contents of SCFAs. Enhanced SCFAs (acetate, butyrate, and propionate) in mice receiving asparagus juice, however, did coincide with altered lipid levels in plasma or changes in the abundance of relevant bacteria for acetate-, butyrate-, and propionate production. DISCUSSION To the best of our knowledge, this is the first study aiming at evaluating the effect of freshly squeezed German domestic white asparagus juice on universal markers of metabolic- and liver function in middle-aged mice and the role of gut microbiota in this regard. The effectiveness of asparagus juice to improve metabolism in middle-aged mice was associated with alterations in intestinal microbiota but maybe also due to uptake of higher amounts of SCFAs. Hence, the key signal pathways corresponding to improved immune-metabolic homeostasis will be an important research scheme in the future.
Collapse
Affiliation(s)
- Darab Ghadimi
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103 Kiel. Germany
| | - Sven Olaf Frahm
- Medizinisches Versorgungszentrum (MVZ), Pathology and Laboratory Medicine Dr. Rabenhorst, Prüner Gang 7, 24103 Kiel. Germany
| | - Christoph Röcken
- Institute of Pathology, Kiel University,University Hospital, Schleswig-Holstein, Arnold-Heller-Straße 3/14, D-24105 Kiel. Germany
| | - Michael Ebsen
- StädtischesMVZ Kiel GmbH, Department of Pathology, Chemnitzstr.33, 24116 Kiel. Germany
| | - Andreas Schwiertz
- MVZ Institute of Microecology, Auf den Lüppen 8, 35745 Herborn. Germany
| | - Regina Fölster-Holst
- Clinic of Dermatology, University Hospital Schleswig-Holstein, Schittenhelmstr. 7, D-24105 Kiel. Germany
| | - Wilhelm Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Hermann-Weigmann-Str 1, D-24103 Kiel. Germany
| | - Knut J Heller
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Microbiology and Biotechnology; Kiel. Germany
| |
Collapse
|
48
|
Taladrid D, González de Llano D, Zorraquín-Peña I, Tamargo A, Silva M, Molinero N, Moreno-Arribas MV, Bartolomé B. Gastrointestinal Digestion of a Grape Pomace Extract: Impact on Intestinal Barrier Permeability and Interaction with Gut Microbiome. Nutrients 2021; 13:nu13072467. [PMID: 34371979 PMCID: PMC8308781 DOI: 10.3390/nu13072467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023] Open
Abstract
Grape pomace (GP) is a winemaking by-product rich in polyphenols and fibre. Supplementation with GP extracts has shown potential benefits against oxidative stress- and inflammation-related pathologies. As a new nutritional target, this paper explores the impact of the ingestion of a grape pomace extract on intestinal barrier functionality. A GP extract was sequentially subjected to gastrointestinal and colonic digestion using the dynamic gastrointestinal simulator (simgi®). This generated two simulated fluids: intestinal-digested extract (IDE) and colonic-digested extract (CDE). The effects of these two fluids on paracellular permeability and the expression of tight junction (TJ) proteins (i.e., zonula occludens-1 (ZO-1) and occludin) were assessed in Caco-2-cell monolayers grown in Transwell® inserts. The IDE fluid significantly (p < 0.001) reduced the paracellular transport of FITC-dextran with respect to the control, whereas no significant differences (p > 0.05) were found for CDE, which could be due, at least partially, to the pro-leaky effect of the colonic digestion medium. Accordant slight increases in the mRNA levels of both ZO-1 and occludin were observed for IDE, but without statistical significance. Additionally, the colonic fermentation of the GP extract promoted the production of short-chain fatty acids (SCFA) and phenolic metabolites and led to changes in the relative abundance of some bacteria that might affect paracellular permeability. Overall, this paper reports first trends about the effects of grape pomace extracts on intestinal permeability that would require further confirmation in future experiments.
Collapse
|
49
|
Diterpenoids Isolated from Podocarpus macrophyllus Inhibited the Inflammatory Mediators in LPS-Induced HT-29 and RAW 264.7 Cells. Molecules 2021; 26:molecules26144326. [PMID: 34299601 PMCID: PMC8307039 DOI: 10.3390/molecules26144326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023] Open
Abstract
Species of Podocarpus are used traditionally in their native areas for the treatment of fevers, asthma, coughs, cholera, chest pain, arthritis, rheumatism, and sexually transmitted diseases. To identify natural products having efficacy against inflammatory bowel disease (IBD), we identified a new, 16-hydroxy-4β-carboxy-O-β-D-glucopyranosyl-19-nor-totarol (4) together with three known diterpenoids from P. macrophyllus. Furthermore, all the extracts, fractions, and isolates 1–4 were investigated for their anti-inflammatory effects by assessing the expression on nitric oxide (NO) production and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 and HT-29 cells. Among them, nagilactone B (2) exhibited a potent anti-inflammatory effect against NO production on RAW 264.7 cells; therefore, nagilactone B was further assessed for anti-inflammatory activity. Western blot analysis revealed that nagilactone B significantly decreased the expression of LPS-stimulated protein, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and phosphorylated extracellular regulated kinase (pERK)1/2. In addition, nagilactone B downregulated tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 levels in LPS-induced macrophages and colonic epithelial cells. To our best knowledge, this is the first report on the inhibitory effect of nagilactone B (pure state) and rakanmakilactone G against NO production in LPS-stimulated RAW 264.7 cells. Thus, diterpenoids isolated from P. macrophyllus could be employed as potential therapeutic phytochemicals for IBD.
Collapse
|
50
|
Ed Nignpense B, Francis N, Blanchard C, Santhakumar AB. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021; 10:foods10071595. [PMID: 34359469 PMCID: PMC8307242 DOI: 10.3390/foods10071595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
| | - Nidhish Francis
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek Bommannan Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|