1
|
Kleyi P, Mandiwana V, de Beer M, Kesavan Pillai S, Ray SS. Folic Acid-Intercalated Mg/Al Layered Double Hydroxides-A Multifunctional Nanohybrid Delivery System for Topical Applications. ACS OMEGA 2024; 9:48185-48195. [PMID: 39676977 PMCID: PMC11635470 DOI: 10.1021/acsomega.4c05374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
The delivery of active functional molecules across the skin is laborious due to its structural intricacy and exceptional barrier characteristics. Developments in nanotechnology yielded innovative transport vehicles derived from nanomaterials to reinforce the skin's ability to interact with active ingredient molecules and increase its bioavailability. The current study employed crystalline inorganic two-dimensional double hydroxides (LDHs) as an efficient carrier and delivery vehicle for folic acid (FA) in a topical skincare formulation. FA was incorporated into the interlayer region of Mg/Al LDHs utilizing a coprecipitation procedure to produce a nanohybrid. The nanohybrid was characterized by XRD and FTIR. FA intercalation into the interlayer galleries of the nanohybrid was confirmed by an XRD diffractogram, which established a shift of the basal d (003) reflection of LDHs to lower 2θ angles. FTIR of the nanohybrids revealed the characteristic absorption frequencies of FA, indicating the existence of FA within the LDH matrix. The FA-intercalated nanohybrid showed antioxidant activity similar to that of free FA. A topical formulation was prepared by dispersing FA-intercalated LDH nanohybrid in an oil-in-water (o/w) emulsion, and it was used to evaluate its properties further. Rheological property evaluation showed that the presence of the nanohybrid resulted in better flow behavior and higher yield stress of the formulation, implying improved stability and quality. The nanohybrid also enhanced the storage modulus and, thus, the dynamic rigidity of the formulation. The test compounds expressed no cytotoxicity in HaCaT cells, as cell viability significantly increased in monolayer cultures after a 24-h incubation period. Release studies conducted in vitro using the nanohybrid showed a pH-dependent controlled release of FA. Transdermal permeation experiments using Franz diffusion cells demonstrated a direct correlation between the concentration of penetrated FA with time, which signified a gradual and effective transfer of FA from the LDH matrix into the oil/water emulsion, demonstrating its efficacy. Thus, the study revealed excellent prospects for the nanohybrid as a multifunctional active ingredient in topical applications.
Collapse
Affiliation(s)
- Phumelele Kleyi
- Centre
for Nanostructured and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Vusani Mandiwana
- Centre
for Nanostructured and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Marinda de Beer
- Centre
for Nanostructured and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Sreejarani Kesavan Pillai
- Centre
for Nanostructured and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- Centre
for Nanostructured and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
2
|
Mishra VK, Rodriguez-Lecompte JC, Ahmed M. Nanoparticles mediated folic acid enrichment. Food Chem 2024; 456:139964. [PMID: 38876059 DOI: 10.1016/j.foodchem.2024.139964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Folate is an essential component of many metabolic processes, and folate deficiency is known to cause various disorders. Folate and folic acid, a synthetic and chemically stable form of folate, enriched diet are typically used to overcome this deficiency. Folic acid and folate however, are susceptible to harsh environment and folates enrichment using nanoparticles is an intensively studied strategy in food industry. This review highlights the current methods and types of matrices utilized to develop folic acid/folate carrying nanoparticles. The folic acid/folate loaded nanoparticles prevent cargo degradation during gut absorption and under harsh food processing conditions including, high temperatures, UV light, and autoclaving. The data demonstrates that nanofortifcation of folates using proteins and biopolymers effectively enhances the bioavailability of the cargo. The encapsulation of folic acid in biopolymers by emulsion, spray drying and ionic gelation represent simplistic methods that can be easily scaled up with applications in food industry.
Collapse
Affiliation(s)
- Vineet Kumar Mishra
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
3
|
Trentini M, D’Amora U, Ronca A, Lovatti L, Calvo-Guirado JL, Licastro D, Monego SD, Delogu LG, Wieckowski MR, Barak S, Dolkart O, Zavan B. Bone Regeneration Revolution: Pulsed Electromagnetic Field Modulates Macrophage-Derived Exosomes to Attenuate Osteoclastogenesis. Int J Nanomedicine 2024; 19:8695-8707. [PMID: 39205866 PMCID: PMC11352519 DOI: 10.2147/ijn.s470901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction In the process of bone regeneration, a prominent role is played by macrophages involved in both the initial inflammation and the regeneration/vascularization phases, due to their M2 anti-inflammatory phenotype. Together with osteoclasts, they participate in the degradation of the bone matrix if the inflammatory process does not end. In this complex scenario, recently, much attention has been paid to extracellular communication mediated by nanometer-sized vesicles, with high information content, called exosomes (EVs). Considering these considerations, the purpose of the present work is to demonstrate how the presence of a pulsed electromagnetic field (PEMF) can positively affect communication through EVs. Methods To this aim, macrophages and osteoclasts were treated in vitro with PEMF and analyzed through molecular biology analysis and by electron microscopy. Moreover, EVs produced by macrophages were characterized and used to verify their activity onto osteoclasts. Results The results confirmed that PEMF not only reduces the inflammatory activity of macrophages and the degradative activity of osteoclasts but that the EVS produced by macrophages, obtained from PEMF treatment, positively affect osteoclasts by reducing their activity. Discussion The co-treatment of PEMF with M2 macrophage-derived EVs (M2-EVs) decreased osteoclastogenesis to a greater degree than separate treatments.
Collapse
Affiliation(s)
- Martina Trentini
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - Luca Lovatti
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, 80125, Italy
| | - José Luis Calvo-Guirado
- Faculty of Health Sciences, Universidad Autonoma de Chile, Santiago de Chile, 7500912, Chile
| | | | | | | | - Mariusz R Wieckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
4
|
Almaraz-Postigo S, Sanz E, Pandiella A, Díaz-Rodríguez E. Ocoxin Oral Solution Triggers DNA Damage and Cell Death in Ovarian Cancer. Nutrients 2024; 16:2416. [PMID: 39125297 PMCID: PMC11313973 DOI: 10.3390/nu16152416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Ovarian cancer is the most fatal of all the reproductive cancers within the female population, mainly due to its late diagnosis that limits surgery and medical treatment. Classically, ovarian cancer therapy has included conventional chemotherapy, and other therapeutic approaches are now being used to treat these patients, but the outcomes of the disease are still poor. Therefore, new strategies are needed to improve life expectancy and life quality of ovarian cancer patients. Considering that, we investigated the effect of the nutritional supplement Ocoxin Oral Solution (OOS) in ovarian cancer models. OOS contains several nutritional supplements, some of them with demonstrated antitumoral action. In vitro studies showed that OOS inhibited the proliferation of several ovarian cancer cell lines, especially of those representative of the endometrioid subtype, in a time- and dose-dependent manner. A fast cell death induction after OOS treatment was observed, and when the molecular mechanisms leading to this effect were investigated, an activation of the DNA damage checkpoint was detected, as shown by activation (phosphorylation) of CHK1 and CHK2 kinases that was followed by the phosphorylation of the target protein histone H2AX. When tested in animal models of ovarian cancer, OOS reduced tumor growth without any observed secondary effects. Moreover, such reduction in tumor proliferation was caused by the induction of DNA damage as corroborated by the in vivo phosphorylation of CHK2 and Histone H2AX. Finally, OOS potentiated the action of carboplatin or olaparib, the standard of care treatments used in ovarian clinics, opening the possibility of including OOS in combination with those standard of care agents in patients with ovarian cancer.
Collapse
Affiliation(s)
- Sheila Almaraz-Postigo
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
| | | | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Investigación Biomédica de Salamanca (IBSAL) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Campus Miguel de Unamuno, 37007 Salamanca, Spain; (S.A.-P.); (A.P.)
- Department of Biochemistry, Universidad de Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
5
|
Chen Y, Liu X, Li B, Li J, Meng L, Ye C, Han L, Li H, Deng LL, Su Z, Zhang X. Explorative case control study on the associations of serum vitamin D3, folic acid and vitamin B12 levels on Kawasaki disease and coronary artery lesions. Front Nutr 2024; 11:1402316. [PMID: 38919394 PMCID: PMC11196816 DOI: 10.3389/fnut.2024.1402316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Background Kawasaki Disease (KD) is a pediatric vasculitic disorder characterized by systemic small vasculitis, notably coronary arteritis, with unclear pathogenesis. This explorative case-control study investigated the association between folic acid (FA), vitamin D3 (VD3), and vitamin B12 (VB12) levels and the different types of Kawasaki Disease, as well as the incidence of coronary artery lesions (CALs). Methods In this explorative case control study, 365 KD children admitted to our hospital from January 1, 2022 to June 30, 2023 were included as the KD group. Simultaneously, 365 healthy children who received physical examination during the same period were included as the control group. The KD group was divided into typical KD group and incomplete KD group (IKD group), CALs group and non-CALS group, and IVIG sensitive group and IVIG resistant group. The children with CALs were divided into small tumor group, medium tumor group and large tumor group. Serum levels of FA, VB12, and VD3 were compared across all groups. Results Serum levels of FA and VD3 were significantly decreased in both the KD and CALs groups (p < 0.05), and both factors were identified as independent risk factors for KD and CALs. Similarly, reduced serum VD3 levels were observed in the IKD and IVIG-resistant groups (p < 0.05), with VD3 also being an independent risk factor for both IKD and IVIG resistance. Additionally, lower serum FA levels were noted in the group with large aneurysms (p < 0.05), establishing FA as an independent risk factor for aneurysm size. Conclusion Serum levels of folic FA and vitamin VD3 were significantly reduced in children with KD. Furthermore, these reductions were more pronounced in children with IKD and CALs. This pattern suggests that lower FA and VD3 levels may increase the risk of more severe coronary lesions in KD patients. Therefore, monitoring these biomarkers could provide valuable insights for early clinical diagnosis and intervention.
Collapse
Affiliation(s)
| | | | - Bin Li
- Kunming Children’s Hospital, Kunming, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation and Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | | | - Caixia Ye
- Maternity and Child Health Care Hospital of Yunyang County, Chongqing, China
| | - Linfei Han
- Kunming Children’s Hospital, Kunming, China
| | - Hong Li
- Kunming Children’s Hospital, Kunming, China
| | - Li Li Deng
- Kunming Children’s Hospital, Kunming, China
| | | | - Xing Zhang
- Kunming Children’s Hospital, Kunming, China
| |
Collapse
|
6
|
Jiang X, Luo Y, Li Z, Zhang H, Xu Z, Wang D. Identification of diagnostic biomarkers and immune cell infiltration in coronary artery disease by machine learning, nomogram, and molecular docking. Front Immunol 2024; 15:1368904. [PMID: 38629070 PMCID: PMC11018948 DOI: 10.3389/fimmu.2024.1368904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Background Coronary artery disease (CAD) is still a lethal disease worldwide. This study aims to identify clinically relevant diagnostic biomarker in CAD and explore the potential medications on CAD. Methods GSE42148, GSE180081, and GSE12288 were downloaded as the training and validation cohorts to identify the candidate genes by constructing the weighted gene co-expression network analysis. Functional enrichment analysis was utilized to determine the functional roles of these genes. Machine learning algorithms determined the candidate biomarkers. Hub genes were then selected and validated by nomogram and the receiver operating curve. Using CIBERSORTx, the hub genes were further discovered in relation to immune cell infiltrability, and molecules associated with immune active families were analyzed by correlation analysis. Drug screening and molecular docking were used to determine medications that target the four genes. Results There were 191 and 230 key genes respectively identified by the weighted gene co-expression network analysis in two modules. A total of 421 key genes found enriched pathways by functional enrichment analysis. Candidate immune-related genes were then screened and identified by the random forest model and the eXtreme Gradient Boosting algorithm. Finally, four hub genes, namely, CSF3R, EED, HSPA1B, and IL17RA, were obtained and used to establish the nomogram model. The receiver operating curve, the area under curve, and the calibration curve were all used to validate the accuracy and usefulness of the diagnostic model. Immune cell infiltrating was examined, and CAD patients were then divided into high- and low-expression groups for further gene set enrichment analysis. Through targeting the hub genes, we also found potential drugs for anti-CAD treatment by using the molecular docking method. Conclusions CSF3R, EED, HSPA1B, and IL17RA are potential diagnostic biomarkers for CAD. CAD pathogenesis is greatly influenced by patterns of immune cell infiltration. Promising drugs offers new prospects for the development of CAD therapy.
Collapse
Affiliation(s)
- Xinyi Jiang
- Department of Cardio-Thoracic surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Graduate School, Nanjing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanxi Luo
- Department of Cardio-Thoracic surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Graduate School, Nanjing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zeshi Li
- Department of Cardio-Thoracic surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Graduate School, Nanjing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - He Zhang
- Department of Cardio-Thoracic surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Graduate School, Nanjing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenjun Xu
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dongjin Wang
- Department of Cardio-Thoracic surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Graduate School, Nanjing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
7
|
Branco ACC, Rogers LM, Aronoff DM. Folate Receptor Beta Signaling in the Regulation of Macrophage Antimicrobial Immune Response: A Scoping Review. Biomed Hub 2024; 9:31-37. [PMID: 38406385 PMCID: PMC10890800 DOI: 10.1159/000536186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Folate, vitamin B9, is a water-soluble vitamin that is essential to cellular proliferation and division. In addition to the reduced folate carrier, eukaryotic cells take up folate through endocytosis mediated by one of two GPI-anchored folate receptors (FRs), FRα or FRβ. Two other isoforms of FR exist, FRγ and FRδ, neither of which support endocytic activities of FR signaling. FRβ is expressed primarily by monocytes and macrophages and highly expressed on activated macrophages. Macrophage expression of FRβ suggests a role for this receptor in modulating function of these immune sentinels, particularly as they engage in inflammatory processes. Despite several studies suggesting that folates can suppress inflammatory responses of macrophages to proinflammatory stimuli, there appears to be a lack of basic research examining the role of FRβ in modulating macrophage responses to microbial sensing. We therefore conducted a scoping review to assess evidence within the published literature addressing the question, "what is known about the extent to which FRβ regulates macrophage responses to sensing, and responding to, microorganisms?". Methods As a strategy for the study selection, we queried articles indexed in the research database PubMed and the search engine Google Scholar (up until August 12, 2023), including combinations of the research words: macrophage, folate receptor beta, FOLR2. Results We identified 2 relevant articles out of 153 that are worth discussing here, none of which directly addressed our research question. Conclusion There is an unmet need to better define the contribution of FRβ to regulating the macrophage response to microbes.
Collapse
Affiliation(s)
- Anna C.C. Castelo Branco
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Dermatology and Immunodeficiencies (LIM56), Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Lisa M. Rogers
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David M. Aronoff
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Fukuda S, Tanaka S, Kawakami C, Kobayashi T, Ito S. Maternal Serum Folic Acid Levels and Onset of Kawasaki Disease in Offspring During Infancy. JAMA Netw Open 2023; 6:e2349942. [PMID: 38153729 PMCID: PMC10755611 DOI: 10.1001/jamanetworkopen.2023.49942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Importance Kawasaki disease is an acute systemic vasculitis that primarily affects infants and young children. No reproducible risk factors have yet been identified, but a possible association between maternal folic acid supplementation and Kawasaki disease has been reported previously. Objective To investigate the associations of exposure to maternal serum folic acid levels and maternal folic acid supplementation with onset of Kawasaki disease during infancy among offspring. Design, Setting, and Participants This cohort study used data from the Japan Environment and Children's Study, a nationwide birth cohort, which has enrolled children since 2011. This study used the data set released in October 2019, and analysis was performed in January 2023. Exposures Maternal serum folic acid levels (≥10 ng/mL classified as exposed) during the second and third trimesters and the frequency of maternal folic acid supplementation during the first trimester and during the second and third trimesters of pregnancy (once a week or more was classified as exposed). Main Outcomes and Measures The primary outcome was onset of Kawasaki disease in offspring up to age 12 months. Odds ratios (ORs) for each exposure were estimated, and propensity score-adjusted logistic regression was conducted on the basis of the sets of variables. Results The study population comprised 87 702 children who were followed-up for 12 months. Of these, 336 children developed Kawasaki disease. Mothers who took folic acid supplements (31 275 mothers [35.7%]; mean [SD] age, 32 [5] years) had higher serum folic acid levels than those who did not take supplements. Higher maternal serum folic acid levels were associated with a significantly lower risk of Kawasaki disease in offspring than lower levels (folic acid ≥10 vs <10 ng/mL, 56 of 20 698 children [0.27%] vs 267 of 64 468 children [0.41%]; OR, 0.68; 95% CI, 0.50-0.92). Children whose mothers took folic acid supplementation during the first trimester had a lower prevalence of Kawasaki disease than children whose mothers did not take folic acid (131 of 39 098 children [0.34%] vs 203 of 48 053 children [0.42%]), although the difference was not statistically significant (OR, 0.83; 95% CI, 0.66-1.04). Supplementation during the second and third trimesters was associated with a significantly lower risk of Kawasaki disease compared with no supplementation (94 of 31 275 children [0.30%] vs 242 of 56 427 children [0.43%]; OR, 0.73; 95% CI, 0.57-0.94). Conclusions and Relevance In this cohort study, higher serum folic acid levels (≥10 ng/mL) and maternal folic acid supplementation more than once a week during the second and third trimesters were associated with reduced risk of Kawasaki disease in offspring during infancy.
Collapse
Affiliation(s)
- Sayaka Fukuda
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Shiro Tanaka
- Department of Clinical Biostatistics/Clinical Biostatistics Course, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chihiro Kawakami
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tohru Kobayashi
- Department of Data Science, Clinical Research Center, Hospital, National Center for Child Health and Development, Tokyo, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
9
|
Chen Y, Liu S, Wu L, Liu Y, Du J, Luo Z, Xu J, Guo L, Liu Y. Epigenetic regulation of chemokine (CC-motif) ligand 2 in inflammatory diseases. Cell Prolif 2023:e13428. [PMID: 36872292 DOI: 10.1111/cpr.13428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023] Open
Abstract
Appropriate responses to inflammation are conducive to pathogen elimination and tissue repair, while uncontrolled inflammatory reactions are likely to result in the damage of tissues. Chemokine (CC-motif) Ligand 2 (CCL2) is the main chemokine and activator of monocytes, macrophages, and neutrophils. CCL2 played a key role in amplifying and accelerating the inflammatory cascade and is closely related to chronic non-controllable inflammation (cirrhosis, neuropathic pain, insulin resistance, atherosclerosis, deforming arthritis, ischemic injury, cancer, etc.). The crucial regulatory roles of CCL2 may provide potential targets for the treatment of inflammatory diseases. Therefore, we presented a review of the regulatory mechanisms of CCL2. Gene expression is largely affected by the state of chromatin. Different epigenetic modifications, including DNA methylation, post-translational modification of histones, histone variants, ATP-dependent chromatin remodelling, and non-coding RNA, could affect the 'open' or 'closed' state of DNA, and then significantly affect the expression of target genes. Since most epigenetic modifications are proven to be reversible, targeting the epigenetic mechanisms of CCL2 is expected to be a promising therapeutic strategy for inflammatory diseases. This review focuses on the epigenetic regulation of CCL2 in inflammatory diseases.
Collapse
Affiliation(s)
- Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, People's Republic of China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, People's Republic of China.,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Folate and Vitamin B 12 Deficiency Exacerbate Inflammation during Mycobacterium avium paratuberculosis (MAP) Infection. Nutrients 2023; 15:nu15020261. [PMID: 36678131 PMCID: PMC9865721 DOI: 10.3390/nu15020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Folate and vitamin B12 deficiency is highly prevalent among Crohn's disease (CD) patients. Furthermore, CD pathology can be mediated by Mycobacterium avium subsp. paratuberculosis (MAP) infection. However, the direct effect of folate (B9) and cobalamin (B12) deficiency during MAP infection remains uncharacterized. This study investigates how folate and B12 deficiency impedes macrophage apoptosis and exacerbates the inflammation in macrophages infected with MAP isolated from CD patients. Accordingly, we measured folate and B12 in ex vivo plasma samples collected from CD patients with or without MAP infection (N = 35 per group). We also measured the expression of the pro-inflammatory cytokines IL-1β and TNF-α, cellular apoptosis and viability markers, and bacterial viability in MAP-infected macrophages cultured in folate and B12 deficient media. We determined that MAP-positive CD patients have significantly lower plasma folate and B12 in comparison to MAP-negative CD patients [414.48 ± 94.60 pg/mL vs. 512.86 ± 129.12 pg/mL, respectively]. We further show that pro-inflammatory cytokines IL-1β and TNF-α are significantly upregulated during folate and vitamin B12 deprivation following MAP infection by several folds, while supplementation significantly reduces their expression by several folds. Additionally, depletion of folate, B12, and folate/B12 following MAP infection, led to decreased macrophage apoptosis from 1.83 ± 0.40-fold to 1.04 ± 0.08, 0.64 ± 0.12, and 0.45 ± 0.07 in folate-low, B12-low, and folate/B12-low cells, respectively. By contrast, folate and folate/B12 supplementation resulted in 3.38 ± 0.70 and 2.58 ± 0.14-fold increases in infected macrophages. Interestingly, changes in overall macrophage viability were only observed in folate-high, folate/B12-high, and folate/B12-low media, with 0.80 ± 0.05, 0.82 ± 0.02, and 0.91 ± 0.04-fold changes, respectively. Incubation of Caco-2 intestinal epithelial monolayers with supernatant from infected macrophages revealed that folate/B12 deficiency led to increased LDH release independent of oxidative stress. Overall, our results indicate that folate and B12 are key vitamins affecting cell survival and inflammation during MAP infection.
Collapse
|
11
|
Zhang H, Zuo Y, Zhao H, Zhao H, Wang Y, Zhang X, Zhang J, Wang P, Sun L, Zhang H, Liang H. Folic acid ameliorates alcohol-induced liver injury via gut–liver axis homeostasis. Front Nutr 2022; 9:989311. [PMID: 36337656 PMCID: PMC9632181 DOI: 10.3389/fnut.2022.989311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The gut–liver axis (GLA) plays an important role in the development of alcohol-induced liver injury. Alcohol consumption is typically associated with folic acid deficiency. However, no clear evidence has confirmed the effect of folic acid supplementation on alcohol-induced liver injury via GLA homeostasis. In this study, male C57BL/6J mice were given 56% (v/v) ethanol and 5.0 mg/kg folic acid daily by gavage for 10 weeks to investigate potential protective mechanisms of folic acid in alcohol-induced liver injury via GLA homeostasis. Histopathological and biochemical analyses showed that folic acid improved lipid deposition and inflammation in the liver caused by alcohol consumption and decreased the level of ALT, AST, TG, and LPS in serum. Folic acid inhibited the expression of the TLR4 signaling pathway and its downstream inflammatory mediators in the liver and upregulated the expression of ZO-1, claudin 1, and occludin in the intestine. But compared with the CON group, folic acid did not completely eliminate alcohol-induced intestine and liver injury. Furthermore, folic acid regulated alcohol-induced alterations in gut microbiota. In alcohol-exposed mice, the relative abundance of Bacteroidota was significantly increased, and the relative abundance of unclassified_Lachnospiraceae was significantly decreased. Folic acid supplementation significantly increased the relative abundance of Verrucomicrobia, Lachnospiraceae_NK4A136_group and Akkermansia, and decreased the relative abundance of Proteobacteria. The results of Spearman’s correlation analysis showed that serum parameters and hepatic inflammatory cytokines were significantly correlated with several bacteria, mainly including Bacteroidota, Firmicutes, and unclassified_Lachnospiraceae. In conclusion, folic acid could ameliorate alcohol-induced liver injury in mice via GLA homeostasis to some extent, providing a new idea and method for prevention of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yuwei Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huichao Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huizhen Zhang
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Hui Liang,
| |
Collapse
|
12
|
Genetic Aspects of Micronutrients Important for Inflammatory Bowel Disease. Life (Basel) 2022; 12:life12101623. [PMID: 36295058 PMCID: PMC9604584 DOI: 10.3390/life12101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC) are complex diseases whose etiology is associated with genetic and environmental risk factors, among which are diet and gut microbiota. To date, IBD is an incurable disease and the main goal of its treatment is to reduce symptoms, prevent complications, and improve nutritional status and the quality of life. Patients with IBD usually suffer from nutritional deficiency with imbalances of specific micronutrient levels that contribute to the further deterioration of the disease. Therefore, along with medications usually used for IBD treatment, therapeutic strategies also include the supplementation of micronutrients such as vitamin D, folic acid, iron, and zinc. Micronutrient supplementation tailored according to individual needs could help patients to maintain overall health, avoid the triggering of symptoms, and support remission. The identification of individuals’ genotypes associated with the absorption, transport and metabolism of micronutrients can modify future clinical practice in IBD and enable individualized treatment. This review discusses the personalized approach with respect to genetics related to micronutrients commonly used in inflammatory bowel disease treatment.
Collapse
|
13
|
Zheng M, Zheng Y, Zhang Y, Zhu Y, Yang Y, Oda T, Ni H, Jiang Z. In vitro fermentation of Bangia fusco-purpurea polysaccharide by human gut microbiota and the protective effects of the resultant products on Caco-2 cells from lipopolysaccharide-induced injury. Int J Biol Macromol 2022; 222:818-829. [PMID: 36174866 DOI: 10.1016/j.ijbiomac.2022.09.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Polysaccharide extracted from red seaweed Bangia fusco-purpurea (BFP) is a novel sulfated galactan, differed from agarans and carrageenans in fine structure. In this study, in vitro fermentation characteristics of BFP by human gut microbiota and its protective effect on lipopolysaccharide (LPS)-induced injury in Caco-2 cells were investigated. Our results showed that BFP was mainly degraded at transverse colon for 18 h fermentation by gut microbiota with reduced molecular weight. Meanwhile, BFP fermentation was associated with increased short-chain fatty acids (SCFAs) as compared to control group, especially acetic acid was increased to 129.53 ± 0.24 from 82.14 ± 0.23 mmol/L, and butyric acid was up to 1.56 ± 0.004 from 0.62 ± 0.01 mmol/L. Furthermore, BFP promoted abundances of Bacteroidetes and Firmicutes, while decreased numbers of Proteobacteria. The up-regrated beneficial differential metabolites were SCFAs, L-proline, arginine, folic acid, pyridoxamine, thiamine, etc. (p < 0.05), and their related metabolic pathways mainly included mTOR, arginine biosynthesis, and vitamin metabolism. Notably, BFP fermentation products at transverse colon significantly restored cell viability of LPS-treated Caco-2 cells from 73.79 ± 0.48 % to 93.79-99.64 %, which might be caused by increased beneficial differential metabolites (e.g., SCFAs). Our findings suggest that BFP has prebiotic potential and can enhance gut health.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yajun Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yifei Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| |
Collapse
|
14
|
Kiss E, Hajdu A, Forika G, Dank M, Krenacs T, Nemeth Z. The Effect of Dietary Methyl-Donor Intake and Other Lifestyle Factors on Cancer Patients in Hungary. Cancers (Basel) 2022; 14:4432. [PMID: 36139592 PMCID: PMC9496722 DOI: 10.3390/cancers14184432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Nutrition is essential to life and can have an indisputable influence on health and prevention of disease development including cancer. Methyl-donors are macronutrients that are important in achieving a healthy balance of metabolic processes. Their deficiency can lead to several symptoms and diseases-even to severe SARS-CoV-2 infection. We aimed to explore the potential protective effect of methyl-donor intake in breast, colorectal and pancreatic cancer by patient follow up. METHODS A food frequency questionnaire and a diet diary were used to evaluate methyl-donor intake and blood samples were taken to evaluate Il-6 and IL-8 cytokine levels as well as MTHFR (C677T) polymorphism in breast, colorectal and pancreatic cancer patients. RESULTS We found that levels around the recommended daily intake of B6 and B9 were effective in supporting the overall survival of breast and colorectal, and a relatively higher level of pancreatic adenocarcinoma, patients. The total intake of methyl-donors significantly and negatively correlated with smoking in pancreatic cancer, while folate as well as betaine intake significantly and positively correlated with IL-8 in colorectal cancer patients. CONCLUSIONS Our results suggest that the appropriate intake of methyl-donor can be an adjunct of conventional oncotherapy to improve quality of life. Whether methyl-donor intake supports cancer prevention and patient survival needs further confirmation in large patient cohorts.
Collapse
Affiliation(s)
- Eva Kiss
- Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| | - Anett Hajdu
- Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| | - Gertrud Forika
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Ulloi u. 26, 1085 Budapest, Hungary
| | - Magdolna Dank
- Department of Internal Medicine and Oncology, Oncology Profile, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| | - Tibor Krenacs
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Ulloi u. 26, 1085 Budapest, Hungary
| | - Zsuzsanna Nemeth
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| |
Collapse
|
15
|
Ouma PA, Mwaeni VK, Amwayi PW, Isaac AO, Nyariki JN. Calcium carbide-induced derangement of hematopoiesis and organ toxicity ameliorated by cyanocobalamin in a mouse model. Lab Anim Res 2022; 38:26. [PMID: 35962424 PMCID: PMC9373447 DOI: 10.1186/s42826-022-00136-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Calcium carbide (CaC2) is a chemical primarily used in the production of acetylene gas. The misuse of CaC2 to induce fruit ripening is a global challenge with a potential adverse effects to human health. Additionally, CaC2 is known to contain some reasonable amount of arsenic and phosphorous compounds that are toxic and pose a danger to human health when ingested. The current study sought to characterize CaC2 toxicity and elucidate any protective effects by cyanocobalamin (vitamin B12), a well-established antioxidant and anti-inflammatory bio-molecule. Female Swiss white mice were randomly assigned into three groups; the first group was the control, while the second group was administered with CaC2. The third group received CaC2 followed by administration of vitamin B12. The mice were sacrificed at 60 days post treatment, hematological, biochemical, glutathione assay, cytokine ELISA and standard histopathology was performed. Results CaC2 administration did not significantly alter the mice body weight. CaC2 administration resulted in a significant decrease in packed cell volume (PCV), hemoglobin (Hb), red blood cells (RBCs) and RBC indices; indicative of CaC2-driven normochromic microcytic anaemia. Further analysis showed CaC2-driven leukopenia. Evidently, vitamin B12 blocked CaC2-driven suppression of PCV, Hb, RBCs and WBCs. Monocytes and neutrophils were significantly up-regulated by CaC2. CaC2-induced elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and bilirubin signaled significant liver damage. Notably, vitamin B12 stabilized AST, ALT and bilirubin in the presence of CaC2, an indication of a protective effect. Histopathological analysis depicted that vitamin B12 ameliorated CaC2-driven liver and kidney injury. CaC2 resulted in the depletion of glutathione (GSH) levels in the liver; while in the brain, kidney and lungs, the GSH levels were elevated. CaC2 administration resulted in elevation of pro-inflammatory cytokines TNF-α and IFN-γ. Vitamin B12 assuaged the CaC2-induced elevation of these pro-inflammatory cytokines. Conclusions These findings demonstrate for the first time that oral supplementation with vitamin B12 can protect mice against CaC2-mediated toxicity, inflammation and oxidative stress. The findings provide vital tools for forensic and diagnostic indicators for harmful CaC2 exposure; while providing useful insights into how vitamin B12 can be explored further as an adjunct therapy for CaC2 toxicity.
Collapse
Affiliation(s)
- Pherah A Ouma
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Victoria K Mwaeni
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Peris W Amwayi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, School of Health Sciences and Technology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200, Nairobi, Kenya.
| |
Collapse
|
16
|
Gong Q, Momma H, Cui Y, Huang C, Niu K, Nagatomi R. Associations Between Consumption of Different Vegetable Types and Depressive Symptoms in Japanese Workers: A Cross-Sectional Study. Healthc Policy 2022; 15:1073-1085. [PMID: 35611327 PMCID: PMC9124467 DOI: 10.2147/rmhp.s350935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/01/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Vegetable intake is an important part of our everyday diet and is associated with many positive health outcomes. Although previous studies have investigated the association between vegetable consumption and depressive symptoms among various populations, no study has examined this association in the adult working population. The present study investigated whether the frequency of consumption of a specific type of vegetable is associated with the prevalence of depressive symptoms in Japanese adult workers. Participants and Methods The final participants consisted of 1724 Japanese adults, and a cross-sectional study was conducted to analyze the results. The frequency of vegetable consumption and depressive symptoms was evaluated using a brief-type self-administered diet history questionnaire and the Zung Self-Rating Depression Scale (SDS), respectively. The association between the variables was examined using Poisson regression analysis. Age-stratified analysis was performed, and SDS cut-off values of 45 and 50 were used to perform a sensitivity analysis. Results After adjustment for covariates, including age, body mass index, sociodemographic and lifestyle-related variables, health condition, C-reactive protein, and other dietary variables, an inverse association was found between tomato product consumption and the prevalence of depressive symptoms among men (P for trend <0.01); however, no significant association was found for other vegetable types. For women, there was no association between the frequency of consumption of any of the vegetable types and the prevalence of depressive symptoms. The results were confirmed by the age-stratified analysis for both genders. Conclusion Consumption of tomato products may help alleviate depressive symptoms, regardless of differences in dietary culture among men.
Collapse
Affiliation(s)
- Qiang Gong
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruki Momma
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yufei Cui
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
- Institute of Exercise Epidemiology and Department of Physical Education, Huaiyin Institute of Technology, Huaian, People’s Republic of China
| | - Cong Huang
- Department of Physical Education, Zhejiang University, Hangzhou, People’s Republic of China
| | - Kaijun Niu
- Department of Epidemiology, School of Public Health, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Correspondence: Ryoichi Nagatomi, Division of Biomedical Engineering for Health & Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan, Tel/Fax + 81-22-717-8586, Email
| |
Collapse
|
17
|
Boonma T, Navasumrit P, Parnlob V, Waraprasit S, Ruchirawat M. SAM and folic acid prevent arsenic-induced oxidative and nitrative DNA damage in human lymphoblast cells by modulating expression of inflammatory and DNA repair genes. Chem Biol Interact 2022; 361:109965. [PMID: 35490796 DOI: 10.1016/j.cbi.2022.109965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Growing evidence suggests that arsenic exposure increases the risk of developing a variety of inflammation-associated chronic diseases and cancers. Our previous study revealed that increased transcript levels of inflammatory genes (i.e. COX2, EGR1, and SOCS3) coupled with hypomethylation of the promoter regions of these genes was associated with increased DNA damage in arsenic-exposed newborns through their early childhood. This study further investigated the ability of the methyl group donors, S-adenosyl methionine (SAM) and folic acid, to prevent promoter hypomethylation that results in decreased mRNA expression of inflammatory genes (COX2, EGR1, and SOCS3), and a reduction in arsenic-induced oxidative and nitrative DNA damage in human lymphoblast cells. Pretreatment with SAM (100 nM, 2 days) increased promoter methylation, reduced the mRNA levels of these inflammatory genes, and decreased both 8-hydroxydeoxyguanosine (8-OHdG) and 8-nitroguanine levels by 50% (p < 0.01) in arsenic-treated cells. In addition, pretreatment with folic acid (10 μM, 7 days), a micronutrient, led to a significant increase in promoter methylation associated with the reduction in mRNA levels of these inflammatory genes and decreased levels of 8-OHdG and 8-nitroguanine by 80% and 90% (p < 0.01), respectively, compared with arsenic treatment alone. Moreover, pretreatments with these methyl group donors increased mRNA expression of an antioxidant defense regulator (Nrf2) and DNA repair genes (hOGG1, XRCC1, and PARP1). This study shows for the first time that SAM or folic acid supplementation can prevent arsenic-induced oxidative and nitrative DNA damage. This suggests the potential use of SAM or folic acid for prevention of arsenic toxicity in human populations.
Collapse
Affiliation(s)
- Tiwapan Boonma
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Varabhorn Parnlob
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Somchamai Waraprasit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand.
| |
Collapse
|
18
|
The regulation of HBP1, SIRT1, and SREBP-1c genes and the related microRNAs in non-alcoholic fatty liver rats: The association with the folic acid anti-steatosis. PLoS One 2022; 17:e0265455. [PMID: 35417465 PMCID: PMC9007334 DOI: 10.1371/journal.pone.0265455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2022] [Indexed: 01/20/2023] Open
Abstract
Folic acid is one of the vital micronutrients that contribute to the genetic stability and other biological activities. In addition, microRNAs regulate gene expression through a multittude of pathways. Our current work aimd to explore the possible ameliorative potency of folic acid and its association with the hepatic miR-21, -34a, and -122 expression as well as their targeted genes, HBP1, SIRT1, and SREBP-1c in rats with non-alcoholic fatty liver disease (NAFL). A total of 50 Wistar rats were randomly divided into two groups, a control group (n = 10) and NAFL group (n = 40). Rats in NAFL group were fed a high-fat diet (HFD) containing 20% fats for 14 weeks. The NAFL group was further subdivided into four groups (n = 10/group), one untreated and three orally folic acid-treated groups (25, 50, and 75 μg/Kg b.wt). NAFL characteristics was evaluated in rats in addition to the miR-21, -34a, and -122 profile as well as the transcriptional levels of HBP1, SIRT1, and SREBP-1c genes. NAFL rats exhibited the classic traits of fatty liver disease profile and dysregulation in the pattern of miR-21, -34a, and -122 expression as well as their targeted genes (HBP1, SIRT1, and SREBP-1c, respectively) in the liver. Additionally, NAFL rats had altered levels of TNF-α and adiponectin. These alterations were significantly ameliorated in a dose-dependent pattern following the folic acid treatments. In conclusions, the anti-steatotic, insulin-sensitizing, glucose-lowering and lipotropic potencies of folic acid in NAFL rats may be linked to the epigenetic modulation of the hepatic microRNAs (miR-21, -34a, and -122) and the expression of their target genes (HBP1, SIRT1, and SREBP-1c).
Collapse
|
19
|
Xiang Y, Liang B, Zhang X, Qiu X, Deng Q, Yu L, Yu H, Lu Z, Zheng F. Atheroprotective mechanism by which folic acid regulates monocyte subsets and function through DNA methylation. Clin Epigenetics 2022; 14:32. [PMID: 35227297 PMCID: PMC8887029 DOI: 10.1186/s13148-022-01248-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies have suggested that folic acid can restore abnormal DNA methylation and monocyte subset shifts caused by hyperhomocysteinemia (HHcy) and hyperlipidemia (HL). However, the exact mechanism of action is still not fully understood. In this study, we further investigated the reversal effect and underlying mechanism of folic acid on the shift in monocyte subsets induced by aberrant lipids and Hcy metabolism via DNA methylation in vitro and in vivo. Results Our results showed that intermediate monocytes were significantly increased but had the lowest global 5-methylcytosine (5-mC) levels in coronary artery disease (CAD) patients, which might lead to a decrease in the global 5-mC levels of peripheral blood leukocytes (PBLs). We also discovered that ARID5B might mediate the increased proportion of intermediate monocytes, as this factor was related to the proportion of monocyte subsets and the expression of CCR2. The expression of ARID5B was inversely associated with the hypermethylated cg25953130 CpG site, which was induced by HL and HHcy. ARID5B could also regulate monocyte CCR2, MCP-1, and TNF-α expression, adhesion and migration, macrophage polarization, and monocyte/macrophage apoptosis, which might explain the regulatory effect of ARID5B on monocyte subset shifting. Folic acid reversed HL- and HHcy-mediated aberrant global and cg25953130 DNA methylation, reduced the proportion of intermediate monocytes, and inhibited the formation of atherosclerotic plaques. Conclusion Folic acid plays a protective role against atherosclerosis through the regulation of DNA methylation, ARID5B expression, and monocyte subsets. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01248-0.
Collapse
Affiliation(s)
- Yang Xiang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Bin Liang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xueping Qiu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Yu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| |
Collapse
|
20
|
Zhao T, Wu D, Du J, Liu G, Ji G, Wang Z, Peng F, Man L, Zhou W, Hao A. Folic Acid Attenuates Glial Activation in Neonatal Mice and Improves Adult Mood Disorders Through Epigenetic Regulation. Front Pharmacol 2022; 13:818423. [PMID: 35197855 PMCID: PMC8859176 DOI: 10.3389/fphar.2022.818423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 01/08/2023] Open
Abstract
Growing evidence indicates that postnatal immune activation (PIA) can adversely increase the lifetime risk for several neuropsychiatric disorders, including anxiety and depression, which involve the activation of glial cells and early neural developmental events. Several glia-targeted agents are required to protect neonates. Folic acid (FA), a clinical medication used during pregnancy, has been reported to have neuroprotective properties. However, the effects and mechanisms of FA in PIA-induced neonatal encephalitis and mood disorders remain unclear. Here, we investigated the roles of FA in a mouse model of PIA, and found that FA treatment improved depressive- and anxiety-like behaviors in adults, accompanied by a decrease in the number of activated microglia and astrocytes, as well as a reduction in the inflammatory response in the cortex and hippocampus of neonatal mice. Furthermore, we offer new evidence describing the functional differences in FA between microglia and astrocytes. Our data show that epigenetic regulation plays an essential role in FA-treated glial cells following PIA stimulation. In astrocytes, FA promoted the expression of IL-10 by decreasing the level of EZH2-mediated H3K27me3 at its promoter, whereas FA promoted the expression of IL-13 by reducing the promoter binding of H3K9me3 mediated by KDM4A in microglia. Importantly, FA specifically regulated the expression level of BDNF in astrocytes through H3K27me3. Overall, our data supported that FA may be an effective treatment for reducing mood disorders induced by PIA, and we also demonstrated significant functional differences in FA between the two cell types following PIA stimulation.
Collapse
Affiliation(s)
- Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guowei Liu
- Department of Neurosurgery, Cheeloo College of Medicine, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Guangyu Ji
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lajie Man
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Wenjuan Zhou, ; Aijun Hao,
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Wenjuan Zhou, ; Aijun Hao,
| |
Collapse
|
21
|
Folic acid and vitamin B12 as biomarkers of morbidity and mortality in patients with septic shock. NUTR HOSP 2022; 39:247-255. [DOI: 10.20960/nh.03505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Vaccaro JA, Naser SA. The Role of Methyl Donors of the Methionine Cycle in Gastrointestinal Infection and Inflammation. Healthcare (Basel) 2021; 10:healthcare10010061. [PMID: 35052225 PMCID: PMC8775811 DOI: 10.3390/healthcare10010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
Vitamin deficiency is well known to contribute to disease development in both humans and other animals. Nonetheless, truly understanding the role of vitamins in human biology requires more than identifying their deficiencies. Discerning the mechanisms by which vitamins participate in health is necessary to assess risk factors, diagnostics, and treatment options for deficiency in a clinical setting. For researchers, the absence of a vitamin may be used as a tool to understand the importance of the metabolic pathways in which it participates. This review aims to explore the current understanding of the complex relationship between the methyl donating vitamins folate and cobalamin (B12), the universal methyl donor S-adenosyl-L-methionine (SAM), and inflammatory processes in human disease. First, it outlines the process of single-carbon metabolism in the generation of first methionine and subsequently SAM. Following this, established relationships between folate, B12, and SAM in varying bodily tissues are discussed, with special attention given to their effects on gut inflammation.
Collapse
|
23
|
Tang L, Chen P, Yang L, Liu J, Zheng Y, Lin J, Chen S, Luo Y, Chen Y, Ma X, Zhang L. Transgenerational inheritance of promoter methylation changes in extrauterine growth restriction-induced pulmonary arterial pressure disorders. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1551. [PMID: 34790757 PMCID: PMC8576681 DOI: 10.21037/atm-21-4715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/02/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate the influence of extrauterine growth restriction (EUGR) on pulmonary arterial pressure (PAP) and the transgenerational inheritance of promoter methylation changes in pulmonary vascular endothelial cells (PVECs) of 2 consecutive generations under EUGR stress. Methods After modeling, PAP values of F1 and F2 pups were investigated at 9-week-old. The methyl-DNA immune precipitation chip was used to analyze DNA methylation profiling. Differential enrichment peaks (DEPs) and regions of interest (ROIs) were identified, based on which Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and reactome pathway enrichments were analyzed. Results The F1 male rats in the EUGR group had significantly increased PAP levels compared to the control group; however, this increase was not observed in female rats. Interestingly, in F2 female rats, the EUGR group had decreased PAP. In the X chromosome of the F1 males, there were 16 differential ROI genes in the F1 generation, while in F2 females, there were 86 differential ROI genes. Similarly, there were 105 DEPs in the F1 generation and 38 DEPs in the F2 generation. In combination with the 5 common ROIs and 14 common DEPs, 18 genes were regarded as the key candidate genes associated with hereditable PAP variation in the EUGR model. Enrichment analysis showed that synaptic and neurotransmitter relative pathways might be involved in the process of EUGR-induced PAH development. Among common DEPs, Smad1 and Serpine1 were also found in 102 PAH-associated genes in the MalaCards database. Conclusions Together, there is a transgenerational inheritance of promoter methylation changes in the X chromosome in EUGR-induced PAP disorders, which involves the participation of synaptic and neurotransmitter relative pathways. Also, attenuated methylation of Smad1 and Serpine1 in the promoter region may be a partial driver of PAH in later life.
Collapse
Affiliation(s)
- Lili Tang
- Department of Neonatology, Children's Medical Center Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liu Yang
- Unimed Scientific Inc., Wuxi, China
| | - Jiyuan Liu
- Fujian Medical University, Fuzhou, China
| | - Yuanfang Zheng
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Jincai Lin
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Senhua Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yinzhu Luo
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Yanyan Chen
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoying Ma
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| | - Liyan Zhang
- Department of Neonatology, The Affiliated Fuzhou Children Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Ratajczak AE, Szymczak-Tomczak A, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Does Folic Acid Protect Patients with Inflammatory Bowel Disease from Complications? Nutrients 2021; 13:nu13114036. [PMID: 34836291 PMCID: PMC8618862 DOI: 10.3390/nu13114036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/12/2023] Open
Abstract
Folic acid, referred to as vitamin B9, is a water-soluble substance, which participates in the synthesis of nucleic acids, amino acids, and proteins. Similarly to B12 and B6, vitamin B9 is involved in the metabolism of homocysteine, which is associated with the MTHFR gene. The human body is not able to synthesize folic acid; thus, it must be supplemented with diet. The most common consequence of folic acid deficiency is anemia; however, some studies have also demonstrated the correlation between low bone mineral density, hyperhomocysteinemia, and folic acid deficiency. Patients with inflammatory bowel disease (IBD) frequently suffer from malabsorption and avoid certain products, such as fresh fruits and vegetables, which constitute the main sources of vitamin B9. Additionally, the use of sulfasalazine by patients may result in folic acid deficiency. Therefore, IBD patients present a higher risk of folic acid deficiency and require particular supervision with regard to anemia and osteoporosis prevention, which are common consequences of IBD.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| | | | | | | | | | - Iwona Krela-Kaźmierczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| |
Collapse
|
25
|
Uribe-Diaz S, Nazeer N, Jaime J, Vargas-Bermúdez DS, Yitbarek A, Ahmed M, Rodríguez-Lecompte JC. Folic acid enhances proinflammatory and antiviral molecular pathways in chicken B-lymphocytes infected with a mild infectious bursal disease virus. Br Poult Sci 2021; 63:1-13. [PMID: 34287101 DOI: 10.1080/00071668.2021.1958298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
1. This study evaluated the effect of folic acid (FA) supplementation on the proinflammatory and antiviral molecular pathways of B-lymphocytes infected with a modified live IBDV (ST-12) mild vaccine strain during a timed post-infection analysis.2. A chicken B-lymphocytes (DT-40) cell line was cultured in triplicate at a concentration of 5 × 105 cells per well in 24-well plates; and was divided into three groups: 1: No virus, FA; 2: Virus, no FA; 3: Virus + FA at a concentration of 3.96 mM. The experiment was repeated three times.3. Cells in groups 2 and 3 were infected with a modified live IBDV (ST-12) mild vaccine strain at one multiplicity of infection (MOI: 1). After 1 hour of virus adsorption, samples were collected at 0, 3, 6, 12, 24 and 36 hours post-infection (hpi).4. The modified live IBDV (ST-12) mild vaccine strain triggered a B-lymphocyte specific immune response associated with the upregulation of genes involved in virus recognition (Igß), virus sensing (TLR-2, TLR-3, TLR-4 and MDA5), signal transduction and regulation (TRIF, MyD88 and IRF7), and the antiviral effector molecules (IFN-α, OAS, PKR, and viperin).5. FA supplementation modulated IBDV replication and regulated the proinflammatory and antiviral downstream molecular pathways.6. In conclusion, the low virulent pathotype serotype I modified live IBDV (ST-12) mild vaccine strain was able to trigger and mount an immune response in chicken B-lymphocytes without affecting B-cell viability. FA supplementation modulated B lymphocytes response and improved their innate immune proinflammatory and antiviral response molecular pathways.
Collapse
Affiliation(s)
- S Uribe-Diaz
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada.,Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - N Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - J Jaime
- Bogotá. Faculty of Veterinary Medicine and Zootechnic. Animal Health Department; Infectiology and Immunology Research Centre (CI3V), National University of Colombia, Bogotá, Colombia
| | - D S Vargas-Bermúdez
- Bogotá. Faculty of Veterinary Medicine and Zootechnic. Animal Health Department; Infectiology and Immunology Research Centre (CI3V), National University of Colombia, Bogotá, Colombia
| | - A Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - M Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - J C Rodríguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
26
|
Asbaghi O, Ashtary-Larky D, Bagheri R, Moosavian SP, Olyaei HP, Nazarian B, Rezaei Kelishadi M, Wong A, Candow DG, Dutheil F, Suzuki K, Alavi Naeini A. Folic Acid Supplementation Improves Glycemic Control for Diabetes Prevention and Management: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 13:nu13072355. [PMID: 34371867 PMCID: PMC8308657 DOI: 10.3390/nu13072355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Background: There is a growing interest in the considerable benefits of dietary supplementations, such as folic acid, on the glycemic profile. We aimed to investigate the effects of folic acid supplementation on glycemic control markers in adults. Methods: Randomized controlled trials examining the effects of folic acid supplementation on glycemic control markers published up to March 2021 were detected by searching online databases, including Scopus, PubMed, Embase, and ISI web of science, using a combination of related keywords. Mean change and standard deviation (SD) of the outcome measures were used to estimate the mean difference between the intervention and control groups at follow-up. Meta-regression and non-linear dose-response analysis were conducted to evaluate the association between pooled effect size and folic acid dosage (mg/day) and duration of the intervention (week). From 1814 detected studies, twenty-four studies reported fasting blood glucose (FBG), fasting insulin, hemoglobin A1C (HbA1C), and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) as an outcome measure. Results: Results revealed significant reductions in FBG (weighted mean difference (WMD): −2.17 mg/dL, 95% CI: −3.69, −0.65, p = 0.005), fasting insulin (WMD: −1.63 pmol/L, 95% CI: −2.53, −0.73, p < 0.001), and HOMA-IR (WMD: −0.40, 95% CI: −0.70, −0.09, p = 0.011) following folic acid supplementation. No significant effect was detected for HbA1C (WMD: −0.27%, 95% CI: −0.73, 0.18, p = 0.246). The dose-response analysis showed that folic acid supplementation significantly changed HOMA-IR (r = −1.30, p-nonlinearity = 0.045) in non-linear fashion. However, meta-regression analysis did not indicate a linear relationship between dose, duration, and absolute changes in FBG, HOMA-IR, and fasting insulin concentrations. Conclusions: Folic acid supplementation significantly reduces some markers of glycemic control in adults. These reductions were small, which may limit clinical applications for adults with type II diabetes. Further research is necessary to confirm our findings.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Seyedeh Parisa Moosavian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Hadi Pourmirzaei Olyaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran 1584743311, Iran;
| | - Behzad Nazarian
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran;
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA;
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S OA2, Canada;
| | - Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Université Clermont Auvergne, WittyFit, F-63000 Clermont-Ferrand, France;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (A.A.N.)
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran;
- Correspondence: (K.S.); (A.A.N.)
| |
Collapse
|
27
|
Exposures associated with the onset of Kawasaki disease in infancy from the Japan Environment and Children's Study. Sci Rep 2021; 11:13309. [PMID: 34172781 PMCID: PMC8233341 DOI: 10.1038/s41598-021-92669-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 12/01/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis that mainly affects infants and young children. The etiology of KD has been discussed for several decades; however, no reproducible risk factors have yet been proven. We used the Japan Environment and Children’s Study data to explore the association between the causal effects of exposure during the fetal and neonatal periods and KD onset. The Japan Environment and Children’s Study, a nationwide birth cohort study, has followed approximately 100,000 children since 2011. We obtained data on exposures and outcomes from the first trimester to 12 months after birth. Finally, we included 90,486 children who were followed for 12 months. Among them, 343 children developed KD. Multivariate logistic regression revealed that insufficient intake of folic acid during pregnancy (odds ratio [OR], 1.37; 95% CI 1.08–1.74), maternal thyroid disease during pregnancy (OR, 2.03; 95% CI 1.04–3.94), and presence of siblings (OR, 1.33; 95% CI 1.06–1.67) were associated with KD onset in infancy. In this study, we identified three exposures as risk factors for KD. Further well-designed studies are needed to confirm a causal relationship between these exposures and KD onset.
Collapse
|
28
|
Lopes MG, Alharthi AS, Lopreiato V, Abdel-Hamied E, Liang Y, Coleman DN, Dai H, Corrêa MN, Socha MT, Ballou MA, Trevisi E, Loor JJ. Maternal supplementation with cobalt sources, folic acid, and rumen-protected methionine and its effects on molecular and functional correlates of the immune system in neonatal Holstein calves. J Dairy Sci 2021; 104:9340-9354. [PMID: 33985772 DOI: 10.3168/jds.2020-19674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022]
Abstract
Calves born to multiparous Holstein cows fed during the last 30 d of pregnancy 2 different cobalt sources [cobalt glucoheptonate (CoPro) or cobalt pectin (CoPectin)], folic acid (FOA), and rumen-protected methionine (RPM) were used to study neonatal immune responses after ex vivo lipopolysaccharide (LPS) challenge. Groups were (n = 12 calves/group) CoPro, FOA+CoPro, FOA+CoPectin, and FOA+CoPectin+RPM. Calves were weighed at birth and blood collected at birth (before colostrum), 21 d of age, and 42 d of age (at weaning). Growth performance was recorded once a week during the first 6 wk of age. Energy metabolism, inflammation, and antioxidant status were assessed at birth through various plasma biomarkers. Whole blood was challenged with 3 µg/mL of LPS or used for phagocytosis and oxidative burst assays. Target genes evaluated by real-time quantitative PCR in whole blood samples were associated with immune response, antioxidant function, and 1-carbon metabolism. The response in mRNA abundance in LPS challenged versus nonchallenged samples was assessed via Δ = LPS challenged - LPS nonchallenged samples. Phagocytosis capacity and oxidative burst activity were measured in neutrophils and monocytes, with data reported as ratio (percentage) of CD14 to CH138A-positive cells. Data including all time points were subjected to ANOVA using PROC MIXED in SAS 9.4 (SAS Institute Inc.), with Treatment, Sex, Age, and Treatment × Age as fixed effects. A 1-way ANOVA was used to determine differences at birth, with Treatment and Sex as fixed effects. Calf birth body weight and other growth parameters did not differ between groups. At birth, plasma haptoglobin concentration was lower in FOA+CoPro compared with CoPro calves. We detected no effect for other plasma biomarkers or immune function due to maternal treatments at birth. Compared with CoPro, in response to LPS challenge, whole blood from FOA+CoPectin and FOA+CoPectin+RPM calves had greater mRNA abundance of intercellular adhesion molecule 1 (ICAM1). No effect for other genes was detectable. Regardless of maternal treatments, sex-specific responses were observed due to greater plasma concentrations of haptoglobin, paraoxonase, total reactive oxygen metabolites, nitrite, and β-carotene in female versus male calves at birth. In contrast, whole blood from male calves had greater mRNA abundance of IRAK1, CADM1, and ITGAM in response to LPS challenge at birth. The longitudinal analysis of d 0, 21, and 42 data revealed greater bactericidal permeability-increasing protein (BPI) mRNA abundance in whole blood from FOA+CoPectin versus FOA+CoPro calves, coupled with greater abundance in FOA+CoPro compared with CoPro calves. Regardless of maternal treatments, most genes related to cytokines and cytokine receptors (IL1B, IL10, TNF, IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (ICAM1, ITGAM), antimicrobial function (MPO), and antioxidant function (GPX1) were downregulated over time. Phagocytosis capacity and oxidative burst activity in both neutrophils and monocytes did not differ due to maternal treatment. Regardless of maternal treatments, we observed an increase in the percentage of neutrophils capable of phagocytosis and oxidative burst activity over time. Overall, these preliminary assessments suggested that maternal supplementation with FOA and Co combined with RPM had effects on a few plasma biomarkers of inflammation at birth and molecular responses associated with inflammatory mechanisms during the neonatal period.
Collapse
Affiliation(s)
- M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - H Dai
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - M N Corrêa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | - M A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock 79409
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
29
|
Wang X, Wang T, Sun L, Zhang H, Liu C, Zhang C, Yu L. B-vitamin supplementation ameliorates anxiety- and depression-like behavior induced by gestational urban PM 2.5 exposure through suppressing neuroinflammation in mice offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115146. [PMID: 32663728 DOI: 10.1016/j.envpol.2020.115146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/03/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 exposure is an emerging environmental concern and severe health insult closely related to psychological conditions such as anxiety and depression in adolescence. Adolescence is a critical period for neural system development characterized by continuous brain maturation, especially in the prefrontal cortex. The etiology of these adolescent conditions may derive from fetal origin, probably attributed to the adverse effects induced by intrauterine environmental exposure. Anxiety- and depression-like behavior can be induced by gestational exposure to PM2.5 in mice offspring which act as a useful model system. Recent studies show that B-vitamin may alleviate PM2.5-induced hippocampal neuroinflammation- and function-related spatial memory impairment in adolescent mice offspring. However, cortical damage and related neurobehavioral defects induced by gestational PM2.5 exposure, as well as the potential reversibility by interventions in mice offspring require to be elucidated. Here, we aimed to investigate whether B-vitamin would protect mice offspring from the adverse effects derived from gestational exposure to urban PM2.5 on cortical areas to which anxiety and depression are closely related. Pregnant mice were divided into three groups: control group (treated with PBS alone), model group (treated with both PM2.5 and PBS), and intervention group (treated with both PM2.5 and B-vitamin), respectively. The mice offspring were then applied to comprehensive neurobehavioral, ultrastructural, biochemical, and molecular biological analyses. Interestingly, we observed that gestational PM2.5 exposure led to neurobehavioral defects including anxiety- and depression-like behavior. In addition, neuroinflammation, oxidative damage, increased apoptosis, and caspase-1-mediated inflammasome activation in the prefrontal cortex were observed. Notably, both behavioral and molecular changes could be significantly alleviated by B-vitamin treatment. In summary, our results suggest that the anxiety- and depression-like behavior induced by gestational PM2.5 exposure in mice offspring can be ameliorated by B-vitamin supplementation, probably through the suppression of apoptosis, oxidative damage, neuroinflammation, and caspase-1-mediated inflammasome activation.
Collapse
Affiliation(s)
- Xia Wang
- School of Public Health, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Lijuan Sun
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Haoyun Zhang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Chong Liu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Li Yu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China.
| |
Collapse
|
30
|
Zhao J, Zou W, Hu T. Novel genes associated with folic acid-mediated metabolism in mouse: A bioinformatics study. PLoS One 2020; 15:e0238940. [PMID: 32915913 PMCID: PMC7485790 DOI: 10.1371/journal.pone.0238940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Folic acid plays an essential role in the central nervous system and cancer. This study aimed to screen genes related to folic acid metabolism. Datasets (GSE80587, GSE65267 and GSE116299) correlated to folic acid were screened in the Gene Expression Omnibus. Weighed gene co-expression network analysis was performed to identify modules associated with sample traits of folic acid and organs (brain, prostate and kidney). Functional enrichment analysis was performed for the eigengenes in modules that were significantly correlated with sample traits. Accordingly, the hub genes and key nodes in the modules were identified using the protein interaction network. A total of 17,252 genes in three datasets were identified. One module, which included 97 genes that were highly correlated with sample traits (including folic acid treatment [cor = -0.57, P = 3e-04] and kidney [cor = -0.68, p = 4e-06]), was screened out. Hub genes, including tetratricopeptide repeat protein 38 (Ttc38) and miR-185, as well as those (including Sema3A, Insl3, Dll1, Msh4 and Snai1) associated with "neuropilin binding", "regulation of reproductive process" and "vitamin D metabolic process", were identified. Genes, including Ttc38, Sema3A, Insl3, Dll1, Msh4 and Snai1, were the novel factors that may be associated with the development of the kidneys and related to folic acid treatment.
Collapse
Affiliation(s)
- Jianwen Zhao
- Shenyang Medical College, Shenyang, Liaoning, China
| | - Wen Zou
- Liaoning Vocational College of Ecological Engineering, Shenyang, Liaoning, China
| | - Tingxi Hu
- Shenyang Medical College, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
31
|
Steluti J, Miranda AM, De Carli E, Palchetti CZ, Fisberg RM, Marchioni DML. Unmetabolized folic acid is associated with TNF-α, IL-1β and IL-12 concentrations in a population exposed to mandatory food fortification with folic acid: a cross-sectional population-based study in Sao Paulo, Brazil. Eur J Nutr 2020; 60:1071-1079. [PMID: 32588217 DOI: 10.1007/s00394-020-02307-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE The study assessed associations between inflammatory markers, as cytokines, adhesion molecules and unmetabolized folic acid (UMFA) among a population exposed to mandatory fortification. METHODS Data were collected from a cross-sectional population-based survey (n = 302) conducted in São Paulo City, Brazil. UMFA was assayed by a modified affinity-HPLC method with electrochemical detection to measure the different forms of the folate in plasma. We used a commercial test kit to analyze cytokines and adhesion molecules. Multiple logistic regressions were applied to investigate the association between inflammatory markers and UMFA. Multiple models were adjusted for sex, age, self-reported skin color, BMI and smoking status. RESULTS The prevalence of detectable UMFA in this population was high (81.2%), with median concentration of 1.67 nmol/L. The odds ratios (95% CIs) for having higher immunological markers levels among individuals in the highest tertile of UMFA were 0.44 (0.24; 0.81) for TNF-α, 0.92 (0.49; 1.75) for CRP, 1.32 (0.70; 2.48) for ICAM, 0.99 (0.54; 1.81) for VCAM, 0.45 (0.25; 0.83) for IL-1β, 0.74 (0.40; 1.38) for IL-6, 1.34 (0.73; 2.44) for IL-8, 0.65 (0.36; 1.18) for IL-10 and 0.49 (0.27; 0.89) for IL-12. CONCLUSION UMFA concentrations were inversely associated with elevated proinflammatory markers (TNF-α, IL-1β and IL-12). These results signalize a link between folate metabolism and the inflammatory status of adults in an apparently folate-replete population.
Collapse
Affiliation(s)
- Josiane Steluti
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil. .,Public Policies and Collective Health Department, Health and Society Institute, Federal University of Sao Paulo, Santos, 11015-020, Brazil.
| | - Andreia Machado Miranda
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil
| | - Eduardo De Carli
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil
| | - Cecília Zanin Palchetti
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, 01246-904, Brazil
| | | |
Collapse
|
32
|
Li M, Wang T, Tian H, Wei G, Zhao L, Shi Y. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3793-3803. [PMID: 31556314 DOI: 10.1080/21691401.2019.1669617] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic, subclinical inflammation was often observed in the diabetic wound area, causing inadequate and delayed wound-healing effects by failing to initiate cell migration, proliferation, and extracellular matrix deposition. Therefore, we presented macrophage-derived exosomes (Exos) and explored their potential for inhibiting inflammation and accelerating diabetic wound healing in a skin defect, diabetic rat model. A thorough investigation demonstrated that Exos exerted anti-inflammatory effects by inhibiting the secretion of pro-inflammatory enzymes and cytokines. Furthermore, they accelerated the wound-healing process by inducing endothelial cell proliferation and migration to improve angiogenesis and re-epithelialization in diabetic wounds.
Collapse
Affiliation(s)
- Mengdie Li
- School of Pharmacy, Jinzhou Medical University , Jinzhou , P R China
| | - Tao Wang
- School of Pharmacy, Jinzhou Medical University , Jinzhou , P R China
| | - He Tian
- Department of Histology and Embryology, Jinzhou Medical University , Jinzhou , P R China
| | - Guohua Wei
- Department of Pathology, The First Affiliated Hospital of Jinzhou Medical University , Jinzhou , P R China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University , Jinzhou , P R China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University , Jinzhou , P R China
| |
Collapse
|
33
|
de Carvalho Jennings Pereira WL, Flauzino T, Alfieri DF, Oliveira SR, Kallaur AP, Simão ANC, Lozovoy MAB, Kaimen-Maciel DR, Maes M, Reiche EMV. Immune-inflammatory, metabolic and hormonal biomarkers are associated with the clinical forms and disability progression in patients with multiple sclerosis: A follow-up study. J Neurol Sci 2019; 410:116630. [PMID: 31887671 DOI: 10.1016/j.jns.2019.116630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022]
Abstract
The objective of this study was to evaluate the role of immune-inflammatory, metabolic, hormonal, and oxidative stress biomarkers in disability progression (DP) and clinical forms of multiple sclerosis (MS). The study evaluated 140 MS patients at admission (T0), and eight (T8) and 16 months (T16) later. The Expanded Disability Status Score (EDSS) and biomarkers were determined at T0, T8, and T16. A DP index (DPI) defined as an increase of ≥1 rank on the EDSS score indicated that 39.3% of the patients had significant DP. Quantification of the ordinal EDSS rank score was performed using optimal scaling methods. Categorical regression showed that the quantitative T16 EDSS score was predicted by T0 homocysteine (Hcy), T0 parathormone (PTH), T0 advanced oxidized protein products (AOPP) (all positively), low T0 vitamin D (<18.3 ng/mL) and T8 folic acid (<5 ng/mL) concentrations while higher T8 calcium concentrations (≥8.90 mg/dL) had protective effects. Linear Mixed Models showed that the change in EDSS from T0 to T16 was significantly associated with changes in IL-17 (positively) and IL-4 (inversely) independently from the significant effects of clinical MS forms, treatment modalities, smoking, age and systemic arterial hypertension. Hcy, PTH, IL-6, and IL-4 were positively associated with progressive versus relapsing-remitting MS while 25(OH)D was inversely associated. In conclusion, the ordinal EDSS scale is an adequate instrument to assess DP after category value estestimation. Aberrations in immune-inflammatory, metabolic and hormonal biomarkers are associated with DP and with the progressive form of MS.
Collapse
Affiliation(s)
- Wildéa Lice de Carvalho Jennings Pereira
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil; Outpatient Clinic for Neurology, University Hospital, State University of Londrina, Londrina, Paraná, Brazil
| | - Tamires Flauzino
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil
| | - Daniela Frizon Alfieri
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil
| | - Sayonara Rangel Oliveira
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil
| | - Ana Paula Kallaur
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil
| | - Andrea Name Colado Simão
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil
| | - Marcell Alysson Batisti Lozovoy
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil
| | - Damacio Ramón Kaimen-Maciel
- Outpatient Clinic for Neurology, University Hospital, State University of Londrina, Londrina, Paraná, Brazil; Clinical Neurology, Santa Casa de Misericórdia de Londrina, Londrina, Paraná, Brazil
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, King Chulalongkorn Memorial Hospital, Chulalongkorn, Bangkok, Thailand
| | - Edna Maria Vissoci Reiche
- Laboratory of Applied Immunology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil; Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
34
|
Youssry S, Kamel MA. Effect of folate supplementation on immunological and autophagy markers in experimental nonalcoholic fatty liver disease. Eur Cytokine Netw 2019; 30:135-143. [PMID: 32096475 DOI: 10.1684/ecn.2019.0437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Chronic hepatic inflammation is an important pathogenic mediator of nonalcoholic fatty liver disease (NAFLD) that contributes to disease severity. It is commonly suggested that autophagy dysfunction may be an underlying cause of nonalcoholic fatty liver disease. However, the exact role of autophagy in lipid metabolism remains controversial. There has been a growing interest in the role of folate supplementation for the treatment and/or prevention of NAFLD. We aimed in this study to investigate the effects of different doses of folate supplementation on several immune markers and autophagy trying to explore the complex role of IL-22 and autophagy in NAFLD. METHODS Fifty Wistar rats were randomly separated into experimental (n = 40) and control groups (n = 10), which were fed for eight weeks with a high-fat diet (HFD) containing 40% fats or a standard diet, respectively. The experimental group was further subdivided into four subgroups where the first subgroup was left untreated while the other three were treated with different doses of folate (50, 100, and 150 μg/kg of body weight, respectively). At the end of the experimental period, animals from each group were sacrificed for blood and tissue analyses. RESULTS NAFLD rats showed decreased IL-22 serum levels and increased LC3B expression as compared to controls. Folate treatment was significantly associated with improvement in disease parameters, reduced presence of the pro-inflammatory cytokines TNF-α and CXCL8 and LC3B expression, and increased IL-22 levels in a dose-dependent manner. CONCLUSION These results highlight the capacity of folate to modulate the production of several pro-inflammatory cytokines and autophagy thereby having a favorable impact disease progression.
Collapse
Affiliation(s)
- Sara Youssry
- Lecturer of Immunology and Allergy, Medical Research Institute, Alexandria University, Egypt
| | - Maher A Kamel
- Professor of Biochemistry, Medical Research Institute, Alexandria University, Egypt
| |
Collapse
|
35
|
Liu N, Lin L, Wang JQ, Zhang FK, Wang JP. Tetramethylpyrazine supplementation reduced Salmonella Typhimurium load and inflammatory response in broilers. Poult Sci 2019; 98:3158-3164. [PMID: 30895324 DOI: 10.3382/ps/pez128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
The present study tested whether tetramethylpyrazine (TMP) supplementation could influence the growth performance, Salmonella Typhimurium (S. Typhimurium) load, inflammasomes, cytokines, and chemokines in broilers. Treatments were a 2 × 2 factorial design, including negative control (NC), S. Typhimurium challenge (SC), and NC/SC + TMP (150 mg/kg of diet). The trial lasted for 28 D, and S. Typhimurium subclinical challenge was occurred on day 8. The results showed that S. Typhimurium challenge worsened (P < 0.05) growth performance, S. Typhimurium load in intestinal digesta and visceral tissues, intestinal inflammatory responses, and permeability compared to the NC treatment. TMP supplementation increased (P < 0.05) feed intake, weight gain, and feed efficiency by 4.3 to 12.0%, but decreased (P < 0.05) S. Typhimurium load by 5.4 to 45.8%, inflammasomes (caspase-1/3/9, gasdermin A/E, and nod-like receptor protein 3) by 25.0 to 59.0%, chemokines (C-C motif ligand 2 and C-X-C motif 10) by 40.2 to 47.2%, intestinal permeability by 28.2% compared to the SC treatment. The TMP also reduced inflammatory response by influencing tumor necrosis factor α, interleukin 1β/4/6. Factorial analysis indicated that TMP and SC were interactive (P < 0.05) on most parameters due to the more pronounced TMP effect in S. Typhimurium challenge groups. It is concluded that TMP can promote growth and mitigate S. Typhimurium infection by reducing the S. Typhimurium load and inflammatory response in broilers.
Collapse
Affiliation(s)
- N Liu
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| | - L Lin
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| | - J Q Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - F K Zhang
- Luoyang Xintai Agro-pastoral Technology Co., Ltd, Luoyang 471400, China
| | - J P Wang
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
36
|
The regulation of inflammation-related genes after palmitic acid and DHA treatments is not mediated by DNA methylation. J Physiol Biochem 2019; 75:341-349. [PMID: 31423543 DOI: 10.1007/s13105-019-00685-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Fatty acids (FAs) are known to participate in body inflammatory responses. In particular, saturated FAs such as palmitic acid (PA) induce inflammatory signals in macrophages, whereas polyunsaturated FAs, including docosahexaenoic acid (DHA), have been related to anti-inflammatory effects. Several studies have suggested a role of fatty acids on DNA methylation, epigenetically regulating gene expression in inflammation processes. Therefore, this study investigated the effect of PA and DHA on the inflammation-related genes on human macrophages. In addition, a second aim was to study the epigenetic mechanism underlying the effect of FAs on the inflammatory response. For these purposes, human acute monocytic leukaemia cells (THP-1) were differentiated into macrophages with 12-O-tetradecanoylphorbol-13-acetate (TPA), followed by an incubation with PA or DHA. At the end of the experiment, mRNA expression, protein secretion, and CpG methylation of the following inflammatory genes were analysed: interleukin 1 beta (IL1B), tumour necrosis factor (TNF), plasminogen activator inhibitor-1 (SERPINE1) and interleukin 18 (IL18). The results showed that the treatment with PA increased IL-18 and TNF-α production. Contrariwise, the supplementation with DHA reduced IL-18, TNF-α and PAI-1 secretion by macrophages. However, the incubation with these fatty acids did not apparently modify the DNA methylation status of the investigated genes in the screened CpG sites. This research reveals that PA induces important pro-inflammatory markers in human macrophages, whereas DHA decreases the inflammatory response. Apparently, DNA methylation is not directly involved in the fatty acid-mediated regulation of the expression of these inflammation-related genes.
Collapse
|
37
|
Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients 2019; 11:nu11051076. [PMID: 31096592 PMCID: PMC6566411 DOI: 10.3390/nu11051076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
The gut-microbiome-brain axis is now recognized as an essential part in the regulation of systemic metabolism and homeostasis. Accumulating evidence has demonstrated that dietary patterns can influence the development of metabolic alterations and inflammation through the effects of nutrients on a multitude of variables, including microbiome composition, release of microbial products, gastrointestinal signaling molecules, and neurotransmitters. These signaling molecules are, in turn, implicated in the regulation of the immune system, either promoting or inhibiting the production of pro-inflammatory cytokines and the expansion of specific leukocyte subpopulations, such as Th17 and Treg cells, which are relevant in the development of neuroinflammatory and neurodegenerative conditions. Metabolic diseases, like obesity and type 2 diabetes mellitus, are related to inadequate dietary patterns and promote variations in the aforementioned signaling pathways in patients with these conditions, which have been linked to alterations in neurological functions and mental health. Thus, maintenance of adequate dietary patterns should be an essential component of any strategy aiming to prevent neurological pathologies derived from systemic metabolic alterations. The present review summarizes current knowledge on the role of nutrition in the modulation of the immune system and its impact in the development of neuroinflammation and neurological disease.
Collapse
|
38
|
Fernández-Villa D, Jiménez Gómez-Lavín M, Abradelo C, San Román J, Rojo L. Tissue Engineering Therapies Based on Folic Acid and Other Vitamin B Derivatives. Functional Mechanisms and Current Applications in Regenerative Medicine. Int J Mol Sci 2018; 19:E4068. [PMID: 30558349 PMCID: PMC6321107 DOI: 10.3390/ijms19124068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/30/2022] Open
Abstract
B-vitamins are a group of soluble vitamins which are cofactors of some of the enzymes involved in the metabolic pathways of carbohydrates, fats and proteins. These compounds participate in a number of functions as cardiovascular, brain or nervous systems. Folic acid is described as an accessible and multifunctional niche component that can be used safely, even combined with other compounds, which gives it high versatility. Also, due to its non-toxicity and great stability, folic acid has attracted much attention from researchers in the biomedical and bioengineering area, with an increasing number of works directed at using folic acid and its derivatives in tissue engineering therapies as well as regenerative medicine. Thus, this review provides an updated discussion about the most relevant advances achieved during the last five years, where folic acid and other vitamins B have been used as key bioactive compounds for enhancing the effectiveness of biomaterials' performance and biological functions for the regeneration of tissues and organs.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Mirta Jiménez Gómez-Lavín
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Cristina Abradelo
- Departamento de Química y Bioquímica. Facultad de Farmacia Universidad CEU San Pablo, 28668 Madrid, Spain.
| | - Julio San Román
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain.
| |
Collapse
|