1
|
Yadav R, Nigam A, Mishra R, Gupta S, Chaudhary AA, Khan SUD, almuqri EA, Ahmed ZH, Rustagi S, Singh DP, Kumar S. Novel Therapeutic Approach for Obesity: Seaweeds as an Alternative Medicine with the Latest Conventional Therapy. Med Sci (Basel) 2024; 12:55. [PMID: 39449411 PMCID: PMC11503287 DOI: 10.3390/medsci12040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of overweight and obesity is increasing worldwide. Common comorbidities related to obesity, significantly polygenic disorders, cardiovascular disease, and heart conditions affect social and monetary systems. Over the past decade, research in drug discovery and development has opened new paths for alternative and conventional medicine. With a deeper comprehension of its underlying mechanisms, obesity is now recognized more as a chronic condition rather than merely a result of lifestyle choices. Nonetheless, addressing it solely through lifestyle changes is challenging due to the intricate nature of energy regulation dysfunction. The Federal Drug Administration (FDA) has approved six medications for the management of overweight and obesity. Seaweed are plants and algae that grow in oceans, rivers, and lakes. Studies have shown that seaweed has therapeutic potential in the management of body weight and obesity. Seaweed compounds such as carotenoids, xanthophyll, astaxanthin, fucoidans, and fucoxanthin have been demonstrated as potential bioactive components in the treatment of obesity. The abundance of natural seaweed bioactive compounds has been explored for their therapeutic potential for treating obesity worldwide. Keeping this view, this review covered the latest developments in the discovery of varied anti-obese seaweed and its bioactive components for the management of obesity.
Collapse
Affiliation(s)
- Rajesh Yadav
- Department of Dialysis Technology, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department of Physiology, All India Institute of Medical Science, New Delhi 110029, India
| | - Ankita Nigam
- Department of Physiotherapy, Sharda School of Allied Health Science, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University, Ta. Waghodia, Vadodara 391760, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Eman Abdullah almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Zakir Hassain Ahmed
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11632, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life Science, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Deependra Pratap Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Sanjay Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
2
|
Inpan R, Sakuludomkan C, Na Takuathung M, Koonrungsesomboon N. Network Pharmacology Revealing the Therapeutic Potential of Bioactive Components of Triphala and Their Molecular Mechanisms against Obesity. Int J Mol Sci 2024; 25:10755. [PMID: 39409084 PMCID: PMC11476943 DOI: 10.3390/ijms251910755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Obesity, characterized by the excessive accumulation of fat, is a prevalent metabolic disorder that poses a significant global health concern. Triphala, an herbal combination consisting of Phyllanthus emblica Linn, Terminalia chebula Retz, and Terminalia bellerica (Gaertn) Roxb, has emerged as a potential solution for addressing concerns related to obesity. This study aimed to investigate the network pharmacology and molecular docking of Triphala to identify its bioactive ingredients and their interactions with pathways associated with obesity. The bioactive compounds present in Triphala and genes linked to obesity were identified, followed by an analysis of the protein-protein interaction networks. Enrichment analysis, including Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, was conducted. Prominent genes and compounds were selected for further investigation through molecular docking studies. The study revealed a close correlation between obesity and the AKT1 and PPARG genes. The observed binding energy between beta-sitosterol, 7-dehydrosigmasterol, peraksine, α-amyrin, luteolin, quercetin, kaempferol, ellagic acid, and phyllanthin with AKT1 and PPARG indicated a favorable binding affinity. In conclusion, nine compounds showed promise in regulating these genes for obesity prevention and management. Further research is required to validate their specific effects.
Collapse
Affiliation(s)
- Ratchanon Inpan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chotiwit Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Sanneur K, Leksawasdi N, Sumonsiri N, Techapun C, Taesuwan S, Nunta R, Khemacheewakul J. Inhibitory Effects of Saponin-Rich Extracts from Pouteria cambodiana against Digestive Enzymes α-Glucosidase and Pancreatic Lipase. Foods 2023; 12:3738. [PMID: 37893631 PMCID: PMC10606392 DOI: 10.3390/foods12203738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Pouteria cambodiana is a perennial plant that has a wide distribution in tropical regions. It is commonly referred to as 'Nom-nang' in the northern region of Thailand. The bark of this plant has been used for the purpose of promoting lactation among breastfeeding mothers. Moreover, P. cambodiana bark has a high nutraceutical potential due to the presence of saponins, which are secondary metabolites. The purpose of this study was to determine the optimal conditions for ultrasound-assisted extraction (UAE) of saponins from the bark of P. cambodiana and to assess the in vitro inhibitory activities of saponin-rich extracts. The most effective extraction conditions involved a temperature of 50 °C and a 50% concentration level of ethanol as the solvent, which allowed the extraction of saponin at a concentration of 36.04 mg/g. Saponin-rich extracts and their hydrolysates from P. cambodiana bark were evaluated for their ability to inhibit α-glucosidase and pancreatic lipase. The IC50 values for saponin- and sapogenin-rich extracts inhibiting α-glucosidase were 0.10 and 2.98 mg/mL, respectively. Non-hydrolysed extracts also had a stronger inhibitory effect than acarbose. In the case of pancreatic lipase, only the hydrolysed extracts exhibited inhibitory effects on pancreatic lipase (IC50 of 7.60 mg/mL). Thus, P. cambodiana bark may be an applicable natural resource for preparing ingredients for functional products with inhibitory activity against α-glucosidase and pancreatic lipase. The phenolic contents, saponin contents, and antioxidant activities of the dried extract stored at a low temperature of 25 °C for 2 months showed the best stability, with more than 90% retention.
Collapse
Affiliation(s)
- Kawisara Sanneur
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (K.S.); (S.T.)
| | - Noppol Leksawasdi
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.L.); (C.T.); (R.N.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nutsuda Sumonsiri
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Charin Techapun
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.L.); (C.T.); (R.N.)
| | - Siraphat Taesuwan
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (K.S.); (S.T.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Rojarej Nunta
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.L.); (C.T.); (R.N.)
- Division of Food Science and Technology, Faculty of Science and Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Julaluk Khemacheewakul
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (K.S.); (S.T.)
- Bioprocess Research Cluster, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (N.L.); (C.T.); (R.N.)
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
4
|
Asiimwe OH, Rubaihayo J, Sulaiman SO, Osuwat LO, Kasozi KI. A protein restricted diet induces a stable increased fat storage phenotype in flies. Toxicol Rep 2023; 10:706-713. [PMID: 37396850 PMCID: PMC10313861 DOI: 10.1016/j.toxrep.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Scientific evidence has revealed possible confounders in diet induced obesity models of Drosophila melanogaster. High Sugar Diet (HSD) induction of obesity in flies has been associated with fly hyperosmolarity and glucotoxicity, while High Fat Diet (HFD) induction has been associated with lipotoxicity. The objective of this study was to assess for a healthy obesity phenotype by comparison of fly survival, physio-chemical and biochemical changes associated with HSD, HFD and Protein Restricted Diet (PRD) obesity induction models of male Drosophila melanogaster. Here, we provide information on a PRD as the plausible option in obesity research not involving cancer, diabetes, glucotoxicity and lipotoxicity studies. Methods Obesity was induced by exposing Drosophila melanogaster white mutant w1118 to four experimental diets for four weeks. Group 1 was fed regular food (control), group 2 was fed a 0.5% less yeast than in regular feed (PRD), group 3 was fed a 30% w/v sucrose to regular cornmeal food (HSD) and group 4 was fed a 10% w/v food-grade coconut oil to regular cornmeal food (HFD). Peristaltic waves were measured on 3rd instar larvae of all experimental groups. Negative geotaxis, fly survival, body mass, catalase activity, triglycerides (TG/TP), sterol, and total protein were measured in adult Drosophila melanogaster after four weeks. Results Triglycerides (TG/TP) and total protein levels were significantly higher in HSD phenotype. Sterols were higher in HFD phenotype. Though catalase enzyme activity was highest in PRD phenotype, this activity was not statistically significant when compared to that of HSD and HFD phenotypes. However, PRD phenotype had the lowest mass, highest survival rate and the highest negative geotaxis, thus demonstrating a balanced, stable and more viable metabolic status in the experimental model. Conclusion A protein restricted diet induces a stable increased fat storage phenotype in Drosophila melanogaster.
Collapse
Affiliation(s)
- Oscar Hilary Asiimwe
- Faculty of Health Sciences, Mountains of the Moon University, Box 837, Fort Portal, Uganda
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China
| | - John Rubaihayo
- Faculty of Health Sciences, Mountains of the Moon University, Box 837, Fort Portal, Uganda
| | - Sheu Oluwadare Sulaiman
- Graduate Program in Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | | | - Keneth Iceland Kasozi
- School of Medicine, Kabale University, Box 317, Kabale, Uganda
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, EH8 9JZ, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Barrios-Nolasco A, Domínguez-López A, Miliar-García A, Cornejo-Garrido J, Jaramillo-Flores ME. Anti-Inflammatory Effect of Ethanolic Extract from Tabebuia rosea (Bertol.) DC., Quercetin, and Anti-Obesity Drugs in Adipose Tissue in Wistar Rats with Diet-Induced Obesity. Molecules 2023; 28:molecules28093801. [PMID: 37175211 PMCID: PMC10180162 DOI: 10.3390/molecules28093801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is characterized by the excessive accumulation of fat, which triggers a low-grade chronic inflammatory process. Currently, the search for compounds with anti-obesogenic effects that help reduce body weight, as well as associated comorbidities, continues. Among this group of compounds are plant extracts and flavonoids with a great diversity of action mechanisms associated with their beneficial effects, such as anti-inflammatory effects and/or as signaling molecules. In the bark of Tabebuia rosea tree, there are different classes of metabolites with anti-inflammatory properties, such as quercetin. Therefore, the present work studied the effect of the ethanolic extract of T. rosea and quercetin on the mRNA of inflammation markers in obesity compared to the drugs currently used. Total RNA was extracted from epididymal adipose tissue of high-fat diet-induced obese Wistar rats treated with orlistat, phentermine, T. rosea extract, and quercetin. The rats treated with T. rosea and quercetin showed 36 and 31% reductions in body weight compared to the obese control, and they likewise inhibited pro-inflammatory molecules: Il6, Il1b, Il18, Lep, Hif1a, and Nfkb1 without modifying the expression of Socs1 and Socs3. Additionally, only T. rosea overexpressed Lipe. Both T. rosea and quercetin led to a reduction in the expression of pro-inflammatory genes, modifying signaling pathways, which led to the regulation of the obesity-inflammation state.
Collapse
Affiliation(s)
- Alejandro Barrios-Nolasco
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07320, Mexico
| | - Aarón Domínguez-López
- Laboratorio de Biología Molecular, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Angel Miliar-García
- Laboratorio de Biología Molecular, Escuela Superior de Medicina (ESM), Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Alcaldía Miguel Hidalgo, Ciudad de Mexico 11340, Mexico
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, Guillermo Massieu Helguera 239, Col. La Escalera, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07320, Mexico
| | - María Eugenia Jaramillo-Flores
- Laboratorio de Polímeros, Department de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional, Wilfrido Massieu s/n esq. Manuel I. Stampa. Col. Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero, Ciudad de Mexico 07738, Mexico
| |
Collapse
|
6
|
Trandafir LM, Dodi G, Frasinariu O, Luca AC, Butnariu LI, Tarca E, Moisa SM. Tackling Dyslipidemia in Obesity from a Nanotechnology Perspective. Nutrients 2022; 14:nu14183774. [PMID: 36145147 PMCID: PMC9504099 DOI: 10.3390/nu14183774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity and dyslipidemia are the main features of metabolic syndrome, expressed mainly by adipose tissue dysfunction and connected by similar pathways and pharmacotherapy. Conventional drugs used in these two associated disorders are limited due to poor drug efficiency, non-specificity, and toxic side effects. Therefore, novel solutions for tackling obesity-associated diseases and providing insights into the development of innovative or improved therapies are necessary. Targeted nanotherapy is a revolutionary technology, offering a promising solution for combatting the disadvantages of currently available therapies for treating obesity and dyslipidemia due to its superior features, which include specific cell targeting, the protection of drugs against physiological degradation, and sustained drug release. This review presents a brief assessment of obesity and dyslipidemia, their impacts on human health, current treatment, and limitations, and the role and potential use of nanotechnology coupled with targeted drug delivery and nutraceuticals as emerging therapies. To the best of our knowledge, this paper presents, for the first time in the literature, a comparison between obesity and dyslipidemia nano-formulations based on drugs and/or natural extracts applied in experimental studies.
Collapse
Affiliation(s)
- Laura M. Trandafir
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
- Correspondence: (G.D.); (E.T.)
| | - Otilia Frasinariu
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Alina C. Luca
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Lacramioara I. Butnariu
- Department of Medical Genetics, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Elena Tarca
- Department of Pediatric Surgery, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
- Correspondence: (G.D.); (E.T.)
| | - Stefana M. Moisa
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
7
|
Anti-obesity effects of Erythrina abyssinica stem bark extract in flies exposed to a high fat diet. Heliyon 2022; 8:e09886. [PMID: 35847607 PMCID: PMC9284455 DOI: 10.1016/j.heliyon.2022.e09886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background An in vitro assay on Sigmoidin A from Erythrina abyssinica stem bark revealed its potency to inhibit pancreatic lipase. However, studies indicate activity of extract bioactive compounds in combination far exceed the favorable effects of each individual compound due to synergy and additive effects. In this study, we provide information on the effect of E. abyssinica stem bark extract in Drosophila melanogaster. The objective of the study was to determine the safety and effects of E. abyssinica stem bark extract on fly survival, body weight, triglycerides, sterol, total protein, and catalase activity of obese male D. melanogaster. Methods Obesity was induced by exposing D. melanogaster white mutant w1118 to coconut food for two weeks. Groups 1–3 were fed on coconut food + fenofibrate at 25 mM, 50 mM, and 75 mM. Groups 4–6 were fed on coconut food + E. abyssinica stem bark extract at concentrations of 2.5 g/ml, 5.0 g/ml, and 7.5 g/ml. The positive control was exposed to only coconut food while the negative control was on regular food. Fly survival observations were done for 15 days, while acute and chronic effects were done at 30 min and after 48 h respectively following treatment. Body mass, negative geotaxis, reducing power of the extract, triglycerides (TG/TP), sterol, total protein levels, and catalase activity were measured after 10 days of exposure to the experimental diets. Results Fly survival changes were observed after 10 days and E. abyssinica stem bark extract had the strongest reducing power at 7.5 g/ml extract concentration. E. abyssinica stem bark extract reduced body mass, triglyceride levels (TG/TP), sterol levels, and modulated catalase activity at 7.5 g/ml extract concentration. Though the standard drug fenofibrate had the highest fat accumulation reduction potential, the extract at 7.5 g/ml was much safer in reducing fat accumulation in obese male D. melanogaster than other concentration used. Conclusion Antioxidants in E. abyssinica stem bark extract are responsible for the observed anti-obesity activity.
Collapse
|
8
|
Khine HEE, Sungthong R, Sritularak B, Prompetchara E, Chaotham C. Untapped Pharmaceutical Potential of 4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl for Regulating Obesity: A Cell-Based Study with a Focus on Terminal Differentiation in Adipogenesis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1591-1602. [PMID: 35679136 DOI: 10.1021/acs.jnatprod.2c00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Obesity and its global prevalence has become a threat to human health, while its pharmacotherapy via the application of natural products is still underdeveloped. Here, we probed how 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB) derived from an orchid (Dendrobium ellipsophyllum) could exert its roles on the differentiation and function of murine (3T3-L1) and human (PCS-210-010) pre-adipocytes and offer some implications to modulate obesity. Cytotoxic effects of TDB on adipocytes were 2-fold lower than those detected with pre-adipocytes, and no significant difference was detected in cytotoxic profiles between both cell lineages. TDB in a dose-dependent manner decreased cellular lipid accumulation and enhanced lipolysis of both cell lines assessed at early differentiation and during maturation. Underlining molecular mechanisms proved that TBD paused the cell cycle progression by regulating inducers and inhibitors in mitotic clonal expansion, leading to growth arrest of pre-adipocytes at the G0/G1 phase. The compound also governed adipocyte differentiation by repressing expressions of crucial adipogenic regulators and effectors through deactivating the AKT/GSK-3β signaling pathway and activating the AMPK-ACC pathway. To this end, TDB has shown its pharmaceutical potential for modulating adipocyte development and function, and it would be a promising candidate for further assessments as a therapeutic agent to defeat obesity.
Collapse
Affiliation(s)
- Hnin Ei Ei Khine
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakachai Prompetchara
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Wasta Esmail VA, Al-Nimer MS, Mohammed MO. Effects of Orlistat or Telmisartan on the Serum Free Fatty Acids in Non-alcoholic Fatty Liver Disease Patients: An Open-Labeled Randomized Controlled Study. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2022; 33:421-426. [PMID: 35678800 PMCID: PMC11157823 DOI: 10.5152/tjg.2020.19365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 06/15/2023]
Abstract
BACKGROUND One of the important inducers of inflammatory responses and accumulation of fat in hepatocytes is free fatty acids which ultimately lead to the development of non-alcoholic fatty liver disease. Patients with non-alcoholic fatty liver disease have high levels of plasma free fatty acids which are usually associated with type 2 diabetes and components of metabolic syndrome including dyslipidemia. Objective of this research is to investigate the effects of orlistat (a lipase enzyme inhibitor) or telmisartan (an angiotensin receptor blocker) on the serum free fatty acids in non-alcoholic fatty liver disease patients taking into consideration the baseline lipid profile. METHODS This open-label clinical trial was carried out in the Department of Pharmacology, College of Medicine at the University of Sulaimani in cooperation with Shar Teaching Hospital in Sulaimani city-Kurdistan Region of Iraq. A total number of 74 non-alcoholic fatty liver disease patients were recruited and grouped randomly into group I (n = 25) treated with orlistat (120 mg/day orally) for 12 weeks, group II (n = 24) treated with telmisartan (20 mg/day orally) for 8 weeks, and group III (n = 25) treated with placebo (carboxy- methyl cellulose) once daily. Fasting serum level of free fatty acid and lipid profile including total cholesterol, triglyceride, high-density lipoprotein, and non-high-density lipoproteins were determined. RESULTS Orlistat and telmisartan significantly reduced the triglyceride-glucose index and free fatty acid levels (P < .001) in patients with non-alcoholic fatty liver diseases. CONCLUSION Short-term treatment with orlistat or telmisartan produce effective and significant reductions in FFAs in patients with non-alcoholic fatty liver disease compared to placebo. Orlistat effectively reduces the free fatty acid irrespective of the baseline lipid profile.
Collapse
Affiliation(s)
- Vian Ahmed Wasta Esmail
- Department of Clinical Pharmacy, University of Sulaimani Faculty of Pharmacy, Sulaimani, Iraq
| | - Marwan S.M. Al-Nimer
- Department of Pharmacology and Toxicology, Hawler Medical University Faculty of Pharmacy, Erbil, Iraq
| | | |
Collapse
|
10
|
Effect of Metformin and Simvastatin in Inhibiting Proadipogenic Transcription Factors. Curr Issues Mol Biol 2021; 43:2082-2097. [PMID: 34940118 PMCID: PMC8929042 DOI: 10.3390/cimb43030144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial chronic disease characterized by the excessive accumulation of fat in adipose tissue driven by hypertrophy and hyperplasia of adipocytes through adipogenesis. Adipogenesis plays a key role in the development of obesity and related metabolic disorders, which makes it potential target for the therapeutic approach to obesity. An increasing number of studies confirm the pleiotropic action of the combined treatment with metformin and statins, suggesting their anti-hypertensive, anti-inflammatory, and anti-adipogenic effect. The aim of this study was to analyze the effect of different doses of metformin (MET) and simvastatin (SIM) on the expression of key transcription factors of adipogenesis. Mouse 3T3-L1 preadipocytes were induced to differentiation in adipogenic medium with sustained MET and SIM treatment to assess the effect on adipogenesis. Nine days after initiating adipogenesis, the cells were prepared for further experiments, including Oil Red O staining, RT-PCR, Western blotting, and immunocytochemistry. Treating the cells with the combination of MET and SIM slightly reduced the intensity of Oil Red O staining compared with the control group, and down-regulated mRNA and protein expression of PPARγ, C/EBPα, and SREBP-1C. In conclusion, the inhibitory effect of MET and SIM on adipocyte differentiation, as indicated by decreased lipid accumulation, appears to be mediated through the down-regulation of adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding pro-tein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP-1C).
Collapse
|
11
|
Natesan V, Kim SJ. Lipid Metabolism, Disorders and Therapeutic Drugs - Review. Biomol Ther (Seoul) 2021; 29:596-604. [PMID: 34697272 PMCID: PMC8551734 DOI: 10.4062/biomolther.2021.122] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/05/2022] Open
Abstract
Different lifestyles have an impact on useful metabolic functions, causing disorders. Different lipids are involved in the metabolic functions that play various vital roles in the body, such as structural components, storage of energy, in signaling, as biomarkers, in energy metabolism, and as hormones. Inter-related disorders are caused when these functions are affected, like diabetes, cancer, infections, and inflammatory and neurodegenerative conditions in humans. During the Covid-19 period, there has been a lot of focus on the effects of metabolic disorders all over the world. Hence, this review collectively reports on research concerning metabolic disorders, mainly cardiovascular and diabetes mellitus. In addition, drug research in lipid metabolism disorders have also been considered. This review explores lipids, metabolism, lipid metabolism disorders, and drugs used for these disorders.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamilnadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
12
|
Drugs Interfering with Insulin Resistance and Their Influence on the Associated Hypermetabolic State in Severe Burns: A Narrative Review. Int J Mol Sci 2021; 22:ijms22189782. [PMID: 34575946 PMCID: PMC8466307 DOI: 10.3390/ijms22189782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
It has become widely accepted that insulin resistance and glucose hypermetabolism can be linked to acute pathologies, such as burn injury, severe trauma, or sepsis. Severe burns can determine a significant increase in catabolism, having an important effect on glucose metabolism and on muscle protein metabolism. It is imperative to acknowledge that these alterations can lead to increased mortality through organ failure, even when the patients survive the initial trauma caused by the burn. By limiting the peripheral use of glucose with consequent hyperglycemia, insulin resistance determines compensatory increased levels of insulin in plasma. However, the significant alterations in cellular metabolism lead to a lack of response to insulin's anabolic functions, as well as to a decrease in its cytoprotective role. In the end, via pathological insulin signaling associated with increased liver gluconeogenesis, elevated levels of glucose are detected in the blood. Several cellular mechanisms have been incriminated in the development of insulin resistance in burns. In this context, the main aim of this review article is to summarize some of the drugs that might interfere with insulin resistance in burns, taking into consideration that such an approach can significantly improve the prognosis of the burned patient.
Collapse
|
13
|
Žiberna L, Jenko-Pražnikar Z, Petelin A. Serum Bilirubin Levels in Overweight and Obese Individuals: The Importance of Anti-Inflammatory and Antioxidant Responses. Antioxidants (Basel) 2021; 10:antiox10091352. [PMID: 34572984 PMCID: PMC8472302 DOI: 10.3390/antiox10091352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a chronic condition involving low-grade inflammation and increased oxidative stress; thus, obese and overweight people have lower values of serum bilirubin. Essentially, bilirubin is a potent endogenous antioxidant molecule with anti-inflammatory, immunomodulatory, antithrombotic, and endocrine properties. This review paper presents the interplay between obesity-related pathological processes and bilirubin, with a focus on adipose tissue and adipokines. We discuss potential strategies to mildly increase serum bilirubin levels in obese patients as an adjunctive therapeutic approach.
Collapse
Affiliation(s)
- Lovro Žiberna
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | | | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, SI-6310 Izola, Slovenia;
- Correspondence: ; Tel.: +386-5-66-2469
| |
Collapse
|
14
|
Qu N, Meng Y, Handley MK, Wang C, Shan F. Preclinical and clinical studies into the bioactivity of low-dose naltrexone (LDN) for oncotherapy. Int Immunopharmacol 2021; 96:107714. [PMID: 33989971 DOI: 10.1016/j.intimp.2021.107714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Naltrexone (NTX) is a nonspecific opioid antagonist that exerts pharmacological effects on the opioid axis by blocking opioid receptors distributed in cytoplastic and nuclear regions. NTX has been used in opioid use disorder (OUD), immune-associated diseases, alcoholism, obesity, and chronic pain for decades. However, low-dose naltrexone (LDN) also exhibits remarkable inhibition of DNA synthesis, viability, and other functions in numerous cancers and is involved in immune remodeling against tumor invasion and chemical toxicity. The potential anticancer activity of LDN is a focus of basic research. Herein, we summarize the associated studies on LDN oncotherapy to highlight the potential mechanisms and prospective clinical applications.
Collapse
Affiliation(s)
- Na Qu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Institute and Hospital, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Institute and Hospital, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Mike K Handley
- Cytocom, Inc., 2537 Research Blvd. Suite 201, FortCollins, CO 80526, USA
| | - Chunyan Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Institute and Hospital, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, China.
| |
Collapse
|
15
|
Esmail VAW, Mohammed MO, Al-Nimer MSM. Short-term orlistat therapy improves fatty infiltration indices and liver fibrosis scores in patients with non-alcoholic fatty liver disease and metabolic syndrome. Arab J Gastroenterol 2021; 22:1-5. [PMID: 33664007 DOI: 10.1016/j.ajg.2020.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/17/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND STUDY AIMS Patients with non-alcoholic fatty liver disease (NAFLD) exhibit features of metabolic syndrome, including a high body mass index, central obesity, high blood pressure, and abnormal lipid profile values. Orlistat, an intestinal lipase enzyme inhibitor, improves insulin resistance. We aimed to investigate the effects of short-term therapy with orlistat on the components of metabolic syndrome associated with NAFLD and explore its effect on liver fibrosis scores. PATIENTS AND METHODS An open-label placebo-controlled clinical study using orlistat for 12 weeks was carried out on 50 patients with NAFLD. They were divided into a placebo group (Group I) and an orlistat treatment group (120 mg per day, Group II). The diagnosis of NAFLD was made by ultrasonography and laboratory investigations. Anthropometric and blood pressure measurements and hepatic liver enzymes, fasting lipids, and blood glucose levels were determined before and after treatment. Lipid indices including cholesterol (Chol-I), triglyceride (TG-I), triglyceride-glucose (TYG-I), and the scores for lipid fibrosis using the NAFLD fibrosis score (NFS) and Fibrosis-4 score (Fib-4) were also determined. RESULTS Orlistat significantly improved the anthropometric and metabolic indices (TG-I, TYG-I) and liver enzymes. Orlistat demonstrated a favorable impact on the NAS and Fib-4 scores for liver fibrosis. CONCLUSION Orlistat improves the components of metabolic syndrome, leading to the improvement of insulin resistance and thereby improves fatty infiltration of the liver. To a lesser extent, orlistat improved the liver fibrosis scores.
Collapse
Affiliation(s)
- Vian Ahmed Wasta Esmail
- Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq
| | - Mohammed Omer Mohammed
- Department of Medicine, Department of Pharmacology, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Marwan S M Al-Nimer
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq.
| |
Collapse
|
16
|
Rusman T, van Bentum RE, van der Horst-Bruinsma IE. Sex and gender differences in axial spondyloarthritis: myths and truths. Rheumatology (Oxford) 2021; 59:iv38-iv46. [PMID: 33053194 PMCID: PMC7566372 DOI: 10.1093/rheumatology/keaa543] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence reveals evident sex differences in physiology, disease presentation and response to medication in axial SpA (axSpA). Unfortunately these data are often neglected in clinical practice and research. In this review, myths that still exist on diagnosis, disease manifestation and drug effectiveness were argued against data of the most recent literature. The aim is to increase awareness of sex differences in the clinical aspects of axSpA.
Collapse
Affiliation(s)
- Tamara Rusman
- Department of Rheumatology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Rianne E van Bentum
- Department of Rheumatology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
17
|
Osman A, El-Gazzar N, Almanaa TN, El-Hadary A, Sitohy M. Lipolytic Postbiotic from Lactobacillus paracasei Manages Metabolic Syndrome in Albino Wistar Rats. Molecules 2021; 26:molecules26020472. [PMID: 33477482 PMCID: PMC7831067 DOI: 10.3390/molecules26020472] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
The current study investigates the capacity of a lipolytic Lactobacillus paracasei postbiotic as a possible regulator for lipid metabolism by targeting metabolic syndrome as a possibly safer anti-obesity and Anti-dyslipidemia agent replacing atorvastatin (ATOR) and other drugs with proven or suspected health hazards. The high DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2'-azino-bis (3-ethyl benzothiazoline-6-sulphonic acid)] scavenging activity and high activities of antioxidant enzyme such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) of the Lactobacillus paracasei postbiotic (cell-free extract), coupled with considerable lipolytic activity, may support its action against metabolic syndrome. Lactobacillus paracasei isolate was obtained from an Egyptian cheese sample, identified and used for preparing the postbiotic. The postbiotic was characterized and administered to high-fat diet (HFD) albino rats (100 and 200 mg kg-1) for nine weeks, as compared to atorvastatin (ATOR; 10 mg kg-1). The postbiotic could correct the disruption in lipid metabolism and antioxidant enzymes in HFD rats more effectively than ATOR. The two levels of the postbiotic (100 and 200 mg kg-1) reduced total serum lipids by 29% and 34% and serum triglyceride by 32-45% of the positive control level, compared to only 25% and 35% in ATOR's case, respectively. Both ATOR and the postbiotic (200 mg kg-1) equally decreased total serum cholesterol by about 40% and 39%, while equally raising HDL levels by 28% and 30% of the positive control. The postbiotic counteracted HFD-induced body weight increases more effectively than ATOR without affecting liver and kidney functions or liver histopathology, at the optimal dose of each. The postbiotic is a safer substitute for ATOR in treating metabolic syndrome.
Collapse
Affiliation(s)
- Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdalla El-Hadary
- Biochemistry Department, Faculty of Agriculture, Benha University, Benha 13736, Egypt;
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
- Correspondence: ; Tel.: +20-106-527-2667
| |
Collapse
|
18
|
Jakab J, Miškić B, Mikšić Š, Juranić B, Ćosić V, Schwarz D, Včev A. Adipogenesis as a Potential Anti-Obesity Target: A Review of Pharmacological Treatment and Natural Products. Diabetes Metab Syndr Obes 2021; 14:67-83. [PMID: 33447066 PMCID: PMC7802907 DOI: 10.2147/dmso.s281186] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is recognized as a severe threat to overall human health and is associated with type 2 diabetes mellitus, dyslipidemia, hypertension, and cardiovascular diseases. Abnormal expansion of white adipose tissue involves increasing the existing adipocytes' cell size or increasing the number through the differentiation of new adipocytes. Adipogenesis is a process of proliferation and differentiation of adipocyte precursor cells in mature adipocytes. As a key process in determining the number of adipocytes, it is a possible therapeutic approach for obesity. Therefore, it is necessary to identify the molecular mechanisms involved in adipogenesis that could serve as suitable therapeutic targets. Reducing bodyweight is regarded as a major health benefit. Limited efficacy and possible side effects and drug interactions of available anti-obesity treatment highlight a constant need for finding novel efficient and safe anti-obesity ingredients. Numerous studies have recently investigated the inhibitory effects of natural products on adipocyte differentiation and lipid accumulation. Possible anti-obesity effects of natural products include the induction of apoptosis, cell-cycle arrest or delayed progression, and interference with transcription factor cascade or intracellular signaling pathways during the early phase of adipogenesis.
Collapse
Affiliation(s)
- Jelena Jakab
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Correspondence: Jelena Jakab Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Crkvena 21, Osijek31 000, CroatiaTel +385 91 224 1502 Email
| | - Blaženka Miškić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Internal Medicine, General Hospital “Dr. Josip Benčević”, Slavonski Brod, Croatia
| | - Štefica Mikšić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Brankica Juranić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Cardiology, University Hospital Osijek, Osijek, Croatia
| | - Vesna Ćosić
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Dragan Schwarz
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Special Hospital Radiochirurgia Zagreb, Zagreb, Croatia
| | - Aleksandar Včev
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
19
|
The "irisin system": From biological roles to pharmacological and nutraceutical perspectives. Life Sci 2020; 267:118954. [PMID: 33359670 DOI: 10.1016/j.lfs.2020.118954] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
The scientific interest in irisin, a myokine discovered in 2012, has grown exponentially in recent years. Irisin, which is mainly produced in skeletal muscle, influences the browning process of adipose tissue and lipid and energy metabolism. Recent discoveries highlight that the potential of this hormone may have been underestimated. In the first part of this review, reports on irisin structure and molecules involved in its metabolic pathway are shown. Furthermore, data related to unclear aspects are also reported: distribution, different gene expression of its precursors in different tissues, physiological levels of circulating irisin, and pharmacokinetic and pharmacodynamic profile. The second part of this work focuses on exogenous stimuli and pharmacological agents which regulate the metabolic pathway of irisin and its serum concentration. In addition to physical exercise and exposure to low temperatures, which were early recognized as exogenous stimuli able to promote the production of this myokine, preclinical and clinical evidence demonstrates the ability of natural and synthetic molecules to interfere with this metabolic pathway. Current experimental data on irisin cannot dissolve all doubts related to this interesting molecule, but they certainly underline its potential for therapeutic purposes. Thus, identification of new pharmacological tools able to act on the irisin pathway is a challenging issue for biomedical research.
Collapse
|
20
|
El-Ashmawy NE, Al-Ashmawy GM, Amr EA, Khedr EG. Inhibition of lovastatin- and docosahexaenoic acid-initiated autophagy in triple negative breast cancer reverted resistance and enhanced cytotoxicity. Life Sci 2020; 259:118212. [PMID: 32768581 DOI: 10.1016/j.lfs.2020.118212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
AIMS Autophagy plays a complex role in breast cancer by suppressing or improving the efficiency of treatment. Triple-negative breast cancer (TNBC) cell line (MDA-MB-231) is associated with aggressive response and developing therapy resistance. MDA-MB-231 cells depend on autophagy for survival. Also, the potential benefits of autophagy inhibition in ameliorating developed chemotherapy resistance towards MDA-MB-231 remains to be elucidated. Despite showing anti-tumorigenic activities, the use of lovastatin and docosahexaenoic acid (DHA) for treating different types of cancers is still limited. We aimed to investigate the protective effect of autophagy inhibition by chloroquine (CQ) in MDA-MB-231 cells resistance treated with lovastatin or DHA. MAIN METHODS MDA-MB-231 cells were treated with 30 μM lovastatin and/or 100 μM DHA for 48 h plus 20 μM CQ. Autophagic flux was assessed in association with the expression of multidrug resistance gene 1 (MDR1), transforming growth factor beta 1 gene (TGF-β1), and autophagy-related 7 gene (ATG7). KEY FINDINGS Both drugs exhibited dose-dependent cytotoxicity, enhanced the autophagic flux represented by increased LC3BII protein concentration and decreased p62 protein concentration, and up-regulated the expression of MDR1, TGF-β1, and ATG7 genes. CQ addition enhanced the cytotoxicity of drugs and inhibited the autophagic flux which is detected by higher levels of LC3BII and p62 correlated with the reverted MDR1, TGF-β1 and ATG7 genes expression. SIGNIFICANCE Autophagy inhibition by CQ showed an ameliorative effect on lovastatin- and DHA-induced resistance and enhanced their cytotoxicity, providing a promising strategy in breast cancer therapy.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt, Postal code: 31527.
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt, Postal code: 31527.
| | - Eman A Amr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt, Postal code: 31527.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Egypt, Postal code: 31527.
| |
Collapse
|
21
|
Navarro Del Hierro J, Casado-Hidalgo G, Reglero G, Martin D. The hydrolysis of saponin-rich extracts from fenugreek and quinoa improves their pancreatic lipase inhibitory activity and hypocholesterolemic effect. Food Chem 2020; 338:128113. [PMID: 33092009 DOI: 10.1016/j.foodchem.2020.128113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 01/18/2023]
Abstract
Saponins are promising compounds for ameliorating hyperlipidemia but scarce information exists about sapogenins, the hydrolyzed forms of saponins. Saponin-rich extracts and their hydrolysates from fenugreek (FE, HFE) and quinoa (QE, HQE), and saponin and sapogenin standards, were assessed on the inhibition of pancreatic lipase and interference on the bioaccessibility of cholesterol by in vitro digestion models. All extracts inhibited pancreatic lipase (IC50 between 1.15 and 0.59 mg/mL), although the hydrolysis enhanced the bioactivity of HQE (p = 0.014). The IC50 value significantly correlated to the saponin content (r = -0.82; p = 0.001). Only the hydrolyzed extracts showed a reduction of bioaccessible cholesterol (p < 0.001) higher than that of phytosterols (35% reduction). Sapogenin standards exhibited no bioactivities, protodioscin and hederacoside C slightly inhibited the lipase (around 10%) and protodioscin reduced the bioaccessible cholesterol (23% reduction, p = 0.035). The hydrolysis process of saponin-rich extracts enhances the bioactivity and allows developing multibioactive products against pancreatic lipase and cholesterol absorption simultaneously.
Collapse
Affiliation(s)
- Joaquín Navarro Del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gema Casado-Hidalgo
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain; Imdea-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM), 28049 Madrid, Spain; Sección Departamental de Ciencias de la Alimentación. Facultad de Ciencias. Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
22
|
Zhang F, Duan Y, Wei Y, Zhang J, Ma X, Tian H, Wang X, Saad AAA, Li B, Wu X. The inhibition of hepatic Pxr-Oatp2 pathway mediating decreased hepatic uptake of rosuvastatin in rats with high-fat diet-induced obesity. Life Sci 2020; 257:118079. [PMID: 32668326 DOI: 10.1016/j.lfs.2020.118079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE Obesity affecting drug pharmacokinetics results in the risk of the therapeutic failure or toxic side effects of drugs increasing. Unfortunately, the pharmacokinetic data in obese patients still lack for majority of drugs. Therefore, our study principally investigated the effect of obesity induced by high fat-diet (HFD) on the pharmacokinetics of rosuvastatin and explored the underlying mechanism via the hepatic pregnane X receptor (Pxr)- organic anion transporting polypeptide 2 (Oatp2) signaling pathway and multidrug resistance-associated protein 2 (Mrp2) in rats. MAIN METHODS Rats with obesity was induced by HFD for 4 weeks, and subsequently, the effect of obesity on the blood concentration, pharmacokinetic parameters and biliary excretion of rosuvastatin administrated intravenously and the hepatic uptake of rosuvastatin in the rat primary hepatocytes were evaluated. Additionally, in order to illuminate the underlying mechanism, the alterations of the mRNA expressions of Oatp2, Mrp2 and Pxr and the concentrations of lithocholic acid (LCA), glycine-LCA (GLCA) and taurine-LCA (TLCA) in liver were determined. KEY FINDINGS The blood concentration of rosuvastatin that has great relationship with the muscle toxicity increased in rats with HFD-induced obesity, which could be principally ascribed to the decreased hepatic uptake of rosuvastatin that was mainly resulted from the inhibition of hepatic Pxr-Oatp2 pathway. SIGNIFICANCE The decreased hepatic uptake of rosuvastatin causing the increase of the rosuvastatin concentration in blood under the condition of HFD-induced obesity provides a cue for clinicians to reduce the rosuvastatin dose for obese patients to avoid the occurrence risk of the muscle toxicity of rosuvastatin.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yingting Duan
- Lanzhou New District Health Commission of Gansu Province, China
| | - Yuhui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jianping Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohua Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Haiyan Tian
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohui Wang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China; School of pharmacy, Lanzhou University, Lanzhou, China
| | - Abdulaziz Ahmed Abduladheem Saad
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China; School of pharmacy, Lanzhou University, Lanzhou, China
| | - Boxia Li
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xinan Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
23
|
Muzurović E, Dragnić S, Medenica S, Smolović B, Bulajić P, Mikhailidis DP. Weight-centric pharmacological management of type 2 diabetes mellitus - An essential component of cardiovascular disease prevention. J Diabetes Complications 2020; 34:107619. [PMID: 32499116 DOI: 10.1016/j.jdiacomp.2020.107619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/26/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
Obesity and overweight are contributing factors for diseases such as type 2 diabetes mellitus (T2DM), hypertension, hyperlipidemia, and ultimately, cardiovascular (CV) disease. Obesity is imposing an increasing health burden in rich and poor nations, with almost 30% of people globally now either obese or overweight - a staggering 2.1 billion. The link between obesity and T2DM is widely held to involve two adverse effects: obesity-induced insulin resistance and β-cell failure. This "unified field theory" raises questions about whether defects favoring progressive weight gain and metabolic impairment also contribute to β-cell decompensation. The concept of weight-centric management of T2DM is considered justified because of the strong negative impact of obesity on the effects of treatment of diabetes. Two pharmacotherapy options are considered: drugs developed primarily for blood glucose control that also exert a favorable effect on body weight and drugs developed primarily to induce weight loss that also have a favorable effect on glycemia. Treating hunger counter-regulatory mechanisms will have an additional effect on glucose control in T2DM. This narrative review addresses advances in pharmacotherapy for the management of obesity and obesity-related co-morbidities, with a focus on T2DM. It is also important to identify the correct balance between weight-centric and glucose-centric management of T2DM.
Collapse
Affiliation(s)
- Emir Muzurović
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro; Faculty of Medicine, University of Montenegro, Kruševac bb, 81000, Podgorica, Montenegro.
| | - Siniša Dragnić
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000, Podgorica, Montenegro
| | - Sanja Medenica
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro; Faculty of Medicine, University of Montenegro, Kruševac bb, 81000, Podgorica, Montenegro
| | - Brigita Smolović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000, Podgorica, Montenegro
| | - Predrag Bulajić
- Department of Internal Medicine, Endocrinology Section, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), Pond Street, London NW3 2QG, UK
| |
Collapse
|
24
|
Huh KY, Kim E, Lee H, Jeon I, Suh H, Lee J, Lee Y, Yu KS, Lee S. Comparison of the Pharmacokinetics of a Fixed-Dose Combination of Rosuvastatin/Metformin Sustained-Release (10/1000 mg) and Separate Tablets in Healthy Male Subjects. Clin Pharmacol Drug Dev 2020; 10:207-213. [PMID: 32579298 DOI: 10.1002/cpdd.841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/18/2020] [Indexed: 01/09/2023]
Abstract
Fixed-dose combination (FDC) drugs with various dose combinations for the treatment of type 2 diabetes mellitus and dyslipidemia are currently in demand. We compared the pharmacokinetic (PK) profiles of the rosuvastatin/metformin sustained-release (10/1000 mg) FDC and separate tablets and evaluated the effect of food by randomized, open-label, 3-period, 6-sequence crossover studies conducted in healthy male subjects. Subjects were randomly assigned to one of the following treatments: separate tablets of 10 mg rosuvastatin and 1000 mg metformin sustained release in the fed state and the FDC in the fasted and fed states. PK samples were collected up to 72 hours postdose for rosuvastatin, N-desmethyl rosuvastatin, and metformin. The PK parameters were determined using a noncompartmental method, and the geometric mean ratio (GMR) and the 90% confidence interval (CI) of the treatments were calculated. A total of 35 subjects completed the study. The GMR and 90%CI of the peak concentration (Cmax ) and area under the plasma concentration-time curve from time zero to the last measurable concentration (AUClast ) of the FDC and the separate tablets were within the bioequivalence criteria (0.8-1.25) for both rosuvastatin and metformin. The effect of food was statistically significant for both rosuvastatin and metformin but not expected to be of clinical significance.
Collapse
Affiliation(s)
- Ki Young Huh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Eunwoo Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Heechan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Inseung Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Hearan Suh
- Global Research Institute, Bcworld Pharm. Co., Ltd., Seoul, Republic of Korea
| | - Jongsun Lee
- Global Research Institute, Bcworld Pharm. Co., Ltd., Seoul, Republic of Korea
| | - Yunhee Lee
- Global Research Institute, Bcworld Pharm. Co., Ltd., Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| |
Collapse
|
25
|
Rosen J, Darwin E, Tuchayi SM, Garibyan L, Yosipovitch G. Skin changes and manifestations associated with the treatment of obesity. J Am Acad Dermatol 2019; 81:1059-1069. [DOI: 10.1016/j.jaad.2018.10.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
|
26
|
Application of ELISA Technique and Human Microsomes in the Search for 11 β-Hydroxysteroid Dehydrogenase Inhibitors. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5747436. [PMID: 31214617 PMCID: PMC6535869 DOI: 10.1155/2019/5747436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/02/2019] [Indexed: 01/18/2023]
Abstract
The metabolic syndrome is defined by impaired carbohydrate metabolism and lipid disorders and often accompanied by hypertension, all of which will lead to obesity and insulin resistance. Glucocorticoids play a regulatory role in the metabolism of proteins, lipids, and carbohydrates. There is growing evidence for a role of glucocorticoids in the development of the metabolic syndrome. The most important factor that regulates the access of endogenous glucocorticoids to receptors after release of glucocorticoids and their diffusion into the cytoplasm of target cells is the steroid metabolism involving a microsomal enzyme, 11β-hydroxysteroid dehydrogenase (11β-HSD). The changes in intracellular glucocorticoid metabolism in the pathogenesis of obesity indicate the participation of modulation by 11β-HSD1, which may represent a new therapeutic target for the treatment of diseases such as type 2 diabetes, visceral obesity, or atherosclerosis. The aim of our study was to determine the fast and effective method to assess inhibition activity of compounds in relation with 11β-hydroxysteroid dehydrogenase. The material for this study was human liver and kidney microsomes. In this study we used ELISA technique using 96-well microplates coated with antibodies which were specific for analyzed enzymes. The method can quickly and efficiently measure the inhibition of both 11β-HSD1 and 11β-HSD2. This method can be used to search for and determine inhibitors of this enzyme. Cortisone and cortisol were used as the substrates for corresponding enzyme assays. Furthermore, 3-N-allyl-2-thiouracil derivatives were used by us for comparison purposes in developing the method, although, due to their structure, those derivatives have not previously been considered as potential inhibitors of 11β-HSD1. 3-N-Allyl-2-thiouracil derivatives are a group worth considering, because by modifying their structure (e.g., by introducing other substituents into the pyrimidine ring) it will be possible to obtain an increase in the activity of compounds in this regard. In conclusion, this study shows an efficient and fast method of determining inhibition activity of compounds in relation with 11β-hydroxysteroid dehydrogenase.
Collapse
|