1
|
Li Z, He Y, Zhang Q, Li B, Xiu R, Zhang H. Characterization of microcirculatory endothelial functions in a D-Galactose-induced aging model. Microvasc Res 2025; 157:104757. [PMID: 39490807 DOI: 10.1016/j.mvr.2024.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Microcirculation health is critical to human health, and aging is an important factor affecting microcirculation health. Although D-Galactose has been widely used in aging research models, there is a lack of relevant studies on D-Galactose simulating microcirculatory aging. Here, we explored microcirculatory endothelial function in D-Galactose-induced aging mice. METHODS Intraperitoneal injection of 150 mg/(kg·d) of D-Galactose was given to cause senescence in mice. Aging was evaluated by SA-β-gal (senescence-associated β-galactosidase) staining. The auricular skin and hepatic microcirculation of mice were observed and detected by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) and microcirculation apparatus. The aging of microcirculation was analyzed from oxidative stress, endothelial impairment, inflammation, microvascular morphology and hemodynamics. RESULTS In aging mice, percentage of SA-β-gal positive area, oxidative stress products reactive oxygen species (ROS) and nitric oxide (NO), endothelial impairment marker syndecan-1 (SDC-1), stromal cell derived factor-1 (SDF-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the senescence-associated secretory phenotype (SASP) were all up-regulated. The tortuosity of microvessels increased in aging mice, the linear density did not change significantly, but the total length of narrow microvessels (TLNMV) increased and wide microvessels (TLWMV) decreased, speculate that vasomotor dysfunction may be present. Hemodynamically, both perfusion and velocity of blood flow were reduced in senescent mice, presumably due to endothelial dysfunction. CONCLUSION Microcirculatory endothelial dysfunction is induced by D-Galactose, leading to microcirculatory aging. In vivo, this is manifested by elevated levels of oxidative stress, impaired endothelial glycocalyx (eGC), and a greater production of chemokines and adhesive molecules. These changes cause vasomotor dysfunction and remodeling, ultimately leading to hemodynamic impairment.
Collapse
Affiliation(s)
- Zhuo Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yuhong He
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Qiuju Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
2
|
Hernyák M, Tóth LI, Csiha S, Molnár Á, Lőrincz H, Paragh G, Harangi M, Sztanek F. Kallistatin as a Potential Marker of Therapeutic Response During Alpha-Lipoic Acid Treatment in Diabetic Patients with Sensorimotor Polyneuropathy. Int J Mol Sci 2024; 25:13276. [PMID: 39769041 PMCID: PMC11675709 DOI: 10.3390/ijms252413276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetic sensorimotor neuropathy (DSPN) is strongly associated with the extent of cellular oxidative stress and endothelial dysfunction in type 2 diabetes (T2DM). Alpha-lipoic acid (ALA) attenuates the progression of DSPN through its antioxidant and vasculoprotective effects. Kallistatin has antioxidant and anti-inflammatory properties. We aimed to evaluate changes in kallistatin levels and markers of endothelial dysfunction in patients with T2DM and DSPN following six months of treatment with 600 mg/day of ALA. A total of 54 patients with T2DM and DSPN and 24 control patients with T2DM but without neuropathy participated in this study. The serum concentrations of kallistatin, ICAM-1, VCAM-1, oxLDL, VEGF, ADMA, and TNF-alpha were measured by an ELISA. Peripheral sensory neuropathy was assessed with neuropathy symptom questionnaires and determination of the current perception threshold. After ALA treatment, the level of kallistatin significantly decreased, as well as the levels of TNF-alpha and ADMA. Changes in kallistatin levels were positively correlated with changes in oxLDL. The improvement in DSPN symptoms following ALA treatment showed a positive correlation with changes in kallistatin, VEGF, oxLDL, and ADMA levels. Based on our results, kallistatin could represent a potential new biomarker for assessing therapeutic response during ALA treatment in patients with DSPN.
Collapse
Affiliation(s)
- Marcell Hernyák
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.H.); (L.I.T.); (S.C.); (Á.M.); (H.L.); (G.P.); (M.H.)
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Imre Tóth
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.H.); (L.I.T.); (S.C.); (Á.M.); (H.L.); (G.P.); (M.H.)
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sára Csiha
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.H.); (L.I.T.); (S.C.); (Á.M.); (H.L.); (G.P.); (M.H.)
| | - Ágnes Molnár
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.H.); (L.I.T.); (S.C.); (Á.M.); (H.L.); (G.P.); (M.H.)
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.H.); (L.I.T.); (S.C.); (Á.M.); (H.L.); (G.P.); (M.H.)
| | - György Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.H.); (L.I.T.); (S.C.); (Á.M.); (H.L.); (G.P.); (M.H.)
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.H.); (L.I.T.); (S.C.); (Á.M.); (H.L.); (G.P.); (M.H.)
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group 11003, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.H.); (L.I.T.); (S.C.); (Á.M.); (H.L.); (G.P.); (M.H.)
| |
Collapse
|
3
|
Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A, Alahmed FK. MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract 2024; 262:155572. [PMID: 39226804 DOI: 10.1016/j.prp.2024.155572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer, a pervasive and complex disease, continues to pose significant challenges in the field of oncology. Its heterogeneous nature and diverse molecular profiles necessitate a nuanced understanding of the underlying mechanisms driving tumorigenesis and progression. MicroRNA-21 (miR-21) has emerged as a crucial player in breast cancer development and progression by modulating apoptosis, a programmed cell death mechanism that eliminates aberrant cells. MiR-21 overexpression is a hallmark of breast cancer, and it is associated with poor prognosis and resistance to conventional therapies. This miRNA exerts its oncogenic effects by targeting various pro-apoptotic genes, including Fas ligand (FasL), programmed cell death protein 4 (PDCD4), and phosphatase and tensin homolog (PTEN). By suppressing these genes, miR-21 promotes breast cancer cell survival, proliferation, invasion, and metastasis. The identification of miR-21 as a critical regulator of apoptosis in breast cancer has opened new avenues for therapeutic intervention. This review investigates the intricate mechanisms through which miR-21 influences apoptosis, offering insights into the molecular pathways and signaling cascades involved. The dysregulation of apoptosis is a hallmark of cancer, and understanding the role of miR-21 in this context holds immense therapeutic potential. Additionally, the review highlights the clinical significance of miR-21 as a diagnostic and prognostic biomarker in breast cancer, underscoring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia.
| | - Humera Banu
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.
| | - Alia Alshammrani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Maali D Alshammari
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Satheesh Kumar G
- Department of Pharmaceutical Chemistry, College of Pharmacy, Seven Hills College of Pharmacy, Venkataramapuram, Tirupati, India
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, The Silesian University of Technology, Poland
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | | | - Arshad Hussain
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| | - Farah Khaled Alahmed
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail 81442, Saudi Arabia
| |
Collapse
|
4
|
Pisklova M, Osmak G. Unveiling MiRNA-124 as a biomarker in hypertrophic cardiomyopathy: An innovative approach using machine learning and intelligent data analysis. Int J Cardiol 2024; 410:132220. [PMID: 38815672 DOI: 10.1016/j.ijcard.2024.132220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a widespread hereditary cardiac pathology characterized by thickened heart walls and rearrangement of cardiomyocytes. Despite extensive research, the mechanisms underlying HCM development remain poorly understood, impeding the development of effective therapeutic and diagnostic strategies. Recent studies have suggested a polygenic nature of HCM development alongside monogenic forms. Transcriptomic profiling is a valuable tool for investigating such diseases. In this study, we propose a novel approach to study regulatory microRNAs (miRNAs) in the context of HCM, utilizing state-of-the-art data analysis tools. METHODS AND RESULTS Our method involves applying the Monte Carlo simulation and machine learning algorithm to transcriptomic data to generate high-capacity classifiers for HCM. From these classifiers, we extract key genes crucial for their performance, resulting in the identification of 16 key genes. Subsequently, we narrow down the pool of miRNAs by selecting those that may target the greatest number of key genes within the best models. We particularly focused on miR-124-3p, which we validated to have an association with HCM on an independent dataset. Subsequent investigation of its function revealed involvement of miR-124-3p in the RhoA signaling pathway. CONCLUSIONS In this study we propose a new approach to analyze transcriptomic data to search for microRNAs associated with a disease. Using this approach for transcriptomic profiling data of patients with HCM, we identified miR-124-3p as a potential regulator of the RhoA signaling pathway in the pathogenesis of HCM.
Collapse
Affiliation(s)
- Maria Pisklova
- E.I. Chazov National Medical Research Center for Cardiology, Academician Chazov st. 15a, 121552 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov st. 1, 117997 Moscow, Russia
| | - German Osmak
- E.I. Chazov National Medical Research Center for Cardiology, Academician Chazov st. 15a, 121552 Moscow, Russia; Pirogov Russian National Research Medical University, Ostrovitianov st. 1, 117997 Moscow, Russia.
| |
Collapse
|
5
|
Yurtkal A, Canday M. Kallistatin as a Potential Biomarker in Polycystic Ovary Syndrome: A Prospective Cohort Study. Diagnostics (Basel) 2024; 14:1553. [PMID: 39061689 PMCID: PMC11276556 DOI: 10.3390/diagnostics14141553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder with significant metabolic implications, including an increased risk of cardiovascular diseases and diabetes. Kallistatin, a serine proteinase inhibitor with anti-inflammatory and antioxidative properties, has been identified as a potential biomarker for PCOS due to its role in modulating inflammation and oxidative stress. METHODS This prospective cohort study was conducted at a university hospital's gynecology clinic. It included 220 women diagnosed with PCOS and 220 healthy controls matched for age and body mass index. Kallistatin levels were quantitatively assessed using enzyme-linked immunosorbent assay (ELISA) techniques. Associations between kallistatin levels and clinical manifestations of PCOS, including hyperandrogenism and metabolic profiles, were examined. RESULTS Kallistatin levels were significantly lower in patients with PCOS (2.65 ± 1.84 ng/mL) compared to controls (6.12 ± 4.17 ng/mL; p < 0.001). A strong negative correlation existed between kallistatin levels and androgen concentrations (r = -0.782, p = 0.035). No significant associations were found between kallistatin levels and insulin resistance or lipid profiles. CONCLUSIONS The findings indicate that reduced kallistatin levels are closely associated with PCOS and could serve as a promising biomarker for its diagnosis. The specific correlation with hyperandrogenism suggests that kallistatin could be particularly effective for identifying PCOS subtypes characterized by elevated androgen levels. This study supports the potential of kallistatin in improving diagnostic protocols for PCOS, facilitating earlier and more accurate detection, which is crucial for effective management and treatment.
Collapse
Affiliation(s)
- Aslihan Yurtkal
- Faculty of Medicine, Department of Gynecology and Obstetrics, Kafkas University, Kars 36000, Turkey
| | | |
Collapse
|
6
|
Kim H, Bedsaul-Fryer JR, Schulze KJ, Sincerbeaux G, Baker S, Rebholz CM, Wu LSF, Gogain J, Cuddeback L, Yager JD, De Luca LM, Siddiqua TJ, West KP. An Early Gestation Plasma Inflammasome in Rural Bangladeshi Women. Biomolecules 2024; 14:736. [PMID: 39062451 PMCID: PMC11274825 DOI: 10.3390/biom14070736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Circulating α1-acid glycoprotein (AGP) and C-reactive protein (CRP) are commonly measured to assess inflammation, but these biomarkers fail to reveal the complex molecular biology of inflammation. We mined the maternal plasma proteome to detect proteins that covary with AGP and CRP. In 435 gravida predominantly in <12-week gestation, we correlated the relative quantification of plasma proteins assessed via a multiplexed aptamer assay (SOMAScan®) with AGP and CRP, quantified by immunoassay. We defined a plasma inflammasome as protein correlates meeting a false discovery rate <0.05. We examined potential pathways using principal component analysis. A total of 147 and 879 of 6431 detected plasma proteins correlated with AGP and CRP, respectively, of which 61 overlapped with both biomarkers. Positive correlates included serum amyloid, complement, interferon-induced, and immunoregulatory proteins. Negative correlates were micronutrient and lipid transporters and pregnancy-related anabolic proteins. The principal components (PCs) of AGP were dominated by negatively correlated anabolic proteins associated with gestational homeostasis, angiogenesis, and neurogenesis. The PCs of CRP were more diverse in function, reflecting cell surface and adhesion, embryogenic, and intracellular and extra-hepatic tissue leakage proteins. The plasma proteome of AGP or CRP reveals wide proteomic variation associated with early gestational inflammation, suggesting mechanisms and pathways that merit future research.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98105, USA
| | - Jacquelyn R. Bedsaul-Fryer
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
- Department of International Health (Human Nutrition), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kerry J. Schulze
- Department of International Health (Human Nutrition), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Gwen Sincerbeaux
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah Baker
- Department of International Health (Human Nutrition), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Lee SF Wu
- Department of International Health (Human Nutrition), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | - James D. Yager
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Luigi M. De Luca
- Department of International Health (Human Nutrition), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Keith P. West
- Department of International Health (Human Nutrition), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Hou L, Du J, Dong Y, Wang M, Wang L, Zhao J. Liraglutide prevents cellular senescence in human retinal endothelial cells (HRECs) mediated by SIRT1: an implication in diabetes retinopathy. Hum Cell 2024; 37:666-674. [PMID: 38438663 PMCID: PMC11016519 DOI: 10.1007/s13577-024-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/24/2024] [Indexed: 03/06/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder affecting millions of people worldwide, characterized by dysregulated glucose homeostasis and hyperglycemia. Diabetic retinopathy (DR) is one of the serious multisystemic complications. Aging is an important risk factor for DR. Endothelial sirtuin 1 (SIRT1) plays an important role in regulating the pathophysiology of glucose metabolism, cellular senescence, and aging. Liraglutide, an analog of Glucagon-like peptide 1 (GLP-1), has been widely used in the treatment of DM. However, the effects of Liraglutide on DR are less reported. Here, we investigated whether treatment with Liraglutide has beneficial effects on high glucose (HG)-induced injury in human retinal microvascular endothelial cells (HRECs). First, we found that exposure to HG reduced the expression of glucagon-like peptide 1 receptor 1 (GLP-1R). Additionally, Liraglutide ameliorated HG-induced increase in the expression of vascular endothelial growth factor-A (VEGF-A) and interleukin 6 (IL-6). Importantly, Liraglutide ameliorated cellular senescence and increased telomerase activity in HG-challenged HRECs. Liraglutide also reduced the levels of p53 and p21. Mechanistically, Liraglutide restored the expression of SIRT1 against HG. In contrast, the knockdown of SIRT1 abolished the protective effects of Liraglutide in cellular senescence of HRECs. Our findings suggest that Liraglutide might possess a benefit on DR mediated by SIRT1.
Collapse
Affiliation(s)
- Lihua Hou
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China
| | - Jianying Du
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China
| | - Yongxiao Dong
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China
| | - Min Wang
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China
| | - Libo Wang
- Department of Ophthalmology, Sanyuan Eye Hospital, Xianyang City, 713899, Shanxi, China
| | - Jifei Zhao
- Department of Ophthalmology, The First People's Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, Xianyang City, 712000, Shanxi, China.
| |
Collapse
|
8
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
9
|
Sandforth L, Brachs S, Reinke J, Willmes D, Sancar G, Seigner J, Juarez-Lopez D, Sandforth A, McBride JD, Ma JX, Haufe S, Jordan J, Birkenfeld AL. Role of human Kallistatin in glucose and energy homeostasis in mice. Mol Metab 2024; 82:101905. [PMID: 38431218 PMCID: PMC10937158 DOI: 10.1016/j.molmet.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Leontine Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Julia Reinke
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Diana Willmes
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Gencer Sancar
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Judith Seigner
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - David Juarez-Lopez
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Arvid Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeffrey D McBride
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sven Haufe
- Department of Rehabilitation and Sports Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany; Department of Diabetes, Life Sciences & Medicine, Cardiovascular Medicine & Life Sciences, King's College London, UK.
| |
Collapse
|
10
|
Park Y, Lee HJ, Sim DY, Park JE, Ahn CH, Park SY, Lee YC, Shim BS, Kim B, Kim SH. Inhibition of glycolysis and SIRT1/GLUT1 signaling ameliorates the apoptotic effect of Leptosidin in prostate cancer cells. Phytother Res 2024; 38:1235-1244. [PMID: 38176954 DOI: 10.1002/ptr.8115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Since the silent information regulation 2 homolog-1 (sirtuin, SIRT1) and glucose transporter 1 (GLUT1) are known to modulate cancer cell metabolism and proliferation, the role of SIRT1/GLUT1 signaling was investigated in the apoptotic effect of Leptosidin from Coreopsis grandiflora in DU145 and PC3 human prostate cancer (PCa) cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis, Western blotting, cBioportal correlation analysis, and co-immunoprecipitation were used in this work. Leptosidin showed cytotoxicity, augmented sub-G1 population, and abrogated the expression of pro-poly (ADP-ribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (pro-caspase3) in DU145 and PC3 cells. Also, Leptosidin inhibited the expression of SIRT1, GLUT1, pyruvate kinase isozymes M2 (PKM2), Hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA) in DU145 and PC3 cells along with disrupted binding of SIRT1 and GLUT1. Consistently, Leptosidin curtailed lactate, glucose, and ATP in DU145 and PC3 cells. Furthermore, SIRT1 depletion enhanced the decrease of GLUT1, LDHA, and pro-Cas3 by Leptosidin in treated DU145 cells, while pyruvate suppressed the ability of Leptosidin in DU145 cells. These findings suggest that Leptosidin induces apoptosis via inhibition of glycolysis and SIRT1/GLUT1 signaling axis in PCa cells.
Collapse
Affiliation(s)
- Youngsang Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yu-Chan Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
11
|
Kim H, Suh GJ, Kwon WY, Kim KS, Jung YS, Kim T, Park H. Kallistatin deficiency exacerbates neuronal damage after cardiac arrest. Sci Rep 2024; 14:4279. [PMID: 38383562 PMCID: PMC10881987 DOI: 10.1038/s41598-024-54415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
The purpose of study was to evaluate that kallistatin deficiency causes excessive production of reactive oxygen species and exacerbates neuronal injury after cardiac arrest. For in vitro study, kallistatin knockdown human neuronal cells were given ischemia-reperfusion injury, and the oxidative stress and apoptosis were evaluated. For clinical study, cardiac arrest survivors admitted to the ICU were divided into the good (CPC 1-2) and poor (CPC 3-5) 6-month neurological outcome groups. The serum level of kallistatin, Nox-1, H2O2 were measured. Nox-1 and H2O2 levels were increased in the kallistatin knockdown human neuronal cells with ischemia-reperfusion injury (p < 0.001) and caspase-3 was elevated and apoptosis was promoted (SERPINA4 siRNA: p < 0.01). Among a total of 62 cardiac arrest survivors (16 good, 46 poor), serum kallistatin were lower, and Nox-1 were higher in the poor neurological group at all time points after admission to the ICU (p = 0.013 at admission; p = 0.020 at 24 h; p = 0.011 at 72 h). At 72 h, H2O2 were higher in the poor neurological group (p = 0.038). Kallistatin deficiency exacerbates neuronal ischemia-reperfusion injury and low serum kallistatin levels were associated with poor neurological outcomes in cardiac arrest survivors.
Collapse
Affiliation(s)
- Hayoung Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yoon Sun Jung
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Taegyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heesu Park
- Department of Emergency Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
12
|
Luo X, Ye Z, Xu C, Chen H, Dai S, Chen W, Bao G. Corosolic acid enhances oxidative stress-induced apoptosis and senescence in pancreatic cancer cells by inhibiting the JAK2/STAT3 pathway. Mol Biol Rep 2024; 51:176. [PMID: 38252208 DOI: 10.1007/s11033-023-09105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Pancreatic cancer (PC) is a fatal human malignancy with a poor prognosis. Corosolic acid (CRA) is a triterpenoid, has been reported to have inhibitory effects on tumor growth. However, the role of CRA on PC has not been explored. Here, we aimed to uncover the molecular mechanisms of CRA in PC progression. METHODS Cell viability, lactate dehydrogenase (LDH) release, cell apoptosis and senescence were detected by cell counting kit-8 (CCK-8), LDH, flow cytometry and senescence associated-β-galactosidase (SA-β-gal) assay. Levels of relevant proteins and oxidative stress (OS) markers were evaluated by Western blot and enzyme-linked immunosorbent assay (ELISA). A xenograft tumor model was established to explore the in vivo effects of CRA on PC. RESULTS We found that CRA inhibited PC cell viability and promoted LDH release in a dose-dependent manner, but had no significant effect on human normal pancreatic ductal epithelial cells HPDE6C7. CRA increased OS-induced cell apoptosis and senescence in HAPC and SW1990 cells. And CRA decreased the levels of anti-apoptotic protein Bcl-2, and elevated the expression of pro-apoptotic protein Bax and senescence-associated proteins P21 and P53. Besides, CRA decreased tumor growth in xenograft models. Furthermore, CRA inactivated the Janus kinase-2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) signaling pathway in HAPC and SW1990 cells. Functional experiments demonstrated that activation of the JAK2/STAT3 pathway by the JAK2 activator coumermycin A1 (C-A1) or the STAT3 activator colivelin (col) reduced the contribution effect of OS, apoptosis and senescence by CRA. CONCLUSION Taken together, our findings indicated that CRA exerted anti-cancer effects in PC by inhibiting the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Xu Luo
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Zhengchen Ye
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Chenglei Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Huan Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Shupeng Dai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Weihong Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China
| | - Guoqing Bao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
13
|
Vu L, Garcia‐Mansfield K, Pompeiano A, An J, David‐Dirgo V, Sharma R, Venugopal V, Halait H, Marcucci G, Kuo Y, Uechi L, Rockne RC, Pirrotte P, Bowser R. Proteomics and mathematical modeling of longitudinal CSF differentiates fast versus slow ALS progression. Ann Clin Transl Neurol 2023; 10:2025-2042. [PMID: 37646115 PMCID: PMC10647001 DOI: 10.1002/acn3.51890] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with a complex etiology that lacks biomarkers predicting disease progression. The objective of this study was to use longitudinal cerebrospinal fluid (CSF) samples to identify biomarkers that distinguish fast progression (FP) from slow progression (SP) and assess their temporal response. METHODS We utilized mass spectrometry (MS)-based proteomics to identify candidate biomarkers using longitudinal CSF from a discovery cohort of SP and FP ALS patients. Immunoassays were used to quantify and validate levels of the top biomarkers. A state-transition mathematical model was created using the longitudinal MS data that also predicted FP versus SP. RESULTS We identified a total of 1148 proteins in the CSF of all ALS patients. Pathway analysis determined enrichment of pathways related to complement and coagulation cascades in FPs and synaptogenesis and glucose metabolism in SPs. Longitudinal analysis revealed a panel of 59 candidate markers that could segregate FP and SP ALS. Based on multivariate analysis, we identified three biomarkers (F12, RBP4, and SERPINA4) as top candidates that segregate ALS based on rate of disease progression. These proteins were validated in the discovery and a separate validation cohort. Our state-transition model determined that the overall variance of the proteome over time was predictive of the disease progression rate. INTERPRETATION We identified pathways and protein biomarkers that distinguish rate of ALS disease progression. A mathematical model of the CSF proteome determined that the change in entropy of the proteome over time was predictive of FP versus SP.
Collapse
Affiliation(s)
- Lucas Vu
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| | - Krystine Garcia‐Mansfield
- Cancer & Cell Biology DivisionTranslational Genomics Research InstitutePhoenixArizona85004USA
- Integrated Mass Spectrometry, City of Hope Comprehensive Cancer CenterDuarteCalifornia19050USA
| | - Antonio Pompeiano
- International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jiyan An
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| | - Victoria David‐Dirgo
- Integrated Mass Spectrometry, City of Hope Comprehensive Cancer CenterDuarteCalifornia19050USA
| | - Ritin Sharma
- Cancer & Cell Biology DivisionTranslational Genomics Research InstitutePhoenixArizona85004USA
- Integrated Mass Spectrometry, City of Hope Comprehensive Cancer CenterDuarteCalifornia19050USA
| | - Vinisha Venugopal
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| | - Harkeerat Halait
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| | - Guido Marcucci
- Department of Hematologic Malignances Translational Science, Gehr Family Center for Leukemia ResearchBeckman Research Institute, City of Hope Medical CenterDuarteCalifornia91010USA
| | - Ya‐Huei Kuo
- Department of Hematologic Malignances Translational Science, Gehr Family Center for Leukemia ResearchBeckman Research Institute, City of Hope Medical CenterDuarteCalifornia91010USA
| | - Lisa Uechi
- Department of Computational and Quantitative MedicineBeckman Research Institute, City of Hope Medical CenterDuarteCalifornia91010USA
| | - Russell C. Rockne
- Department of Computational and Quantitative MedicineBeckman Research Institute, City of Hope Medical CenterDuarteCalifornia91010USA
| | - Patrick Pirrotte
- Cancer & Cell Biology DivisionTranslational Genomics Research InstitutePhoenixArizona85004USA
- Integrated Mass Spectrometry, City of Hope Comprehensive Cancer CenterDuarteCalifornia19050USA
| | - Robert Bowser
- Department of Translational NeuroscienceBarrow Neurological InstitutePhoenixArizona85013USA
| |
Collapse
|
14
|
Xiang Y, Zhou Z, Zhu L, Li C, Luo Y, Zhou J. Omentin-1 enhances the inhibitory effect of endothelial progenitor cells on neointimal hyperplasia by inhibiting the p38 MAPK/CREB pathway. Life Sci 2023; 331:122061. [PMID: 37652153 DOI: 10.1016/j.lfs.2023.122061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
AIMS Endothelial progenitor cells (EPCs) play an important role in vascular repair. However, they are dysfunctional in the inflammatory microenvironment during restenosis. In this study, we investigated whether omentin-1, an anti-inflammatory factor, could reduce neointima formation after carotid artery injury (CAI) in rats by improving EPC functions that were damaged by inflammation and the underlying mechanisms. MAIN METHODS EPCs were transfected with adenoviral vectors expressing human omentin-1 or green fluorescent protein (GFP). Then, the rats received 2 × 106 EPCs expressing omentin-1 or GFP by tail vein injection directly after CAI and again 24 h later. Hematoxylin-eosin staining and immunohistochemistry were used for analyzing neointimal hyperplasia. Besides, EPCs were treated with omentin-1 and TNF-α to examine the underlying mechanism. KEY FINDINGS Our results showed that omentin-1 could significantly improve EPC functions, including proliferation, apoptosis and tube formation. Meanwhile, EPCs overexpressed with omentin-1 could significantly reduce neointimal hyperplasia and tumor necrosis factor-α (TNF-α) expression after CAI in rats. TNF-α could notably induce EPC dysfunction, which could be markedly reversed by omentin-1 through the inhibition of the p38 MAPK/CREB pathway. Furthermore, a p38 MAPK agonist (anisomycin) significantly abrogated the protective effects of omentin-1 on EPCs damaged by TNF-α. SIGNIFICANCE Our results indicated that genetically modifying EPC with omentin-1 could be an alternative strategy for the treatment of restenosis.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengshi Zhou
- Department of Laboratory Animal, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Lingping Zhu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chuanchang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ying Luo
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jipeng Zhou
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
15
|
Wang X, Dai S, Zheng W, Chen W, Li J, Chen X, Zhou S, Yang R. Identification and verification of ferroptosis-related genes in diabetic foot using bioinformatics analysis. Int Wound J 2023; 20:3191-3203. [PMID: 37249237 PMCID: PMC10502281 DOI: 10.1111/iwj.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023] Open
Abstract
Ferroptosis is a novel form of cell death that plays a key role in several diseases, including inflammation and tumours; however, the role of ferroptosis-related genes in diabetic foot remains unclear. Herein, diabetic foot-related genes were downloaded from the Gene Expression Omnibus and the ferroptosis database (FerrDb). The least absolute shrinkage and selection operator regression algorithm was used to construct a related risk model, and differentially expressed genes were analysed through immune infiltration. Finally, we identified relevant core genes through a protein-protein interaction network, subsequently verified using immunohistochemistry. Comprehensive analysis showed 198 genes that were differentially expressed during ferroptosis. Based on functional enrichment analysis, these genes were primarily involved in cell response, chemical stimulation, and autophagy. Using the CIBERSORT algorithm, we calculated the immune infiltration of 22 different types of immune cells in diabetic foot and normal tissues. The protein-protein interaction network identified the hub gene TP53, and according to immunohistochemistry, the expression of TP53 was high in diabetic foot tissues but low in normal tissues. Accordingly, we identified the ferroptosis-related gene TP53 in the diabetic foot, which may play a key role in the pathogenesis of diabetic foot and could be used as a potential biomarker.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- The First Clinical Medical CollegeGuangdong Medical UniversityZhanjiangChina
| | - Shangtai Dai
- Medical schoolKunming University of Science and Technology, The First People's Hospital of Yunnan ProvinceKunmingChina
| | - Wenlian Zheng
- The First Clinical Medical CollegeGuangdong Medical UniversityZhanjiangChina
| | - Wentao Chen
- The First Clinical Medical CollegeGuangdong Medical UniversityZhanjiangChina
| | - Jiehua Li
- Department of DermatologyThe First People's Hospital of FoshanFoshanChina
| | - Xiaodong Chen
- Department of Burn Surgery and Skin RegenerationThe First People's Hospital of FoshanFoshanChina
| | - Sitong Zhou
- Department of DermatologyThe First People's Hospital of FoshanFoshanChina
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's HospitalSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
16
|
Hong WM, Xie YW, Zhao MY, Yu TH, Wang LN, Xu WY, Gao S, Cai HB, Guo Y, Zhang F. Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca 2+-Activated K + Channels. Neural Plast 2023; 2023:5545205. [PMID: 37609123 PMCID: PMC10442186 DOI: 10.1155/2023/5545205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Hyperoside (Hyp), a kind of Chinese herbal medicine, exerts multiple therapeutic effects on many diseases. However, the role and mechanisms of Hyp in vascular pathophysiology in ischemic stroke need to be further established. The study aimed to investigate the role of (large-conductance Ca2+-activated K+) BK channels on the vasoprotection of Hyp against cerebral ischemia and reperfusion (I/R) injury in rats. The concentration gradient of Hyp was pretreated in both the middle cerebral artery occlusion and reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary vascular smooth muscle cells (VSMCs) in rats. A series of indicators were detected, including neurological deficit score, infarct volume, malondialdehyde (MDA), superoxide dismutase (SOD), cerebral blood flow (CBF), cell viability, membrane potential, and BK channels α- and β1-subunits expression. The results showed that Hyp significantly reduced infarct volume and ameliorated neurological dysfunction in I/R-injured rats. Besides, the effects of I/R-induced reduction of BK channels α- and β1-subunits expression were significantly reversed by Hyp in endothelial-denudated cerebral basilar arteries. Furthermore, the protective effect against I/R-induced increases of MDA and reduction of SOD as well as CBF induced by Hyp was significantly reversed by iberiotoxin (IbTX). In OGD/R-injured VSMCs, downregulated cellular viability and BK channels β1-subunits expression were remarkably reversed by Hyp. However, neither OGD/R nor Hyp affected BK channels α-subunits expression, and Hyp failed to induced hyperpolarization of VSMCs. Moreover, the protective effect against OGD/R-induced reduction of cell viability and SOD level and increases of MDA production induced by Hyp was significantly reversed by IbTX in VSMCs. The study indicates that Hyp has the therapeutic potential to improve vascular outcomes, and the mechanism is associated with suppressing oxidative stress and improving CBF through upregulating BK channels.
Collapse
Affiliation(s)
- Wen-Ming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- School of Nursing, Anhui Medical University, Hefei 230032, China
- Open Project of Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yue-Wu Xie
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Meng-Yu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Tian-Hang Yu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li-Na Wang
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Wan-Yan Xu
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Shen Gao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hua-Bao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yan Guo
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Fang Zhang
- School of Nursing, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
17
|
Luo L, Dong B, Zhang J, Qiu Y, Liu X, Zhou Z, He J, Zhang X, Chen L, Xia W. Dapagliflozin restores diabetes-associated decline in vasculogenic capacity of endothelial progenitor cells via activating AMPK-mediated inhibition of inflammation and oxidative stress. Biochem Biophys Res Commun 2023; 671:205-214. [PMID: 37302296 DOI: 10.1016/j.bbrc.2023.05.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) provide added vascular protection beyond glucose lowering to patients with type 2 diabetes mellitus (T2DM). Endothelial progenitor cells (EPCs) are an important endogenous repair mechanism for diabetic vascular complications. Yet, whether SGLT2i protect vessels in diabetic patients by improving the function of EPCs remains to be elucidated. Here we enrolled Sixty-three T2DM patients and 60 healthy participants and 15 of T2DM group took dapagliflozin for 3 months. Retinal capillary density (RCD) was examined before and after meditation. Moreover, vasculogenic capacity of EPCs cocultured with or without dapagliflozin in vitro and in vivo (hind limb ischemia model) were assessed. Mechanically, genes related to inflammation/oxidative stress, and the AMPK signaling of EPCs were determined. Our results found T2DM demonstrated a declined RCD and a decreased number of circulating EPCs compared with healthy controls. Compared with the EPCs from healthy individuals, vasculogenic capacity of T2DM EPCs was significantly impaired, which could be restored by dapagliflozin meditation or dapagliflozin coculture. Increased expression of inflammation correlative genes and decreased anti-oxidative stress related genes expression were found in EPCs form T2DM, which were accompanied with reduced phosphorylation level of AMPK. Dapagliflozin treatment activated AMPK signaling, decreased the level of inflammation and oxidative stress, and rescued vasculogenic capacity of EPCs from T2DM. Furthermore, AMPK inhibitor pretreatment diminished the enhancement vasculogenic capacity of diabetic EPCs from dapagliflozin treatment. This study demonstrates for the first time that dapagliflozin restores vasculogenic capacity of EPCs via activating AMPK-mediated inhibition of inflammation and oxidative stress in T2DM.
Collapse
Affiliation(s)
- Lifang Luo
- Department of dermatology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Bing Dong
- Department of Hypertension and Vascular Disease, The Eight Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Jianning Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Yumin Qiu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Xiaolin Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Zhe Zhou
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Jiang He
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China
| | - Xiaoyu Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China.
| | - Long Chen
- The Geriatrics Department, Shenzhen Hospital of Southern Medical University, Shenzhen, 510086, China.
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, China; Key Laboratory on Assisted Circulation Ministry of Health, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
19
|
Chen B, Chen L, Yang Z, Fu Q, Li X, Cao C. Acute Aluminum Sulfate Triggers Inflammation and Oxidative Stress, Inducing Tissue Damage in the Kidney of the Chick. Biol Trace Elem Res 2023; 201:1442-1450. [PMID: 35551605 DOI: 10.1007/s12011-022-03260-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
In this study, a total of 20 7-day-old chicks were randomly divided into an experimental group and a control group. The experimental group was administered aluminum sulfate (Al2(SO4)3) once by gavage, and the control group was sacrificed after 24 h of fasting with distilled water. Serum and kidney tissue samples from both groups were collected and compared using hematoxylin-eosin staining (H&E) and microscopy. The Paller scores increased (p < 0.01) for biochemical kidney function, redox-related indicators, and mRNA expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) downstream related genes. The results showed that in the kidneys of the experimental group, renal tubular epithelial cells appeared to swell, and there was necrosis and shedding; the blood urea nitrogen (BUN) and uric acid (UA) decreased, serum creatinine (CREA) increased; nitric oxide (NO), glutathione (GSH), and malondialdehyde (MDA) contents increased; NO synthase (NOS), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) enzyme activities increased; tumor necrosis factor alpha (TNF-α), tumor necrosis factor receptor 1 (TNF-R1), tumor necrosis factor receptor 2 (TNF -R2), cyclooxygenase-2 (COX-2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and heme oxygenase-1 (HO-1) mRNA expression levels increased (p < 0.05 or p < 0.01); Nrf2, glutathione S-transferase A3 (GSTA3), glutathione-S-transferase mu-1 (GSTM1), glutathione synthetase (GSS), glutamate cysteine ligase (GCLC and GCLM), quinone oxidoreductase 1 (NQO1), and Kelch-like ECH-associated protein 1 (Keap1) mRNA expression levels decreased (p < 0.05 or p < 0.01) compared to the control group. Acute aluminum poisoning can cause obvious pathological changes in the structure of the kidney tissue of the chick, resulting in damage to the kidney function, as well as triggering inflammation and oxidative stress in the kidney.
Collapse
Affiliation(s)
- Bo Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Lina Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Zhiqing Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Xinran Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
- Foshan University Veterinary Teaching Hospital, Foshan, Guangdong, 528231, People's Republic of China.
| | - Changyu Cao
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
| |
Collapse
|
20
|
MicroRNA Changes Up to 24 h following Induced Hypoglycemia in Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms232314696. [PMID: 36499023 PMCID: PMC9736413 DOI: 10.3390/ijms232314696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Hypoglycemia, as a complication of type 2 diabetes (T2D), causes increased morbidity and mortality but the physiological response underlying hypoglycemia has not been fully elucidated. Small noncoding microRNA (miRNA) have multiple downstream biological effects. This pilot exploratory study was undertaken to determine if induced miRNA changes would persist and contribute to effects seen 24 h post-hypoglycemia. A parallel, prospective study design was employed, involving T2D (n = 23) and control (n = 23) subjects. The subjects underwent insulin-induced hypoglycemia (2 mmol/L; 36 mg/dL); blood samples were drawn at baseline, upon the induction of hypoglycemia, and 4 h and 24 h post-hypoglycemia, with a quantitative polymerase chain reaction analysis of miRNA undertaken. The baseline miRNAs did not differ. In the controls, 15 miRNAs were downregulated and one was upregulated (FDR < 0.05) from the induction of hypoglycemia to 4 h later while, in T2D, only four miRNAs were altered (downregulated), and these were common to both cohorts (miR-191-5p; miR-143-3p; let-7b-5p; let-7g-5p), correlated with elevated glucagon levels, and all were associated with energy balance. From the induction of hypoglycemia to 24 h, 14 miRNAs were downregulated and 5 were upregulated (FDR < 0.05) in the controls; 7 miRNAs were downregulated and 7 upregulated (FDR < 0.05) in T2D; a total of 6 miRNAs were common between cohorts, 5 were downregulated (miR-93-5p, let-7b-5p, miR-191-5p, miR-185-5p, and miR-652-3p), and 1 was upregulated (miR-369-3p). An ingenuity pathway analysis indicated that many of the altered miRNAs were associated with metabolic and coagulation pathways; however, of the inflammatory proteins expressed, only miR-143-3p at 24 h correlated positively with tumor necrosis factor-α (TNFa; p < 0.05 and r = 0.46) and negatively with toll-like receptor-4 (TLR4; p < 0.05 and r = 0.43). The MiRNA levels altered by hypoglycemia reflected changes in counter-regulatory glucagon and differed between cohorts, and their expression at 24 h suggests miRNAs may potentiate and prolong the physiological response. Trial registration: ClinicalTrials.gov NCT03102801.
Collapse
|
21
|
Arakawa N, Matsuyama S, Matsuoka M, Kitamura I, Miyashita K, Kitagawa Y, Imai K, Ogawa K, Maeda T, Saito Y, Hasegawa C. Serum stratifin and presepsin as candidate biomarkers for early detection of COVID-19 disease progression. J Pharmacol Sci 2022; 150:21-30. [PMID: 35926945 PMCID: PMC9188980 DOI: 10.1016/j.jphs.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 01/08/2023] Open
Abstract
The prognosis of patients with severe cases of COVID-19 is poor; thus, biomarkers for earlier prediction of COVID-19 progression are vital. We measured levels of five lung injury-related biomarkers, SP-D, KL-6, presepsin, kallistatin and stratifin, in serum samples collected serially during hospitalization from 31 patients with mild/moderate or severe/critical COVID-19 pneumonia, and their predictive performances were compared. Like the previously reported presepsin, a new biomarker candidate, stratifin, was significantly elevated with the onset of severe or critical symptoms in COVID-19 patients and decreased with symptom improvement. Notably, changes in stratifin and presepsin levels were distinctly earlier than those in SP-D, KL-6 and even SpO2/FiO2 values. Furthermore, serum levels of these biomarkers were significantly higher at the pre-severe stage (before the start of oxygen support) of patients who eventually advanced to severe/critical stages than in the patients who remained at the mild/moderate stage. These results were confirmed in an independent cohort, including 71 mild/moderate and 14 severe/critical patients, for whom the performance of stratifin and presepsin in discriminating between mild/moderate and pre-severe conditions of COVID-19 patients was superior to that of the SpO2/FiO2 ratio. Therefore, we concluded that stratifin and presepsin could be used as prognostic biomarkers for severe COVID-19 progression.
Collapse
|
22
|
Tai GJ, Yu QQ, Li JP, Wei W, Ji XM, Zheng RF, Li XX, Wei L, Xu M. NLRP3 inflammasome links vascular senescence to diabetic vascular lesions. Pharmacol Res 2022; 178:106143. [PMID: 35219871 DOI: 10.1016/j.phrs.2022.106143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
Abstract
Vascular senescence is inextricably linked to the onset and progression of cardiovascular diseases (CVDs), which are the main cause of mortality in people with Type 2 diabetes (T2DM). Previous studies have emphasized the importance of chronic aseptic inflammation in diabetic vasculopathy. Here, we found the abnormal activation of NLRP3 inflammasome in the aorta of both old and T2DM mice by immunofluorescence and Western Blot analysis. Histopathological and isometry tension analysis showed that the presence of T2DM triggered or aggravated the increase of vascular aging markers, as well as age-associated vascular impairment and vasomotor dysfunction, which were improved by NLRP3 deletion or inhibition. Differential expression of aortic genes links to senescence activation and vascular remodeling supports the favorable benefits of NLRP3-/- during T2DM. In vitro results based on primary mice aortic endothelial cells (MAECs) and vascular smooth muscle cells (VSMCs) demonstrate that NLRP3 deficiency attenuated premature senescence and restored proliferation and migration capability under-stimulation, and partially ameliorated replicative senescence. These results provide an insight into the critical role of NLRP3 signaling in T2DM-induced vascular aging and loss of vascular homeostasis, and provide the possibility that targeting NLRP3 inflammasome might be a promising strategy to prevent diabetic vascular senescence and associated vascular lesions.
Collapse
Affiliation(s)
- Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qing-Qing Yu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Man Ji
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rui-Fang Zheng
- Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, Urumchi, Xinjiang 830004, China
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Li Wei
- Department of Practice and Policy, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
23
|
El-Hefnawy SM, Kasemy ZA, Eid HA, Elmadbouh I, Mostafa RG, Omar TA, Kasem HE, Ghonaim EM, Ghonaim MM, Saleh AA. Potential impact of serpin peptidase inhibitor clade (A) member 4 SERPINA4 (rs2093266) and SERPINA5 (rs1955656) genetic variants on COVID-19 induced acute kidney injury. Meta Gene 2022:101023. [PMID: 35291551 PMCID: PMC8915573 DOI: 10.1016/j.mgene.2022.101023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background SARS-CoV-2 has a number of targets, including the kidneys. Acute Kidney Injury (AKI) might develop in up to a quarter of SARS-CoV-2 patients. In the clinical environment, AKI is linked to a high rate of death and leads to the progression of AKI to chronic renal disease. Aim We aimed to investigate rs2093266 and rs1955656 polymorphisms in SERPINA4 and SERPINA5 genes, respectively, as risk factors for COVID-19 induced AKI. Subjects and methods A case-control study included 227 participants who were divided into three groups: 81 healthy volunteers who served as controls, 76 COVID-19 patients without AKI and 70 COVID -19 patients with AKI. The TaqMan assay was used for genotyping the SERPINA4 (rs2093266) and SERPINA5 (rs1955656) polymorphisms by real-time PCR technique. Results Lymphocytes and eGFR showed a significantly decreasing trend across the three studied groups, while CRP, d-Dimer, ferritin, creatinine, KIM-1and NGAL showed a significantly increasing trend across the three studied groups (P < 0.001). Rs2093266 (AG and AA) genotypes were significant risk factors among non-AKI and AKI groups in comparison to controls. Rs1955656 (AG and AA) were significant risk factors among the AKI group, while AA was the only significant risk factor among the non-AKI group. Recessive, dominant, co-dominant, and over-dominant models for genotype combinations were demonstrated. The GG v AA, GG + AG v AA, and GG v AG + AA models of the rs2093266 were all significant predictors of AKI, whilst only the GG v AA model of the rs1955656 SNP was a significant predictor. The logistic regression model was statistically significant, χ2 = 56.48, p < 0.001. AKI was associated with progressed age (OR = 0.95, 95% CI: 0.91–0.98, p = 0.006), suffering from chronic diseases (OR = 3.25, 95% CI: 1.31–8.01, p = 0.010), increased BMI (OR = 0.89, 95% CI: 0.81–0.98, p = 0.018), immunosuppressive (OR = 4.61, 95% CI: 1.24–17.16, p = 0.022) and rs2093266 (AG + AA) (OR = 3.0, 95% CI: 1.11–8.10, p = 0.030). Conclusion Single nucleotide polymorphisms (rs2093266) at SERPINA4 gene and (rs1955656) at SERPINA5 gene were strongly linked to the development of AKI in COVID-19 patients.
Collapse
|
24
|
Demichev V, Tober-Lau P, Nazarenko T, Lemke O, Kaur Aulakh S, Whitwell HJ, Röhl A, Freiwald A, Mittermaier M, Szyrwiel L, Ludwig D, Correia-Melo C, Lippert LJ, Helbig ET, Stubbemann P, Olk N, Thibeault C, Grüning NM, Blyuss O, Vernardis S, White M, Messner CB, Joannidis M, Sonnweber T, Klein SJ, Pizzini A, Wohlfarter Y, Sahanic S, Hilbe R, Schaefer B, Wagner S, Machleidt F, Garcia C, Ruwwe-Glösenkamp C, Lingscheid T, Bosquillon de Jarcy L, Stegemann MS, Pfeiffer M, Jürgens L, Denker S, Zickler D, Spies C, Edel A, Müller NB, Enghard P, Zelezniak A, Bellmann-Weiler R, Weiss G, Campbell A, Hayward C, Porteous DJ, Marioni RE, Uhrig A, Zoller H, Löffler-Ragg J, Keller MA, Tancevski I, Timms JF, Zaikin A, Hippenstiel S, Ramharter M, Müller-Redetzky H, Witzenrath M, Suttorp N, Lilley K, Mülleder M, Sander LE, Kurth F, Ralser M. A proteomic survival predictor for COVID-19 patients in intensive care. PLOS DIGITAL HEALTH 2022; 1:e0000007. [PMID: 36812516 PMCID: PMC9931303 DOI: 10.1371/journal.pdig.0000007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely ill COVID-19 patients. Additional tools are also needed to monitor treatment, including experimental therapies in clinical trials. Comprehensively capturing human physiology, we speculated that proteomics in combination with new data-driven analysis strategies could produce a new generation of prognostic discriminators. We studied two independent cohorts of patients with severe COVID-19 who required intensive care and invasive mechanical ventilation. SOFA score, Charlson comorbidity index, and APACHE II score showed limited performance in predicting the COVID-19 outcome. Instead, the quantification of 321 plasma protein groups at 349 timepoints in 50 critically ill patients receiving invasive mechanical ventilation revealed 14 proteins that showed trajectories different between survivors and non-survivors. A predictor trained on proteomic measurements obtained at the first time point at maximum treatment level (i.e. WHO grade 7), which was weeks before the outcome, achieved accurate classification of survivors (AUROC 0.81). We tested the established predictor on an independent validation cohort (AUROC 1.0). The majority of proteins with high relevance in the prediction model belong to the coagulation system and complement cascade. Our study demonstrates that plasma proteomics can give rise to prognostic predictors substantially outperforming current prognostic markers in intensive care.
Collapse
Affiliation(s)
- Vadim Demichev
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
- The University of Cambridge, Department of Biochemistry and Cambridge Centre for Proteomics, Cambridge, United Kingdom
| | - Pinkus Tober-Lau
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Tatiana Nazarenko
- University College London, Department of Mathematics, London, United Kingdom
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
| | - Oliver Lemke
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Simran Kaur Aulakh
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Harry J. Whitwell
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Lobachevsky University, Laboratory of Systems Medicine of Healthy Ageing, Nizhny Novgorod, Russia
- Imperial College London, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, London, United Kingdom
| | - Annika Röhl
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Anja Freiwald
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Mirja Mittermaier
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Lukasz Szyrwiel
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Daniela Ludwig
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Clara Correia-Melo
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Lena J. Lippert
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Elisa T. Helbig
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Paula Stubbemann
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Nadine Olk
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Charlotte Thibeault
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Nana-Maria Grüning
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| | - Oleg Blyuss
- Lobachevsky University, Department of Applied Mathematics, Nizhny Novgorod, Russia
- University of Hertfordshire, School of Physics, Astronomy and Mathematics, Hatfield, United Kingdom
- Sechenov First Moscow State Medical University, Department of Paediatrics and Paediatric Infectious Diseases, Moscow, Russia
| | - Spyros Vernardis
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Matthew White
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Christoph B. Messner
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| | - Michael Joannidis
- Medical University Innsbruck, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Innsbruck, Austria
| | - Thomas Sonnweber
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Sebastian J. Klein
- Medical University Innsbruck, Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Innsbruck, Austria
| | - Alex Pizzini
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Yvonne Wohlfarter
- Medical University of Innsbruck, Institute of Human Genetics, Innsbruck, Austria
| | - Sabina Sahanic
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Richard Hilbe
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Benedikt Schaefer
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Sonja Wagner
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Felix Machleidt
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Carmen Garcia
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Christoph Ruwwe-Glösenkamp
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Tilman Lingscheid
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Laure Bosquillon de Jarcy
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Miriam S. Stegemann
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Moritz Pfeiffer
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Linda Jürgens
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Sophy Denker
- Charité–Universitätsmedizin Berlin, Medical Department of Hematology, Oncology & Tumor Immunology, Virchow Campus & Molekulares Krebsforschungszentrum, Berlin, Germany
| | - Daniel Zickler
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Claudia Spies
- Charité–Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care, Berlin, Germany
| | - Andreas Edel
- Charité–Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care, Berlin, Germany
| | - Nils B. Müller
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Philipp Enghard
- Charité–Universitätsmedizin Berlin, Department of Nephrology and Internal Intensive Care Medicine, Berlin, Germany
| | - Aleksej Zelezniak
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
- Chalmers University of Technology, Department of Biology and Biological Engineering, Gothenburg, Sweden
| | - Rosa Bellmann-Weiler
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Günter Weiss
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Archie Campbell
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
- University of Edinburgh, Usher Institute, Edinburgh, United Kingdom
| | - Caroline Hayward
- University of Edinburgh, MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, United Kingdom
| | - David J. Porteous
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
- University of Edinburgh, Usher Institute, Edinburgh, United Kingdom
| | - Riccardo E. Marioni
- University of Edinburgh, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, United Kingdom
| | - Alexander Uhrig
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Heinz Zoller
- Medical University of Innsbruck, Christian Doppler Laboratory for Iron and Phosphate Biology, Department of Internal Medicine I, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - Markus A. Keller
- Medical University of Innsbruck, Institute of Human Genetics, Innsbruck, Austria
| | - Ivan Tancevski
- Medical University of Innsbruck, Department of Internal Medicine II, Innsbruck, Austria
| | - John F. Timms
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
| | - Alexey Zaikin
- University College London, Department of Mathematics, London, United Kingdom
- University College London, Department of Women’s Cancer, EGA Institute for Women’s Health, London, United Kingdom
- Lobachevsky University, Laboratory of Systems Medicine of Healthy Ageing, Nizhny Novgorod, Russia
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stefan Hippenstiel
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Michael Ramharter
- Bernhard Nocht Institute for Tropical Medicine, Department of Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Department of Medicine, Hamburg, Germany
| | - Holger Müller-Redetzky
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
| | - Martin Witzenrath
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Norbert Suttorp
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | - Kathryn Lilley
- The University of Cambridge, Department of Biochemistry and Cambridge Centre for Proteomics, Cambridge, United Kingdom
| | - Michael Mülleder
- Charité–Universitätsmedizin Berlin, Core Facility—High-Throughput Mass Spectrometry, Berlin, Germany
| | - Leif Erik Sander
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- German Centre for Lung Research, Germany
| | | | - Florian Kurth
- Charité–Universitätsmedizin Berlin, Department of Infectious Diseases and Respiratory Medicine, Berlin, Germany
- Bernhard Nocht Institute for Tropical Medicine, Department of Tropical Medicine, and University Medical Center Hamburg-Eppendorf, Department of Medicine, Hamburg, Germany
| | - Markus Ralser
- Charité–Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
- The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United Kingdom
| |
Collapse
|
25
|
Li B, Lei Z, Wu Y, Li B, Zhai M, Zhong Y, Ju P, Kou W, Shi Y, Zhang X, Peng W. The Association and Pathogenesis of SERPINA3 in Coronary Artery Disease. Front Cardiovasc Med 2021; 8:756889. [PMID: 34957248 PMCID: PMC8692672 DOI: 10.3389/fcvm.2021.756889] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Serine proteinase inhibitor A3 (SERPINA3) has been discovered in the pathogenesis of many human diseases, but little is known about the role of SERPINA3 in coronary artery disease (CAD). Therefore, we aim to determine its relationship with CAD and its function in the pathogenesis of atherosclerosis. Methods: In total 86 patients with CAD and 64 patients with non-CAD were compared. The plasma SERPINA3 levels were measured using ELISA. Logistic regression analysis and receiver-operating characteristic (ROC) analysis were performed to illustrate the association between plasma SERPINA3 levels and CAD. In vitro, real-time PCR (RT-PCR) and immunofluorescence staining were used to determine the expression of SERPINA3 in atherosclerotic plaques and their component cells. Then rat aortic smooth muscle cells (RASMCs) were transfected with siRNA to knock down the expression of SERPINA3 and human umbilical vein endothelial cells (HUVECs) were stimulated by SERPINA3 protein. EdU assay and scratch assay were used for assessing the capability of proliferation and migration. The cell signaling pathway was evaluated by western blot and RT-PCR. Results: Patients with CAD [104.4(54.5–259.2) μg/mL] had higher levels of plasma SERPINA3 than non-CAD [65.3(47.5–137.3) μg/mL] (P = 0.004). After being fully adjusted, both log-transformed and tertiles of plasma SERPINA3 levels were significantly associated with CAD. While its diagnostic value was relatively low since the area under the ROC curve was 0.64 (95% CI: 0.55–0.73). Secreted SERPINA3 might increase the expression of inflammatory factors in HUVECs. Vascular smooth muscle cells had the highest SERPINA3 expression among the aorta compared to endothelial cells and inflammatory cells. The knockdown of SERPINA3 in RASMCs attenuated its proliferation and migration. The phosphorylated IκBα and its downstream pathway were inhibited when SERPINA3 was knocked down. Conclusions: Elevated plasma SERPINA3 levels were associated with CAD. SERPINA3 can increase inflammatory factors expression in HUVECs. It can regulate VSMCs proliferation, migration, and releasing of inflammatory factors through the NF-κB signaling pathway. Thus, SERPINA3 played a significant role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhijun Lei
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - You Wu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingyu Li
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ming Zhai
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan Zhong
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peinan Ju
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yefei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianling Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Diagnostic and prognostic potential of kallistatin in assessment of liver parenchyma changes in patients with non-alcoholic fatty liver disease and hypertension kallistatin in patients with NAFLD and hypertension. IMAGING 2021. [DOI: 10.1556/1647.2021.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background and aim
Non-alcoholic fatty liver disease (NAFLD) is closely linked to hypertension (HT). An important issue remains the search for non-invasive tests to NAFLD detection in the early stages of liver fibrosis. The objective of the study was to evaluate the diagnostic and prognostic value of kallistatin in assessing the liver fibrosis progression in NAFLD and HT patients.
Patients and methods
One hundred fifteen patients with NAFLD with and without HT were examined, the control group consisted of 20 relatively healthy volunteers. Plasma kallistatin level measurement, ultrasound steatometry and elastography were performed in all patients.
Results
Kallistatin level was 65.03 ng mL−1 (95% CI 61.38; 68.68), 83.42 ng mL−1 (95% CI 81.89; 84.94) and 111.70 ng mL−1 (95% CI 106.14; 113.22) in patients with NAFLD and HT, isolated NAFLD and control group, respectively. There were significant differences in the liver parenchyma condition between groups. Kallistatin levels strongly inversely correlated with the attenuation coefficient and the mean liver stiffness in NAFLD and HT (rs = −0.70) and in the isolated NAFLD patients (rs = −0.56; rs = −0.68, respectively). Kallistatin level was 71.82 ng mL−1 (95% CI 70.16; 79.51) and 58.62 ng mL−1 (95% CI 55.81; 64.45) in patients with HT stage I and HT stage II, respectively (P < 0.001).
Conclusions
Concomitant HT in NAFLD patients is associated with greater severity of fatty and fibrotic liver changes. The course of NAFLD is accompanied by decrease in kallistatin level. Increased degree of liver steatosis and fibrosis, inflammation activity, increased BMI and increased stage of HT lead to inhibition of kallistatin activity. Kallistatin may be considered as a biomarker for progression assessment of NAFLD with or without HT.
Collapse
|
27
|
Relationship between Serum Kallistatin and Afamin and Anthropometric Factors Associated with Obesity and of Being Overweight in Patients after Myocardial Infarction and without Myocardial Infarction. J Clin Med 2021; 10:jcm10245792. [PMID: 34945088 PMCID: PMC8708718 DOI: 10.3390/jcm10245792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Extensive clinical and epidemiological evidence has linked obesity to a broad spectrum of cardiovascular disease (CVD), including coronary disease, heart failure, hypertension, cerebrovascular disease, atrial fibrillation, ventricular arrhythmias, and sudden death. In addition, increasing knowledge of regulatory peptides has allowed an assessment of their role in various non-communicable diseases, including CVD. The study assessed the concentration of kallistatin and afamin in the blood serum of patients after a myocardial infarction and without a cardiovascular event, and determined the relationship between the concentration of kallistatin and afamin and the anthropometric indicators of being overweight and of obesity in these groups. Serum kallistatin and afamin were quantified by ELISA tests in a cross-sectional study of 160 patients who were divided into two groups: study group (SG) (n = 80) and another with no cardiovascular event (CG) (n = 80). Serum kallistatin concentration was significantly higher in the SG (p < 0.001), while the level of afamin was significantly lower in this group (p < 0.001). In addition, a positive correlation was observed in the SG between the afamin concentration and the waist to hip ratio (WHR), lipid accumulation product (LAP) and the triglyceride glucose index (TyG index). In the CG, the concentration of kallistatin positively correlated with the LAP and TyG index, while the concentration of afamin positively correlated with all the examined parameters: body mass index (BMI), waist circumference (WC), hip circumference (HC), waist to hip ratio (WHtR), visceral adiposity index (VAI), LAP and TyG index. Serum kallistatin and afamin concentrations are associated with the anthropometric parameters related to being overweight and to obesity, especially to those describing the visceral distribution of adipose tissue and metabolic disorders related to excessive fatness.
Collapse
|
28
|
Ghrelin Ameliorates Diabetic Retinal Injury: Potential Therapeutic Avenues for Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8043299. [PMID: 34737846 PMCID: PMC8563120 DOI: 10.1155/2021/8043299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
Ghrelin has anti-inflammatory, antioxidant, and antiapoptotic effects, and it may be beneficial for the treatment of many ophthalmic diseases, such as cataract, uveitis, and glaucoma. Our previous work proved that ghrelin pretreatment reduced the apoptosis of lens epithelial cells induced by hydrogen peroxide, reduced the accumulation of reactive oxygen species (ROS), and effectively maintained the transparency of lens tissue. However, no study has yet investigated the effect of ghrelin on retina. In this study, we conducted in vitro and in vivo experiments to explore the effect of ghrelin on high-glucose- (HG-) induced ARPE-19 cell damage and diabetic retinopathy in streptozotocin-induced diabetic rats. ARPE-19 cells were incubated in a normal or an HG (30 mM glucose) medium with or without ghrelin. Cell viability was measured by 3-(4, 5-dimethylthiazol-3-yl)-2,5-diphenyl tetrazolium bromide assay, and apoptosis was detected by the Hoechst–PI staining assay. Intracellular reactive oxygen species (ROS) production levels within cells were measured using 2′,7′-dichlorofluorescein diacetate staining, and the contents of superoxide dismutase and malondialdehyde were measured using relevant detection kits. The expression levels of IL-1β and IL-18 were measured using an enzyme-linked immunosorbent assay, and those of NLRP3, IL-1β, and IL-18 were measured using Western blotting. The rat diabetes models were induced using a single intraperitoneal injection of streptozotocin (80 mg/kg). The morphological and histopathological changes in the retinal tissues were examined. The results indicated that ghrelin reduced ROS generation, inhibited cell apoptosis and the activation of NLRP3 inflammasome, inhibited the apoptosis of retinal cells in diabetic rats, and protected the retina against HG-induced dysfunction. In conclusion, ghrelin may play a role in the treatment of ocular diseases involving diabetic retinopathy.
Collapse
|
29
|
Chen N, Chen S, Zhang Z, Cui X, Wu L, Guo K, Shao H, Ma JX, Zhang X. Overexpressing Kallistatin Aggravates Experimental Autoimmune Uveitis Through Promoting Th17 Differentiation. Front Immunol 2021; 12:756423. [PMID: 34733288 PMCID: PMC8558411 DOI: 10.3389/fimmu.2021.756423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/29/2021] [Indexed: 12/01/2022] Open
Abstract
Kallistatin or kallikrein-binding protein (KBP) has been reported to regulate angiogenesis, inflammation and tumor progression. Autoimmune uveitis is a common, sight-threatening inflammatory intraocular disease. However, the roles of kallistatin in autoimmunity and autoreactive T cells are poorly investigated. Compared to non-uveitis controls, we found that plasma levels of kallistatin were significantly upregulated in patients with Vogt-Koyanagi-Harada (VKH) disease, one of the non-infectious uveitis. Using an experimental autoimmune uveitis (EAU) model induced by human interphotoreceptor retinoid-binding protein peptide 651-670 (hIRBP651-670), we examined the effects of kallistatin on the pathogenesis of autoimmune diseases. Compared to wild type (WT) mice, kallistatin transgenic (KS) mice developed severe uveitis with dominant Th17 infiltrates in the eye. In addition, the proliferative antigen-specific T cells isolated from KS EAU mice produced increased levels of IL-17A, but not IFN-γ or IL-10 cytokines. Moreover, splenic CD4+ T cells from naïve KS mice expressed higher levels of Il17a mRNA compared to WT naïve mice. Under Th17 polarization conditions, KS mice exhibited enhanced differentiation of naïve CD4+ T cells into Th17 cells compared to WT controls. Together, our results indicate that kallistatin promotes Th17 differentiation and is a key regulator of aggravating autoinflammation in EAU. Targeting kallistatin might be a potential to treat autoimmune disease.
Collapse
Affiliation(s)
- Nu Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zhihui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xuexue Cui
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lingzi Wu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, School of Medicine, Louisville, KY, United States
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
30
|
Sahar T, Nigam A, Anjum S, Gupta N, Wajid S. Secretome Profiling and Computational Biology of Human Leiomyoma Samples Unravel Molecular Signatures with Potential for Diagnostic and Therapeutic Interventions. Reprod Sci 2021; 28:2672-2684. [PMID: 33905083 DOI: 10.1007/s43032-021-00580-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
In recent years, significant advancements have been made in the way the complex proteome samples are compared but the ultimate goal of routine biomarker discovery has yet to be achieved. Based on reverse genetic strategy, our study involved the spotting of genes showing expressional variability in uterine leiomyoma females. Serum samples were taken from uterine leiomyomas subjects (n=6) and healthy control subjects (n=6) for proteomic studies. Additionally, leiomyoma tissue samples (n=25) and normal myometrium samples (n=25) were taken for validation studies. In this study, we profiled the proteomes of uterine leiomyoma patient's serum and healthy control, along with relative quantification using Nano LC-MS/MS analysis. A total of 146 proteins were reported to be significantly differentially expressed (P value less than 0.05) in case and control sample. Statistical analysis identified a number of molecular signatures distinguishing healthy from diseased serum. Among these, five proteins lumican, ficolin, MASP2, EMSY, and kallistatin were further chosen according to their function for validation. Kallistatin was downregulated while ficolin, MASP2, lumican, and EMSY were found to be upregulated in the diseased sample. The expression modulations in the identified genes were further validated in twenty-five cases. Interactions among the differentially expressed proteins were identified followed with network analysis. Network analysis emphasized important pathways that are highly deregulated in myoma, and functional significance of these pathways in the pathology of the disease was discussed. Comparative expression analysis reveals distinct molecular signatures and their probable role in diagnosis of the disease.
Collapse
Affiliation(s)
- Tahreem Sahar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Aruna Nigam
- Department of Obstetrics and Gynecology, HIMSR and HAH Centenary Hospital, Jamia Hamdard, New Delhi, 110062, India
| | - Shadab Anjum
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nimisha Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
31
|
Liu L, Ni YQ, Zhan JK, Liu YS. The Role of SGLT2 Inhibitors in Vascular Aging. Aging Dis 2021; 12:1323-1336. [PMID: 34341711 PMCID: PMC8279525 DOI: 10.14336/ad.2020.1229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular aging is defined as organic and functional changes in blood vessels, in which decline in autophagy levels, DNA damage, MicroRNA (miRNA), oxidative stress, sirtuin, and apoptosis signal-regulated kinase 1 (ASK1) are integral thereto. With regard to vascular morphology, the increase in arterial stiffness, atherosclerosis, vascular calcification and high amyloid beta levels are closely related to vascular aging. Further closely related thereto, at the cellular level, is the aging of vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Vascular aging seriously affects the health, economy and life of patients, but can be delayed by SGLT2 inhibitors through the improvement of vascular function. In the present article, a review is conducted of recent domestic and international progress in research on SGLT2 inhibitors,vascular aging and diseases related thereto, thereby providing theoretical support and guidance for further revealing the relationship between SGLT2 inhibitors and diseases related to vascular aging.
Collapse
Affiliation(s)
- Le Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Jun-Kun Zhan
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
32
|
Gasotransmitter CO Attenuates Bleomycin-Induced Fibroblast Senescence via Induction of Stress Granule Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9926284. [PMID: 34306316 PMCID: PMC8263219 DOI: 10.1155/2021/9926284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is recognized as a phenomenon wherein a proliferative cell undergoes a permanent growth arrest. The accumulation of senescent cells over time can become harmful and result in diseases and physiological decline. Plasminogen activator inhibitor (PAI-1) is considered as a critical marker and mediator of cellular senescence. The formation of stress granules (SGs) could prevent senescence through the sequestration of PAI-1, and we previously suggested that exogenous carbon monoxide (CO) could induce SG assembly via integrated stress response (ISR). Although CO is known to possess anti-inflammatory, antioxidative, and antiapoptotic properties, whether it exerts antisenescent effect is still not well defined. Here, to address whether CO-induced SGs could protect against cellular senescence, we first treated lung fibroblasts with bleomycin (BLM) to establish DNA damage-induced cellular senescence, and observed a significant increase of several hallmarks of senescence through SA-β-gal staining, immunofluorescence, qRT-PCR, and Western blot assay. However, pre- and posttreatment of CO could remarkably attenuate these senescent phenotypes. According to our immunofluorescence results, CO-induced SGs could inhibit BLM-induced cellular senescence via sequestration of PAI-1, while it was abolished after the cotreatment of ISR inhibitor (ISRIB) due to the inhibition of SG assembly. Overall, our results proposed a novel role of CO in suppressing bleomycin-induced lung fibroblast senescence through the assembly of SGs.
Collapse
|
33
|
Chen C, Qiu R, Yang J, Zhang Q, Sun G, Gao X, Hei Z, Ji H. Lipoxin A4 Restores Septic Renal Function via Blocking Crosstalk Between Inflammation and Premature Senescence. Front Immunol 2021; 12:637753. [PMID: 33936050 PMCID: PMC8084287 DOI: 10.3389/fimmu.2021.637753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) occurs in half of patients with septic shock, resulting in unacceptably high mortality. However, effective preventive treatments are still lacking. We hypothesized that pretreatment with lipoxin A4 (LXA4), known to promote inflammation resolution, may attenuate septic AKI via blocking crosstalk between inflammation and cellular senescence. In this study, rats developed AKI following cecal ligation and puncture (CLP), as evidenced by a dynamic increase in serum creatinine, blood urea nitrogen, urinary kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, and pathological injury, accompanied by increased levels of inflammation (IL-6, TNF-α, and HMGB1) and tubular cell senescence. While, on the one hand, inhibition of senescence with rapamycin restored renal function and attenuated septic inflammatory response, on the other hand, LXA4 administration inhibited renal inflammation and tubular epithelial cell senescence after CLP. Ultimately, pretreatment with LXA4 significantly restored renal function and increased the survival rate of rats after CLP. Furthermore, LXA4 inhibited NF-κB-mediated inflammatory response and the p53/p21 senescence pathway in vivo and in vitro. However, the effect was reversed by PPAR-γ siRNA and antagonist. These results indicated that LXA4 exerted its renoprotective effects by blocking the crosstalk between inflammation and premature senescence in a PPAR-γ-dependent manner. Our findings also suggested that premature senescence plays a critical role in septic AKI and that inhibition of the crosstalk between inflammation and premature senescence may represent a new and major mechanism through which LXA4 attenuates septic AKI.
Collapse
Affiliation(s)
- Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rongzong Qiu
- Department of Anesthesiology, Guangdong Medical University, HuiZhou First Hospital, Huizhou, China
| | - Jing Yang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qian Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guoliang Sun
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Gao
- Department of Anesthesiology, Guangdong Medical University, HuiZhou First Hospital, Huizhou, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haocong Ji
- Department of Anesthesiology, Guangdong Medical University, HuiZhou First Hospital, Huizhou, China
| |
Collapse
|
34
|
Yiu WH, Li Y, Lok SWY, Chan KW, Chan LYY, Leung JCK, Lai KN, Tsu JHL, Chao J, Huang XR, Lan HY, Tang SCW. Protective role of kallistatin in renal fibrosis via modulation of Wnt/β-catenin signaling. Clin Sci (Lond) 2021; 135:429-446. [PMID: 33458750 DOI: 10.1042/cs20201161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD. It was also positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with serum creatinine level. Unilateral ureteral obstruction (UUO) in animals also led to down-regulation of kallistatin protein in the kidney, and depletion of endogenous kallistatin by antibody injection resulted in aggravated renal fibrosis, which was accompanied by enhanced Wnt/β-catenin activation. Conversely, overexpression of kallistatin attenuated renal inflammation, interstitial fibroblast activation and tubular injury in UUO mice. The protective effect of kallistatin was due to the suppression of TGF-β and β-catenin signaling pathways and subsequent inhibition of epithelial-to-mesenchymal transition (EMT) in cultured tubular cells. In addition, kallistatin could inhibit TGF-β-mediated fibroblast activation via modulation of Wnt4/β-catenin signaling pathway. Therefore, endogenous kallistatin protects against renal fibrosis by modulating Wnt/β-catenin-mediated EMT and fibroblast activation. Down-regulation of kallistatin in the progression of renal fibrosis underlies its potential as a valuable clinical biomarker and therapeutic target in CKD.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ye Li
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Sarah W Y Lok
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - James H L Tsu
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
35
|
Qu W, Zhao J, Wu Y, Xu R, Liu S. Recombinant Adeno-associated Virus 9-mediated Expression of Kallistatin Suppresses Lung Tumor Growth in Mice. Curr Gene Ther 2021; 21:72-80. [PMID: 33183200 DOI: 10.2174/1566523220999201111194257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer remains the most common cause of cancer-related deaths in China and worldwide. Traditional surgery and chemotherapy do not offer an effective cure, although gene therapy may be a promising future alternative. Kallistatin (Kal) is an endogenous inhibitor of angiogenesis and tumorigenesis. Recombinant adeno-associated virus (rAAV) is considered the most promising vector for gene therapy of many diseases due to persistent and long-term transgenic expression. OBJECTIVE The aim of this study was to investigate whether rAAV9-Kal inhibited NCI-H446 subcutaneous xenograft tumor growth in mice. METHODS The subcutaneous xenograft mode was induced by subcutaneous injection of 2×107 H446 cells into the dorsal skin of BALB/c nude mice. The mice were administered with ssrAAV9-Kal (single- stranded rAAV9) or dsrAAV9-Kal (double-stranded rAAV9) by intraperitoneal injection (I.P.). Tumor microvessel density (MVD) was examined by anti-CD34 staining to evaluate tumor angiogenesis. RESULTS Compared with the PBS (blank control) group, tumor growth in the high-dose ssrAAV9-Kal group was inhibited by 40% by day 49, and the MVD of tumor tissues was significantly decreased. CONCLUSION The results indicate that this therapeutic strategy is a promising approach for clinical cancer therapy and implicate rAAV9-Kal as a candidate for gene therapy of lung cancer.
Collapse
Affiliation(s)
- Weihong Qu
- Department of School of Pharmacy & Life Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jianguo Zhao
- Department of School of Pharmacy & Life Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yaqing Wu
- Department of School of Pharmacy & Life Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Ruian Xu
- School of Medicine and Institute of Molecular Medicine, Huaqiao University, Quanzhou, Fujian 361021, China
| | - Shaowu Liu
- Department of School of Pharmacy & Life Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
36
|
Zhang C, Gu X, Pan M, Yuan Q, Cheng H. Senescent thyroid tumor cells promote their migration by inducing the polarization of M2-like macrophages. Clin Transl Oncol 2021; 23:1253-1261. [PMID: 33389662 DOI: 10.1007/s12094-020-02516-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE An in-depth understanding of the mechanism of thyroid cancer progression will help identify patients with thyroid cancer with a high risk of recurrence and metastasis. Although studies have pointed out that the senescence of thyroid tumor cells may stimulate TAMs and cause a series of changes. However, the role of TAMs in aging thyroid cancer cells is still unknown. The aim of this study was to investigate the function of TAMs in aging thyroid cancer cells. METHODS We conducted in vitro model studies based on the K1 cell line to induce tumor cell senescence and study its effect on the differentiation of macrophages, flow cytometry was used to confirm polarization of macrophages, transwell assay was used to confirm changes of invasion and migration of tumor cells. RESULT Our data indicate that aging thyroid tumor cell lines trigger the polarization of M2-like macrophages, accompanied by increased expression of CCL17, CCL18, IL-18, and TGFβ1. This event is caused by the activation of the NFκB pathway upregulation of CXCL2 and CXCL3 is related. Further studies have shown that differentiated M2-like macrophages promote tumor cell migration (but have no effect on cell proliferation). CONCLUSION Our study indicating that the interaction between tumor and TAMs also occurs in the advanced stages of thyroid tumors and will lead to faster tumors progress.
Collapse
Affiliation(s)
- C Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - X Gu
- Xi'an Hospital of Civil Aviation, Xi'an, 710082, China
| | - M Pan
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Q Yuan
- Department of Ultrasonography, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, 710061, China
| | - H Cheng
- Department of Ultrasonography, Shaanxi Cancer Hospital Affiliated to Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
37
|
MicroRNA-34a: the bad guy in age-related vascular diseases. Cell Mol Life Sci 2021; 78:7355-7378. [PMID: 34698884 PMCID: PMC8629897 DOI: 10.1007/s00018-021-03979-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The age-related vasculature alteration is the prominent risk factor for vascular diseases (VD), namely, atherosclerosis, abdominal aortic aneurysm, vascular calcification (VC) and pulmonary arterial hypertension (PAH). The chronic sterile low-grade inflammation state, alias inflammaging, characterizes elderly people and participates in VD development. MicroRNA34-a (miR-34a) is emerging as an important mediator of inflammaging and VD. miR-34a increases with aging in vessels and induces senescence and the acquisition of the senescence-associated secretory phenotype (SASP) in vascular smooth muscle (VSMCs) and endothelial (ECs) cells. Similarly, other VD risk factors, including dyslipidemia, hyperglycemia and hypertension, modify miR-34a expression to promote vascular senescence and inflammation. miR-34a upregulation causes endothelial dysfunction by affecting ECs nitric oxide bioavailability, adhesion molecules expression and inflammatory cells recruitment. miR-34a-induced senescence facilitates VSMCs osteoblastic switch and VC development in hyperphosphatemia conditions. Conversely, atherogenic and hypoxic stimuli downregulate miR-34a levels and promote VSMCs proliferation and migration during atherosclerosis and PAH. MiR34a genetic ablation or miR-34a inhibition by anti-miR-34a molecules in different experimental models of VD reduce vascular inflammation, senescence and apoptosis through sirtuin 1 Notch1, and B-cell lymphoma 2 modulation. Notably, pleiotropic drugs, like statins, liraglutide and metformin, affect miR-34a expression. Finally, human studies report that miR-34a levels associate to atherosclerosis and diabetes and correlate with inflammatory factors during aging. Herein, we comprehensively review the current knowledge about miR-34a-dependent molecular and cellular mechanisms activated by VD risk factors and highlight the diagnostic and therapeutic potential of modulating its expression in order to reduce inflammaging and VD burn and extend healthy lifespan.
Collapse
|
38
|
Exogenous pancreatic kininogenase protects against renal fibrosis in rat model of unilateral ureteral obstruction. Acta Pharmacol Sin 2020; 41:1597-1608. [PMID: 32300244 DOI: 10.1038/s41401-020-0393-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue kallikrein has protective function against various types of injury. In this study, we investigated whether exogenous pancreatic kininogenase (PK) conferred renoprotection in a rat model of unilateral ureteral obstruction (UUO) and H2O2-treated HK-2 cells in vitro. SD rats were subjected to UUO surgery, then PK (7.2 U/g per day, ip) was administered for 7 or 14 days. After the treatment, rats were euthanized; the obstructed kidneys were harvested for further examination. We found that PK administration significantly attenuated interstitial inflammation and fibrosis, and downregulated the expression of proinflammatory (MCP-1, TLR-2, and OPN) and profibrotic (TGF-β1 and CTGF) cytokines in obstructed kidney. UUO-induced oxidative stress, closely associated with excessive apoptotic cell death and autophagy via PI3K/AKT/FoxO1a signaling, which were abolished by PK administration. We further showed that PK administration increased the expression of bradykinin receptors 1 and 2 (B1R and B2R) mRNA and the production of NO and cAMP in kidney tissues. Coadministration with either B1R antagonist (des-Arg9-[Leu8]-bradykinin) or B2R antagonist (icatibant) abrogated the renoprotective effects of PK, and reduced the levels of NO and cAMP in obstructed kidney. In H2O2-treated HK-2 cells, addition of PK (6 pg/mL) significantly decreased ROS production, regulated the expression of oxidant and antioxidant enzymes, suppressed the expression of TGF-β1 and MCP-1, and inhibited cell apoptosis. Our data demonstrate that PK treatment protects against the progression of renal fibrosis in obstructed kidneys.
Collapse
|
39
|
Gu H, Li J, Zhang R. Melatonin upregulates DNA-PKcs to suppress apoptosis of human umbilical vein endothelial cells via inhibiting miR-101 under H 2O 2-induced oxidative stress. Mol Cell Biochem 2020; 476:1283-1292. [PMID: 33226571 DOI: 10.1007/s11010-020-03991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Melatonin has been implicated in inhibiting oxidative stress-induced apoptosis of endothelial cells. However, the underlying mechanism remains poorly understood. In this study, we examined the effect of melatonin on apoptosis of human umbilical vein endothelial cells (HUVECs) induced by H2O2 and explored the underlying mechanisms. Our results demonstrated that DNA-dependent protein kinase catalytic subunit (DNA-PKcs) upregulation contributed to the protective role of melatonin in HUVECs under oxidative stress with H2O2. Further study showed that melatonin treatment led to a decreased level of miRNA-101, which could be responsible for DNA-PKcs upregulation and DNA-PKcs-mediated apoptosis inhibition in HUVECs under oxidative stress with H2O2. Our results also showed that melatonin increased the activity of PI3K/AKT and DNA-PKcs knockdown in melatonin-treated HUVECs that lead to inactivation of PI3K/AKT signaling under oxidative stress with H2O2. Furthermore, blockade of PI3K/AKT signal with LY294002 significantly reduced melatonin-induced apoptosis inhibition in H2O2-treated HUVECs. Taken together, our findings identify a miR-101/DNA-PKcs/PI3K/AKT signaling pathway in melatonin-induced endothelial cell apoptosis inhibition under oxidative stress with H2O2.
Collapse
Affiliation(s)
- Hao Gu
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 the Yellow River West Road, Huaiyin District, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Jian Li
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, People's Republic of China
| | - Rongrong Zhang
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 the Yellow River West Road, Huaiyin District, Huai'an, Jiangsu, 223300, People's Republic of China.
| |
Collapse
|
40
|
Gu C, Lhamo T, Zou C, Zhou C, Su T, Draga D, Luo D, Zheng Z, Yin L, Qiu Q. Comprehensive analysis of angiogenesis-related genes and pathways in early diabetic retinopathy. BMC Med Genomics 2020; 13:142. [PMID: 32993645 PMCID: PMC7526206 DOI: 10.1186/s12920-020-00799-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Angiogenesis is an important parameter in the development of diabetic retinopathy (DR), and it is indicative of an early stage evolving into a late phase. Therefore, examining the role of angiogenic factors in early DR is crucial to understanding the mechanism of neovascularization. METHODS The present study identified hub genes and pathways associated with angiogenesis in early DR using bioinformatics analysis. Genes from published literature and Gene Expression Omnibus (GEO) were collected and analysed. RESULTS We collected 73 genes from 70 published studies in PubMed, which were referred to as DR-related gene set 1 (DRgset1). The gene expression profile of GSE12610 was downloaded, and 578 differentially expressed genes (DEGs) between diabetic and normal samples were identified. DEGs and DRgset1 were further combined to create DR-related gene set 2 (DRgset2). After an enrichment analysis, we identified 12 GO terms and 2 pathways associated with neovascularization in DRgset1, and 8 GO terms and 2 pathways in DRgset2. We found 39 new genes associated with angiogenesis and verified 8 candidate angiogenesis-related genes in DR cells using real-time PCR: PIK3CB, ALDH3A1, ITGA7, FGF23, THBS1, COL1A1, MAPK13, and AIF1. We identified 10 hub genes associated with neovascularization by constructing a protein-protein interaction (PPI) network: TNF, VEGFA, PIK3CB, TGFB1, EDN1, MMP9, TLR4, PDGFB, MMP2, and THBS1. CONCLUSIONS The present study analysed angiogenesis-related genes and pathways in early DR in a comprehensive and systematic manner. PIK3CB, ALDH3A1, ITGA7, FGF23, THBS1, COL1A1, MAPK13, and AIF1 may be the candidate genes to further explore the mechanisms of angiogenesis in early DR. TNF, PIK3CB, TGFB1, EDN1, MMP9, TLR4, PDGFB, MMP2, and THBS1 may be new targets for early neovascularization therapy in the future.
Collapse
Affiliation(s)
- Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Thashi Lhamo
- Department of Ophthalmology, Shigatse People's Hospital, Xizang, P.R. China
| | - Chen Zou
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Tong Su
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Deji Draga
- Department of Ophthalmology, Shigatse People's Hospital, Xizang, P.R. China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Lili Yin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, P.R. China.
- Department of Ophthalmology, Shigatse People's Hospital, Xizang, P.R. China.
| |
Collapse
|
41
|
Güralp O, Tüten N, Gök K, Hamzaoglu K, Bulut H, Schild-Suhren M, Malik E, Tüten A. Serum kallistatin level is decreased in women with preeclampsia. J Perinat Med 2020; 49:60-66. [PMID: 32866127 DOI: 10.1515/jpm-2020-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To evaluate the serum levels of the serine proteinase inhibitor kallistatin in women with preeclampsia (PE). METHODS The clinical and laboratory parameters of 55 consecutive women with early-onset PE (EOPE) and 55 consecutive women with late-onset PE (LOPE) were compared with 110 consecutive gestational age (GA)-matched (±1 week) pregnant women with an uncomplicated pregnancy and an appropriate for gestational age fetus. RESULTS Mean serum kallistatin was significantly lower in women with PE compared to the GA-matched-controls (27.74±8.29 ng/mL vs. 37.86±20.64 ng/mL, p<0.001); in women with EOPE compared to that of women in the control group GA-matched for EOPE (24.85±6.65 ng/mL vs. 33.37±17.46 ng/mL, p=0.002); and in women with LOPE compared to that of women in the control group GA-matched for LOPE (30.87±8.81 ng/mL vs. 42.25±22.67 ng/mL, p=0.002). Mean serum kallistatin was significantly lower in women with EOPE compared to LOPE (24.85±6.65 ng/mL vs. 30.87±8.81 ng/mL, p<0.001). Serum kallistatin had negative correlations with systolic and diastolic blood pressure, creatinine, and positive correlation with GA at sampling and GA at birth. CONCLUSIONS Serum kallistatin levels are decreased in preeclamptic pregnancies compared to the GA-matched-controls. This decrease was also significant in women with EOPE compared to LOPE. Serum kallistatin had negative correlation with systolic and diastolic blood pressure, creatinine and positive correlation with GA at sampling and GA at birth.
Collapse
Affiliation(s)
- Onur Güralp
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Nevin Tüten
- Obstetrics and Gynecology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Koray Gök
- Obstetrics and Gynecology, Sakarya University, Education and Research Hospital, Sakarya, Turkey
| | - Kübra Hamzaoglu
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Huri Bulut
- Medical Biochemistry Department, Istinye University, Faculty of Medicine, Istanbul, Turkey
| | - Meike Schild-Suhren
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Eduard Malik
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Abdullah Tüten
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| |
Collapse
|
42
|
Ji JJ, Qian LL, Zhu Y, Wu YP, Guo JQ, Ma GS, Yao YY. Serpina3c protects against high-fat diet-induced pancreatic dysfunction through the JNK-related pathway. Cell Signal 2020; 75:109745. [PMID: 32828866 DOI: 10.1016/j.cellsig.2020.109745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Serpina3 is a member of the serine protease inhibitor family and is involved in the inflammatory response. In this study, we investigated the effect of Serpina3c on pancreatic function in hypercholesterolemic mice. METHODS To investigate the role of Serpina3c in hyperlipidaemia, Serpina3c knockout mice were bred with Apoe-knockout mice (on a C57BL/6 background) to generate heterozygous Serpina3c-Apoe double knockout (Serpina3c+/-/Apoe+/-) mice and were then bred to obtain homozygotes. C57BL/6, Serpina3c-/-, Apoe-/-, and Apoe-/-Serpina3c-/- mice were fed normal chow, and Apoe-/- and Apoe-/-Serpina3c-/- mice were fed a high-fat diet (HFD). After feeding for 3 months, the mice were monitored for body weight, blood glucose, glucose tolerance, and insulin tolerance test (ITT). ELISA and immunohistochemistry were used to detect insulin levels and glucagon expression. Immunohistochemical staining for macrophages in the pancreas was also performed. Western blot analysis was performed on pancreatic tissues to detect the protein levels of insulin-associated molecules, the metalloproteinase MMP2, the tissue inhibitor TIMP2 and components of the JNK-related pathway. RESULTS Blood glucose levels, glucose tolerance, and ITT were not significantly different among the groups. Serpina3c knockout resulted in blood lipid abnormalities in mice under HFD conditions. Insulin secretion was decreased in Apoe-/-Serpina3c-/- mice compared with Apoe-/- mice under normal chow conditions. In addition, Apoe-/-Serpina3c-/- mice exhibited increased insulin and glucagon secretion and expression after three months of HFD feeding, but insulin secretion was decreased in Apoe-/-Serpina3c-/- mice compared with Apoe-/- mice after the fifth month of HFD feeding. Serpina3c knockout increased MMP2 protein levels, whereas TIMP2 levels in the pancreas were decreased. Furthermore, Serpina3c knockout significantly upregulated the number of macrophages in the pancreas under HFD conditions. The JNK/AKT/FOXO1/PDX-1 axis was found to be involved in Serpina3c-regulated insulin secretion. CONCLUSION These novel findings show that Serpina3c could play a protective role in insulin secretion partly through the JNK-related pathway under HFD conditions.
Collapse
Affiliation(s)
- Jing-Jing Ji
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Ling-Lin Qian
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yan-Ping Wu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
43
|
Targeted anti-inflammatory therapy is a new insight for reducing cardiovascular events: A review from physiology to the clinic. Life Sci 2020; 253:117720. [PMID: 32360620 DOI: 10.1016/j.lfs.2020.117720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
Despite considerable progressions, cardiovascular disease (CVD) is still one of the major causes of mortality around the world, indicates an important and unmet clinical need. Recently, extensive studies have been performed on the role of inflammatory factors as either a major or surrogate factor in the pathophysiology of CVD. Epidemiological observations suggest the theory of the role of inflammatory mediators in the development of cardiovascular events. This may support the idea that targeted anti-inflammatory therapies, on the background of traditional validated medical therapies, can play a significant role in prevention and even reduction of cardiovascular disorders. Many randomized controlled trials have shown that drugs commonly useful for primary and secondary prevention of CVD have an anti-inflammatory mechanism. Further, many anti-inflammatory drugs are being examined because of their potential to reduce the risk of cardiovascular problems. In this study, we review the process of inflammation in the development of cardiovascular events, both in vivo and clinical evidence in immunotherapy for CVD.
Collapse
|
44
|
Wang G, Zou J, Yu X, Yin S, Tang C. The antiatherogenic function of kallistatin and its potential mechanism. Acta Biochim Biophys Sin (Shanghai) 2020; 52:583-589. [PMID: 32393963 DOI: 10.1093/abbs/gmaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is the pathological basis of most cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Kallistatin, originally discovered in human serum, is a tissue-kallikrein-binding protein and a unique serine proteinase inhibitor. Upon binding to its receptor integrin β3, lipoprotein receptor-related protein 6, nucleolin, or Krüppel-like factor 4, kallistatin can modulate various signaling pathways and affect multiple biological processes, including angiogenesis, inflammatory response, oxidative stress, and tumor growth. Circulating kallistatin levels are significantly decreased in patients with coronary artery disease and show an inverse correlation with its severity. Importantly, both in vitro and in vivo experiments have demonstrated that kallistatin reduces atherosclerosis by inhibiting vascular inflammation, antagonizing endothelial dysfunction, and improving lipid metabolism. Thus, kallistatin may be a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases. In this review, we focus on the antiatherogenic function of kallistatin and its potential mechanism.
Collapse
Affiliation(s)
- Gang Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Jin Zou
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Xiaohua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Shanhui Yin
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Chaoke Tang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| |
Collapse
|
45
|
Nieman DC, Groen AJ, Pugachev A, Simonson AJ, Polley K, James K, El-Khodor BF, Varadharaj S, Hernández-Armenta C. Proteomics-Based Detection of Immune Dysfunction in an Elite Adventure Athlete Trekking Across the Antarctica. Proteomes 2020; 8:proteomes8010004. [PMID: 32138228 PMCID: PMC7151708 DOI: 10.3390/proteomes8010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Proteomics monitoring of an elite adventure athlete (age 33 years) was conducted over a 28-week period that culminated in the successful, solo, unassisted, and unsupported two month trek across the Antarctica (1500 km). Training distress was monitored weekly using a 19-item, validated training distress scale (TDS). Weekly dried blood spot (DBS) specimens were collected via fingerprick blood drops onto standard blood spot cards. DBS proteins were measured with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nanoLC-MS/MS) in data-independent acquisition (DIA) mode, and 712 proteins were identified and quantified. The 28-week period was divided into time segments based on TDS scores, and a contrast analysis between weeks five and eight (low TDS) and between weeks 20 and 23 (high TDS, last month of Antarctica trek) showed that 31 proteins (n = 20 immune related) were upregulated and 35 (n = 17 immune related) were downregulated. Protein-protein interaction (PPI) networks supported a dichotomous immune response. Gene ontology (GO) biological process terms for the upregulated immune proteins showed an increase in regulation of the immune system process, especially inflammation, complement activation, and leukocyte mediated immunity. At the same time, GO terms for the downregulated immune-related proteins indicated a decrease in several aspects of the overall immune system process including neutrophil degranulation and the antimicrobial humoral response. These proteomics data support a dysfunctional immune response in an elite adventure athlete during a sustained period of mental and physical distress while trekking solo across the Antarctica.
Collapse
Affiliation(s)
- David C. Nieman
- North Carolina Research Campus, Appalachian State University, Kannapolis, NC 28081, USA;
- Correspondence: ; Tel.: +1-828-773-0056
| | - Arnoud J. Groen
- ProteiQ Biosciences GmbH, 10967 Berlin, Germany; (A.J.G.); (A.P.); (C.H.-A.)
| | - Artyom Pugachev
- ProteiQ Biosciences GmbH, 10967 Berlin, Germany; (A.J.G.); (A.P.); (C.H.-A.)
| | - Andrew J. Simonson
- North Carolina Research Campus, Appalachian State University, Kannapolis, NC 28081, USA;
| | - Kristine Polley
- Standard Process Nutrition Innovation, Kannapolis, NC 28081, USA; (K.P.); (K.J.); (B.F.E.-K.); (S.V.)
| | - Karma James
- Standard Process Nutrition Innovation, Kannapolis, NC 28081, USA; (K.P.); (K.J.); (B.F.E.-K.); (S.V.)
| | - Bassem F. El-Khodor
- Standard Process Nutrition Innovation, Kannapolis, NC 28081, USA; (K.P.); (K.J.); (B.F.E.-K.); (S.V.)
| | - Saradhadevi Varadharaj
- Standard Process Nutrition Innovation, Kannapolis, NC 28081, USA; (K.P.); (K.J.); (B.F.E.-K.); (S.V.)
| | | |
Collapse
|
46
|
Mkaouar H, Akermi N, Kriaa A, Abraham AL, Jablaoui A, Soussou S, Mokdad-Gargouri R, Maguin E, Rhimi M. Serine protease inhibitors and human wellbeing interplay: new insights for old friends. PeerJ 2019; 7:e7224. [PMID: 31531264 PMCID: PMC6718151 DOI: 10.7717/peerj.7224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Serine Protease Inhibitors (Serpins) control tightly regulated physiological processes and their dysfunction is associated to various diseases. Thus, increasing interest is given to these proteins as new therapeutic targets. Several studies provided functional and structural data about human serpins. By comparison, only little knowledge regarding bacterial serpins exists. Through the emergence of metagenomic studies, many bacterial serpins were identified from numerous ecological niches including the human gut microbiota. The origin, distribution and function of these proteins remain to be established. In this report, we shed light on the key role of human and bacterial serpins in health and disease. Moreover, we analyze their function, phylogeny and ecological distribution. This review highlights the potential use of bacterial serpins to set out new therapeutic approaches.
Collapse
Affiliation(s)
- Héla Mkaouar
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Nizar Akermi
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Aicha Kriaa
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | | | - Amin Jablaoui
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Souha Soussou
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Raja Mokdad-Gargouri
- Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Emmanuelle Maguin
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Moez Rhimi
- INRA, UMR1319 MICALIS, Jouy-en-Josas, France, AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| |
Collapse
|