1
|
Wong KW, Li YJ, Yang HC, Chien CS, Kao LT, Lin TS, Yang TY, Shih CJ. Antimicrobial properties of bimetallic-containing mesoporous bioglass against Enterococcus faecalis. J Dent Sci 2025; 20:510-521. [PMID: 39873063 PMCID: PMC11762196 DOI: 10.1016/j.jds.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/29/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Various pulp-covering materials offer advantages in regenerative root canal treatment, but each has limitations, highlighting the need for more effective antibacterial strategies for pulp repair and regeneration. Mesoporous bioactive glasses (MBG) show significant biological activity, making them valuable in tissue/dental repair. Silver-incorporated MBG exhibits promising antibacterial effects against various bacteria; copper ions are crucial in regulating angiogenesis signals. Co-loading copper and silver in bioactive glasses has been explored to address clinical challenges. This study modified the preparation of silver-copper bimetallic mesoporous bioactive glass, analyzing their textural properties and antibacterial activity against Enterococcus faecalis. Materials and methods The silver-copper co-loaded bioactive glass (designated as AgCu/80S) was synthesized using a sol-gel technique with modifications. Textural analyses were carried out via X-ray diffraction, UV-Vis spectroscopy, Brunauer-Emmett-Teller analysis, and transmission electron microscope. The ion-releasing activity determined using inductively coupled plasma-mass spectrometry, and the antibacterial activity against E. faecalis was assessed through disk diffusion and kinetic bacterial growth curve. Results The modification led to weaker crystallization of calcium silicate, altering ion-releasing and antibacterial activities. Ag3Cu2/80S exhibited the highest released silver ion concentration at 112.6 ppm, with an inhibition zone of 9.09 ± 0.09 mm in disk diffusion assays. However, the inhibition zone of Ag2Cu3/80S was 9.92 ± 0.04 mm, implying that the antibacterial activity may not only be influenced by silver ions. Conclusion The AgCu/80S showed a potential antibacterial activity against E. faecalis, whereas further research on AgCu/80S glasses is necessary to optimize ion release conditions, assess bioactivities, and explore potential dental applications.
Collapse
Affiliation(s)
- Kin-Weng Wong
- Department of Orthopedics, Chi Mei Medical Center, Tainan, Taiwan
| | - Yi-Ju Li
- Department of Orthopedics, Chi Mei Medical Center, Tainan, Taiwan
| | - Hui-Ci Yang
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Sheng Chien
- Department of Orthopedics, Chi Mei Medical Center, Tainan, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Li-Ting Kao
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Sheng Lin
- Department of Biomedical Engineering, I-Shou University, Kaohsiung, Taiwan
- Biotechnology and Biomedical Engineering Center, I-Shou University, Kaohsiung, Taiwan
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan
- Research Organization for Nano and Life Innovation, Future Innovation Institute, Waseda University, Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- School of Education, Waseda University, Tokyo, Japan
| | - Chi-Jen Shih
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Iskuzhina L, Batasheva S, Kryuchkova M, Rozhin A, Zolotykh M, Mingaleeva R, Akhatova F, Stavitskaya A, Cherednichenko K, Rozhina E. Advances in the Toxicity Assessment of Silver Nanoparticles Derived from a Sphagnum fallax Extract for Monolayers and Spheroids. Biomolecules 2024; 14:611. [PMID: 38927015 PMCID: PMC11202274 DOI: 10.3390/biom14060611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024] Open
Abstract
The production of nanomaterials through environmentally friendly methods is a top priority in the sustainable development of nanotechnology. This paper presents data on the synthesis of silver nanoparticles using an aqueous extract of Sphagnum fallax moss at room temperature. The morphology, stability, and size of the nanoparticles were analyzed using various techniques, including transmission electron microscopy, Doppler laser velocimetry, and UV-vis spectroscopy. In addition, Fourier transform infrared spectroscopy was used to analyze the presence of moss metabolites on the surface of nanomaterials. The effects of different concentrations of citrate-stabilized and moss extract-stabilized silver nanoparticles on cell viability, necrosis induction, and cell impedance were compared. The internalization of silver nanoparticles into both monolayers and three-dimensional cells spheroids was evaluated using dark-field microscopy and hyperspectral imaging. An eco-friendly method for the synthesis of silver nanoparticles at room temperature is proposed, which makes it possible to obtain spherical nanoparticles of 20-30 nm in size with high bioavailability and that have potential applications in various areas of human life.
Collapse
Affiliation(s)
- Liliya Iskuzhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
- Institute for Regenerative Medicine, Sechenov University, Trubetskaya Str. 8/2, 119992 Moscow, Russia
| | - Marina Kryuchkova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Artem Rozhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Mariya Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Rimma Mingaleeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (A.S.); (K.C.)
| | - Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia; (A.S.); (K.C.)
| | - Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russia; (L.I.); (S.B.); (M.K.); (A.R.); (M.Z.); (R.M.); (F.A.)
| |
Collapse
|
3
|
Perumalsamy H, Balusamy SR, Sukweenadhi J, Nag S, MubarakAli D, El-Agamy Farh M, Vijay H, Rahimi S. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications. J Nanobiotechnology 2024; 22:71. [PMID: 38373982 PMCID: PMC10877787 DOI: 10.1186/s12951-024-02332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Moringa oleifera is one of the popular functional foods that has been tremendously exploited for synthesis of a vast majority of metal nanoparticles (NPs). The diverse secondary metabolites present in this plant turn it into a green tool for synthesis of different NPs with various biological activities. In this review, we discussed different types of NPs including silver, gold, titanium oxide, iron oxide, and zinc oxide NPs produced from the extract of different parts of M. oleifera. Different parts of M. oleifera take a role as the reducing, stabilizing, capping agent, and depending on the source of extract, the color of solution changes within NP synthesis. We highlighted the role of polyphenols in the synthesis of NPs among major constituents of M. oleifera extract. The different synthesis methods that could lead to the formation of various sizes and shapes of NPs and play crucial role in biomedical application were critically discussed. We further debated the mechanism of interaction of NPs with various sizes and shapes with the cells, and further their clearance from the body. The application of NPs made from M. oleifera extract as anticancer, antimicrobial, wound healing, and water treatment agent were also discussed. Small NPs show better antimicrobial activity, while they can be easily cleared from the body through the kidney. In contrast, large NPs are taken by the mono nuclear phagocyte system (MPS) cells. In case of shape, the NPs with spherical shape penetrate into the bacteria, and show stronger antibacterial activity compared to the NPs with other shapes. Finally, this review aims to correlate the key characteristics of NPs made from M. oleifera extract, such as size and shape, to their interactions with the cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea.
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea.
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, 05006, Republic of Korea.
| | - Johan Sukweenadhi
- Faculty of Biotechnology, University of Surabaya, Surabaya, 60293, Indonesia
| | - Sagnik Nag
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mohamed El-Agamy Farh
- Department of Radiation Oncology, College of Medicine, Yonsei University, Seoul, South Korea
| | - Hari Vijay
- Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
4
|
Shiraz M, Imtiaz H, Azam A, Hayat S. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. Biometals 2024; 37:23-70. [PMID: 37914858 DOI: 10.1007/s10534-023-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023]
Abstract
Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.
Collapse
Affiliation(s)
- Mohammad Shiraz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Havza Imtiaz
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Ameer Azam
- Department of Physics, Faculty of Science Islamic Universityof Madinah Al Jamiah, Madinah, 42351, Saudi Arabia
| | - Shamsul Hayat
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
6
|
Ayub J, Saeed MU, Hussain N, Zulfiqar I, Mehmood T, Iqbal HMN, Bilal M. Designing robust nano-biocatalysts using nanomaterials as multifunctional carriers - expanding the application scope of bio-enzymes. Top Catal 2023; 66:625-648. [DOI: 10.1007/s11244-022-01657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/26/2022]
|
7
|
Nirmalkar R, Suresh E, Felix N, Kathirvelpandian A, Nazir MI, Ranjan A. Synthesis of Iron Nanoparticles Using Sargassum wightii Extract and Its Impact on Serum Biochemical Profile and Growth Response of Etroplus suratensis Juveniles. Biol Trace Elem Res 2023; 201:1451-1458. [PMID: 35445936 DOI: 10.1007/s12011-022-03236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
The present study focuses on the green synthesis of iron nanoparticles using plant extracts as reducing, capping, and stabilizing agents. Aqueous seaweed extracts with the addition of iron solution were mixed using a magnetic stirrer which resulted in a color change indicating the formation of iron nanoparticles. The iron nanoparticles were successfully synthesized using Sargassum wightii extract. The synthesized iron nanoparticles were characterized by UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), and zeta potential techniques. The UV-Vis spectra showed a peak at 412 to 415 nm. Zeta potential revealed that the synthesized iron nanoparticles were negative and positive charges. FTIR spectroscopy analysis showed the presence of chemical bond and amide group likely to be responsible for the green synthesis of iron nanoparticles. The effect of nano-iron as a dietary iron source on the growth and serum biochemical profile of Etroplus suratensis fingerlings was evaluated. Iron nanoparticles were fed to E. suratensis fingerlings for 60 days with two levels 10 mg (T1) and 20 mg (T2) and a control group without iron nanoparticles. The highest WG% and SGR and lowest FCR were observed in the T2 group which is significantly different (p < 0.05) from other groups. The serum biochemical profile showed significantly increased activity on 20 mg/kg of nano-iron-supplemented diet. The findings of the present study concluded that supplementation of nano-iron at the 20 mg/kg level to the regular fish diet has a better impact not only on growth but also on the overall health of the fish.
Collapse
Affiliation(s)
- Rakesh Nirmalkar
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, OMR Campus, Vaniyanchavadi, Chennai, India
| | - E Suresh
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, OMR Campus, Vaniyanchavadi, Chennai, India.
| | - N Felix
- Directorate of Incubation and Vocational Training in Aquaculture, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, ECR, Muttukadu, Chennai, India
| | - A Kathirvelpandian
- PMFGR Centre, ICAR-National Bureau of Fish Genetic Resources, Govt. of India, CMFRI Campus, Kochi, Kerala, India
| | - Mir Ishfaq Nazir
- Directorate of Incubation and Vocational Training in Aquaculture, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, ECR, Muttukadu, Chennai, India
| | - Amit Ranjan
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, OMR Campus, Vaniyanchavadi, Chennai, India
| |
Collapse
|
8
|
Bordiwala RV. Green Synthesis and Applications of Metal Nanoparticles.- A Review article. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
9
|
Nguyen DTC, Tran TV, Nguyen TTT, Nguyen DH, Alhassan M, Lee T. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159278. [PMID: 36216068 DOI: 10.1016/j.scitotenv.2022.159278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/17/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Above 1000 invasive species have been growing and developing ubiquitously on Earth. With extremely vigorous adaptability, strong reproduction, and spreading powers, invasive species have posed an alarming threat to indigenous plants, water quality, soil, as well as biodiversity. It was estimated that an economic loss of billions of dollars or equivalent to 1 % of gross domestic product as a consequence of lost crops, control efforts, and damage costs caused by invasive plants in the United States. While eradicating invasive plants from the ecosystems is practically infeasible, taking advantage of invasive plants as a sustainable, locally available, and zero-cost source to provide valuable phytochemicals for bionanoparticles fabrication is worth considering. Here, we review the harms, benefits, and role of invasive species as important botanical sources to extract natural compounds such as piceatannol, resveratrol, and quadrangularin-A, flavonoids, and triterpenoids, which are linked tightly to the formation and application of bionanoparticles. As expected, the invasive plant-mediated bionanoparticles have exhibited outstanding antibacterial, antifungal, anticancer, and antioxidant activities. The mechanism of biomedical activities of the invasive plant-mediated bionanoparticles was insightfully addressed and discussed. We also expect that this review not only contributes to efforts to combat invasive plant species but also opens new frontiers of bionanoparticles in the biomedical applications, therapeutic treatment, and smart agriculture.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Viet Nam
| | - Mansur Alhassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
10
|
Gondwal M, Sharma N, Joshi nee Pant G, Pratap Singh Gautam B, Singh S, Tumba K, Bahadur I. Bioactivity and Catalytic Reduction of Aryl Nitro‐Compounds by Biosynthesized Silver Nanoparticles using
Skimmiaanquetilia. ChemistrySelect 2023. [DOI: 10.1002/slct.202203782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Manjul Gondwal
- Department of Chemistry Laxman Singh Mahar Government Post Graduate College Pithoragarh 262502 Uttarakhand India
| | - Nidhi Sharma
- School of Applied and Life Sciences Uttaranchal University Dehradun 248007, Uttarakhand India
| | - Geeta Joshi nee Pant
- Department of Chemistry H.N.B. Garhwal University (A Central University) Srinagar (Garhwal) 246174, Uttarakhand India
| | - Bhanu Pratap Singh Gautam
- Department of Chemistry Laxman Singh Mahar Government Post Graduate College Pithoragarh 262502 Uttarakhand India
| | - Sangeeta Singh
- Thermodynamics-Materials-Separations Research Group Department of Chemical Engineering Mangosuthu University of Technology Durban 4031, uMlazi South Africa
| | - Kaniki Tumba
- Thermodynamics-Materials-Separations Research Group Department of Chemical Engineering Mangosuthu University of Technology Durban 4031, uMlazi South Africa
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus), Private Bag X2046 Mmabatho 2735 South Africa
| |
Collapse
|
11
|
Chand Mali S, Dhaka A, Sharma S, Trivedi R. Review on biogenic synthesis of copper nanoparticles and its potential applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Kulkarni D, Sherkar R, Shirsathe C, Sonwane R, Varpe N, Shelke S, More MP, Pardeshi SR, Dhaneshwar G, Junnuthula V, Dyawanapelly S. Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Front Bioeng Biotechnol 2023; 11:1159193. [PMID: 37200842 PMCID: PMC10185809 DOI: 10.3389/fbioe.2023.1159193] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023] Open
Abstract
Nanotechnology is an emerging applied science delivering crucial human interventions. Biogenic nanoparticles produced from natural sources have received attraction in recent times due to their positive attributes in both health and the environment. It is possible to produce nanoparticles using various microorganisms, plants, and marine sources. The bioreduction mechanism is generally employed for intra/extracellular synthesis of biogenic nanoparticles. Various biogenic sources have tremendous bioreduction potential, and capping agents impart stability. The obtained nanoparticles are typically characterized by conventional physical and chemical analysis techniques. Various process parameters, such as sources, ions, and temperature incubation periods, affect the production process. Unit operations such as filtration, purification, and drying play a role in the scale-up setup. Biogenic nanoparticles have extensive biomedical and healthcare applications. In this review, we summarized various sources, synthetic processes, and biomedical applications of metal nanoparticles produced by biogenic synthesis. We highlighted some of the patented inventions and their applications. The applications range from drug delivery to biosensing in various therapeutics and diagnostics. Although biogenic nanoparticles appear to be superior to their counterparts, the molecular mechanism degradation pathways, kinetics, and biodistribution are often missing in the published literature, and scientists should focus more on these aspects to move them from the bench side to clinics.
Collapse
Affiliation(s)
- Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Rushikesh Sherkar
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Chaitali Shirsathe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Rushikesh Sonwane
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Nikita Varpe
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh Shelke
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, Maharashtra, India
| | - Mahesh P. More
- Department of Pharmaceutics, Dr Rajendra Gode College of Pharmacy, Malkapur, Buldana, India
| | - Sagar R. Pardeshi
- Department of Pharmaceutics, St John Institute of Pharmacy and Research, Palghar, India
| | | | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
- *Correspondence: Vijayabhaskarreddy Junnuthula, , ;Deepak Kulkarni, ; Sathish Dyawanapelly,
| |
Collapse
|
13
|
Garcia-Marin LE, Juarez-Moreno K, Vilchis-Nestor AR, Castro-Longoria E. Highly Antifungal Activity of Biosynthesized Copper Oxide Nanoparticles against Candida albicans. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3856. [PMID: 36364632 PMCID: PMC9658237 DOI: 10.3390/nano12213856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Candida albicans (ATCC SC5314) was exposed to biosynthesized copper oxide nanoparticles (CuONPs) to determine their inhibitory capacity. Nanoparticles were polydisperse of small size (5.8 ± 3.5 nm) with irregular shape. The minimum inhibitory concentration (MIC) against C. albicans was 35.5 µg/mL. The production of reactive oxygen species (ROS) of C. albicans was verified when exposed to different concentrations of CuONPs. Ultrastructural analysis of C. albicans revealed a high concentration of CuONPs in the cytoplasm and outside the cell; also, nanoparticles were detected within the cell wall. Cytotoxic analyses using fibroblasts (L929), macrophages (RAW 264.7), and breast (MCF-12) cell lines show good results of cell viability when exposed at the MIC. Additionally, a hemocompatibility analysis was carried out and was found to be below 5%, considered the threshold for biocompatibility. Therefore, it is concluded that the biosynthesized CuONPs have a high potential for developing a topical antifungal treatment.
Collapse
Affiliation(s)
- Luis Enrique Garcia-Marin
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
| | - Karla Juarez-Moreno
- Center for Applied Physics and Advanced Technology, UNAM, Blvd. Juriquilla 3001, Juriquilla La Mesa, Juriquilla 76230, Queretaro, Mexico
| | - Alfredo Rafael Vilchis-Nestor
- Sustainable Chemistry Research Joint Center UAEM—UNAM (CCIQS) Toluca-Atlacomulco Road Km 14.5, San Cayetano 50200, Toluca, Mexico
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Carr. Tijuana-Ensenada 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
| |
Collapse
|
14
|
Abu-Dief AM, Abdel-Rahman LH, Sayed MAA, Zikry MM, Khalifa ME, El-Metwaly NM. Optimization strategy for green synthesis of silver nanoparticles (AgNPs) as catalyst for the reduction of 2,4-dinitrophenol via supported mechanism. APPLIED PHYSICS A 2022; 128:595. [DOI: 10.1007/s00339-022-05704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/17/2022] [Indexed: 09/02/2023]
|
15
|
Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JMI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1841. [PMID: 35683697 PMCID: PMC9182092 DOI: 10.3390/nano12111841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023]
Abstract
Metallic nanoparticles (MNPs) produced by green synthesis using plant extracts have attracted huge interest in the scientific community due to their excellent antibacterial, antifungal and antibiofilm activities. To evaluate these pharmacological properties, several methods or protocols have been successfully developed and implemented. Although these protocols were mostly inspired by the guidelines from national and international regulatory bodies, they suffer from a glaring absence of standardization of the experimental conditions. This situation leads to a lack of reproducibility and comparability of data from different study settings. To minimize these problems, guidelines for the antimicrobial and antibiofilm evaluation of MNPs should be developed by specialists in the field. Being aware of the immensity of the workload and the efforts required to achieve this, we set out to undertake a meticulous literature review of different experimental protocols and laboratory conditions used for the antimicrobial and antibiofilm evaluation of MNPs that could be used as a basis for future guidelines. This review also brings together all the discrepancies resulting from the different experimental designs and emphasizes their impact on the biological activities as well as their interpretation. Finally, the paper proposes a general overview that requires extensive experimental investigations to set the stage for the future development of effective antimicrobial MNPs using green synthesis.
Collapse
Affiliation(s)
- Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Claude K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Joseph Kyana
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
| | - Justin B. Safari
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Grégoire V. Mbusa
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Yannick B. Nuapia
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo;
| | - Jean-Marie I. Liesse
- Centre Universitaire de Référence de Surveillance de la Résistance aux Antimicrobiens (CURS-RAM), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (G.V.M.); (J.-M.I.L.)
- Laboratory of Experimental and Pharmaceutical Microbiology, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| | - Christian I. Nkanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
| | - Rui W. M. Krause
- Department of Chemistry, Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
- Center for Chemico- and Bio-Medicinal Research (CCBR), Faculty of Science, Rhodes University, P.O. Box 94, Makhana 6140, South Africa
| | - Aistė Balčiūnaitienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, 54333 Babtai, Lithuania;
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo; (M.M.L.); (C.K.M.); (E.N.Z.); (C.I.N.)
- Department of Pharmacy, Faculty of Medecine and Pharmacy, University of Kisangani, Kisangani XI B.P. 2012, Democratic Republic of the Congo;
- Department of Pharmacy, Faculty of Pharmaceutical Sciences and Public Health, Official University of Bukavu, Bukavu B.P. 570, Democratic Republic of the Congo;
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa XI B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
16
|
Histopathological and Biochemical Comparative Study of Copper Oxide Nanoparticles and Copper Sulphate Toxicity in Male Albino Mice Reproductive System. Int J Biomater 2022; 2022:4877637. [PMID: 35615428 PMCID: PMC9126719 DOI: 10.1155/2022/4877637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/21/2022] [Indexed: 02/08/2023] Open
Abstract
Copper (Cu) is an essential trace element for the efficient functioning of living organisms. Cu can enter the body in different ways, and when it surpasses the range of biological tolerance, it can have negative consequences. The use of different nanoparticles, especially metal oxide nanoparticles, is increasingly being expanded in the fields of industry and biomedical materials. However, the impact of these nanoparticles on human health is still not completely elucidated. This comparative study was conducted to evaluate the impacts of copper oxide nanoparticles (CuO NPs) and copper sulphate (CuSO4 0.5 (H2O)) on infertility and reproductive function in male albino mice BALB/c. Body weight, the weight of male reproductive organs, malondialdehyde (MDA) level, caspase-3 level, and the presence of Ki67 and CD68, as detected using the amino-histochemistry technique, were investigated. Animals were treated with 25 and 35 mg/kg of CuO NPs and CuSO4 0.5 (H2O) by oral gavage for 14 days. The control group was given distilled water by oral gavage. Body weight significantly decreased at the end of experiments in both treated groups in a concentration- and time-dependent manner compared with the control group. Weights of testes and epididymis (head and tail), as well as the weight of the seminal vesicle, showed a significant decrease compared with the control. However, the average weights of the seminal vesicle and prostate significantly increased. Caspase-3 and MDA levels increased in the CuO NP and CuSO4 0.5 (H2O) groups compared with the control group, and there was a significant difference between the two concentrations used. Immunohistochemical results detected a significant decrease in Ki67 protein in the treatment groups compared with the control. However, increase in CD68 protein was found in groups treated with CuO NPs and CuSO4 0.5 (H2O) compared with the control group. Overall, this in vivo comparative study of CuO NPs and CuSO4 0.5 (H2O) showed that oral intake of copper NPs at 25 and 23 mg/kg was safer to the mice reproductive system than CuSO4 0.5 (H2O) at the same dose. CuSO4 0.5 (H2O) significantly influenced the histopathological and toxicological alteration responses.
Collapse
|
17
|
Hasan MT, Gonzalez R, Munoz AA, Materon L, Parsons JG, Alcoutlabi M. Forcespun polyvinylpyrrolidone/copper and polyethylene oxide/copper composite fibers and their use as antibacterial agents. J Appl Polym Sci 2022. [DOI: 10.1002/app.51773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Md Toukir Hasan
- Mechanical Engineering Department University of Texas Rio Grande Valley Edinburg Texas USA
| | - Ramiro Gonzalez
- Mechanical Engineering Department University of Texas Rio Grande Valley Edinburg Texas USA
| | - Ari Alexis Munoz
- Department of Biology University of Texas Rio Grande Valley Edinburg Texas USA
| | - Luis Materon
- Department of Biology University of Texas Rio Grande Valley Edinburg Texas USA
| | - Jason G. Parsons
- Department of Chemistry University of Texas Rio Grande Valley Brownsville Texas USA
| | - Mataz Alcoutlabi
- Mechanical Engineering Department University of Texas Rio Grande Valley Edinburg Texas USA
| |
Collapse
|
18
|
Dang VS, Tran HH, Dieu PTT, Tran MT, Dang CH, Mai DT, Doan VD, Nguyen TLH, Chi TTK, Nguyen TD. Effective catalysis and antibacterial activity of silver and gold nanoparticles biosynthesized by Phlogacanthus turgidus. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04687-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Arkas M, Douloudi M, Nikoli E, Karountzou G, Kitsou I, Kavetsou E, Korres D, Vouyiouka S, Tsetsekou A, Giannakopoulos K, Papageorgiou M. Investigation of two bioinspired reaction mechanisms for the optimization of nano catalysts generated from hyperbranched polymer matrices. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. NANOSCALE 2022; 14:2534-2571. [PMID: 35133391 DOI: 10.1039/d1nr08144f] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Green synthesis approaches are gaining significance as promising routes for the sustainable preparation of nanoparticles, offering reduced toxicity towards living organisms and the environment. Nanomaterials produced by green synthesis approaches can offer additional benefits, including reduced energy inputs and lower production costs than traditional synthesis, which bodes well for commercial-scale production. The biomolecules and phytochemicals extracted from microbes and plants, respectively, are active compounds that function as reducing and stabilizing agents for the green synthesis of nanoparticles. Microorganisms, such as bacteria, yeasts, fungi, and algae, have been used in nanomaterials' biological synthesis for some time. Furthermore, the use of plants or plant extracts for metal and metal-based hybrid nanoparticle synthesis represents a novel green synthesis approach that has attracted significant research interest. This review discusses various biosynthesis approaches via microbes and plants for the green preparation of metal and metal oxide nanoparticles and provides insights into the molecular aspects of the synthesis mechanisms and biomedical applications. The use of agriculture waste as a potential bioresource for nanoparticle synthesis and biomedical applications of biosynthesized nanoparticles is also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Siaw Fui Kiew
- Curtin Malaysia Research Institute, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
- Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Stephen Boakye-Ansah
- Rowan University, Henry M. Rowan College of Engineering, Department of Chemical Engineering, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
| | - Ahmed Barhoum
- Nanostruc, Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
- School of Chemical Sciences, Dublin City University, Dublin 9, D09 Y074 Dublin, Ireland
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - João Rodrigues
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
21
|
Soni V, Raizada P, Singh P, Cuong HN, S R, Saini A, Saini RV, Le QV, Nadda AK, Le TT, Nguyen VH. Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review. ENVIRONMENTAL RESEARCH 2021; 202:111622. [PMID: 34245729 DOI: 10.1016/j.envres.2021.111622] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 05/24/2023]
Abstract
Conventionally utilized physical and chemical routes for constructing nanoparticles are not eco-friendly. They are associated with many shortcomings like the requirement of specially designed equipment, templates, extremely high temperature, and pressure. Biosynthesis seems to be drawn unequivocal attention owing to its upsurge of applications in different fields like; energy, nutrition, pharmaceutical, and medicinal sciences. To harness the biological sources, the present review describes an environment-friendly route to generate biogenic nanoparticles from the natural plant extracts and the followed mechanisms for their synthesis, growth, and stabilization. The present review summarizes the recent trends involved in the photosynthesis of metallic nanoparticles and their effective use in controlling malaria, hepatitis, cancer, like various endemic diseases. Also, various characterization approaches, such as UV-visible spectrophotometry, Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy, are discussed here examine the properties of as-fabricated nanoparticles. Various plant parts like leaves, stems, barks, fruit, and flowers are rich in flavonoids, phenols, steroids, terpenoids, enzymes, and alkaloids, thereby playing an essential role in reducing metal ions that generate metallic nanoparticles. Herein, the uniqueness of phytofabricated nanoparticles along with their distinctive antibacterial, antioxidant, cytotoxic, and drug delivery properties are featured. Lastly, this work highlights the various challenges and future perspectives to further synthesize biogenic metal nanoparticles toward environmental and pharmaceutical advances in the coming years.
Collapse
Affiliation(s)
- Vatika Soni
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Raizada
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Pardeep Singh
- School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Rangabhashiyam S
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Adesh Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Reena V Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Thi-Thu Le
- Institute of Hydrogen Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, D-21502, Geesthacht, Germany
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam.
| |
Collapse
|
22
|
Younas M, Rizwan M, Zubair M, Inam A, Ali S. Biological synthesis, characterization of three metal-based nanoparticles and their anticancer activities against hepatocellular carcinoma HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112575. [PMID: 34352575 DOI: 10.1016/j.ecoenv.2021.112575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Treatment of liver cancer has always been a challenge for clinicians and development of appropriate drug against hepatocellular carcinoma is the major focus for researchers working in the field. The synthesis of metal-based nanoparticles (NPs) by green method for pharmacological uses has attained considerable attention recently. In current study three different NPs (AgO2, CeO2, CuO2) were synthesized by using Trianthima portulacastrum and Chinopodium quinoa leaf extracts. These biogenic NPs were analyzed by High-tech. approaches including Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) spectroscope, SEM-EDS spot analysis, elemental mapping and X-ray diffraction (XRD). The anticancer potential of these nanoparticles was estimated using MTT assay, against hepatic cancer cell line (HepG2). SEM secondary electron images presented the nano size of prepared particles in agglomerated form with few porous forms. Average size of Ag-, Ce-, and CuNPs was observed 19-24 nm, 8-12 nm, 13-15 nm respectively. Elemental mapping and EDS-spot analysis ratifies the formation of AgNPs, CeNPs, and CuNPs. These NPs have shown good anticancer activity at different concentrations against HepG2 cell line. Further studies are however needed to identify the molecular mechanisms of these anticancer activities.
Collapse
Affiliation(s)
- Madiha Younas
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000 Faisalabad, Pakistan.
| | - Aqil Inam
- Department of Metallurgy and Materials Engineering, University of Punjab, Lahore, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000 Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
23
|
Bayat M, Zargar M, Chudinova E, Astarkhanova T, Pakina E. In Vitro Evaluation of Antibacterial and Antifungal Activity of Biogenic Silver and Copper Nanoparticles: The First Report of Applying Biogenic Nanoparticles against Pilidium concavum and Pestalotia sp. Fungi. Molecules 2021; 26:5402. [PMID: 34500835 PMCID: PMC8434282 DOI: 10.3390/molecules26175402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
There is increased attention paid to metallic nanoparticles due to their intensive use in various branches of agriculture and biotechnology, such as pest management, nanosensors, gene delivery, seed treatment, etc. There has been growing interest in applying environmentally friendly strategies for synthesizing nanoparticles without using substances which are hazardous to the environment. Biological practices for the synthesis of nanoparticles have been considered as possible ecofriendly alternatives to chemical synthesis. In the present study, we used biogenic silver and copper nanoparticles which were prepared by a previously reported green method. Moreover, the problem of chemical residues, which usually remain along with chemically synthesized nanoparticles and limit their application, was solved by developing such a green synthesis approach. To study the antibacterial activity of silver and copper nanoparticles, Pseudomonas aeruginosa was used; for the evaluation of antifungal activity, the pathogenic fungi Botrytis cinerea, Pilidium concavum and Pestalotia sp. were applied. To the best of our knowledge, this study represents the first time that the antifungal impact of a nanoparticle has been tested on Pilidium concavum and Pestalotia sp. Silver nanoparticles were found to be the more effective antimicrobial agent against all examined pathogens in comparison to copper nanoparticles. Data from such investigations provide valuable preliminary data on silver nanoparticle-based compounds or composites for use in the management of different pathogens.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (E.C.); (T.A.); (E.P.)
| | | | | | | | | |
Collapse
|
24
|
D E, Hemavathi M, Deenadhayalan N, Suman T, Sathiyapriya R. A novel approach for synthesis of silver nanoparticles using Pila virens shell and its mosquito larvicidal activity. Toxicol Rep 2021; 8:1248-1254. [PMID: 34195016 PMCID: PMC8233167 DOI: 10.1016/j.toxrep.2021.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Mosquito act as a vector for variety of deadly diseases. In this study, larvicide activity was investigated in relation to Aedes aegypti (A. aegypti) and Culex quinquefasciatus (C. quinquefasciatus) of synthesised silver nanoparticles (AgNPs) of the Pila virens (P.virens) shell extract. The characterization techniques UV-vis spectral, Fourier transforms infrared spectroscopy (FTIR),High Resonance Scanning electron microscope (HR-SEM) analysis, X-ray diffraction studies (XRD), High Resonance-Transmission electron microscopy (HR-TEM) used to characterize biosynthesized AgNPs. UV-vis, absorption showed peaks of 450 nm for the biosynthesised AgNPs, SEM observed spherical shaped particles of 25.9-28.9 nm in size and the XRD pattern shows the synthesized AgNPs fcc structure. FTIR investigation shown that the esters, carboxylic acid and ether as functional groups have been intricate in the reduction of metal ions. The larvicidal efficacy of synthesized AgNPs towards a larvae of A. aegypti LC50and LC90 value of (37.87 and 132.86 ppm) and C. quinquefasciatus was (14.70 and 28.96 ppm) respectively. The synthesized AgNPs of P. virens confirmed highest mortality towards larvae of and A. aegypti and C. quinquefasciatus.
Collapse
Affiliation(s)
- Elumalai D
- PG. Department of Zoology, Pachaiyappas College for Men, Kanchipuram, 631501, Tamil Nadu, India
| | - M Hemavathi
- Department of Zoology, Arignar Anna Govt. Arts & Science College for Women, Walajapet, Vellore, 632513, Tamil Nadu, India
| | - N Deenadhayalan
- PG. Department of Zoology, Pachaiyappas College for Men, Kanchipuram, 631501, Tamil Nadu, India
| | - T.Y. Suman
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea
| | - R Sathiyapriya
- Department of Physics, Mahendra Engineering College, Namakkal, 637503, Tamil Nadu, India
| |
Collapse
|
25
|
Sharma D, Afzal S, Singh NK. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. J Biotechnol 2021; 336:64-75. [PMID: 34116127 DOI: 10.1016/j.jbiotec.2021.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/31/2020] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
The application of zinc oxide nanoparticles (ZnO NPs) in agricultural field is emerging and relatively new. In this work, a simple, cost-efficient, non-toxic and eco-friendly method for the green synthesis of ZnO NPs by Senna occidentalis leaf extract has been described. Techniques used to characterize nanoparticles (NPs) were X-ray diffractometer (XRD), UV visible spectroscopy, Particle size analyzer (PSA), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). In this study, green synthesized ZnO NPs at 20-40 mg/l solution was used to prime aged seeds of early flowering homozygous mutant (BM6) of Pusa basmati (Oryza sativa), which enhanced germination performance and seedling vigor significantly as compared to zinc sulphate (ZnSO4) priming and conventional hydropriming. The effect of treatment was analyzed by measuring biophysical and biochemical parameter of germinating rice seeds. The seeds treated with ZnO NPs of 20 mg/l concentration showed more than 50 % stimulation in dry weight, relative water uptake of seeds and radicle length of seedling in comparison to other priming solution and control (hydro-primed). Significant growth was also observed in plumule length and fresh weight of seeds in ZnO NPs at 20 mg/l concentration in comparison to control and other priming treatments. At the same concentration of ZnO NPs, there was 23 % stimulation reported in total soluble sugar content and 45 % stimulation in amylase activity. There was also a substantial increase in antioxidant enzymes i.e. superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity. Seed priming represents an innovative user-friendly approach to enhance the germination rate, starch metabolic process and triggered zinc acquisition of rice aged seed as an alternative to the conventional priming method.
Collapse
Affiliation(s)
- Deepa Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Nand K Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
26
|
Bayat M, Zargar M, Astarkhanova T, Pakina E, Ladan S, Lyashko M, Shkurkin SI. Facile Biogenic Synthesis and Characterization of Seven Metal-Based Nanoparticles Conjugated with Phytochemical Bioactives Using Fragaria ananassa Leaf Extract. Molecules 2021; 26:3025. [PMID: 34069463 PMCID: PMC8159137 DOI: 10.3390/molecules26103025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022] Open
Abstract
In this investigation, for the first time, we used Fragaria ananassa (strawberry) leaf extract as a source of natural reducing, capping or stabilizing agents to develop an eco-friendly, cost-effective and safe process for the biosynthesis of metal-based nanoparticles including silver, copper, iron, zinc and magnesium oxide. Calcinated and non-calcinated zinc oxide nanoparticles also synthesized during a method different from our previous study. To confirm the successful formation of nanoparticles, different characterization techniques applied. UV-Vis spectroscopy, X-ray Diffraction (XRD) spectroscopy, Field Emission Scanning Electron Microscopy (FESEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), Photon Cross-Correlation Spectroscopy (PCCS) and Fourier Transformed Infrared Spectroscopy (FT-IR) were used to study the unique structure and properties of biosynthesized nanoparticles. The results show the successful formation of metal-based particles in the range of nanometer, confirmed by different characterization techniques. Finally, the presented approach has been demonstrated to be effective in the biosynthesis of metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Tamara Astarkhanova
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Elena Pakina
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Sergey Ladan
- All-Russian Scientific and Research Institute of Agrochemistry, Federal State Budgetary Institution, 344006 Moscow, Russia; (S.L.); (S.I.S.)
| | - Marina Lyashko
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198 Moscow, Russia; (M.Z.); (T.A.); (E.P.); (M.L.)
| | - Sergey I. Shkurkin
- All-Russian Scientific and Research Institute of Agrochemistry, Federal State Budgetary Institution, 344006 Moscow, Russia; (S.L.); (S.I.S.)
| |
Collapse
|
27
|
Potentials of phytosynthesized silver nanoparticles in biomedical fields: a review. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00341-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
My-Thao Nguyen T, Anh-Thu Nguyen T, Tuong-Van Pham N, Ly QV, Thuy-Quynh Tran T, Thach TD, Nguyen CL, Banh KS, Le VD, Nguyen LP, Nguyen DT, Dang CH, Nguyen TD. Biosynthesis of metallic nanoparticles from waste Passiflora edulis peels for their antibacterial effect and catalytic activity. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
29
|
Doan VD, Luc VS, Nguyen TLH, Nguyen TD, Nguyen TD. Utilizing waste corn-cob in biosynthesis of noble metallic nanoparticles for antibacterial effect and catalytic degradation of contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6148-6162. [PMID: 31863387 DOI: 10.1007/s11356-019-07320-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
In the present study, cost-effective, and environmentally friendly fabrication of silver and gold nanoparticles was performed by using aqueous extract of waste corn-cob. The formation of the metallic nanoparticles (MNPs) was optimized by UV-Vis method. The phytoconstituents were responsible for reduction of silver and gold ions to silver nanoparticles (CC-AgNPs) and gold nanoparticles (CC-AuNPs) which were demonstrated by Fourier-transform infrared (FTIR) spectroscopy while formation of AgCl was attributed to the presence of chloride ions in the aqueous extract. The crystalline nature of the AgNPs, AgCl, and AuNPs was confirmed using the X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns. Morphological studies showed that the synthesized CC-AgNPs existed in spherical shape with the size ranging from 2 to 28 nm possessing an average value of 11 nm while CC-AuNPs were present in the multiple shapes with size ranging from 5 to 50 nm possessing an average value of 35 nm. For studies on bioactive application, the CC-AgNPs exhibited a high antibacterial activity against three bacterial strains including Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus. In addition, the catalytic efficiency of MNPs was investigated for reduction of o-, m-, p-nitrophenols, and degradation of organic dyes including Eosin Y and Rhodamine 6G. The rate constants calculated from the kinetical data revealed that the biosynthesized nanoparticles are excellent catalysts in potential applications for treatment of wastewater. Graphical abstract .
Collapse
Affiliation(s)
- Van-Dat Doan
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Van-Sieu Luc
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
| | - Thi Lan-Huong Nguyen
- Institute of Biotechnology and Food Technology, Industrial university of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thi-Dung Nguyen
- Division of Food Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam.
| |
Collapse
|
30
|
Novel biogenic silver nanoparticles used for antibacterial effect and catalytic degradation of contaminants. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-04075-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. INTERNATIONAL NANO LETTERS 2019. [DOI: 10.1007/s40089-019-00291-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractSudan has a tremendous wealth flora due to its unique geographical location and diverse climate. Vast records of plants and plants’ secondary metabolites are reported to possess redox capacity and can be exploited for the biosynthesis of nanoparticles. Plant-mediated synthesis of silver nanoparticles is preferred due to their availability and their various metabolites. The present review explores the potentiality and diversity of biological activities of silver nanoparticles that originated from the combination of silver and phyto-constituents of mostly traditionally used Sudanese medicinal and aromatic plants. The green synthesis methods of silver nanoparticles mediated by more than 45 traditionally used medicinal plants are critically reviewed. In addition, parameters that affect the synthesis of plant-mediated silver nanoparticles, their characterization techniques and various biological activities are summarized and discussed. Thus, the study of green synthesis of silver nanoparticles and its applications can be extended to involve vast plant diversity of Sudan.
Collapse
|
32
|
Ertürk AS. Controlled Production of Monodisperse Plant‐Mediated AgNP Catalysts Using Microwave Chemistry: A Desirability‐Function‐Based Multiple‐Response Optimization Approach. ChemistrySelect 2019. [DOI: 10.1002/slct.201902197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Serol Ertürk
- Department of Analytical ChemistryFaculty of PharmacyAdıyaman University 02040, Adıyaman Turkey
| |
Collapse
|
33
|
Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1897-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01099-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Nguyen TTN, Vo TT, Nguyen BNH, Nguyen DT, Dang VS, Dang CH, Nguyen TD. Silver and gold nanoparticles biosynthesized by aqueous extract of burdock root, Arctium lappa as antimicrobial agent and catalyst for degradation of pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34247-34261. [PMID: 30291612 DOI: 10.1007/s11356-018-3322-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
This study presents an efficient and facile method for biosynthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using aqueous extract of burdock root (BR), A. lappa, and their applications. The nanoparticles were characterized by ultraviolet-visible spectrophotometry, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray, thermogravimetry, and differential thermal analysis. AgNPs capped the BR extract (BR-AgNPs) possessed roughly spherical geometry with an average diameter of 21.3 nm while uneven geometry of AuNPs capped the BR extract (BR-AuNPs) showed multi shapes in average size of 24.7 nm. The BR-AgNPs strongly inhibited five tested microorganism strains. In particular, the nanoparticles showed excellent catalytic activity for the conversion of pollutants within wastewater. Pseudo-first-order rate constants for the degradation of 4-nitrophenol, methyl orange, and rhodamine B were respectively found 6.77 × 10-3, 3.70 × 10-3, and 6.07 × 10-3 s-1 for BR-AgNPs and 6.87 × 10-3, 6.07 × 10-3, and 7.07 × 10-3 s-1 for BR-AuNPs. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Thi Thanh-Ngan Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
| | - Thanh-Truc Vo
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | | | | | - Van-Su Dang
- Department of Chemical Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh, Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thanh-Danh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang City, Vietnam.
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam.
| |
Collapse
|