1
|
Shahbaz A, Mahmood T, Javed MU, Abbasi BH. Current advances in microbial-based cancer therapies. Med Oncol 2023; 40:207. [PMID: 37330997 DOI: 10.1007/s12032-023-02074-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Microbes have an immense metabolic capability and can adapt to a wide variety of environments; as a result, they share complicated relationships with cancer. The goal of microbial-based cancer therapy is to treat patients with cancers that are not easily treatable, by using tumor-specific infectious microorganisms. Nevertheless, a number of difficulties have been encountered as a result of the harmful effects of chemotherapy, radiotherapy, and alternative cancer therapies, such as the toxicity to non-cancerous cells, the inability of medicines to penetrate deep tumor tissue, and the ongoing problem of rising drug resistance in tumor cells. Due to these difficulties, there is now a larger need for designing alternative strategies that are more effective and selective when targeting tumor cells. The fight against cancer has advanced significantly owing to cancer immunotherapy. The researchers have greatly benefited from their understanding of tumor-invading immune cells as well as the immune responses that are specifically targeted against cancer. Application of bacterial and viral cancer therapeutics offers promising potential to be employed as cancer treatments among immunotherapies. As a novel therapeutic strategy, microbial targeting of tumors has been created to address the persisting hurdles of cancer treatment. This review outlines the mechanisms by which both bacteria and viruses target and inhibit the proliferation of tumor cells. Their ongoing clinical trials and possible modifications that can be made in the future have also been addressed in the following sections. These microbial-based cancer medicines have the ability to suppress cancer that builds up and multiplies in the tumor microenvironment and triggers antitumor immune responses, in contrast to other cancer medications.
Collapse
Affiliation(s)
- Areej Shahbaz
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medicine Goettingen, Göttingen, Germany
| | - Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Uzair Javed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
4
|
Liu W, Chen H, Zhu Z, Liu Z, Ma C, Lee YJ, Bartlett DL, Guo ZS. Ferroptosis Inducer Improves the Efficacy of Oncolytic Virus-Mediated Cancer Immunotherapy. Biomedicines 2022; 10:biomedicines10061425. [PMID: 35740445 PMCID: PMC9219720 DOI: 10.3390/biomedicines10061425] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides. In this study, we explore the combination of a ferroptosis activator with an oncolytic vaccinia virus in tumor models. Erastin induced cell death in hepatoma, colon, and ovarian cancer cells, but not in melanoma cancer cells. Erastin, not the oncolytic vaccinia virus (OVV), induced the expression of key marker genes for ferroptosis in cancer cells. In hepatocellular carcinoma and colon cancer models, either erastin or OVV inhibited tumor growth, but a combination of the two yielded the best therapeutic effects, as indicated by inhibited tumor growth or regression and longer host survival. Immunological analyses indicate that erastin alone had little or no effect on systemic immunity or local immunity in the tumor. However, when combined with OV, erastin enhanced the number of activated dendritic cells and the activity of tumor-infiltrating T lymphocytes as indicated by an increase in IFN-γ+CD8+ and PD-1+CD8+ T cells. These results demonstrate that erastin can exert cytotoxicity on cancer cells via ferroptosis, but has little effect on immune activity by itself. However, when combined with an OVV, erastin promoted antitumoral immunity and efficacy by increasing the number of activated dendritic cells and promoting the activities of tumor specific CD8+ T cells in the tumor.
Collapse
Affiliation(s)
- Weilin Liu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Xiangya Medical College, Central South University, Changsha 410013, China
| | - Hongqi Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Zhi Zhu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Zuqiang Liu
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- AHN-Cancer Institute, Pittsburgh, PA 15212, USA
| | - Congrong Ma
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Yong J. Lee
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - David L. Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- AHN-Cancer Institute, Pittsburgh, PA 15212, USA
- Correspondence: (D.L.B.); (Z.-S.G.); Tel.: +1-412-359-3782 (D.L.B.); +1-716-845-8952 (Z.-S.G.)
| | - Zong-Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (W.L.); (H.C.); (Z.Z.); (Z.L.); (C.M.); (Y.J.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14203, USA
- Correspondence: (D.L.B.); (Z.-S.G.); Tel.: +1-412-359-3782 (D.L.B.); +1-716-845-8952 (Z.-S.G.)
| |
Collapse
|
5
|
Wang L, Chard Dunmall LS, Cheng Z, Wang Y. Remodeling the tumor microenvironment by oncolytic viruses: beyond oncolysis of tumor cells for cancer treatment. J Immunother Cancer 2022; 10:e004167. [PMID: 35640930 PMCID: PMC9157365 DOI: 10.1136/jitc-2021-004167] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
Tumor cells manipulate the local environment in which they grow, creating a tumor microenvironment (TME) that promotes tumor survival and metastasis. The TME is an extremely complex environment rich in immunosuppressive cells and cytokines. Various methods to therapeutically target the complicated TME are emerging as a potential approach for cancer treatment. Oncolytic viruses (OVs) are one of the most promising methods for remodeling the TME into an antitumor environment and can be used alone or in combination with other immunotherapy options. OVs replicate specifically in tumor cells and can be genetically engineered to target multiple elements of the TME simultaneously, thus representing a therapeutic with the potential to modify the TME to promote activation of antitumor immune cells and overcome tumor therapeutic resistance and recurrence. In this review, we analyze the tropism of OVs towards tumor cells and explore the interaction between OVs and immune cells, tumor stroma, vasculature and the metabolic environment in detail to help understand how OVs may be one of our most promising prospects for long-term curative therapies. We also discuss some of the challenges associated with TME therapies, and future perspectives in this evolving field.
Collapse
Affiliation(s)
- Lihong Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Zhenguo Cheng
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Mistarz A, Graczyk M, Winkler M, Singh PK, Cortes E, Miliotto A, Liu S, Long M, Yan L, Stablewski A, O'Loughlin K, Minderman H, Odunsi K, Rokita H, McGray AJR, Zsiros E, Kozbor D. Induction of cell death in ovarian cancer cells by doxorubicin and oncolytic vaccinia virus is associated with CREB3L1 activation. MOLECULAR THERAPY-ONCOLYTICS 2021; 23:38-50. [PMID: 34632049 PMCID: PMC8479291 DOI: 10.1016/j.omto.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
We have demonstrated that oncolytic vaccinia virus synergizes with doxorubicin (DOX) in inducing immunogenic cell death in platinum-resistant ovarian cancer cells and increases survival in syngeneic and xenograft tumor models. However, the mechanisms underlying the virus- and doxorubicin-mediated cancer cell death remain unknown. In this study, we investigated the effect of the oncolytic virus and doxorubicin used alone or in combination on activation of the cytoplasmic transcription factor CREB3L1 (cyclic AMP [cAMP] response element-binding protein 3-like 1) in ovarian cancer cell lines and clinical specimens. We demonstrated that doxorubicin-mediated cell death in ovarian cancer cell lines was associated with nuclear translocation of CREB3L1 and that the effect was augmented by infection with oncolytic vaccinia virus or treatment with recombinant interferon (IFN)-β used as a viral surrogate. This combination treatment was also effective in mediating nuclear translocation of CREB3L1 in cancer cells isolated from ovarian tumor biopsies at different stages of disease progression. The measurement of CREB3L1 expression in clinical specimens of ovarian cancer revealed lack of correlation with the stage of disease progression, suggesting that understanding the mechanisms of nuclear accumulation of CREB3L1 after doxorubicin treatment alone or in combination with oncolytic virotherapy may lead to the development of more effective treatment strategies against ovarian cancer.
Collapse
Affiliation(s)
- Anna Mistarz
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Matthew Graczyk
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Marta Winkler
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Prashant K Singh
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eduardo Cortes
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anthony Miliotto
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aimee Stablewski
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kieran O'Loughlin
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hans Minderman
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hanna Rokita
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
7
|
Yang M, Giehl E, Feng C, Feist M, Chen H, Dai E, Liu Z, Ma C, Ravindranathan R, Bartlett DL, Lu B, Guo ZS. IL-36γ-armed oncolytic virus exerts superior efficacy through induction of potent adaptive antitumor immunity. Cancer Immunol Immunother 2021; 70:2467-2481. [PMID: 33538860 PMCID: PMC8360872 DOI: 10.1007/s00262-021-02860-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/11/2021] [Indexed: 01/22/2023]
Abstract
In this study, we aimed to apply the cytokine IL-36γ to cancer immunotherapy by constructing new oncolytic vaccinia viruses (OV) expressing interleukin-36γ (IL-36γ-OVs), leveraging unique synergism between OV and IL-36γ’s ability to promote antitumor adaptive immunity and modulate tumor microenvironment (TME). IL-36γ-OV had dramatic therapeutic efficacies in multiple murine tumor models, frequently leading to complete cancer eradication in large fractions of mice. Mechanistically, IL-36-γ-armed OV induced infiltration of lymphocytes and dendritic cells, decreased myeloid-derived suppressor cells and M2-like tumor-associated macrophages, and T cell differentiation into effector cells. Further study showed that IL-36γ-OV increased the number of tumor antigen-specific CD4+ and CD8+ T cells and the therapeutic efficacy depended on both CD8+ and CD4+ T cells. These results demonstrate that these IL36γ-armed OVs exert potent therapeutic efficacy mainly though antitumor immunity and they may hold great potential to advance treatment in human cancer patients.
Collapse
Affiliation(s)
- Min Yang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, TU Dresden, 01307, Dresden, Germany
| | - Chao Feng
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgery, CCM/CVK, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Hongqi Chen
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Congrong Ma
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,AHN-Cancer Institute, Pittsburgh, PA, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Quetglas JI, John LB, Kershaw MH, Alvarez-Vallina L, Melero I, Darcy PK, Smerdou C. Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncoimmunology 2021; 1:1344-1354. [PMID: 23243597 PMCID: PMC3518506 DOI: 10.4161/onci.21679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies.
Collapse
Affiliation(s)
- José I Quetglas
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang S, Rabkin SD. The discovery and development of oncolytic viruses: are they the future of cancer immunotherapy? Expert Opin Drug Discov 2020; 16:391-410. [PMID: 33232188 DOI: 10.1080/17460441.2021.1850689] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Despite diverse treatment modalities and novel therapies, many cancers and patients are not effectively treated. Cancer immunotherapy has recently achieved breakthrough status yet is not effective in all cancer types or patients and can generate serious adverse effects. Oncolytic viruses (OVs) are a promising new therapeutic modality that harnesses virus biology and host interactions to treat cancer. OVs, genetically engineered or natural, preferentially replicate in and kill cancer cells, sparing normal cells/tissues, and mediating anti-tumor immunity.Areas covered: This review focuses on OVs as cancer therapeutic agents from a historical perspective, especially strategies to boost their immunotherapeutic activities. OVs offer a multifaceted platform, whose activities are modulated based on the parental virus and genetic alterations. In addition to direct viral effects, many OVs can be armed with therapeutic transgenes to also act as gene therapy vectors, and/or combined with other drugs or therapies.Expert opinion: OVs are an amazingly versatile and malleable class of cancer therapies. They tend to target cellular and host physiology as opposed to specific genetic alterations, which potentially enables broad responsiveness. The biological complexity of OVs have hindered their translation; however, the recent approval of talimogene laherparepvec (T-Vec) has invigorated the field.
Collapse
Affiliation(s)
- Shunchuan Zhang
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Samuel D Rabkin
- Molecular Neurosurgery Laboratory and the Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Pelin A, Boulton S, Tamming LA, Bell JC, Singaravelu R. Engineering vaccinia virus as an immunotherapeutic battleship to overcome tumor heterogeneity. Expert Opin Biol Ther 2020; 20:1083-1097. [PMID: 32297534 DOI: 10.1080/14712598.2020.1757066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Immunotherapy is a rapidly evolving area of cancer therapeutics aimed at driving a systemic immune response to fight cancer. Oncolytic viruses (OVs) are at the cutting-edge of innovation in the immunotherapy field. Successful OV platforms must be effective in reshaping the tumor microenvironment and controlling tumor burden, but also be highly specific to avoid off-target side effects. Large DNA viruses, like vaccinia virus (VACV), have a large coding capacity, enabling the encoding of multiple immunostimulatory transgenes to reshape the tumor immune microenvironment. VACV-based OVs have shown promising results in both pre-clinical and clinical studies, including safe and efficient intravenous delivery to metastatic tumors. AREA COVERED This review summarizes attenuation strategies to generate a recombinant VACV with optimal tumor selectivity and immunogenicity. In addition, we discuss immunomodulatory transgenes that have been introduced into VACV and summarize their effectiveness in controlling tumor burden. EXPERT OPINION VACV encodes several immunomodulatory genes which aid the virus in overcoming innate and adaptive immune responses. Strategic deletion of these virulence factors will enable an optimal balance between viral persistence and immunogenicity, robust tumor-specific expression of payloads and promotion of a systemic anti-cancer immune response. Rational selection of therapeutic transgenes will maximize the efficacy of OVs and their synergy in combinatorial immunotherapy schemes.
Collapse
Affiliation(s)
- Adrian Pelin
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Stephen Boulton
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Levi A Tamming
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| | - Ragunath Singaravelu
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa , Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Annels NE, Mansfield D, Arif M, Ballesteros-Merino C, Simpson GR, Denyer M, Sandhu SS, Melcher AA, Harrington KJ, Davies B, Au G, Grose M, Bagwan I, Fox B, Vile R, Mostafid H, Shafren D, Pandha HS. Phase I Trial of an ICAM-1-Targeted Immunotherapeutic-Coxsackievirus A21 (CVA21) as an Oncolytic Agent Against Non Muscle-Invasive Bladder Cancer. Clin Cancer Res 2019; 25:5818-5831. [PMID: 31273010 DOI: 10.1158/1078-0432.ccr-18-4022] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/06/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The CANON [CAVATAK in NON-muscle-invasive bladder cancer (NMIBC)] study evaluated a novel ICAM-1-targeted immunotherapeutic-coxsackievirus A21 as a novel oncolytic agent against bladder cancer. PATIENTS AND METHODS Fifteen patients enrolled in this "window of opportunity" phase I study, exposing primary bladder cancers to CAVATAK prior to surgery. The first 9 patients received intravesical administration of monotherapy CAVATAK; in the second stage, 6 patients received CAVATAK with a subtherapeutic dose of mitomycin C, known to enhance expression of ICAM-1 on bladder cancer cells. The primary endpoint was to determine patient safety and maximum tolerated dose (MTD). Secondary endpoints were evidence of viral replication, induction of inflammatory cytokines, antitumor activity, and viral-induced changes in resected tissue. RESULTS Clinical activity of CAVATAK was demonstrated by induction of tumor inflammation and hemorrhage following either single or multiple administrations of CAVATAK in multiple patients, and a complete resolution of tumor in 1 patient. Whether used alone or in combination with mitomycin C, CAVATAK caused marked inflammatory changes within NMIBC tissue biopsies by upregulating IFN-inducible genes, including both immune checkpoint inhibitory genes (PD-L1 and LAG3) and Th1-associated chemokines, as well as the induction of the innate activator RIG-I, compared with bladder cancer tissue from untreated patients. No significant toxicities were reported in any patient, from either virus or combination therapy. CONCLUSIONS The acceptable safety profile of CAVATAK, proof of viral targeting, replication, and tumor cell death together with the virus-mediated increases in "immunological heat" within the tumor microenvironment all indicate that CAVATAK may be potentially considered as a novel therapeutic for NMIBC.
Collapse
Affiliation(s)
- Nicola E Annels
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - David Mansfield
- Targeted Therapy Group, Institute of Cancer Research, London, United Kingdom
| | - Mehreen Arif
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Guy R Simpson
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Mick Denyer
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sarbjinder S Sandhu
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, Surrey, United Kingdom
| | - Alan A Melcher
- Targeted Therapy Group, Institute of Cancer Research, London, United Kingdom
| | - Kevin J Harrington
- Targeted Therapy Group, Institute of Cancer Research, London, United Kingdom
| | | | | | | | - Izhar Bagwan
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Bernard Fox
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Portland, Oregon
| | | | - Hugh Mostafid
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Hardev S Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| |
Collapse
|
13
|
Pelin A, Foloppe J, Petryk J, Singaravelu R, Hussein M, Gossart F, Jennings VA, Stubbert LJ, Foster M, Storbeck C, Postigo A, Scut E, Laight B, Way M, Erbs P, Le Boeuf F, Bell JC. Deletion of Apoptosis Inhibitor F1L in Vaccinia Virus Increases Safety and Oncolysis for Cancer Therapy. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:246-252. [PMID: 31428674 PMCID: PMC6695278 DOI: 10.1016/j.omto.2019.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
Vaccinia virus (VACV) possesses a great safety record as a smallpox vaccine and has been intensively used as an oncolytic virus against various types of cancer over the past decade. Different strategies were developed to make VACV safe and selective to cancer cells. Leading clinical candidates, such as Pexa-Vec, are attenuated through deletion of the viral thymidine kinase (TK) gene, which limits virus growth to replicate in cancer tissue. However, tumors are not the only tissues whose metabolic activity can overcome the lack of viral TK. In this study, we sought to further increase the tumor-specific replication and oncolytic potential of Copenhagen strain VACV ΔTK. We show that deletion of the anti-apoptosis viral gene F1L not only increases the safety of the Copenhagen ΔTK virus but also improves its oncolytic activity in an aggressive glioblastoma model. The additional loss of F1L does not affect VACV replication capacity, yet its ability to induce cancer cell death is significantly increased. Our results also indicate that cell death induced by the Copenhagen ΔTK/F1L mutant releases more immunogenic signals, as indicated by increased levels of IL-1β production. A cytotoxicity screen in an NCI-60 panel shows that the ΔTK/F1L virus induces faster tumor cell death in different cancer types. Most importantly, we show that, compared to the TK-deleted virus, the ΔTK/F1L virus is attenuated in human normal cells and causes fewer pox lesions in murine models. Collectively, our findings describe a new oncolytic vaccinia deletion strain that improves safety and increases tumor cell killing.
Collapse
Affiliation(s)
- Adrian Pelin
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Johann Foloppe
- Transgene S.A., 400 Boulevard Gonthier d'Andernach, 67405 Illkirch-Graffenstaden, France
| | - Julia Petryk
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Ragunath Singaravelu
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Marian Hussein
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Florian Gossart
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Victoria A Jennings
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Lawton J Stubbert
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Madison Foster
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Christopher Storbeck
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Antonio Postigo
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, England, UK
| | - Elena Scut
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Brian Laight
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, England, UK
| | - Philippe Erbs
- Transgene S.A., 400 Boulevard Gonthier d'Andernach, 67405 Illkirch-Graffenstaden, France
| | - Fabrice Le Boeuf
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
14
|
Chaurasiya S, Chen NG, Lu J, Martin N, Shen Y, Kim SI, Warner SG, Woo Y, Fong Y. A chimeric poxvirus with J2R (thymidine kinase) deletion shows safety and anti-tumor activity in lung cancer models. Cancer Gene Ther 2019; 27:125-135. [PMID: 31209267 PMCID: PMC7170804 DOI: 10.1038/s41417-019-0114-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
Oncolytic viruses have shown excellent safety profiles in preclinical and clinical studies; however, in most cases therapeutic benefits have been modest. We have previously reported the generation of a chimeric poxvirus (CF33), with significantly improved oncolytic characteristics, through chimerization among different poxviruses. Here we report the sequence analysis of CF33 and oncolytic potential of a GFP-encoding CF33 virus (CF33-GFP) with a J2R deletion in lung cancer models. Replication of CF33-GFP and the resulting cytotoxicity were higher in cancer cell lines compared to a normal cell line, in vitro. After infection with virus, cancer cells expressed markers for immunogenic cell death in vitro. Furthermore, CF33-GFP was safe and exerted potent anti-tumor effects at a dose as low as 1000 plaque forming units in both virus-injected and un-injected distant tumors in A549 tumor xenograft model in mice. Likewise, in a syngeneic model of lung cancer in mice, the virus showed significant anti-tumor effect and was found to increase tumor infiltration by CD8+ T cells. Collectively, these data warrant further investigation of this novel chimeric poxvirus for its potential use as a cancer bio-therapeutic.
Collapse
Affiliation(s)
| | - Nanhai G Chen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Jianming Lu
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Yinan Shen
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.,Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sang-In Kim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanne G Warner
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yanghee Woo
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
15
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic Viruses for Canine Cancer Treatment. Cancers (Basel) 2018; 10:cancers10110404. [PMID: 30373251 PMCID: PMC6266482 DOI: 10.3390/cancers10110404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Gabriela Cesarman-Maus
- Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| | - Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
17
|
Hu J, Wang H, Gu J, Liu X, Zhou X. Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1018-1027. [PMID: 30137199 DOI: 10.1093/abbs/gmy096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer has a high morbidity rate worldwide and is often resistant to therapy. Oncolytic virus therapy is a developing trend for cancer treatment. Thus, we constructed an oncolytic poxvirus carrying human trail gene that expresses a membrane-binding tumor necrosis factor and associated apoptosis-inducing ligand (TRAIL, Oncopox-trail). We hypothesized that the expression of trail would increase the efficacy of the oncolytic poxvirus. The effect of the TRAIL protein depends on the death receptors on the surface of different cancer cells. The expression of death receptors in lung cancer cell lines was analyzed by western blot analysis. In vitro, the oncolytic poxvirus carrying the trail gene displayed a better cytotoxicity at the cell level in the lung cancer cell line than that carrying the Oncopox-empty. TRAIL protein mainly induced apoptosis and inhibited necrosis. In vivo, two transplanted tumor models of human A549 lung cancer cells and mouse Lewis lung cancer cells were used to verify the anti-cancer effect of the oncolytic poxvirus carrying the trail gene. TUNEL staining results of the tumor histological sections also verified the anti-cancer effect. Similarly, through systemic administration of Oncopox-trail, the oncolytic poxvirus also exhibited anti-cancer effect.
Collapse
Affiliation(s)
- Jinqing Hu
- Laboratory of Cell Biology, Xin-yuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huaiyuan Wang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinfa Gu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinyuan Liu
- Laboratory of Cell Biology, Xin-yuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiumei Zhou
- Laboratory of Cell Biology, Xin-yuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
18
|
Abstract
The serpin family of serine proteinase inhibitors plays key roles in the maintenance of mammalian homeostasis. Virus-encoded serpins disrupt the balance of mammalian proteases to facilitate virus replication in the infected host. DNA viruses, in particular members of the poxvirus family, have acquired multiple copies of the functional serpins which are essential for viral pathogenesis. Virus-encoded serpins have proven to be very effective inhibitors of host proteases and thus are very attractive candidate molecules as immunomodulatory drugs. With this chapter we explain approaches to identifying immune-modulating viral serpins.
Collapse
Affiliation(s)
- Masmudur M Rahman
- Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
19
|
van Vloten JP, Workenhe ST, Wootton SK, Mossman KL, Bridle BW. Critical Interactions between Immunogenic Cancer Cell Death, Oncolytic Viruses, and the Immune System Define the Rational Design of Combination Immunotherapies. THE JOURNAL OF IMMUNOLOGY 2018; 200:450-458. [PMID: 29311387 DOI: 10.4049/jimmunol.1701021] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Samuel T Workenhe
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4L8, Canada; and.,Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada;
| |
Collapse
|
20
|
Sprague L, Braidwood L, Conner J, Cassady KA, Benencia F, Cripe TP. Please stand by: how oncolytic viruses impact bystander cells. Future Virol 2018; 13:671-680. [PMID: 30416535 DOI: 10.2217/fvl-2018-0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
Oncolytic viruses (OVs) do more than simply infect and kill host cells. The accepted mechanism of action for OVs consists of a primary lytic phase and a subsequent antitumor and antiviral immune response. However, not all cells are subject to the direct effects of OV therapy, and it is becoming clear that OVs can also impact uninfected cells in the periphery. This review discusses the effects of OVs on uninfected neighboring cells, so-called bystander effects, and implications for OV therapies alone or in combination with other standard of care chemotherapy.
Collapse
Affiliation(s)
- Leslee Sprague
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA
| | - Lynne Braidwood
- Virttu Biologics, BioCity, Scotland, UK.,Virttu Biologics, BioCity, Scotland, UK
| | - Joe Conner
- Virttu Biologics, BioCity, Scotland, UK.,Virttu Biologics, BioCity, Scotland, UK
| | - Kevin A Cassady
- Nationwide Children's Hospital, Division of Infectious Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Infectious Diseases, Columbus, 43205 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA
| | - Fabian Benencia
- Ohio University Russ College of Engineering & Technology, Biomedical Engineering, Athens, 45701 OH, USA.,Ohio University Russ College of Engineering & Technology, Biomedical Engineering, Athens, 45701 OH, USA
| | - Timothy P Cripe
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA.,The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, 43201 OH, USA.,Nationwide Children's Hospital, Division of Hematology/Oncology/BMT & Center for Childhood Cancer & Blood Diseases, Columbus, 43205 OH, USA
| |
Collapse
|
21
|
O'Leary MP, Warner SG, Kim SI, Chaurasiya S, Lu J, Choi AH, Park AK, Woo Y, Fong Y, Chen NG. A Novel Oncolytic Chimeric Orthopoxvirus Encoding Luciferase Enables Real-Time View of Colorectal Cancer Cell Infection. MOLECULAR THERAPY-ONCOLYTICS 2018; 9:13-21. [PMID: 29988502 PMCID: PMC6026443 DOI: 10.1016/j.omto.2018.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/19/2018] [Indexed: 01/23/2023]
Abstract
This study hypothesizes that a novel oncolytic chimeric orthopoxvirus CF33-Fluc is imageable and targets colorectal cancer cells (CRCs). A novel chimeric orthopoxvirus (CF33) was constructed. The thymidine kinase locus was replaced with firefly luciferase (Fluc) to yield a recombinant virus—CF33-Fluc. In vitro cytotoxicity and viral replication assays were performed. In vivo CRC flank xenografts received single doses of intratumoral or intravenous CF33-Fluc. Viral biodistribution was analyzed via luciferase imaging and organ titers. CF33-Fluc infects, replicates in, and kills CRCs in vitro in a dose-dependent manner. CF33 has superior secretion of extracellular-enveloped virus versus all but one parental strain. Rapid tumor regression or stabilization occurred in vivo at a low dose over a short time period, regardless of the viral delivery method in the HCT-116 colorectal tumor xenograft model. Rapid luciferase expression in virus-infected tumor cells was associated with treatment response. CRC death occurs via necroptotic pathways. CF33-Fluc replicates in and kills colorectal cancer cells in vitro and in vivo regardless of delivery method. Expression of luciferase enables real-time tracking of viral replication. Despite the chimerism, CRC death occurs via standard poxvirus-induced mechanisms. Further studies are warranted in immunocompetent models.
Collapse
Affiliation(s)
- Michael P O'Leary
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.,Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sang-In Kim
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jianming Lu
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Audrey H Choi
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Anthony K Park
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yanghee Woo
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.,Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.,Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.,Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
22
|
Sprague L, Lee JM, Hutzen BJ, Wang PY, Chen CY, Conner J, Braidwood L, Cassady KA, Cripe TP. High Mobility Group Box 1 Influences HSV1716 Spread and Acts as an Adjuvant to Chemotherapy. Viruses 2018; 10:v10030132. [PMID: 29543735 PMCID: PMC5869525 DOI: 10.3390/v10030132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a multifunctional protein that plays various roles in the processes of inflammation, cancer, and other diseases. Many reports document abundant HMGB1 release following infection with oncolytic viruses (OVs). Further, other groups including previous reports from our laboratory highlight the synergistic effects of OVs with chemotherapy drugs. Here, we show that virus-free supernatants have varying cytotoxic potential, and HMGB1 is actively secreted by two established fibroblast cell lines (NIH 3T3 and 3T6-Swiss albino) following HSV1716 infection in vitro. Further, pharmacologic inhibition or genetic knock-down of HMGB1 reveals a role for HMGB1 in viral restriction, the ability to modulate bystander cell proliferation, and drug sensitivity in 3T6 cells. These data further support the multifactorial role of HMGB1, and suggest it could be a target for modulating the efficacy of oncolytic virus therapies alone or in combination with other frontline cancer treatments.
Collapse
Affiliation(s)
- Leslee Sprague
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
| | - Joel M Lee
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
| | - Brian J Hutzen
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Pin-Yi Wang
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Chun-Yu Chen
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Joe Conner
- Virttu Biologics, BioCity Glasgow, Newhouse ML1 5UH, UK.
| | | | - Kevin A Cassady
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
- Nationwide Children's Hospital, Division of Infectious Diseases and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| | - Timothy P Cripe
- The Ohio State University College of Medicine, Biomedical Sciences Graduate Program, Columbus, OH 43210, USA.
- Nationwide Children's Hospital, Division of Hematology/Oncology/BMT and Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA.
| |
Collapse
|
23
|
Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis. Oncotarget 2018; 7:81208-81222. [PMID: 27783991 PMCID: PMC5348387 DOI: 10.18632/oncotarget.12820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
Advanced extremity melanoma and sarcoma present a significant therapeutic challenge, requiring multimodality therapy to treat or even palliate disease. These aggressive tumours are relatively chemo-resistant, therefore new treatment approaches are urgently required. We have previously reported on the efficacy of oncolytic virotherapy (OV) delivered by isolated limb perfusion. In this report, we have improved therapeutic outcomes by combining OV with radiotherapy. In vitro, the combination of oncolytic vaccinia virus (GLV-1h68) and radiotherapy demonstrated synergistic cytotoxicity. This effect was not due to increased viral replication, but mediated through induction of intrinsic apoptosis. GLV-1h68 therapy downregulated the anti-apoptotic BCL-2 proteins (MCL-1 and BCL-XL) and the downstream inhibitors of apoptosis, resulting in cleavage of effector caspases 3 and 7. In an in vivo ILP model, the combination of OV and radiotherapy significantly delayed tumour growth and prolonged survival compared to single agent therapy. These data suggest that the virally-mediated down-regulation of anti-apoptotic proteins may increase the sensitivity of tumour cells to the cytotoxic effects of ionizing radiation. Oncolytic virotherapy represents an exciting candidate for clinical development when delivered by ILP. Its ability to overcome anti-apoptotic signals within tumour cells points the way to further development in combination with conventional anti-cancer therapies.
Collapse
|
24
|
Francis L, Guo ZS, Liu Z, Ravindranathan R, Urban JA, Sathaiah M, Magge D, Kalinski P, Bartlett DL. Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget 2017; 7:22174-85. [PMID: 26956047 PMCID: PMC5008353 DOI: 10.18632/oncotarget.7907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
An oncolytic poxvirus such as vvDD-CXCL11 can generate potent systemic antitumor immunity as well as targeted oncolysis, yet the antitumor effect is limited probably due to limited homing to and suppressed activity of tumor-specific adaptive immune cells in the tumor microenvironment (TME). We reasoned that a chemokine modulating (CKM) drug cocktail, consisting of IFN-α, poly I:C, and a COX-2 inhibitor, may skew the chemokine (CK) and cytokine profile into a favorable one in the TME, and this pharmaceutical modulation would enhance both the trafficking into and function of antitumor immune cells in the TME, thus increasing therapeutic efficacy of the oncolytic virus. In this study we show for the first time in vivo that the CKM modulates the CK microenvironment but it does not modulate antitumor immunity by itself in a MC38 colon cancer model. Sequential treatment with the virus and then CKM results in the upregulation of Th1-attracting CKs and reduction of Treg-attracting CKs (CCL22 and CXCL12), concurrent with enhanced trafficking of tumor-specific CD8+ T cells and NK cells into the TME, thus resulting in the most significant antitumor activity and long term survival of tumor-bearing mice. This novel combined regimen, with the oncolytic virus (vvDD-CXCL11) inducing direct oncolysis and eliciting potent antitumor immunity, and the CKM inducing a favorable chemokine profile in the TME that promotes the trafficking and function of antitumor Tc1/Th1 and NK cells, may have great utility for oncolytic immunotherapy for cancer.
Collapse
Affiliation(s)
- Lily Francis
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie A Urban
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Magesh Sathaiah
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deepa Magge
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
De Munck J, Binks A, McNeish IA, Aerts JL. Oncolytic virus-induced cell death and immunity: a match made in heaven? J Leukoc Biol 2017; 102:631-643. [PMID: 28720686 DOI: 10.1189/jlb.5ru0117-040r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
Our understanding of the mechanisms responsible for cancer development has increased enormously over the last decades. However, for many cancers, this has not been translated into a significant improvement in overall survival, and overall mortality remains high. Treatment for many malignancies remains based on surgery, chemotherapy, and radiotherapy. Significant progress has been made toward the development of more specific, more potent, and less invasive treatment modalities, but such targeted therapies remain the exception for most cancers. Thus, cancer therapies based on a different mechanism of action should be explored. The immune system plays an important role in keeping tumor growth at bay. However, in many cases, these responses are not strong enough to keep tumor growth under control. Thus, immunotherapy aims to boost the immune system to suppress tumor growth efficiently. This has been demonstrated by the recent successes of immune checkpoint therapy in several cancers. Oncolytic viruses (OVs) are another exciting class of immunotherapy agent. As well as replicating selectively within and killing tumor cells, OVs are able to elicit potent anti-tumor immune responses. Therapeutic vaccination with OVs, also referred to as cancer virotherapy, can thus be tailored to elicit vigorous cellular immune responses and even target individual malignancies in a personalized manner. In this review, we will describe the intricate link among oncolytic virotherapy, tumor immunology, and immunogenic cell death (ICD) and discuss ways to harness optimally their potential for future cancer therapy.
Collapse
Affiliation(s)
- Jolien De Munck
- Laboratory for Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium; and
| | - Alex Binks
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iain A McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joeri L Aerts
- Laboratory for Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium; and
| |
Collapse
|
26
|
Wu S, Zhu W, Peng Y, Wang L, Hong Y, Huang L, Dong D, Xie J, Merchen T, Kruse E, Guo ZS, Bartlett D, Fu N, He Y. The Antitumor Effects of Vaccine-Activated CD8 + T Cells Associate with Weak TCR Signaling and Induction of Stem-Like Memory T Cells. Cancer Immunol Res 2017; 5:908-919. [PMID: 28851693 DOI: 10.1158/2326-6066.cir-17-0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/02/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023]
Abstract
To understand why vaccine-activated tumor-specific T cells often fail to generate antitumor effects, we studied two α-fetoprotein-specific CD8+ T cells (Tet499 and Tet212) that had different antitumor effects. We found that Tet499 required high antigen doses for reactivation, but could survive persistent antigen stimulation and maintain their effector functions. In contrast, Tet212 had a low threshold of reactivation, but underwent exhaustion and apoptosis in the presence of persistent antigen. In vivo, Tet499 cells expanded more than Tet212 upon reencountering antigen and generated stronger antitumor effects. The different antigen responsiveness and antitumor effects of Tet212 and Tet499 cells correlated with their activation and differentiation states. Compared with Tet212, the population of Tet499 cells was less activated and contained more stem-like memory T cells (Tscm) that could undergo expansion in vivo The TCR signaling strength on Tet499 was weaker than Tet212, correlating with more severe Tet499 TCR downregulation. Weak TCR signaling may halt T-cell differentiation at the Tscm stage during immune priming and also explains why Tet499 reactivation requires a high antigen dose. Weak TCR signaling of Tet499 cells in the effector stage will also protect them from exhaustion and apoptosis when they reencounter persistent antigen in tumor lesion, which generates antitumor effects. Further investigation of TCR downregulation and manipulation of TCR signaling strength may help design cancer vaccines to elicit a mix of tumor-specific CD8+ T cells, including Tscm, capable of surviving antigen restimulation to generate antitumor effects. Cancer Immunol Res; 5(10); 908-19. ©2017 AACR.
Collapse
Affiliation(s)
- Sha Wu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Division of Laboratory Medicine of Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yibing Peng
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lan Wang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yuan Hong
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Lei Huang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Dayong Dong
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Junping Xie
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Todd Merchen
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Edward Kruse
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - David Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Ning Fu
- Division of Laboratory Medicine of Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia. .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
27
|
Haddad D. Genetically Engineered Vaccinia Viruses As Agents for Cancer Treatment, Imaging, and Transgene Delivery. Front Oncol 2017; 7:96. [PMID: 28589082 PMCID: PMC5440573 DOI: 10.3389/fonc.2017.00096] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/27/2017] [Indexed: 01/08/2023] Open
Abstract
Despite advances in technology, the formidable challenge of treating cancer, especially if advanced, still remains with no significant improvement in survival rates, even with the most common forms of cancer. Oncolytic viral therapies have shown great promise for the treatment of various cancers, with the possible advantages of stronger treatment efficacy compared to conventional therapy due to higher tumor selectivity, and less toxicity. They are able to preferentially and selectively propagate in cancer cells, consequently destroying tumor tissue mainly via cell lysis, while leaving non-cancerous tissues unharmed. Several wild-type and genetically engineered vaccinia virus (VACV) strains have been tested in both preclinical and clinical trials with promising results. Greater understanding and advancements in molecular biology have enabled the generation of genetically engineered oncolytic viruses for safer and more efficacious treatment, including arming VACVs with cytokines and immunostimulatory molecules, anti-angiogenic agents, and enzyme prodrug therapy, in addition to combining VACVs with conventional external and systemic radiotherapy, chemotherapy, immunotherapy, and other virus strains. Furthermore, novel oncolytic vaccinia virus strains have been generated that express reporter genes for the tracking and imaging of viral therapy and monitoring of therapeutic response. Further study is needed to unlock VACVs’ full potential as part of the future of cancer therapy.
Collapse
Affiliation(s)
- Dana Haddad
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
28
|
Guo ZS, Liu Z, Kowalsky S, Feist M, Kalinski P, Lu B, Storkus WJ, Bartlett DL. Oncolytic Immunotherapy: Conceptual Evolution, Current Strategies, and Future Perspectives. Front Immunol 2017; 8:555. [PMID: 28555136 PMCID: PMC5430078 DOI: 10.3389/fimmu.2017.00555] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
The concept of oncolytic virus (OV)-mediated cancer therapy has been shifted from an operational virotherapy paradigm to an immunotherapy. OVs often induce immunogenic cell death (ICD) of cancer cells, and they may interact directly with immune cells as well to prime antitumor immunity. We and others have developed a number of strategies to further stimulate antitumor immunity and to productively modulate the tumor microenvironment (TME) for potent and sustained antitumor immune cell activity. First, OVs have been engineered or combined with other ICD inducers to promote more effective T cell cross-priming, and in many cases, the breaking of functional immune tolerance. Second, OVs may be armed to express Th1-stimulatory cytokines/chemokines or costimulators to recruit and sustain the potent antitumor immunity into the TME to focus their therapeutic activity within the sites of disease. Third, combinations of OV with immunomodulatory drugs or antibodies that recondition the TME have proven to be highly promising in early studies. Fourth, combinations of OVs with other immunotherapeutic regimens (such as prime-boost cancer vaccines, CAR T cells; armed with bispecific T-cell engagers) have also yielded promising preliminary findings. Finally, OVs have been combined with immune checkpoint blockade, with robust antitumor efficacy being observed in pilot evaluations. Despite some expected hurdles for the rapid translation of OV-based state-of-the-art protocols, we believe that a cohort of these novel approaches will join the repertoire of standard cancer treatment options in the near future.
Collapse
Affiliation(s)
- Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacy Kowalsky
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité – Universitaetsmedizin Berlin, Berlin, Germany
| | - Pawel Kalinski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J. Storkus
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L. Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Heinrich B, Klein J, Delic M, Goepfert K, Engel V, Geberzahn L, Lusky M, Erbs P, Preville X, Moehler M. Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes. Onco Targets Ther 2017; 10:2389-2401. [PMID: 28496337 PMCID: PMC5422459 DOI: 10.2147/ott.s126320] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virotherapy is an emerging immunotherapeutic modality for cancer treatment. Oncolytic viruses with genetic modifications can further enhance the oncolytic effects on tumor cells and stimulate antitumor immunity. The oncolytic vaccinia viruses JX-594-GFP+/hGM-CSF (JX-GFP) and TG6002 are genetically modified by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF) or transforming 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU). We compared their properties to kill tumor cells and induce an immunogenic type of cell death in a human melanoma cell model using SK29-MEL melanoma cells. Their influence on human immune cells, specifically regarding the activation of dendritic cells (DCs) and the interaction with the autologous cytotoxic T lymphocyte (CTL) clone, was investigated. Melanoma cells were infected with either JX-GFP or TG6002 alone or in combination with 5-FC and 5-FU. The influence of viral infection on cell viability followed a time- and multiplicity of infection dependent manner. Combination of virus treatment with 5-FU resulted in stronger reduction of cell viability. TG6002 in combination with 5-FC did not significantly strengthen the reduction of cell viability in this setting. Expression of calreticulin and high mobility group 1 protein (HMGB1), markers of immunogenic cell death (ICD), could be detected after viral infection. Accordingly, DC maturation was noted after viral oncolysis. DCs presented stronger expression of activation and maturation markers. The autologous CTL clone IVSB expressed the activation marker CD69, but viral treatment failed to enhance cytotoxicity marker. In summary, vaccinia viruses JX-GFP and TG6002 lyse melanoma cells and induce additional immunostimulatory effects to promote antitumor immune response. Further investigation in vivo is needed to consolidate the data.
Collapse
Affiliation(s)
- B Heinrich
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - J Klein
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - M Delic
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - K Goepfert
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - V Engel
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - L Geberzahn
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - M Lusky
- Transgene SA, Illkirch-Graffenstaden
| | - P Erbs
- Transgene SA, Illkirch-Graffenstaden
| | | | - M Moehler
- First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
30
|
Veyer DL, Carrara G, Maluquer de Motes C, Smith GL. Vaccinia virus evasion of regulated cell death. Immunol Lett 2017; 186:68-80. [PMID: 28366525 DOI: 10.1016/j.imlet.2017.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Regulated cell death is a powerful anti-viral mechanism capable of aborting the virus replicative cycle and alerting neighbouring cells to the threat of infection. The biological importance of regulated cell death is illustrated by the rich repertoire of host signalling cascades causing cell death and by the multiple strategies exhibited by viruses to block death signal transduction and preserve cell viability. Vaccinia virus (VACV), a poxvirus and the vaccine used to eradicate smallpox, encodes multiple proteins that interfere with apoptotic, necroptotic and pyroptotic signalling. Here the current knowledge on cell death pathways and how VACV proteins interact with them is reviewed. Studying the mechanisms evolved by VACV to counteract host programmed cell death has implications for its successful use as a vector for vaccination and as an oncolytic agent against cancer.
Collapse
Affiliation(s)
- David L Veyer
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
31
|
Berkey SE, Thorne SH, Bartlett DL. Oncolytic Virotherapy and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:157-172. [PMID: 29275471 DOI: 10.1007/978-3-319-67577-0_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oncolytic viral therapy is a promising approach to treat many malignancies, including breast, colorectal, hepatocellular, and melanoma. The best results are seen when using "targeted and armed" viruses. These are viruses that have been genetically modified to selectively replicate within cancer cells and express specific transgenes that alter the tumor microenvironment to inhibit tumor progression. The products of these transgenes induce cell death, make the virus less virulent, compromise tumor vascularity, and are capable of modulating or enhancing the immune system-such as cytokines and chemokines. In addition, oncolytic viruses can induce anti-vascular effects and disrupt the extracellular matrix to improve viral spread within the tumor. Oncolytic viruses also improve crosstalk between fibroblasts, cytokine-induced killer cells, and cancer cells within the microenvironment, leading to enhanced tumor cell death.
Collapse
Affiliation(s)
- Sara E Berkey
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Steve H Thorne
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Abstract
Oncolytic viruses (OVs) are being extensively studied for their potential roles in the development of cancer therapy regimens. In addition to their direct lytic effects, OVs can initiate and drive systemic antitumor immunity indirectly via release of tumor antigen, as well as by encoding and delivering immunostimulatory molecules. This combination makes them an effective platform for the development of immunotherapeutic strategies beyond their primary lytic function. Engineering the viruses to also express tumor-associated antigens (TAAs) allows them to simultaneously serve as therapeutic vaccines, targeting and amplifying an immune response to TAAs. Our group and others have shown that vaccinating intratumorally with a poxvirus that encodes TAAs, in addition to immune stimulatory molecules, can modulate the tumor microenvironment, overcome immune inhibitory pathways, and drive both local and systemic tumor specific immune responses.
Collapse
|
33
|
Vacca pox to pexa vec: John Hunter's and Edward Jenner's contribution to oncolytic virotherapy. J Surg Res 2016; 204:228-31. [PMID: 27451890 DOI: 10.1016/j.jss.2016.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/24/2016] [Accepted: 04/14/2016] [Indexed: 11/23/2022]
|
34
|
Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 2016; 35:5931-5941. [PMID: 27086930 PMCID: PMC5119456 DOI: 10.1038/onc.2016.104] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/14/2022]
Abstract
Damage-associated molecular patterns (DAMPs) are released in response to cell
death and stress, and are potent triggers of sterile inflammation. Recent evidence
suggests that DAMPs may also have a key role in the development of cancer as well as in
the host response to cytotoxic anti-tumor therapy. As such, DAMPs may exert protective
functions by alerting the immune system to the presence of dying tumor cells, thereby
triggering immunogenic tumor cell death. On the other hand, cell death and release of
DAMPs may also trigger chronic inflammation and thereby promote the development or
progression of tumors. Here, we will review the contribution of candidate DAMPs and their
receptors and discuss the evidence for DAMPs as tumor-promoting and anti-tumor effectors
as well as unsolved questions such as DAMP release from non-tumor cells as well as the
existence of tumor-specific DAMPs.
Collapse
|
35
|
Yaghchi CA, Zhang Z, Alusi G, Lemoine NR, Wang Y. Vaccinia virus, a promising new therapeutic agent for pancreatic cancer. Immunotherapy 2015; 7:1249-58. [PMID: 26595180 PMCID: PMC4976866 DOI: 10.2217/imt.15.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The poor prognosis of pancreatic cancer patients signifies a need for radically new therapeutic strategies. Tumor-targeted oncolytic viruses have emerged as attractive therapeutic candidates for cancer treatment due to their inherent ability to specifically target and lyse tumor cells as well as induce antitumor effects by multiple action mechanisms. Vaccinia virus has several inherent features that make it particularly suitable for use as an oncolytic agent. In this review, we will discuss the potential of vaccinia virus in the management of pancreatic cancer in light of our increased understanding of cellular and immunological mechanisms involved in the disease process as well as our extending knowledge in the biology of vaccinia virus.
Collapse
Affiliation(s)
- Chadwan Al Yaghchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Zhongxian Zhang
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Ghassan Alusi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Nicholas R Lemoine
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| | - Yaohe Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, UK
- National Centre for International Research in Cell & Gene Therapy, Sino-British Research Centre for Molecular Oncology, Zhengzhou University, China
| |
Collapse
|
36
|
Liu Z, Ravindranathan R, Li J, Kalinski P, Guo ZS, Bartlett DL. CXCL11-Armed oncolytic poxvirus elicits potent antitumor immunity and shows enhanced therapeutic efficacy. Oncoimmunology 2015; 5:e1091554. [PMID: 27141352 PMCID: PMC4839379 DOI: 10.1080/2162402x.2015.1091554] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022] Open
Abstract
We have armed a tumor-selective oncolytic vaccinia virus (vvDD) with the chemokine (CK) CXCL11, in order to enhance its ability to attract CXCR3+ antitumor CTLs and possibly NK cells to the tumor microenvironment (TME) and improve its therapeutic efficacy. As expected, vvDD-CXCL11 attracted high numbers of tumor-specific T cells to the TME in a murine AB12 mesothelioma model. Intratumoral virus-directed CXCL11 expression enhanced local numbers of CD8+ CTLs and levels of granzyme B, while reducing expression of several suppressive molecules, TGF-β, COX2, and CCL22 in the TME. Unexpectedly, we observed that vvDD-CXCL11, but not parental vvDD, induced a systemic increase in tumor-specific IFNγ-producing CD8+ T cells in the spleen and other lymph organs, indicating the induction of systemic antitumor immunity. This effect was associated with enhanced therapeutic efficacy and a survival benefit in tumor-bearing mice treated with vvDD-CXCL11, mediated by CD8+ T cells and IFNγ, but not CD4+ T cells. These results demonstrate that intratumoral expression of CXCL11, in addition to promoting local trafficking of T cells and to a lesser extent NK cells, has a novel function as a factor eliciting systemic immunity to cancer-associated antigens. Our data provide a rationale for expressing CXCL11 to enhance the therapeutic efficacy of oncolytic viruses (OVs) and cancer vaccines.
Collapse
Affiliation(s)
- Zuqiang Liu
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Li
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pawel Kalinski
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Z Sheng Guo
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - David L Bartlett
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Jefferson A, Cadet VE, Hielscher A. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95:407-16. [PMID: 25900073 DOI: 10.1016/j.critrevonc.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.
Collapse
Affiliation(s)
- Artrish Jefferson
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Valerie E Cadet
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States
| | - Abigail Hielscher
- Department of Biomedical Sciences, Georgia-Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, United States.
| |
Collapse
|
38
|
de Gruijl TD, Janssen AB, van Beusechem VW. Arming oncolytic viruses to leverage antitumor immunity. Expert Opin Biol Ther 2015; 15:959-71. [PMID: 25959450 DOI: 10.1517/14712598.2015.1044433] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Over the past decade, the cytolytic capabilities of oncolytic viruses (OVs), exploited to selectively eliminate neoplastic cells, have become secondary to their use to elicit a tumor-directed immune response. AREAS COVERED Here, based on an NCBI-PubMed literature survey, we review the efforts undertaken to arm OVs in order to improve therapeutic antitumor responses upon administration of these agents. Specifically, we explore the different options to modulate immune suppression in the tumor microenvironment (TME) and to facilitate the generation of effective antitumor responses that have been investigated in conjunction with OVs in recent years. EXPERT OPINION Their induction of immunogenic tumor cell death and association with pro-inflammatory signals make OVs attractive immunotherapeutic modalities. The first promising clinical results with immunologically armed OVs warrant their further optimization and development. OVs should be modified to avoid detrimental effects of pre-existent anti-OV immunity as well as for increased tumor targeting and selectivity, so as to ultimately allow for systemic administration while achieving local immune potentiation and tumor elimination in the TME. In particular, a combination of trans-genes encoding bispecific T-cell engagers, immune checkpoint blockers and antigen-presenting cell enhancers will remove suppressive hurdles in the TME and allow for optimal antitumor efficacy of armed OVs.
Collapse
Affiliation(s)
- Tanja D de Gruijl
- VU University Medical Center - Cancer Center Amsterdam, Department of Medical Oncology , Room VUmc-CCA 2.44, De Boelelaan 1117, 1081 HV Amsterdam , The Netherlands +31 20 4444063 ;
| | | | | |
Collapse
|
39
|
Hamed M, Spaniol C, Nazarieh M, Helms V. TFmiR: a web server for constructing and analyzing disease-specific transcription factor and miRNA co-regulatory networks. Nucleic Acids Res 2015; 43:W283-8. [PMID: 25943543 PMCID: PMC4489273 DOI: 10.1093/nar/gkv418] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/18/2015] [Indexed: 01/27/2023] Open
Abstract
TFmiR is a freely available web server for deep and integrative analysis of combinatorial regulatory interactions between transcription factors, microRNAs and target genes that are involved in disease pathogenesis. Since the inner workings of cells rely on the correct functioning of an enormously complex system of activating and repressing interactions that can be perturbed in many ways, TFmiR helps to better elucidate cellular mechanisms at the molecular level from a network perspective. The provided topological and functional analyses promote TFmiR as a reliable systems biology tool for researchers across the life science communities. TFmiR web server is accessible through the following URL: http://service.bioinformatik.uni-saarland.de/tfmir.
Collapse
Affiliation(s)
- Mohamed Hamed
- Center for Bioinformatics, Saarland University, 66041 Saarbrucken, Germany
| | - Christian Spaniol
- Center for Bioinformatics, Saarland University, 66041 Saarbrucken, Germany
| | - Maryam Nazarieh
- Center for Bioinformatics, Saarland University, 66041 Saarbrucken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, 66041 Saarbrucken, Germany
| |
Collapse
|
40
|
Abstract
Cancer vaccines are designed to promote tumor specific immune responses, particularly cytotoxic CD8 positive T cells that are specific to tumor antigens. The earliest vaccines, which were developed in 1994-95, tested non-mutated, shared tumor associated antigens that had been shown to be immunogenic and capable of inducing clinical responses in a minority of people with late stage cancer. Technological developments in the past few years have enabled the investigation of vaccines that target mutated antigens that are patient specific. Several platforms for cancer vaccination are being tested, including peptides, proteins, antigen presenting cells, tumor cells, and viral vectors. Standard of care treatments, such as surgery and ablation, chemotherapy, and radiotherapy, can also induce antitumor immunity, thereby having cancer vaccine effects. The monitoring of patients' immune responses at baseline and after standard of care treatment is shedding light on immune biomarkers. Combination therapies are being tested in clinical trials and are likely to be the best approach to improving patient outcomes.
Collapse
Affiliation(s)
- Lisa H Butterfield
- Departments of Medicine, Surgery and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
41
|
Abstract
Current mainstays in cancer treatment such as chemotherapy, radiation therapy, hormonal manipulation, and even targeted therapies such as Trastuzumab (herceptin) for breast cancer or Iressa (gefitinib) for non-small cell lung cancer among others are limited by lack of efficacy, cellular resistance, and toxicity. Dose escalation and combination therapies designed to overcome resistance and increase efficacy are limited by a narrow therapeutic index. Oncolytic viruses are one such group of new biological therapeutics that appears to have a wide spectrum of anticancer activity with minimal human toxicity. Since the malignant phenotype of tumors is the culmination of multiple mutations that occur in genes eventually leading to aberrant signaling pathways, oncolytic viruses either natural or engineered specifically target tumor cells taking advantage of this abnormal cellular signaling for their replication. Reovirus is one such naturally occurring double-stranded RNA virus that exploits altered signaling pathways (including Ras) in a myriad of cancers. The ability of reovirus to infect and lyse tumors under in vitro, in vivo, and ex vivo conditions has been well documented previously by us and others. The major mechanism of reovirus oncolysis of cancer cells has been shown to occur through apoptosis with autophagy taking place during this process in certain cancers. In addition, the synergistic antitumor effects of reovirus in combination with radiation or chemotherapy have also been demonstrated for reovirus resistant and moderately sensitive tumors. Recent progress in our understanding of viral immunology in the tumor microenvironment has diverted interest in exploring immunologic mechanisms to overcome resistance exhibited by chemotherapeutic drugs in cancer. Thus, currently several investigations are focusing on immune potentiating of reovirus for maximal tumor targeting. This chapter therefore has concentrated on immunologic cell death induction with reovirus as a novel approach to cancer therapy used under in vitro and in vivo conditions, as well as in a clinical setting. Reovirus phase I clinical trials have shown indications of efficacy, and several phase II/III trials are ongoing at present. Reovirus's extensive preclinical efficacy, replication competency, and low toxicity profile in humans have placed it as an attractive anticancer therapeutic for ongoing clinical testing that are highlighted in this chapter.
Collapse
|
42
|
Woller N, Gürlevik E, Ureche CI, Schumacher A, Kühnel F. Oncolytic viruses as anticancer vaccines. Front Oncol 2014; 4:188. [PMID: 25101244 PMCID: PMC4104469 DOI: 10.3389/fonc.2014.00188] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/06/2014] [Indexed: 12/28/2022] Open
Abstract
Oncolytic virotherapy has shown impressive results in preclinical studies and first promising therapeutic outcomes in clinical trials as well. Since viruses are known for a long time as excellent vaccination agents, oncolytic viruses are now designed as novel anticancer agents combining the aspect of lysis-dependent cytoreductive activity with concomitant induction of antitumoral immune responses. Antitumoral immune activation by oncolytic virus infection of tumor tissue comprises both, immediate effects of innate immunity and also adaptive responses for long lasting antitumoral activity, which is regarded as the most prominent challenge in clinical oncology. To date, the complex effects of a viral tumor infection on the tumor microenvironment and the consequences for the tumor-infiltrating immune cell compartment are poorly understood. However, there is more and more evidence that a tumor infection by an oncolytic virus opens up a number of options for further immunomodulating interventions such as systemic chemotherapy, generic immunostimulating strategies, dendritic cell-based vaccines, and antigenic libraries to further support clinical efficacy of oncolytic virotherapy.
Collapse
Affiliation(s)
- Norman Woller
- Clinic for Gastroenterology, Hepatology and Endocrinology, Medical School Hannover , Hannover , Germany
| | - Engin Gürlevik
- Clinic for Gastroenterology, Hepatology and Endocrinology, Medical School Hannover , Hannover , Germany
| | - Cristina-Ileana Ureche
- Clinic for Gastroenterology, Hepatology and Endocrinology, Medical School Hannover , Hannover , Germany
| | - Anja Schumacher
- Clinic for Gastroenterology, Hepatology and Endocrinology, Medical School Hannover , Hannover , Germany
| | - Florian Kühnel
- Clinic for Gastroenterology, Hepatology and Endocrinology, Medical School Hannover , Hannover , Germany
| |
Collapse
|
43
|
Thorne SH. Immunotherapeutic potential of oncolytic vaccinia virus. Front Oncol 2014; 4:155. [PMID: 24987615 PMCID: PMC4060052 DOI: 10.3389/fonc.2014.00155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
The concept of oncolytic viral therapy was based on the hypothesis that engineering tumor-selectivity into the replication potential of viruses would permit direct destruction of tumor cells as a result of viral-mediated lysis, resulting in amplification of the therapy exclusively within the tumor environment. The immune response raised by the virus was not only considered to be necessary for the safety of the approach, but also something of a hindrance to optimal therapeutic activity and repeat dosing. However, the pre-clinical and subsequent clinical success of several oncolytic viruses expressing selected cytokines has demonstrated the potential for harnessing the immune response as an additional and beneficial mechanism of therapeutic activity within the platform. Over the last few years, a variety of novel approaches have been incorporated to try to enhance this immunotherapeutic activity. Several innovative and subtle approaches have moved far beyond the expression of a single cytokine transgene, with the hope of optimizing anti-tumor immunity while having minimal detrimental impact on viral oncolytic activity.
Collapse
Affiliation(s)
- Steve H. Thorne
- Department of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Guo ZS, Liu Z, Bartlett DL. Oncolytic Immunotherapy: Dying the Right Way is a Key to Eliciting Potent Antitumor Immunity. Front Oncol 2014; 4:74. [PMID: 24782985 PMCID: PMC3989763 DOI: 10.3389/fonc.2014.00074] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses (OVs) are novel immunotherapeutic agents whose anticancer effects come from both oncolysis and elicited antitumor immunity. OVs induce mostly immunogenic cancer cell death (ICD), including immunogenic apoptosis, necrosis/necroptosis, pyroptosis, and autophagic cell death, leading to exposure of calreticulin and heat-shock proteins to the cell surface, and/or released ATP, high-mobility group box 1, uric acid, and other damage-associated molecular patterns as well as pathogen-associated molecular patterns as danger signals, along with tumor-associated antigens, to activate dendritic cells and elicit adaptive antitumor immunity. Dying the right way may greatly potentiate adaptive antitumor immunity. The mode of cancer cell death may be modulated by individual OVs and cancer cells as they often encode and express genes that inhibit/promote apoptosis, necroptosis, or autophagic cell death. We can genetically engineer OVs with death-pathway-modulating genes and thus skew the infected cancer cells toward certain death pathways for the enhanced immunogenicity. Strategies combining with some standard therapeutic regimens may also change the immunological consequence of cancer cell death. In this review, we discuss recent advances in our understanding of danger signals, modes of cancer cell death induced by OVs, the induced danger signals and functions in eliciting subsequent antitumor immunity. We also discuss potential combination strategies to target cells into specific modes of ICD and enhance cancer immunogenicity, including blockade of immune checkpoints, in order to break immune tolerance, improve antitumor immunity, and thus the overall therapeutic efficacy.
Collapse
Affiliation(s)
- Zong Sheng Guo
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Zuqiang Liu
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
45
|
Hong Y, Peng Y, Guo ZS, Guevara-Patino J, Pang J, Butterfield LH, Mivechi N, Munn DH, Bartlett DL, He Y. Epitope-optimized alpha-fetoprotein genetic vaccines prevent carcinogen-induced murine autochthonous hepatocellular carcinoma. Hepatology 2014; 59:1448-58. [PMID: 24122861 PMCID: PMC4151349 DOI: 10.1002/hep.26893] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/25/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Immunization with effective cancer vaccines can offer a much needed adjuvant therapy to fill the treatment gap after liver resection to prevent relapse of hepatocellular carcinoma (HCC). However, current HCC cancer vaccines are mostly based on native shared-self/tumor antigens that are only able to induce weak immune responses. In this study we investigated whether the HCC-associated self/tumor antigen of alpha-fetoprotein (AFP) could be engineered to create an effective vaccine to break immune tolerance and potently activate CD8 T cells to prevent clinically relevant carcinogen-induced autochthonous HCC in mice. We found that the approach of computer-guided methodical epitope-optimization created a highly immunogenic AFP and that immunization with lentivector expressing the epitope-optimized AFP, but not wild-type AFP, potently activated CD8 T cells. Critically, the activated CD8 T cells not only cross-recognized short synthetic wild-type AFP peptides, but also recognized and killed tumor cells expressing wild-type AFP protein. Immunization with lentivector expressing optimized AFP, but not native AFP, completely protected mice from tumor challenge and reduced the incidence of carcinogen-induced autochthonous HCC. In addition, prime-boost immunization with the optimized AFP significantly increased the frequency of AFP-specific memory CD8 T cells in the liver that were highly effective against emerging HCC tumor cells, further enhancing the tumor prevention of carcinogen-induced autochthonous HCC. CONCLUSIONS Epitope-optimization is required to break immune tolerance and potently activate AFP-specific CD8 T cells, generating effective antitumor effect to prevent clinically relevant carcinogen-induced autochthonous HCC in mice. Our study provides a practical roadmap to develop effective human HCC vaccines that may result in an improved outcome compared to the current HCC vaccines based on wild-type AFP.
Collapse
Affiliation(s)
- Yuan Hong
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA
| | - Yibing Peng
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA
| | - Z. Sheng Guo
- Department of Surgery and University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Jose Guevara-Patino
- Depart of Surgery, Cardinal Bernardin Cancer Center, Loyola University, Maywood, IL
| | - Junfeng Pang
- Department of Radiology and Molecular Chaperone Program, Georgia Regents University Cancer Center, Augusta, GA
| | - Lisa H. Butterfield
- Department of Medicine, Surgery, and Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Nahid Mivechi
- Department of Radiology and Molecular Chaperone Program, Georgia Regents University Cancer Center, Augusta, GA
| | - David H Munn
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA,Department of Pediatrics, Medical College of Georgia, Augusta, GA
| | - David L Bartlett
- Department of Surgery and University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Yukai He
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA,Department of Medicine, Medical College of Georgia, Augusta, GA
| |
Collapse
|
46
|
Ilkow CS, Swift SL, Bell JC, Diallo JS. From scourge to cure: tumour-selective viral pathogenesis as a new strategy against cancer. PLoS Pathog 2014; 10:e1003836. [PMID: 24453963 PMCID: PMC3894191 DOI: 10.1371/journal.ppat.1003836] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tumour mutations corrupt cellular pathways, and accumulate to disrupt, dysregulate, and ultimately avoid mechanisms of cellular control. Yet the very changes that tumour cells undergo to secure their own growth success also render them susceptible to viral infection. Enhanced availability of surface receptors, disruption of antiviral sensing, elevated metabolic activity, disengagement of cell cycle controls, hyperactivation of mitogenic pathways, and apoptotic avoidance all render the malignant cell environment highly supportive to viral replication. The therapeutic use of oncolytic viruses (OVs) with a natural tropism for infecting and subsequently lysing tumour cells is a rapidly progressing area of cancer research. While many OVs exhibit an inherent degree of tropism for transformed cells, this can be further promoted through pharmacological interventions and/or the introduction of viral mutations that generate recombinant oncolytic viruses adapted to successfully replicate only in a malignant cellular environment. Such adaptations that augment OV tumour selectivity are already improving the therapeutic outlook for cancer, and there remains tremendous untapped potential for further innovation.
Collapse
Affiliation(s)
- Carolina S. Ilkow
- Centre for Innovative Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | - John C. Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
47
|
Yu F, Wang X, Guo ZS, Bartlett DL, Gottschalk SM, Song XT. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 2014; 22:102-11. [PMID: 24135899 PMCID: PMC3978793 DOI: 10.1038/mt.2013.240] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022] Open
Abstract
Oncolytic vaccinia virus (VV) therapy has shown promise in preclinical models and in clinical studies. However, complete responses have rarely been observed. This lack of efficacy is most likely due to suboptimal virus spread through the tumor resulting in limited tumor cell destruction. We reasoned that redirecting T cells to the tumor has the potential to improve the antitumor activity of oncolytic VVs. We, therefore, constructed a VV encoding a secretory bispecific T-cell engager consisting of two single- chain variable fragments specific for CD3 and the tumor cell surface antigen EphA2 (EphA2-T-cell engager-armed VV (EphA2-TEA-VV)). In vitro, EphA2-TEA-VV's ability to replicate and induce oncolysis was similar to that of unmodified virus. However, only tumor cells infected with EphA2-TEA-VV induced T-cell activation as judged by the secretion of interferon-γ and interleukin-2. In coculture assays, EphA2-TEA-VV not only killed infected tumor cells, but in the presence of T cells, it also induced bystander killing of noninfected tumor cells. In vivo, EphA2-TEA-VV plus T cells had potent antitumor activity in comparison with control VV plus T cells in a lung cancer xenograft model. Thus, arming oncolytic VVs with T-cell engagers may represent a promising approach to improve oncolytic virus therapy.
Collapse
Affiliation(s)
- Feng Yu
- Center for Cell and Gene Therapy, Texas Children's Hospital, The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xingbing Wang
- Center for Cell and Gene Therapy, Texas Children's Hospital, The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Z Sheng Guo
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen M Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xiao-Tong Song
- Center for Cell and Gene Therapy, Texas Children's Hospital, The Methodist Hospital, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
48
|
Parviainen S, Ahonen M, Diaconu I, Hirvinen M, Karttunen Å, Vähä-Koskela M, Hemminki A, Cerullo V. CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging. Gene Ther 2013; 21:195-204. [PMID: 24305418 DOI: 10.1038/gt.2013.73] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/02/2013] [Accepted: 10/11/2013] [Indexed: 12/31/2022]
Abstract
Oncolytic vaccinia virus is an attractive platform for immunotherapy. Oncolysis releases tumor antigens and provides co-stimulatory danger signals. However, arming the virus can improve efficacy further. CD40 ligand (CD40L, CD154) can induce apoptosis of tumor cells and it also triggers several immune mechanisms. One of these is a T-helper type 1 (Th1) response that leads to activation of cytotoxic T-cells and reduction of immune suppression. Therefore, we constructed an oncolytic vaccinia virus expressing hCD40L (vvdd-hCD40L-tdTomato), which in addition features a cDNA expressing the tdTomato fluorochrome for detection of virus, potentially important for biosafety evaluation. We show effective expression of functional CD40L both in vitro and in vivo. In a xenograft model of bladder carcinoma sensitive to CD40L treatment, we show that growth of tumors was significantly inhibited by the oncolysis and apoptosis following both intravenous and intratumoral administration. In a CD40-negative model, CD40L expression did not add potency to vaccinia oncolysis. Tumors treated with vvdd-mCD40L-tdtomato showed enhanced efficacy in a syngenic mouse model and induced recruitment of antigen-presenting cells and lymphocytes at the tumor site. In summary, oncolytic vaccinia virus coding for CD40L mediates multiple antitumor effects including oncolysis, apoptosis and induction of Th1 type T-cell responses.
Collapse
Affiliation(s)
- S Parviainen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - M Ahonen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - I Diaconu
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - M Hirvinen
- Laboratory of Immunovirotherapy, Faculty of Pharmacy, Division of Biopharmaceutics and Pharmacokinetics, University of Helsinki, Helsinki Finland
| | - Å Karttunen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - M Vähä-Koskela
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - A Hemminki
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - V Cerullo
- Laboratory of Immunovirotherapy, Faculty of Pharmacy, Division of Biopharmaceutics and Pharmacokinetics, University of Helsinki, Helsinki Finland
| |
Collapse
|
49
|
Sampath P, Thorne SH. Arming viruses in multi-mechanistic oncolytic viral therapy: current research and future developments, with emphasis on poxviruses. Oncolytic Virother 2013; 3:1-9. [PMID: 27512659 PMCID: PMC4918358 DOI: 10.2147/ov.s36703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The field of oncolytic virology has made great strides in recent years. However, one key finding has been that the use of viral agents that replicate selectively in tumors is usually insufficient to achieve anything beyond small and transient responses. Instead, like most cancer therapies, oncolytic viruses are most effective in combination with other therapies, which is where they have proven therapeutic effects in clinical and preclinical studies. In cases of some of the smaller RNA viruses, effects can only be achieved through combination regimens with chemotherapy, radiotherapy, or targeted conventional therapies. However, larger DNA viruses are able to express one or more transgenes; thus, therapeutic mechanisms can be built into the viral vector itself. The incorporated approaches into arming oncolytic viruses through transgene expression will be the main focus of this review, including use of immune activators, prodrug converting enzymes, anti-angiogenic factors, and targeting of the stroma. This will focus on poxviruses as model systems with large cloning capacities, which have routinely been used as transgene expression vectors in different settings, including vaccine and oncolytic viral therapy.
Collapse
Affiliation(s)
- Padma Sampath
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steve H Thorne
- Department of Surgery, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Atherton MJ, Lichty BD. Evolution of oncolytic viruses: novel strategies for cancer treatment. Immunotherapy 2013; 5:1191-206. [DOI: 10.2217/imt.13.123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many viruses have documented oncolytic activity, with the first evidence observed clinically over a decade ago. In recent years, there has been a resurgence of interest in the field of oncolytic viruses. Viruses may be innately oncotropic, lacking the ability to cause disease in people or they may require engineering to allow selective tumor targeting and attenuation of pathogenicity. Following infection of a neoplastic cell, several events may occur, including direct viral oncolysis, apoptosis, necrotic cell death and autophagic cellular demise. Of late, a large body of work has recognized the ability of oncolytic viruses (OVs) to activate the innate and adaptive immune system, as well as directly killing tumors. The production of viruses expressing transgenes encoding for cytokines, colony-stimulating factors, costimulatory molecules and tumor-associated antigens has been able to further incite immune responses against target tumors. Multiple OVs are now in the advanced stages of clinical trials, with several individual viruses having completed their respective trials with positive results. This review introduces the multiple mechanisms by which OVs are able to act as an antineoplastic therapy, either on their own or in combination with other more traditional treatment modalities. The full benefit and the place where OVs will be integrated into standard-of-care therapies will be determined with ongoing studies ranging from the laboratory to the patient. With various different viruses now in the clinic this therapeutic option is beginning to prove its worth, and the versatility of these agents means further innovative and novel applications will continue to be developed.
Collapse
Affiliation(s)
- Matthew J Atherton
- McMaster Immunology Research Centre, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4K1
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|