1
|
Schneider A, Won S, Armstrong EA, Cooper AJ, Suresh A, Rivera R, Barrett-Wilt G, Denu JM, Simcox JA, Svaren J. The role of ATP citrate lyase in myelin formation and maintenance. Glia 2025; 73:105-121. [PMID: 39318247 DOI: 10.1002/glia.24620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
Formation of myelin by Schwann cells is tightly coupled to peripheral nervous system development and is important for neuronal function and long-term maintenance. Perturbation of myelin causes a number of specific disorders that are among the most prevalent diseases affecting the nervous system. Schwann cells synthesize myelin lipids de novo rather than relying on uptake of circulating lipids, yet one unresolved matter is how acetyl CoA, a central metabolite in lipid formation is generated during myelin formation and maintenance. Recent studies have shown that glucose-derived acetyl CoA itself is not required for myelination. However, the importance of mitochondrially-derived acetyl CoA has never been tested for myelination in vivo. Therefore, we have developed a Schwann cell-specific knockout of the ATP citrate lyase (Acly) gene to determine the importance of mitochondrial metabolism to supply acetyl CoA in nerve development. Intriguingly, the ACLY pathway is important for myelin maintenance rather than myelin formation. In addition, ACLY is required to maintain expression of a myelin-associated gene program and to inhibit activation of the latent Schwann cell injury program.
Collapse
Affiliation(s)
- Andrew Schneider
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Seongsik Won
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric A Armstrong
- Wisconsin Institute of Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron J Cooper
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amulya Suresh
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rachell Rivera
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - John M Denu
- Wisconsin Institute of Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Judith A Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Yang J, Wang H, Li B, Liu J, Zhang X, Wang Y, Peng J, Gao L, Wang X, Hu S, Zhang W, Hong L. Inhibition of ACSS2 triggers glycolysis inhibition and nuclear translocation to activate SIRT1/ATG5/ATG2B deacetylation axis, promoting autophagy and reducing malignancy and chemoresistance in ovarian cancer. Metabolism 2025; 162:156041. [PMID: 39362518 DOI: 10.1016/j.metabol.2024.156041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Metabolic reprogramming is a hallmark of cancer, characterized by a high dependence on glycolysis and an enhanced utilization of acetate as an alternative carbon source. ACSS2 is a critical regulator of acetate metabolism, playing a significant role in the development and progression of various malignancies. ACSS2 facilitates the conversion of acetate to acetyl-CoA, which participates in multiple metabolic pathways and functions as an epigenetic regulator of protein acetylation, thereby modulating key cellular processes such as autophagy. However, the roles and intrinsic connections of ACSS2, glycolysis, protein acetylation, and autophagy in ovarian cancer (OC) remain to be elucidated. BASIC PROCEDURES Utilizing clinical specimens and online databases, we analysed the expression of ACSS2 in OC and its relationship with clinical prognosis. By knocking down ACSS2, we evaluated its effects on the malignant phenotype, acetate metabolism, glycolysis, and autophagy. The metabolic alterations in OC cells were comprehensively analysed using Seahorse assays, transmission electron microscopy, membrane potential measurements, and stable-isotope labeling techniques. CUT&TAG and co-immunoprecipitation techniques were employed to explore the deacetylation of autophagy-related proteins mediated by ACSS2 via SIRT1. Additionally, through molecular docking, transcriptome sequencing, and metabolomics analyses, we validated the pharmacological effects of paeonol on ACSS2 and the glycolytic process in OC cells. Finally, both in vitro and in vivo experiments were performed to investigate the impact of paeonol on autophagy and its anti-OC effects mediated through the ACSS2/SIRT1 deacetylation axis. MAIN FINDINGS ACSS2 is significantly upregulated in OC and is associated with poor prognosis. Knockdown of ACSS2 inhibits OC cells proliferation, migration, invasion, angiogenesis, and platinum resistance, while reducing tumour burden in vivo. Mechanistically, inhibiting ACSS2 reduces acetate metabolism and suppresses glycolysis by targeting HXK2. This glycolytic reduction promotes the translocation of ACSS2 from the cytoplasm to the nucleus, leading to increased expression of the deacetylase SIRT1. SIRT1 mediates the deacetylation of autophagy-related proteins, such as ATG5 and ATG2B, thereby significantly activating autophagy in OC cells and exerting antitumor effects. Paeonol inhibits acetate metabolism and glycolysis in OC cells by targeting ACSS2. Paeonol activates autophagy through the ACSS2/SIRT1/ATG5/ATG2B deacetylation axis, demonstrating inhibition of OC in vitro and in vivo. PRINCIPAL CONCLUSIONS Pae can serve as an effective, low-toxicity, multi-targeted drug targeting ACSS2 and glycolysis. It activates autophagy through the ACSS2/SIRT1/ATG5/ATG2B deacetylation signalling cascade, thereby exerting anti-OC effects. Our study provides new insights into the malignant mechanisms of OC and offers a novel strategy for its treatment.
Collapse
Affiliation(s)
- Jiang Yang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China; Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, PR China
| | - Haoyu Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Bingshu Li
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jingchun Liu
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Ying Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jiaxin Peng
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Likun Gao
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Xinqi Wang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Siyuan Hu
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wenyi Zhang
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Li Hong
- Department of Obstetrics and Gynaecology, Renmin Hospital of Wuhan University, Wuhan, PR China.
| |
Collapse
|
3
|
Li J, Wang X, Tan M, Zheng J, Mao J, Hao J, Shen H. Neutrophil extracellular traps in rheumatoid arthritis: Activating fibroblast-like synoviocytes via ATP citrate lyase. Int Immunopharmacol 2024; 143:113518. [PMID: 39522314 DOI: 10.1016/j.intimp.2024.113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Synovial hyperplasia and inflammation are the main pathological features of rheumatoid arthritis (RA). Fibroblast‑like synoviocytes (FLSs) are the major effector cells contributing to chronic inflation and joint injury in the synovial microenvironment. Neutrophil extracellular traps (NETs) play an important role in the pathogenesis of RA, but their downstream regulatory mechanisms remain unclear. In order to improve the therapeutic prospects for RA, it is crucial to identify the targets of NETs and the molecular mechanisms of synovial dysfunction. ATP-citrate lyase (ACLY) directs glucose metabolism to de novo lipogenesis (DNL) by generating acetyl-CoA, which is also an acetyl donator to protein acetylation. ACLY has gained attention in studies on tumors, fatty liver, inflammation, and metabolic diseases. However, its involvement in RA progression is still uncertain. The present study revealed increased expression of NETs in the RA synovial microenvironment, including synovial fluid and synovial tissue, and a positive correlation to disease activity. In vitro experiments demonstrated that NETs activate ACLY, which not only triggers DNL, and enhances procreation, migration and invasiveness of RA-FLSs, but also stimulates the nuclear factor kappa-B (NF-κB) signaling pathway. This enhances the expression and nuclear translocation of acetyl-NF-kappaB p65 (Ac-p65), intensifying the transcription of inflammatory mediators and exacerbating synovial inflammation. Additionally, a high level of NETs expression in synovial tissues of arthritis animal models and the therapeutic effect of inhibiting ACLY on joint inflammation, bone erosion and bone destruction were also confirmed in vivo. In conclusion, our results elucidate the molecular mechanisms involved in the activation of RA-FLSs by NETs, and ACLY may be a candidate target for regulating metabolic reprogramming and inflammation to mitigate RA joint injuries.
Collapse
Affiliation(s)
- Jun Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaomin Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Province Maternity and Child Health Care Hospital (Gansu Province Central Hospital), Lanzhou, China
| | - Min Tan
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianxiong Zheng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jing Mao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiayao Hao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
4
|
Diao B, Fan Z, Zhou B, Zhan H. Crosstalk between pancreatic cancer and adipose tissue: Molecular mechanisms and therapeutic implications. Biochem Biophys Res Commun 2024; 740:151012. [PMID: 39561650 DOI: 10.1016/j.bbrc.2024.151012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
The incidence rate of pancreatic cancer, a fatal illness with a meager 5-year survival rate, has been on the rise in recent times. When individuals accumulate excessive amounts of adipose tissue, the adipose organ becomes dysfunctional due to alterations in the adipose tissue microenvironment associated with inflammation and metabolism. This phenomenon may potentially contribute to the aberrant accumulation of fat that initiates pancreatic carcinogenesis, thereby influencing the disease's progression, resistance to treatment, and metastasis. This review presents a summary of the impact of pancreatic steatosis, visceral fat, cancer-associated adipocytes and lipid diets on the advancement of pancreatic cancer, as well as the reciprocal effects of pancreatic cancer on adipose tissue. Understanding the molecular mechanisms underlying the relationship between dysfunctional adipose tissue and pancreatic cancer better may lead to the discovery of new therapeutic targets for the disease's prevention and individualized treatment. This is especially important given the rising global incidence of obesity, which will improve the pancreatic cancer treatment options that are currently insufficient.
Collapse
Affiliation(s)
- Boyu Diao
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhiyao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
5
|
Gao Y, Siyu zhang, Zhang X, Du Y, Ni T, Hao S. Crosstalk between metabolic and epigenetic modifications during cell carcinogenesis. iScience 2024; 27:111359. [PMID: 39660050 PMCID: PMC11629229 DOI: 10.1016/j.isci.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Genetic mutations arising from various internal and external factors drive cells to become cancerous. Cancerous cells undergo numerous changes, including metabolic reprogramming and epigenetic modifications, to support their abnormal proliferation. This metabolic reprogramming leads to the altered expression of many metabolic enzymes and the accumulation of metabolites. Recent studies have shown that these enzymes and metabolites can serve as substrates or cofactors for chromatin-modifying enzymes, thereby participating in epigenetic modifications and promoting carcinogenesis. Additionally, epigenetic modifications play a role in the metabolic reprogramming and immune evasion of cancer cells, influencing cancer progression. This review focuses on the origins of cancer, particularly the metabolic reprogramming of cancer cells and changes in epigenetic modifications. We discuss how metabolites in cancer cells contribute to epigenetic remodeling, including lactylation, acetylation, succinylation, and crotonylation. Finally, we review the impact of epigenetic modifications on tumor immunity and the latest advancements in cancer therapies targeting these modifications.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siyu zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
6
|
Kn S, Shetty SS, Shetty P. Lipid-laden uterus: Investigating uterine fibroids and lipid association. Pathol Res Pract 2024; 266:155772. [PMID: 39709872 DOI: 10.1016/j.prp.2024.155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Uterine Fibroids (UF) are the most common (about 70 % cases) benign gynecological smooth muscle tumors of the uterus in women of reproductive age, characterized by abnormal cholesterol, lipoproteins, and triglyceride levels, and are a major public health concern. Despite its high prevalence, this condition remains complex and poorly understood. These tumors are hormone-dependent and hormones and lipid levels are inversely related. This review delves into the existing literature and critically evaluates studies that explore the potential relationship between lipids in the pathogenesis of uterine fibroids. This review concludes by critically appraising the research gaps in the involvement of lipids and signaling pathways in the pathogenesis of uterine fibroids and future directions for investigating this intriguing biological connection. By elucidating the potential link between uterine fibroids and lipids, this review paves the way for an improved understanding of fibroid pathogenesis, personalized risk assessment, and novel lipid-lowering therapeutic strategies.
Collapse
Affiliation(s)
- Sandeepa Kn
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India
| | - Shilpa S Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India.
| | - Prasannakumar Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Department of obstetrics and gynecology, India; Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), KSHEMA IVF Fertility & Reproductive Medicine Centre India, India
| |
Collapse
|
7
|
Kumari S, Gupta S, Jamil A, Tabatabaei D, Karakashev S. Exploring Metabolic Approaches for Epithelial Ovarian Cancer Therapy. J Cell Physiol 2024:e31495. [PMID: 39676338 DOI: 10.1002/jcp.31495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Epithelial ovarian cancer (EOC) has the highest mortality rate among malignant tumors of the female reproductive system and the lowest survival rate. This poor prognosis is due to the aggressive nature of EOC, its late-stage diagnosis, and the tumor's ability to adapt to stressors through metabolic reprogramming. EOC cells sustain their rapid proliferation by altering the uptake, utilization, and regulation of carbohydrates, lipids, and amino acids. These metabolic changes support tumor growth and contribute to metastasis, chemotherapy resistance, and immune evasion. Targeting these metabolic vulnerabilities has shown promise in preclinical studies, with some therapies advancing to clinical trials. However, challenges remain due to tumor heterogeneity, adaptive resistance mechanisms, and the influence of the tumor microenvironment. This review provides a comprehensive summary of metabolic targets for EOC treatment and offers an overview of the current landscape of clinical trials focusing on ovarian cancer metabolism. Future efforts should prioritize combination therapies that integrate metabolic inhibitors with immunotherapies or chemotherapy. Advances in precision medicine and multi-omics approaches will be crucial for identifying patient-specific metabolic dependencies and improving outcomes. By addressing these challenges, metabolism-based therapies can significantly transform the treatment of this devastating disease.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Shraddha Gupta
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Aisha Jamil
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Deyana Tabatabaei
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Sergey Karakashev
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Hu Y, Liu W, Fang W, Dong Y, Zhang H, Luo Q. Tumor energy metabolism: implications for therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:63. [PMID: 39609317 PMCID: PMC11604893 DOI: 10.1186/s43556-024-00229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Tumor energy metabolism plays a crucial role in the occurrence, progression, and drug resistance of tumors. The study of tumor energy metabolism has gradually become an emerging field of tumor treatment. Recent studies have shown that epigenetic regulation is closely linked to tumor energy metabolism, influencing the metabolic remodeling and biological traits of tumor cells. This review focuses on the primary pathways of tumor energy metabolism and explores therapeutic strategies to target these pathways. It covers key areas such as glycolysis, the Warburg effect, mitochondrial function, oxidative phosphorylation, and the metabolic adaptability of tumors. Additionally, this article examines the role of the epigenetic regulator SWI/SNF complex in tumor metabolism, specifically its interactions with glucose, lipids, and amino acids. Summarizing therapeutic strategies aimed at these metabolic pathways, including inhibitors of glycolysis, mitochondrial-targeted drugs, exploitation of metabolic vulnerabilities, and recent developments related to SWI/SNF complexes as potential targets. The clinical significance, challenges, and future directions of tumor metabolism research are discussed, including strategies to overcome drug resistance, the potential of combination therapy, and the application of new technologies.
Collapse
Affiliation(s)
- Youwu Hu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanqing Liu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - WanDi Fang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yudi Dong
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Hong Zhang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing Luo
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China.
- Guizhou Provincial Key Laboratory of Cell Engineering, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Pant A, Brahim Belhaouari D, Dsouza L, Yang Z. Stimulation of neutral lipid synthesis via viral growth factor signaling and ATP citrate lyase during vaccinia virus infection. J Virol 2024; 98:e0110324. [PMID: 39475274 DOI: 10.1128/jvi.01103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 11/20/2024] Open
Abstract
Fatty acid metabolism can provide various products essential for viral infections. How vaccinia virus (VACV), the prototype of poxviruses, modulates fatty acid metabolism is not well understood. Here, we show that VACV infection results in increased neutral lipid droplet synthesis, the organelles that play a crucial role in storing and mobilizing fatty acids for energy production via β-oxidation. Citrate is the first tricarboxylic acid (TCA) cycle intermediate that can be transported to the cytosol to be converted to acetyl-CoA for de novo fatty acid biosynthesis. We found that VACV infection stimulates the S455 phosphorylation of ATP citrate lyase (ACLY), a pivotal enzyme that links citrate metabolism with lipid metabolism. We demonstrate that the inhibition of neutral lipid droplet synthesis and ACLY severely suppresses VACV replication. Remarkably, we found that virus growth factor (VGF)-induced signaling is essential for the VACV-mediated upregulation of ACLY phosphorylation and neutral lipid droplets. Finally, we report that VGF-induced EGFR-Akt pathway and ACLY phosphorylation are important for VACV stimulation of neutral lipid synthesis. These findings identified a new way of rewiring cell metabolism by a virus and a novel function for VGF in the governance of virus-host interactions through the induction of a key enzyme at the crossroads of the TCA cycle and fatty acid metabolism. Our study also provides a mechanism for the role played by VGF and its downstream signaling cascades in the modulation of lipid metabolism in VACV-infected cells.IMPORTANCENeutral lipid droplets are vital players in cellular metabolism. Here, we showed that VACV induces neutral lipid droplet synthesis in infected primary human foreskin fibroblasts and identified the cellular and viral factors needed. We identified VACV encoded growth factor (VGF) as an essential viral factor that induces cellular EGFR-Akt signaling to increase lipid droplets. Interestingly, VACV increases the S455 phosphorylation of ACLY, a key metabolic enzyme that sits at the crossroads of carbohydrate and lipid metabolism in a VGF-EGFR-Akt-dependent manner. We also found that ACLY is vital for VACV-induced lipid droplet synthesis. Our findings identified the modulation of ACLY by a virus and identified it as a potential target for antiviral development against pathogenic poxviruses. Our study also expands the role of growth factor signaling in boosting VACV replication by targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Djamal Brahim Belhaouari
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lara Dsouza
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Feng T, Zhang H, Zhou Y, Zhu Y, Shi S, Li K, Lin P, Chen J. Roles of posttranslational modifications in lipid metabolism and cancer progression. Biomark Res 2024; 12:141. [PMID: 39551780 PMCID: PMC11571667 DOI: 10.1186/s40364-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Lipid metabolism reprogramming has emerged as a hallmark of malignant tumors. Lipids represent a complex group of biomolecules that not only compose the essential components of biological membranes and act as an energy source, but also function as messengers to integrate various signaling pathways. In tumor cells, de novo lipogenesis plays a crucial role in acquiring lipids to meet the demands of rapid growth. Increasing evidence has suggested that dysregulated lipid metabolism serves as a driver of cancer progression. Posttranslational modifications (PTMs), which occurs in most eukaryotic proteins throughout their lifetimes, affect the activity, abundance, function, localization, and interactions of target proteins. PTMs of crucial molecules are potential intervention sites and are emerging as promising strategies for the cancer treatment. However, there is limited information available regarding the PTMs that occur in cancer lipid metabolism and the potential treatment strategies associated with these PTMs. Herein, we summarize current knowledge of the roles and regulatory mechanisms of PTMs in lipid metabolism. Understanding the roles of PTMs in lipid metabolism in cancer could provide valuable insights into tumorigenesis and progression. Moreover, targeting PTMs in cancer lipid metabolism might represent a promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Tianyu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yanjie Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Shiya Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Ping Lin
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China.
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
12
|
Veeramachaneni RK, Suter RK, Rowland E, Jermakowicz A, Ayad NG. Glutaminase 2 as a therapeutic target in glioblastoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189182. [PMID: 39293549 DOI: 10.1016/j.bbcan.2024.189182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Glioblastoma (GBM) is the most common malignant primary adult brain tumor. Despite standard-of-care treatment, which consists of surgical resection, temozolomide (TMZ) treatment, and radiotherapy, the prognosis for GBM patients remains poor with a five-year survival rate of 5 %. With treatment, the median survival time is 14 months, suggesting the dire need for new, more effective therapies. Glutaminolysis, the metabolic pathway by which cells can convert glutamine to ATP, is essential for the survival of GBM cells and represents a putative target for treatment. Glutamine replenishes tricarboxylic acid (TCA) cycle intermediates through glutaminolysis. The first step of glutaminolysis, the deamination of glutamine, can be carried out by either glutaminase 1 (GLS) or glutaminase 2 (GLS2). However, it is becoming increasingly clear that these enzymes have opposing functions in GBM; GLS induces deamination of glutamine, thereby acting in an oncogenic fashion, while GLS2 has non-enzymatic, tumor-suppressive functions that are repressed in GBM. In this review, we explore the important role of glutaminolysis and the opposing roles of GLS and GLS2 in GBM. Further, we provide a detailed discussion of GLS2's newly discovered non-enzymatic functions that can be targeted in GBM. We conclude by considering therapeutic approaches that have emerged from the understanding of GLS and GLS2's opposing roles in GBM.
Collapse
Affiliation(s)
- Rithvik K Veeramachaneni
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Robert K Suter
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Emma Rowland
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anna Jermakowicz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.
| |
Collapse
|
13
|
Gao W, Zhang L, Li Z, Wu T, Lang C, Mulholland MW, Zhang W. Nuclear Acly protects the liver from ischemia-reperfusion injury. Hepatology 2024; 80:1087-1103. [PMID: 37983829 PMCID: PMC11102925 DOI: 10.1097/hep.0000000000000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (IR) injury is the most common complication that occurs in liver surgery and hemorrhagic shock. ATP citrate lyase (Acly) plays a pivotal role in chromatin modification via generating acetyl-CoA for histone acetylation to influence biological processes. We aim to examine the roles of Acly, which is highly expressed in hepatocytes, in liver IR injury. APPROACH AND RESULTS The functions of Acly in hepatic IR injury were examined in the mouse model with a hepatocyte-specific knockout of Acly . The Acly target genes were analyzed by CUT&RUN assay and RNA sequencing. The relationship between the susceptibility of the steatotic liver to IR and Acly was determined by the gain of function studies in mice. Hepatic deficiency of Acly exacerbated liver IR injury. IR induced Acly nuclear translocation in hepatocytes, which spatially fueled nuclear acetyl-CoA. This alteration was associated with enhanced acetylation of H3K9 and subsequent activation of the Foxa2 signaling pathway. Nuclear localization of Acly enabled Foxa2-mediated protective effects after hypoxia-reperfusion in cultured hepatocytes, while cytosolic Acly demonstrated no effect. The presence of steatosis disrupted Acly nuclear translocation. In the steatotic liver, restoration of Acly nuclear localization through overexpression of Rspondin-1 or Rspondin-3 ameliorated the IR-induced injury. CONCLUSIONS Our results indicate that Acly regulates histone modification by means of nuclear AcCoA production in hepatic IR. Disruption of Acly nuclear translocation increases the vulnerability of the steatotic liver to IR. Nuclear Acly thus may serve as a potential therapeutic target for future interventions in hepatic IR injury, particularly in the context of steatosis.
Collapse
Affiliation(s)
- Wenbin Gao
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu J, Wang Y, Tian M, Xia M, Zheng Y, Hao M, Qian Y, Shu H, Zhang W, Peng P, Zhao Z, Dong K, Peng W, Gao T, Li Z, Jin X, Wei M, Feng Y. O-GlcNAcylation of ATP-citrate lyase couples glucose supply to lipogenesis for rapid tumor cell proliferation. Proc Natl Acad Sci U S A 2024; 121:e2402674121. [PMID: 39388261 PMCID: PMC11494317 DOI: 10.1073/pnas.2402674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/26/2024] [Indexed: 10/12/2024] Open
Abstract
Elevated lipid synthesis is one of the best-characterized metabolic alterations in cancer and crucial for membrane expansion. As a key rate-limiting enzyme in de novo fatty acid synthesis, ATP-citrate lyase (ACLY) is frequently up-regulated in tumors and regulated by posttranslational modifications (PTMs). Despite emerging evidence showing O-GlcNAcylation on ACLY, its biological function still remains unknown. Here, we observed a significant upregulation of ACLY O-GlcNAcylation in various types of human tumor cells and tissues and identified S979 as a major O-GlcNAcylation site. Importantly, S979 O-GlcNAcylation is required for substrate CoA binding and crucial for ACLY enzymatic activity. Moreover, it is sensitive to glucose fluctuation and decisive for fatty acid synthesis as well as tumor cell proliferation. In response to EGF stimulation, both S979 O-GlcNAcylation and previously characterized S455 phosphorylation played indispensable role in the regulation of ACLY activity and cell proliferation; however, they functioned independently from each other. In vivo, streptozocin treatment- and EGFR overexpression-induced growth of xenograft tumors was mitigated once S979 was mutated. Collectively, this work helps comprehend how cells interrogate the nutrient enrichment for proliferation and suggests that although mammalian cell proliferation is controlled by mitogen signaling, the ancient nutrition-sensing mechanism is conserved and still efficacious in the cells of multicellular organisms.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Mingjie Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Yi Zheng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin130033, People’s Republic Of China
| | - Yuqiang Qian
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Hengyao Shu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Wenxia Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Pinghui Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Zhexuan Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Kejian Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Wanting Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Tian Gao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Zhanjun Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, People’s Republic Of China
| |
Collapse
|
15
|
Igal RA. Death and the desaturase: Implication of Stearoyl-CoA desaturase-1 in the mechanisms of cell stress, apoptosis, and ferroptosis. Biochimie 2024; 225:156-167. [PMID: 38823621 DOI: 10.1016/j.biochi.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Growth and proliferation of normal and cancerous cells necessitate a finely-tuned regulation of lipid metabolic pathways to ensure the timely supply of structural, energetic, and signaling lipid molecules. The synthesis and remodeling of lipids containing fatty acids with an appropriate carbon length and insaturation level are required for supporting each phase of the mechanisms of cell replication and survival. Mammalian Stearoyl-CoA desaturases (SCD), particularly SCD1, play a crucial role in modulating the fatty acid composition of cellular lipids, converting saturated fatty acids (SFA) into monounsaturated fatty acids (MUFA) in the endoplasmic reticulum (ER). Extensive research has elucidated in great detail the participation of SCD1 in the molecular mechanisms that govern cell replication in normal and cancer cells. More recently, investigations have shed new light on the functional and regulatory role of the Δ9-desaturase in the processes of cell stress and cell death. This review will examine the latest findings on the involvement of SCD1 in the molecular pathways of cell survival, particularly on the mechanisms of ER stress and autophagy, as well in apoptotic and non-apoptotic cell death.
Collapse
Affiliation(s)
- R Ariel Igal
- Institute of Human Nutrition and Department of Pediatrics, Columbia University Irving Medical Center, New York City, New York, USA.
| |
Collapse
|
16
|
Shi D, Zhu X, Zhang H, Yan J, Bai C. Catalytic mechanism study of ATP-citrate lyase during citryl-CoA synthesis process. iScience 2024; 27:110605. [PMID: 39220258 PMCID: PMC11365397 DOI: 10.1016/j.isci.2024.110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
ATP-citrate lyase (ACLY) is a critical metabolic enzyme and promising target for drug development. The structure determinations of ACLY have revealed its homotetramer states with various subunit symmetries, but catalytic mechanism of ACLY tetramer and the importance of subunit symmetry have not been clarified. Here, we constructed the free energy landscape of ACLY tetramer with arbitrary subunit symmetries and investigated energetic and conformational coupling of subunits during citryl-CoA synthesis process. The optimal conformational pathway indicates that ACLY tetramer encounters three critical conformational barriers and undergoes a loss of rigid-D2 symmetry to gain an energetic advantage. Energetic coupling of conformational changes and biochemical reactions suggests that these biological events are not independent but rather coupled with each other, showing a comparable energy barrier to the experimental data for the rate-limiting step. These findings could contribute to further research on catalytic mechanism, functional modulation, and inhibitor design of ACLY.
Collapse
Affiliation(s)
- Danfeng Shi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Xuzhou College of Industrial Technology, Xuzhou 221140, China
| | - Xiaohong Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Honghui Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
| | - Junfang Yan
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, Guangdong, People's Republic of China
- Chenzhu Biotechnology Co., Ltd, Hangzhou 310005, China
| |
Collapse
|
17
|
Cortes Ballen AI, Amosu M, Ravinder S, Chan J, Derin E, Slika H, Tyler B. Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets. Cells 2024; 13:1574. [PMID: 39329757 PMCID: PMC11430559 DOI: 10.3390/cells13181574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (A.I.C.B.); (M.A.); (S.R.); (J.C.); (E.D.); (H.S.)
| |
Collapse
|
18
|
Abduljabbar MK, Merza M, Aziz A, Menon SV, Kaur M, Aminov Z, Rab SO, Hjazi A, Mustafa YF, Gabel BC. Lipid metabolism reprogramming in renal cell carcinomas. Med Oncol 2024; 41:243. [PMID: 39240415 DOI: 10.1007/s12032-024-02484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
This study investigates the intricate mechanisms underlying the correlation between elevated consumption of harmful fats and the onset of kidney malignancies. The rise in global obesity rates has been accompanied by an increased prevalence of renal cancers, prompting an exploration into the molecular pathways and biological processes linking these phenomena. Through an extensive review of current literature and clinical studies, we identify potential key factors contributing to the carcinogenic influence of harmful fats on renal tissues. Our analysis highlights the role of adipose tissue-derived factors, inflammatory mediators, and lipid metabolism dysregulation in fostering a microenvironment conducive to renal tumorigenesis. Furthermore, we delve into the impact of harmful fats on signaling pathways associated with cell proliferation, apoptosis evasion, and angiogenesis within the renal parenchyma. This review underscores the importance of elucidating the molecular intricacies linking lipid metabolism and kidney malignancies, offering a foundation for future research and the development of targeted preventive and therapeutic interventions. The findings discussed herein contribute to our understanding of the complex relationship between lipid mediators and renal cancer, providing a basis for public health strategies aimed at mitigating the impact of harmful fats on kidney health.
Collapse
Affiliation(s)
| | - Mohammed Merza
- Clinical Analysis Department, Hawler Medical University, Kurdistan Regional Government, Erbil, Iraq.
- Medical Biochemical Analysis Department, College of Health Technology, Cihan University, Erbil, Kurdistan Region, Iraq.
| | - Abdulqader Aziz
- Faculty of Pharmacy, Tishk International University, Kurdistan Region of Iraq, Erbil, Iraq.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Benien C Gabel
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
19
|
Zhao W, Ouyang C, Zhang L, Wang J, Zhang J, Zhang Y, Huang C, Xiao Q, Jiang B, Lin F, Zhang C, Zhu M, Xie C, Huang X, Zhang B, Zhao W, He J, Chen S, Liu X, Lin D, Li Q, Wang Z. The proto-oncogene tyrosine kinase c-SRC facilitates glioblastoma progression by remodeling fatty acid synthesis. Nat Commun 2024; 15:7455. [PMID: 39198451 PMCID: PMC11358276 DOI: 10.1038/s41467-024-51444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Increased fatty acid synthesis benefits glioblastoma malignancy. However, the coordinated regulation of cytosolic acetyl-CoA production, the exclusive substrate for fatty acid synthesis, remains unclear. Here, we show that proto-oncogene tyrosine kinase c-SRC is activated in glioblastoma and remodels cytosolic acetyl-CoA production for fatty acid synthesis. Firstly, acetate is an important substrate for fatty acid synthesis in glioblastoma. c-SRC phosphorylates acetyl-CoA synthetase ACSS2 at Tyr530 and Tyr562 to stimulate the conversion of acetate to acetyl-CoA in cytosol. Secondly, c-SRC inhibits citrate-derived acetyl-CoA synthesis by phosphorylating ATP-citrate lyase ACLY at Tyr682. ACLY phosphorylation shunts citrate to IDH1-catalyzed NADPH production to provide reducing equivalent for fatty acid synthesis. The c-SRC-unresponsive double-mutation of ACSS2 and ACLY significantly reduces fatty acid synthesis and hampers glioblastoma progression. In conclusion, this remodeling fulfills the dual needs of glioblastoma cells for both acetyl-CoA and NADPH in fatty acid synthesis and provides evidence for glioma treatment by c-SRC inhibition.
Collapse
Affiliation(s)
- Wentao Zhao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Cong Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jinyang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Jiaojiao Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Yan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Chen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Qiao Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Furong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Changchuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wenpeng Zhao
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiawei He
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Sifang Chen
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiyao Liu
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
20
|
Etoh K, Araki H, Koga T, Hino Y, Kuribayashi K, Hino S, Nakao M. Citrate metabolism controls the senescent microenvironment via the remodeling of pro-inflammatory enhancers. Cell Rep 2024; 43:114496. [PMID: 39043191 DOI: 10.1016/j.celrep.2024.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
The senescent microenvironment and aged cells per se contribute to tissue remodeling, chronic inflammation, and age-associated dysfunction. However, the metabolic and epigenomic bases of the senescence-associated secretory phenotype (SASP) remain largely unknown. Here, we show that ATP-citrate lyase (ACLY), a key enzyme in acetyl-coenzyme A (CoA) synthesis, is essential for the pro-inflammatory SASP, independent of persistent growth arrest in senescent cells. Citrate-derived acetyl-CoA facilitates the action of SASP gene enhancers. ACLY-dependent de novo enhancers augment the recruitment of the chromatin reader BRD4, which causes SASP activation. Consistently, specific inhibitions of the ACLY-BRD4 axis suppress the STAT1-mediated interferon response, creating the pro-inflammatory microenvironment in senescent cells and tissues. Our results demonstrate that ACLY-dependent citrate metabolism represents a selective target for controlling SASP designed to promote healthy aging.
Collapse
Affiliation(s)
- Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
21
|
Lin Z, Hua G, Hu X. Lipid metabolism associated crosstalk: the bidirectional interaction between cancer cells and immune/stromal cells within the tumor microenvironment for prognostic insight. Cancer Cell Int 2024; 24:295. [PMID: 39174964 PMCID: PMC11342506 DOI: 10.1186/s12935-024-03481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Cancer is closely related to lipid metabolism, with the tumor microenvironment (TME) containing numerous lipid metabolic interactions. Cancer cells can bidirectionally interact with immune and stromal cells, the major components of the TME. This interaction is primarily mediated by fatty acids (FAs), cholesterol, and phospholipids. These interactions can lead to various physiological changes, including immune suppression, cancer cell proliferation, dissemination, and anti-apoptotic effects on cancer cells. The physiological modulation resulting from this lipid metabolism-associated crosstalk between cancer cells and immune/stromal cells provides valuable insights into cancer prognosis. A comprehensive literature review was conducted to examine the function of the bidirectional lipid metabolism interactions between cancer cells and immune/stromal cells within the TME, particularly how these interactions influence cancer prognosis. A novel autophagy-extracellular vesicle (EV) pathway has been proposed as a mediator of lipid metabolism interactions between cancer cells and immune cells/stromal cells, impacting cancer prognosis. As a result, different forms of lipid metabolism interactions have been described as being linked to cancer prognosis, including those mediated by the autophagy-EV pathway. In conclusion, understanding the bidirectional lipid metabolism interactions between cancer cells and stromal/immune cells in the TME can help develop more advanced prognostic approaches for cancer patients.
Collapse
Affiliation(s)
- Zhongshu Lin
- Queen Mary College, Nanchang University, Nanchang, China
- School of Biological and Behavioural Science, Queen Mary University of London, London, UK
| | - Guanxiang Hua
- Queen Mary College, Nanchang University, Nanchang, China
- School of Biological and Behavioural Science, Queen Mary University of London, London, UK
| | - Xiaojuan Hu
- Queen Mary College, Nanchang University, Nanchang, China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
22
|
Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett 2024; 597:217061. [PMID: 38876384 DOI: 10.1016/j.canlet.2024.217061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuan Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China.
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
23
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
24
|
Ferrucci V, Lomada S, Wieland T, Zollo M. PRUNE1 and NME/NDPK family proteins influence energy metabolism and signaling in cancer metastases. Cancer Metastasis Rev 2024; 43:755-775. [PMID: 38180572 PMCID: PMC11156750 DOI: 10.1007/s10555-023-10165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
We describe here the molecular basis of the complex formation of PRUNE1 with the tumor metastasis suppressors NME1 and NME2, two isoforms appertaining to the nucleoside diphosphate kinase (NDPK) enzyme family, and how this complex regulates signaling the immune system and energy metabolism, thereby shaping the tumor microenvironment (TME). Disrupting the interaction between NME1/2 and PRUNE1, as suggested, holds the potential to be an excellent therapeutic target for the treatment of cancer and the inhibition of metastasis dissemination. Furthermore, we postulate an interaction and regulation of the other Class I NME proteins, NME3 and NME4 proteins, with PRUNE1 and discuss potential functions. Class I NME1-4 proteins are NTP/NDP transphosphorylases required for balancing the intracellular pools of nucleotide diphosphates and triphosphates. They regulate different cellular functions by interacting with a large variety of other proteins, and in cancer and metastasis processes, they can exert pro- and anti-oncogenic properties depending on the cellular context. In this review, we therefore additionally discuss general aspects of class1 NME and PRUNE1 molecular structures as well as their posttranslational modifications and subcellular localization. The current knowledge on the contributions of PRUNE1 as well as NME proteins to signaling cascades is summarized with a special regard to cancer and metastasis.
Collapse
Affiliation(s)
- Veronica Ferrucci
- Department of Molecular Medicine and Medical Biotechnology, DMMBM, University of Naples, Federico II, Via Pansini 5, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore", Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Santosh Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- DZHK, German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 68167, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- DZHK, German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, 68167, Mannheim, Germany.
- Medical Faculty Mannheim, Ludolf Krehl-Str. 13-17, 68167, Mannheim, Germany.
| | - Massimo Zollo
- Department of Molecular Medicine and Medical Biotechnology, DMMBM, University of Naples, Federico II, Via Pansini 5, 80131, Naples, Italy.
- CEINGE Biotecnologie Avanzate "Franco Salvatore", Via Gaetano Salvatore 486, 80145, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'AOU' Federico II Policlinico, 80131, Naples, Italy.
| |
Collapse
|
25
|
Taunk K, Jajula S, Bhavsar PP, Choudhari M, Bhanuse S, Tamhankar A, Naiya T, Kalita B, Rapole S. The prowess of metabolomics in cancer research: current trends, challenges and future perspectives. Mol Cell Biochem 2024:10.1007/s11010-024-05041-w. [PMID: 38814423 DOI: 10.1007/s11010-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Cancer due to its heterogeneous nature and large prevalence has tremendous socioeconomic impacts on populations across the world. Therefore, it is crucial to discover effective panels of biomarkers for diagnosing cancer at an early stage. Cancer leads to alterations in cell growth and differentiation at the molecular level, some of which are very unique. Therefore, comprehending these alterations can aid in a better understanding of the disease pathology and identification of the biomolecules that can serve as effective biomarkers for cancer diagnosis. Metabolites, among other biomolecules of interest, play a key role in the pathophysiology of cancer whose levels are significantly altered while 'reprogramming the energy metabolism', a cellular condition favored in cancer cells which is one of the hallmarks of cancer. Metabolomics, an emerging omics technology has tremendous potential to contribute towards the goal of investigating cancer metabolites or the metabolic alterations during the development of cancer. Diverse metabolites can be screened in a variety of biofluids, and tumor tissues sampled from cancer patients against healthy controls to capture the altered metabolism. In this review, we provide an overview of different metabolomics approaches employed in cancer research and the potential of metabolites as biomarkers for cancer diagnosis. In addition, we discuss the challenges associated with metabolomics-driven cancer research and gaze upon the prospects of this emerging field.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH12 Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Saikiran Jajula
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Praneeta Pradip Bhavsar
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Mahima Choudhari
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Sadanand Bhanuse
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Anup Tamhankar
- Department of Surgical Oncology, Deenanath Mangeshkar Hospital and Research Centre, Erandawne, Pune, Maharashtra, 411004, India
| | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH12 Simhat, Haringhata, Nadia, West Bengal, 741249, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
- Amrita School of Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi, Kerala, 682041, India.
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
26
|
Su R, Shao Y, Huang M, Liu D, Yu H, Qiu Y. Immunometabolism in cancer: basic mechanisms and new targeting strategy. Cell Death Discov 2024; 10:236. [PMID: 38755125 PMCID: PMC11099033 DOI: 10.1038/s41420-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Maturing immunometabolic research empowers immune regulation novel approaches. Progressive metabolic adaptation of tumor cells permits a thriving tumor microenvironment (TME) in which immune cells always lose the initial killing capacity, which remains an unsolved dilemma even with the development of immune checkpoint therapies. In recent years, many studies on tumor immunometabolism have been reported. The development of immunometabolism may facilitate anti-tumor immunotherapy from the recurrent crosstalk between metabolism and immunity. Here, we discuss clinical studies of the core signaling pathways of immunometabolism and their inhibitors or agonists, as well as the specific functions of these pathways in regulating immunity and metabolism, and discuss some of the identified immunometabolic checkpoints. Understanding the comprehensive advances in immunometabolism helps to revise the status quo of cancer treatment. An overview of the new landscape of immunometabolism. The PI3K pathway promotes anabolism and inhibits catabolism. The LKB1 pathway inhibits anabolism and promotes catabolism. Overactivation of PI3K/AKT/mTOR pathway and IDO, IL4I1, ACAT, Sirt2, and MTHFD2 promote immunosuppression of TME formation, as evidenced by increased Treg and decreased T-cell proliferation. The LKBI-AMPK pathway promotes the differentiation of naive T cells to effector T cells and memory T cells and promotes anti-tumor immunity in DCs.
Collapse
Affiliation(s)
- Ranran Su
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Manru Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Donghui Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
27
|
Chou JC, Liu CC, Lee MF. Apigenin Suppresses MED28-Mediated Cell Growth in Human Liver Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38619972 DOI: 10.1021/acs.jafc.3c09276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Flavonoids exhibit health-promoting benefits against multiple chronic diseases, including cancer. Apigenin (4',5,7-trihydroxyflavone), one flavonoid present in fruits and vegetables, is potentially applicable to chemoprevention. Despite considerable progress in the therapeutic regimen of liver cancer, its prognosis remains poor. MED28, a Mediator subunit for transcriptional activation, is implicated in the development of several types of malignancy; however, its role in liver cancer is unknown at present. In liver cancer, the AKT/mammalian target of rapamycin (mTOR) is one major pathway involved in the oncogenic process. The aim of this study is to investigate the role of apigenin and MED28 in AKT/mTOR signaling in liver cancer. We first identified a connectivity score of 92.77 between apigenin treatment and MED28 knockdown in several cancer cell lines using CLUE, a cloud-based software platform to assess connectivity among compounds and genetic perturbagens. Higher expression of MED28 predicted a poorer survival prognosis; MED28 expression in liver cancer tissue was significantly higher than that of normal tissue, and it was positively correlated with tumor stage and grade in The Cancer Genome Atlas Liver Cancer (TCGA-LIHC) data set. Knockdown of MED28 induced cell cycle arrest and suppressed the AKT/mTOR signaling in two human liver cancer cell lines, HepG2 and Huh 7, accompanied by less lipid accumulation and lower expression and nuclear localization of sterol regulatory element binding protein 1 (SREBP1). Apigenin inhibited the expression of MED28, and the effect of apigenin mimicked that of the MED28 knockdown. On the other hand, the AKT/mTOR signaling was upregulated when MED28 was overexpressed. These data indicated that MED28 was associated with the survival prognosis and the progression of liver cancer by regulating AKT/mTOR signaling and apigenin appeared to inhibit cell growth through MED28-mediated mTOR signaling, which may be applicable as an adjuvant of chemotherapy or chemoprevention in liver cancer.
Collapse
Affiliation(s)
- Jou-Chia Chou
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Chen-Chia Liu
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
28
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Zou Y, Zhang Y, Li M, Cao K, Song C, Zhang Z, Cai K, Geng D, Chen S, Wu Y, Zhang N, Sun G, Wang J, Zhang Y, Sun Y. Regulation of lipid metabolism by E3 ubiquitin ligases in lipid-associated metabolic diseases. Int J Biol Macromol 2024; 265:130961. [PMID: 38508558 DOI: 10.1016/j.ijbiomac.2024.130961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.
Collapse
Affiliation(s)
- Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Mohan Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Jing Wang
- Department of Hematology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
30
|
Li Z, Yang B, Yang Z, Xie X, Guo Z, Zhao J, Wang R, Fu H, Zhao P, Zhao X, Chen G, Li G, Wei F, Bian L. Supramolecular Hydrogel with Ultra-Rapid Cell-Mediated Network Adaptation for Enhancing Cellular Metabolic Energetics and Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307176. [PMID: 38295393 DOI: 10.1002/adma.202307176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Indexed: 02/02/2024]
Abstract
Cellular energetics plays an important role in tissue regeneration, and the enhanced metabolic activity of delivered stem cells can accelerate tissue repair and regeneration. However, conventional hydrogels with limited network cell adaptability restrict cell-cell interactions and cell metabolic activities. In this work, it is shown that a cell-adaptable hydrogel with high network dynamics enhances the glucose uptake and fatty acid β-oxidation of encapsulated human mesenchymal stem cells (hMSCs) compared with a hydrogel with low network dynamics. It is further shown that the hMSCs encapsulated in the high dynamic hydrogels exhibit increased tricarboxylic acid (TCA) cycle activity, oxidative phosphorylation (OXPHOS), and adenosine triphosphate (ATP) biosynthesis via an E-cadherin- and AMP-activated protein kinase (AMPK)-dependent mechanism. The in vivo evaluation further showed that the delivery of MSCs by the dynamic hydrogel enhanced in situ bone regeneration in an animal model. It is believed that the findings provide critical insights into the impact of stem cell-biomaterial interactions on cellular metabolic energetics and the underlying mechanisms.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Boguang Yang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhengnan Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Jianyang Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ruinan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Hao Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Guosong Chen
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Shenzhen, 518107, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| |
Collapse
|
31
|
Tchetina EV, Glemba KE, Markova GA, Glukhova SI, Makarov MA, Lila AM. Metabolic Dysregulation and Its Role in Postoperative Pain among Knee Osteoarthritis Patients. Int J Mol Sci 2024; 25:3857. [PMID: 38612667 PMCID: PMC11011761 DOI: 10.3390/ijms25073857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Knee osteoarthritis (KOA) is characterized by low-grade inflammation, loss of articular cartilage, subchondral bone remodeling, synovitis, osteophyte formation, and pain. Strong, continuous pain may indicate the need for joint replacement in patients with end-stage OA, although postoperative pain (POP) of at least a two-month duration persists in 10-40% of patients with OA. STUDY PURPOSE The inflammation observed in joint tissues is linked to pain caused by the production of proinflammatory cytokines. Since the biosynthesis of cytokines requires energy, their production is supported by extensive metabolic conversions of carbohydrates and fatty acids, which could lead to a disruption in cellular homeostasis. Therefore, this study aimed to investigate the association between POP development and disturbances in energy metabolic conversions, focusing on carbohydrate and fatty acid metabolism. METHODS Peripheral blood samples were collected from 26 healthy subjects and 50 patients with end-stage OA before joint replacement surgery. All implants were validated by orthopedic surgeons, and patients with OA demonstrated no inherent abnormalities to cause pain from other reasons than OA disease, such as malalignment, aseptic loosening, or excessive bleeding. Pain levels were assessed before surgery using the visual analogue scale (VAS) and neuropathic pain questionnaires, DN4 and PainDETECT. Functional activity was evaluated using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Three and six months after surgery, pain indices according to a VAS of 30 mm or higher were considered. Total RNA isolated from whole blood was analyzed using quantitative real-time RT-PCR (qRT-PCR) for the expression of genes related to carbohydrate and fatty acid metabolism. Protein levels of the examined genes were measured using an ELISA in the peripheral blood mononuclear cells (PBMCs). We used qRT-PCR because it is the most sensitive and reliable method for gene expression analysis, while an ELISA was used to confirm our qRT-PCR results. KEY FINDINGS Among the study cohort, 17 patients who reported POP demonstrated significantly higher (p < 0.05) expressions of the genes PKM2, LDH, SDH, UCP2, CPT1A, and ACLY compared to pain-free patients with KOA. Receiver-operating characteristic (ROC) curve analyses confirmed the association between these gene expressions and pain development post-arthroplasty. A principle component analysis identified the prognostic values of ACLY, CPT1A, AMPK, SDHB, Caspase 3, and IL-1β gene expressions for POP development in the examined subjects. CONCLUSION These findings suggest that the disturbances in energy metabolism, as observed in the PBMCs of patients with end-stage KOA before arthroplasty, may contribute to POP development. An understanding of these metabolic processes could provide insights into the pathogenesis of KOA. Additionally, our findings can be used in a clinical setting to predict POP development in end-stage patients with KOA before arthroplasty.
Collapse
Affiliation(s)
- Elena V. Tchetina
- Immunology and Molecular Biology Department, Nasonova Research Institute of Rheumatology, Moscow 115522, Russia
| | - Kseniya E. Glemba
- Surgery Department, Nasonova Research Institute of Rheumatology, Moscow 115522, Russia (M.A.M.)
| | - Galina A. Markova
- Immunology and Molecular Biology Department, Nasonova Research Institute of Rheumatology, Moscow 115522, Russia
| | - Svetlana I. Glukhova
- Statistics Department, Nasonova Research Institute of Rheumatology, Moscow 115522, Russia
| | - Maksim A. Makarov
- Surgery Department, Nasonova Research Institute of Rheumatology, Moscow 115522, Russia (M.A.M.)
| | - Aleksandr M. Lila
- Osteoartritis Laboratory, Nasonova Research Institute of Rheumatology, Moscow 115522, Russia;
| |
Collapse
|
32
|
Malemnganba T, Rattan A, Prajapati VK. Decoding macrophage immunometabolism in human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:493-523. [PMID: 38762278 DOI: 10.1016/bs.apcsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.
Collapse
Affiliation(s)
- Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
33
|
Schulz-Kuhnt A, Rühle K, Javidmehr A, Döbrönti M, Biwank J, Knittel S, Neidlinger P, Leupold J, Liu LJ, Dedden M, Taudte RV, Gessner A, Fromm MF, Mielenz D, Kreiss L, Waldner MJ, Schürmann S, Friedrich O, Dietel B, López-Posadas R, Plattner C, Zundler S, Becker C, Atreya R, Neurath MF, Atreya I. ATP citrate lyase (ACLY)-dependent immunometabolism in mucosal T cells drives experimental colitis in vivo. Gut 2024; 73:601-612. [PMID: 38176897 DOI: 10.1136/gutjnl-2023-330543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE Mucosal T cells play a major role in inflammatory bowel disease (IBD). However, their immunometabolism during intestinal inflammation is poorly understood. Due to its impact on cellular metabolism and proinflammatory immune cell function, we here focus on the enzyme ATP citrate lyase (ACLY) in mucosal T cell immunometabolism and its relevance for IBD. DESIGN ACLY expression and its immunometabolic impact on colitogenic T cell function were analysed in mucosal T cells from patients with IBD and in two experimental colitis models. RESULTS ACLY was markedly expressed in colon tissue under steady-state conditions but was significantly downregulated in lamina propria mononuclear cells in experimental dextran sodium sulfate-induced colitis and in CD4+ and to a lesser extent in CD8+ T cells infiltrating the inflamed gut in patients with IBD. ACLY-deficient CD4+ T cells showed an impaired capacity to induce intestinal inflammation in a transfer colitis model as compared with wild-type T cells. Assessment of T cell immunometabolism revealed that ACLY deficiency dampened the production of IBD-relevant cytokines and impaired glycolytic ATP production but enriched metabolites involved in the biosynthesis of phospholipids and phosphatidylcholine. Interestingly, the short-chain fatty acid butyrate was identified as a potent suppressor of ACLY expression in T cells, while IL-36α and resolvin E1 induced ACLY levels. In a translational approach, in vivo administration of the butyrate prodrug tributyrin downregulated mucosal infiltration of ACLYhigh CD4+ T cells and ameliorated chronic colitis. CONCLUSION ACLY controls mucosal T cell immunometabolism and experimental colitis. Therapeutic modulation of ACLY expression in T cells emerges as a novel strategy to promote the resolution of intestinal inflammation.
Collapse
Affiliation(s)
- Anja Schulz-Kuhnt
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Current address: Bionorica SE, Neumarkt in der Oberpfalz, Germany
| | - Katharina Rühle
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Asal Javidmehr
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Döbrönti
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jana Biwank
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Selina Knittel
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Neidlinger
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jannik Leupold
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Li-Juan Liu
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mark Dedden
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Core Facility for Metabolomics, Department of Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lucas Kreiss
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Schürmann
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Dietel
- Department of Medicine 2 - Cardiology and Angiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Plattner
- Institute for Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
34
|
Zhang X, Xu Y, Li S, Qin Y, Zhu G, Zhang Q, Zhang Y, Guan F, Fan T, Liu H. SIRT2-mediated deacetylation of ACLY promotes the progression of oesophageal squamous cell carcinoma. J Cell Mol Med 2024; 28:e18129. [PMID: 38426936 PMCID: PMC10906381 DOI: 10.1111/jcmm.18129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024] Open
Abstract
ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.
Collapse
Affiliation(s)
- Xueying Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yue Xu
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shenglei Li
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yue Qin
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Guangzhao Zhu
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Qing Zhang
- Translational Medicine Research CenterZhengzhou People's HospitalZhengzhouHenanChina
| | - Yanting Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Fangxia Guan
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Tianli Fan
- Department of Pharmacology, School of Basic MedicineZhengzhou UniversityZhengzhouHenanChina
| | - Hongtao Liu
- School of Life SciencesZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
35
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
36
|
Peng R, Dong Y, Zheng M, Kang H, Wang P, Zhu M, Song K, Wu W, Li F. IL-17 promotes osteoclast-induced bone loss by regulating glutamine-dependent energy metabolism. Cell Death Dis 2024; 15:111. [PMID: 38316760 PMCID: PMC10844210 DOI: 10.1038/s41419-024-06475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Osteoclasts consume an amount of adenosine triphosphate (ATP) to perform their bone resorption function in the development of osteoporosis. However, the mechanism underlying osteoclast energy metabolism has not been fully elucidated. In addition to glucose, glutamine (Glu) is another major energy carrier to produce ATP. However, the role of Glu metabolism in osteoclasts and the related molecular mechanisms has been poorly elucidated. Here we show that Glu is required for osteoclast differentiation and function, and that Glu deprivation or pharmacological inhibition of Glu transporter ASCT2 by V9302 suppresses osteoclast differentiation and their bone resorptive function. In vivo treatment with V9302 improved OVX-induced bone loss. Mechanistically, RNA-seq combined with in vitro and in vivo experiments suggested that Glu mediates the role of IL-17 in promoting osteoclast differentiation and in regulating energy metabolism. In vivo IL-17 treatment exacerbated OVX-induced bone loss, and this effect requires the participation of Glu or its downstream metabolite α-KG. Taken together, this study revealed a previously unappreciated regulation of IL-17 on energy metabolism, and this regulation is Glu-dependent. Targeting the IL-17-Glu-energy metabolism axis may be a potential therapeutic strategy for the treatment of osteoporosis and other IL-17 related diseases.
Collapse
Affiliation(s)
- Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zheng
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kehan Song
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Wu
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopedic Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Alizadehasl A, Alavi MS, Boudagh S, Alavi MS, Mohebi S, Aliabadi L, Akbarian M, Ahmadi P, Mannarino MR, Sahebkar A. Lipid-lowering drugs and cancer: an updated perspective. Pharmacol Rep 2024; 76:1-24. [PMID: 38015371 DOI: 10.1007/s43440-023-00553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023]
Abstract
Statins and non-statin medications used for the management of dyslipidemia have been shown to possess antitumor properties. Since the use of these drugs has steadily increased over the past decades, more knowledge is required about their relationship with cancer. Lipid-lowering agents are heterogeneous compounds; therefore, it remains to be revealed whether anticancer potential is a class effect or related to them all. Here, we reviewed the literature on the influence of lipid-lowering medications on various types of cancer during development or metastasis. We also elaborated on the underlying mechanisms associated with the anticancer effects of antihyperlipidemic agents by linking the reported in vivo and in vitro studies.
Collapse
Affiliation(s)
- Azin Alizadehasl
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Alavi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Boudagh
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Mohebi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Aliabadi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbarian
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Ahmadi
- Echocardiography Research CenterRajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Do HE, Ha YB, Kim JS, Suh MK, Kim HS, Eom MK, Lee JH, Park SH, Kang SW, Lee DH, Yoon H, Lee JH, Lee JS. Phocaeicola acetigenes sp. nov., producing acetic acid and iso-butyric acid, isolated faeces from a healthy human. Antonie Van Leeuwenhoek 2024; 117:30. [PMID: 38302626 DOI: 10.1007/s10482-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
An obligately anaerobic, non-motile, Gram-stain-negative, and rod-shaped strain KGMB11183T was isolated from the feces of healthy Koreans. The growth of strain KGMB11183T occurred at 30-45 °C (optimum 37 °C), at pH 6-9 (optimum pH 7), and in the presence of 0-0.5% NaCl (optimum 0%). Strain KGMB11183T showed 16S rRNA gene sequence similarities of 95.4% and 94.2% to the closest recognized species, Phocaeicola plebeius M12T, and Phocaeicola faecicola AGMB03916T. Phylogenetic analysis showed that strain KGMB11183T is a member of the genus Phocaeiocla. The major end products of fermentation are acetic acid and isobutyric acid. The major cellular fatty acids (> 10%) of this isolate were C18:1 cis 9, anteiso-C15:0, and summed feature 11 (iso-C17:0 3-OH and/or C18:2 DMA). The assembled draft genome sequences of strain KGMB11183T consisted of 3,215,271 bp with a DNA G + C content of 41.4%. According to genomic analysis, strain KGMB11183T has a number of genes that produce acetic acid. The genome of strain KGMB11183T encoded the starch utilization system (Sus) operon, SusCDEF suggesting that strain uses many complex polysaccharides that cannot be digested by humans. Based on the physiological, chemotaxonomic, phenotypic, and phylogenetic data, strain KGMB11183T is regarded a novel species of the genus Phocaeicola. The type strain is KGMB11183T (= KCTC 25284T = JCM 35696T).
Collapse
Affiliation(s)
- Hyo Eun Do
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Young Bong Ha
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Min Kuk Suh
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Han Sol Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Mi Kyung Eom
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Se Won Kang
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Dong Ho Lee
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-Gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Hyuk Yoon
- Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-Gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Je Hee Lee
- CJ Bioscience, Inc., 14 Sejong-Daero, Jung-gu, Seoul, 04527, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
- University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
39
|
Gu M, Ren B, Fang Y, Ren J, Liu X, Wang X, Zhou F, Xiao R, Luo X, You L, Zhao Y. Epigenetic regulation in cancer. MedComm (Beijing) 2024; 5:e495. [PMID: 38374872 PMCID: PMC10876210 DOI: 10.1002/mco2.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Epigenetic modifications are defined as heritable changes in gene activity that do not involve changes in the underlying DNA sequence. The oncogenic process is driven by the accumulation of alterations that impact genome's structure and function. Genetic mutations, which directly disrupt the DNA sequence, are complemented by epigenetic modifications that modulate gene expression, thereby facilitating the acquisition of malignant characteristics. Principals among these epigenetic changes are shifts in DNA methylation and histone mark patterns, which promote tumor development and metastasis. Notably, the reversible nature of epigenetic alterations, as opposed to the permanence of genetic changes, positions the epigenetic machinery as a prime target in the discovery of novel therapeutics. Our review delves into the complexities of epigenetic regulation, exploring its profound effects on tumor initiation, metastatic behavior, metabolic pathways, and the tumor microenvironment. We place a particular emphasis on the dysregulation at each level of epigenetic modulation, including but not limited to, the aberrations in enzymes responsible for DNA methylation and histone modification, subunit loss or fusions in chromatin remodeling complexes, and the disturbances in higher-order chromatin structure. Finally, we also evaluate therapeutic approaches that leverage the growing understanding of chromatin dysregulation, offering new avenues for cancer treatment.
Collapse
Affiliation(s)
- Minzhi Gu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Bo Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yuan Fang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Jie Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiaohong Liu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xing Wang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Feihan Zhou
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Ruiling Xiao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiyuan Luo
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Lei You
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yupei Zhao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| |
Collapse
|
40
|
Chuang YM, Tzeng SF, Ho PC, Tsai CH. Immunosurveillance encounters cancer metabolism. EMBO Rep 2024; 25:471-488. [PMID: 38216787 PMCID: PMC10897436 DOI: 10.1038/s44319-023-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.
Collapse
Affiliation(s)
- Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
41
|
Zeng Y, Yu T, Jiang S, Wang J, Chen L, Lou Z, Pan L, Zhang Y, Ruan B. Prognostic and immune predictive roles of a novel tricarboxylic acid cycle-based model in hepatocellular carcinoma. Sci Rep 2024; 14:2333. [PMID: 38282028 PMCID: PMC10822853 DOI: 10.1038/s41598-024-52632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2024] [Indexed: 01/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer. Since the tricarboxylic acid cycle is widely involved in tumor metabolic reprogramming and cuproptosis, investigating related genes may help to identify prognostic signature of patients with HCC. Data on patients with HCC were sourced from public datasets, and were divided into train, test, and single-cell cohorts. A variety of machine learning algorithms were used to identify different molecular subtypes and determine the prognostic risk model. Our findings revealed that the risk score (TRscore), based on the genes OGDHL, CFHR4, and SPP1, showed excellent predictive performance in different datasets. Pathways related to cell cycle and immune inflammation were enriched in the high-risk group, whereas metabolism-related pathways were significantly enriched in the low-risk group. The high-risk group was associated with a greater number of mutations of detrimental biological behavior and higher levels of immune infiltration, immune checkpoint expression, and anti-cancer immunotherapy response. Low-risk patients demonstrated greater sensitivity to erlotinib and phenformin. SPP1 was mainly involved in the interaction among tumor-associated macrophages, T cells, and malignant cells via SPP1-CD44 and SPP1-(ITGA5 + ITGB1) ligand-receptor pairs. In summary, our study established a prognostic model, which may contribute to individualized treatment and clinical management of patients with HCC.
Collapse
Affiliation(s)
- Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Tao Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Lin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Zhuoqi Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Liya Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Yongtao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Bing Ruan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| |
Collapse
|
42
|
Falco JA, Wynia-Smith SL, McCoy J, Smith BC, Weerapana E. Identification of Protein Targets of S-Nitroso-Coenzyme A-Mediated S-Nitrosation Using Chemoproteomics. ACS Chem Biol 2024; 19:193-207. [PMID: 38159293 PMCID: PMC11154738 DOI: 10.1021/acschembio.3c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
S-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO+) to a free thiol on a target protein through a transnitrosation reaction. The protein targets of specific transnitrosating agents and the extent and functional effects of S-nitrosation on these target proteins have been poorly characterized. S-nitroso-coenzyme A (CoA-SNO) was recently identified as a mediator of endogenous S-nitrosation. Here, we identified direct protein targets of CoA-SNO-mediated transnitrosation using a competitive chemical-proteomic approach that quantified the extent of modification on 789 cysteine residues in response to CoA-SNO. A subset of cysteines displayed high susceptibility to modification by CoA-SNO, including previously uncharacterized sites of S-nitrosation. We further validated and functionally characterized the functional effects of S-nitrosation on the protein targets phosphofructokinase (platelet type), ATP citrate synthase, and ornithine aminotransferase.
Collapse
Affiliation(s)
- Julia A. Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - James McCoy
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
43
|
Gu J, Cao H, Chen X, Zhang XD, Thorne RF, Liu X. RNA m6A modifications regulate crosstalk between tumor metabolism and immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1829. [PMID: 38114887 DOI: 10.1002/wrna.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
In recent years, m6A modifications in RNA transcripts have arisen as a hot topic in cancer research. Indeed, a number of independent studies have elaborated that the m6A modification impacts the behavior of tumor cells and tumor-infiltrating immune cells, altering tumor cell metabolism along with the differentiation and functional activity of immune cells. This review elaborates on the links between RNA m6A modifications, tumor cell metabolism, and immune cell behavior, discussing this topic from the viewpoint of reciprocal regulation through "RNA m6A-tumor cell metabolism-immune cell behavior" and "RNA m6A-immune cell behavior-tumor cell metabolism" axes. In addition, we discuss the various factors affecting RNA m6A modifications in the tumor microenvironment, particularly the effects of hypoxia associated with cancer cell metabolism along with immune cell-secreted cytokines. Our analysis proposes the conclusion that RNA m6A modifications support widespread interactions between tumor metabolism and tumor immunity. With the current viewpoint that long-term cancer control must tackle cancer cell malignant behavior while strengthening anti-tumor immunity, the recognition of RNA m6A modifications as a key factor provides a new direction for the targeted therapy of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jinghua Gu
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Huake Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xiaoli Chen
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| | - Xu Dong Zhang
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
44
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
45
|
Liang JJ, Zhou XF, Long H, Li CY, Wei J, Yu XQ, Guo ZY, Zhou YQ, Deng ZS. Recent advance of ATP citrate lyase inhibitors for the treatment of cancer and related diseases. Bioorg Chem 2024; 142:106933. [PMID: 37890210 DOI: 10.1016/j.bioorg.2023.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
ATP citrate lyase (ACLY), a strategic metabolic enzyme that catalyzes the glycolytic to lipidic metabolism, has gained increasing attention as an attractive therapeutic target for hyperlipidemia, cancers and other human diseases. Despite of continual research efforts, targeting ACLY has been very challenging. In this field, most reported ACLY inhibitors are "substrate-like" analogues, which occupied with the same active pockets. Besides, some ACLY inhibitors have been disclosed through biochemical screening or high throughput virtual screening. In this review, we briefly summarized the cancer-related functions and the recent advance of ACLY inhibitors with a particular focus on the SAR studies and their modes of action. We hope to provide a timely and updated overview of ACLY and the discovery of new ACLY inhibitors.
Collapse
Affiliation(s)
- Jian-Jia Liang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiang-Feng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Hui Long
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chun-Yun Li
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jing Wei
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiao-Qin Yu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhi-Yong Guo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yi-Qing Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhang-Shuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
46
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
47
|
Xia T, Wang B, Sun L. The nucleolar protein NIFK accelerates the progression of colorectal cancer via activating MYC pathway. Biosci Biotechnol Biochem 2023; 88:26-36. [PMID: 37950567 DOI: 10.1093/bbb/zbad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to explore the function of nucleolar protein interacting with the FHA domain of MKI67 (NIFK) on colorectal cancer (CRC) and its associated molecular mechanisms. NIFK was upregulated in CRC tissues and cells. NIFK silencing resulted in reduced cell growth and metastasis, as well as in promoted apoptosis in CRC cells. Moreover, NIFK silencing was also confirmed to inhibit lipid accumulation and decrease fatty acid synthesis via downregulating lipogenic enzymes in CRC cells. Gene set enrichment analysis and western blot co-verified that NIFK silencing inhibited MYC proto-oncogene, bHLH transcription factor (MYC) pathway in CRC cells. In addition, we also revealed that NIFK silencing function on cell growth, apoptosis, metastasis, and fatty acid metabolism in CRC might be cancelled after c-MYC overexpression. Silencing NIFK could inhibit cell growth and metastasis, and promoted apoptosis, as well as regulated fatty acid metabolism by inhibiting MYC pathway in CRC.
Collapse
Affiliation(s)
- Tingting Xia
- Oncology Department, Zibo First Hospital, Zibo, Shandong, China
| | - Bin Wang
- Oncology Department, Zibo First Hospital, Zibo, Shandong, China
| | - Lingling Sun
- Oncology Department, Zibo First Hospital, Zibo, Shandong, China
| |
Collapse
|
48
|
O’Connor RS. Checkmate: Metabolic flexibility with a STING in its tail. SCIENCE ADVANCES 2023; 9:eadm6816. [PMID: 38055812 PMCID: PMC10699789 DOI: 10.1126/sciadv.adm6816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Inhibiting a key metabolic enzyme, ACLY, in cancer cells impacts T cell function in immunotherapy-resistant tumors and may offer a target for therapeutic treatment.
Collapse
Affiliation(s)
- Roddy S. O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
49
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
50
|
Chen G, Bao B, Cheng Y, Tian M, Song J, Zheng L, Tong Q. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168:115741. [PMID: 37864899 DOI: 10.1016/j.biopha.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
Acetyl-coenzyme A (acetyl-CoA), an essential metabolite, not only takes part in numerous intracellular metabolic processes, powers the tricarboxylic acid cycle, serves as a key hub for the biosynthesis of fatty acids and isoprenoids, but also serves as a signaling substrate for acetylation reactions in post-translational modification of proteins, which is crucial for the epigenetic inheritance of cells. Acetyl-CoA links lipid metabolism with histone acetylation to create a more intricate regulatory system that affects the growth, aggressiveness, and drug resistance of malignancies such as glioblastoma, breast cancer, and hepatocellular carcinoma. These fascinating advances in the knowledge of acetyl-CoA metabolism during carcinogenesis and normal physiology have raised interest regarding its modulation in malignancies. In this review, we provide an overview of the regulation and cancer relevance of main metabolic pathways in which acetyl-CoA participates. We also summarize the role of acetyl-CoA in the metabolic reprogramming and stress regulation of cancer cells, as well as medical application of inhibitors targeting its dysregulation in therapeutic intervention of cancers.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|