1
|
Huang F, Zhou L, Sun J, Ma X, Pei Y, Zhang Q, Yu Y, He G, Zhu L, Li H, Wang X, Long F, Huang H, Zhang J, Sun X. Prognostic analysis of anoikis-related genes in bladder cancer: An observational study. Medicine (Baltimore) 2024; 103:e38999. [PMID: 39029056 PMCID: PMC11398808 DOI: 10.1097/md.0000000000038999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Anoikis is proved to play a crucial role in the development of cancers. However, the impact of anoikis on the prognosis of bladder cancer (BLCA) is currently unknown. Thus, this study aimed to find potential effect of anoikis in BLCA. The Cancer Genome Atlas (TCGA)-BLCA and GSE13507 cohorts were downloaded from TCGA and the Gene Expression Omnibus (GEO) databases, respectively. Differentially expressed genes (DEGs) were screened between BLCA and normal groups, which intersected with anoikis-related genes to yield anoikis-related DEGs (AR DEGs). Univariate COX, rbsurv, and multivariate COX analyses were adopted in order to build a prognostic risk model. The differences of risk score in the different clinical subgroups and the relevance between survival rate and clinical characteristics were explored as well. Finally, chemotherapy drug sensitivity in different risk groups was analyzed. In total, 78 AR DEGs were acquired and a prognostic signature was build based on the 6 characteristic genes (CALR, FASN, CSPG4, HGF, INHBB, SATB1), where the patients of low-risk group had longer survival time. The survival rate of BLCA patients was significantly differential in different groups of age, stage, smoking history, pathologic-T, and pathologic-N. The IC50 of 56 drugs showed significant differences between 2 risk groups, such as imatinib, docetaxel, and dasatinib. At last, the results of real time quantitative-polymerase chain reaction (RT-qPCR) demonstrated that the expression trend of CALR, HGF, and INHBB was consistent with the result obtained previously based on public databases. Taken together, this study identified 6 anoikis-related characteristic genes (CALR, FASN, CSPG4, HGF, INHBB, SATB1) for the prognosis of BLCA patients, providing a scientific reference for further research on BLCA.
Collapse
Affiliation(s)
- Fu Huang
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Liquan Zhou
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Junjie Sun
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Xihua Ma
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Yongfeng Pei
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Qiuwen Zhang
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Yanqing Yu
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Guining He
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Lirong Zhu
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Haibin Li
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| | - Xiaoming Wang
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Fuzhi Long
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Haipeng Huang
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jiange Zhang
- Department of Urology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xuyong Sun
- Institute of Transplantation Medicine, The Second Affiliated Hospital of Guangxi Medical University; Guangxi Clinical Research Center for Organ Transplantation; Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, PR China
| |
Collapse
|
2
|
Xu Z, He D, Huang L, Deng K, Jiang W, Qin J, Zheng Z, Zheng T, Li S. Metabolic reprogramming-driven homologous recombination and TCA cycle dysregulation contribute to poor prognoses in lung adenocarcinoma. J Cell Mol Med 2024; 28:e18406. [PMID: 38822457 PMCID: PMC11142899 DOI: 10.1111/jcmm.18406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024] Open
Abstract
Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Zhanyu Xu
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Dongming He
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Liuliu Huang
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Kun Deng
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Wei Jiang
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Junqi Qin
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Zhiwen Zheng
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Shikang Li
- Department of Thoracic and Cardiovascular SurgeryThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
3
|
Taghizadeh-Hesary F, Houshyari M, Farhadi M. Mitochondrial metabolism: a predictive biomarker of radiotherapy efficacy and toxicity. J Cancer Res Clin Oncol 2023; 149:6719-6741. [PMID: 36719474 DOI: 10.1007/s00432-023-04592-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Radiotherapy is a mainstay of cancer treatment. Clinical studies revealed a heterogenous response to radiotherapy, from a complete response to even disease progression. To that end, finding the relative prognostic factors of disease outcomes and predictive factors of treatment efficacy and toxicity is essential. It has been demonstrated that radiation response depends on DNA damage response, cell cycle phase, oxygen concentration, and growth rate. Emerging evidence suggests that altered mitochondrial metabolism is associated with radioresistance. METHODS This article provides a comprehensive evaluation of the role of mitochondria in radiotherapy efficacy and toxicity. In addition, it demonstrates how mitochondria might be involved in the famous 6Rs of radiobiology. RESULTS In terms of this idea, decreasing the mitochondrial metabolism of cancer cells may increase radiation response, and enhancing the mitochondrial metabolism of normal cells may reduce radiation toxicity. Enhancing the normal cells (including immune cells) mitochondrial metabolism can potentially improve the tumor response by enhancing immune reactivation. Future studies are invited to examine the impacts of mitochondrial metabolism on radiation efficacy and toxicity. Improving radiotherapy response with diminishing cancer cells' mitochondrial metabolism, and reducing radiotherapy toxicity with enhancing normal cells' mitochondrial metabolism.
Collapse
Affiliation(s)
- Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Houshyari
- Clinical Oncology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Abedi Z, MotieGhader H, Hosseini SS, Sheikh Beig Goharrizi MA, Masoudi-Nejad A. mRNA-miRNA bipartite networks reconstruction in different tissues of bladder cancer based on gene co-expression network analysis. Sci Rep 2022; 12:5885. [PMID: 35393513 PMCID: PMC8991185 DOI: 10.1038/s41598-022-09920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is one of the most important cancers worldwide, and if it is diagnosed early, its progression in humans can be prevented and long-term survival will be achieved accordingly. This study aimed to identify novel micro-RNA (miRNA) and gene-based biomarkers for diagnosing BC. The microarray dataset of BC tissues (GSE13507) listed in the GEO database was analyzed for this purpose. The gene expression data from three BC tissues including 165 primary bladder cancer (PBC), 58 normal looking-bladder mucosae surrounding cancer (NBMSC), and 23 recurrent non-muscle invasive tumor tissues (RNIT) were used to reconstruct gene co-expression networks. After preprocessing and normalization, deferentially expressed genes (DEGs) were obtained and used to construct the weighted gene co-expression network (WGCNA). Gene co-expression modules and low-preserved modules were extracted among BC tissues using network clustering. Next, the experimentally validated mRNA-miRNA interaction information were used to reconstruct three mRNA-miRNA bipartite networks. Reactome pathway database and Gene ontology (GO) was subsequently performed for the extracted genes of three bipartite networks and miRNAs, respectively. To further analyze the data, ten hub miRNAs (miRNAs with the highest degree) were selected in each bipartite network to reconstruct three bipartite subnetworks. Finally, the obtained biomarkers were comprehensively investigated and discussed in authentic studies. The obtained results from our study indicated a group of genes including PPARD, CST4, CSNK1E, PTPN14, ETV6, and ADRM1 as well as novel miRNAs (e.g., miR-16-5p, miR-335-5p, miR-124-3p, and let-7b-5p) which might be potentially associated with BC and could be a potential biomarker. Afterward, three drug-gene interaction networks were reconstructed to explore candidate drugs for the treatment of BC. The hub miRNAs in the mRNA-miRNA bipartite network played a fundamental role in BC progression; however, these findings need further investigation.
Collapse
Affiliation(s)
- Zahra Abedi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sahar Sadat Hosseini
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Kim MH, Yang GE, Jeong MS, Mun JY, Lee SY, Nam JK, Choi YH, Kim TN, Leem SH. VNTR polymorphism in the breakpoint region of ABL1 and susceptibility to bladder cancer. BMC Med Genomics 2021; 14:121. [PMID: 33952249 PMCID: PMC8097952 DOI: 10.1186/s12920-021-00968-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND ABL1 is primarily known as a leukemia-related oncogene due to translocation, but about 2.2% of ABL1 mutations have been identified in bladder cancer, and high expression in solid cancer has also been detected. METHODS Here, we used the NCBI database, UCSC genome browser gateway and Tandem repeat finder program to investigate the structural characterization of the ABL1 breakpoint region and to identify the variable number of tandem repeats (VNTR). To investigate the relationship between ABL1-MS1 and bladder cancer, a case-controlled study was conducted in 207 controls and 197 bladder cancer patients. We also examined the level of transcription of the reporter gene driven by the ABL1 promoter to determine if the VNTR region affects gene expression. RESULTS In our study, one VNTR was identified in the breakpoint region, the intron 1 region of ABL1, and was named ABL1-MS1. In the control group, only two common alleles (TR13, TR15) were detected, but an additional two rare alleles (TR14, TR16) were detected in bladder cancer. A statistically significant association was identified between the rare ABL1-MS1 allele and bladder cancer risk: P = 0.013. Investigating the level of transcription of the reporter gene driven by the ABL1 promoter, VNTR showed inhibition of ABL1 expression in non-cancer cells 293 T, but not in bladder cancer cells. In addition, ABL1-MS1 was accurately passed on to offspring according to Mendelian inheritance through meiosis. CONCLUSIONS Therefore, the ABL1-MS1 region can affect ABL1 expression of bladder cancer. This study provides that ABL1-MS1 can be used as a DNA fingerprinting marker. In addition, rare allele detection can predict susceptibility to bladder cancer.
Collapse
Affiliation(s)
- Min-Hye Kim
- Department of Biomedical Sciences, Dong-A University, Busan, 49315 Korea
| | - Gi-Eun Yang
- Department of Biomedical Sciences, Dong-A University, Busan, 49315 Korea
- Department of Health Sciences, The Graduated of Dong-A University, Busan, 49315 Korea
| | - Mi-So Jeong
- Department of Biomedical Sciences, Dong-A University, Busan, 49315 Korea
| | - Jeong-Yeon Mun
- Department of Biomedical Sciences, Dong-A University, Busan, 49315 Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119 Korea
| | - Jong-Kil Nam
- Department of Urology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612 Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Anti-Aging Research Center, Dong-Eui University, Busan, 47227 Korea
| | - Tae Nam Kim
- Department of Urology, Medical Research Institute, Pusan National University Hospital, Busan, 49241 Korea
| | - Sun-Hee Leem
- Department of Biomedical Sciences, Dong-A University, Busan, 49315 Korea
- Department of Health Sciences, The Graduated of Dong-A University, Busan, 49315 Korea
| |
Collapse
|
6
|
McDaniel NK, Iida M, Nickel KP, Longhurst CA, Fischbach SR, Rodems TS, Kranjac CA, Bo AY, Luo Q, Gallagher MM, Welke NB, Mitchell KR, Schulz AE, Eckers JC, Hu R, Salgia R, Hong S, Bruce JY, Kimple RJ, Wheeler DL. AXL Mediates Cetuximab and Radiation Resistance Through Tyrosine 821 and the c-ABL Kinase Pathway in Head and Neck Cancer. Clin Cancer Res 2020; 26:4349-4359. [PMID: 32439698 PMCID: PMC7442604 DOI: 10.1158/1078-0432.ccr-19-3142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Radiation and cetuximab are therapeutics used in management of head and neck squamous cell carcinoma (HNSCC). Despite clinical success with these modalities, development of both intrinsic and acquired resistance is an emerging problem in the management of this disease. The purpose of this study was to investigate signaling of the receptor tyrosine kinase AXL in resistance to radiation and cetuximab treatment. EXPERIMENTAL DESIGN To study AXL signaling in the context of treatment-resistant HNSCC, we used patient-derived xenografts (PDXs) implanted into mice and evaluated the tumor response to AXL inhibition in combination with cetuximab or radiation treatment. To identify molecular mechanisms of how AXL signaling leads to resistance, three tyrosine residues of AXL (Y779, Y821, Y866) were mutated and examined for their sensitivity to cetuximab and/or radiation. Furthermore, reverse phase protein array (RPPA) was employed to analyze the proteomic architecture of signaling pathways in these genetically altered cell lines. RESULTS Treatment of cetuximab- and radiation-resistant PDXs with AXL inhibitor R428 was sufficient to overcome resistance. RPPA analysis revealed that such resistance emanates from signaling of tyrosine 821 of AXL via the tyrosine kinase c-ABL. In addition, inhibition of c-ABL signaling resensitized cells and tumors to cetuximab or radiotherapy even leading to complete tumor regression without recurrence in head and neck cancer models. CONCLUSIONS Collectively, the studies presented herein suggest that tyrosine 821 of AXL mediates resistance to cetuximab by activation of c-ABL kinase in HNSCC and that targeting of both EGFR and c-ABL leads to a robust antitumor response.
Collapse
Affiliation(s)
- Nellie K McDaniel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kwangok P Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Colin A Longhurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Samantha R Fischbach
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Tamara S Rodems
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Carlene A Kranjac
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amber Y Bo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Qianyun Luo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Meghan M Gallagher
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Noah B Welke
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kaitlyn R Mitchell
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Alison E Schulz
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jaimee C Eckers
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, California
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, University of Wisconsin School of Pharmacy, Madison, Wisconsin
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, Korea
| | - Justine Y Bruce
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
7
|
Targets for improving tumor response to radiotherapy. Int Immunopharmacol 2019; 76:105847. [DOI: 10.1016/j.intimp.2019.105847] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
8
|
Biau J, Chautard E, Verrelle P, Dutreix M. Altering DNA Repair to Improve Radiation Therapy: Specific and Multiple Pathway Targeting. Front Oncol 2019; 9:1009. [PMID: 31649878 PMCID: PMC6795692 DOI: 10.3389/fonc.2019.01009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy (RT) is widely used in cancer care strategies. Its effectiveness relies mainly on its ability to cause lethal damage to the DNA of cancer cells. However, some cancers have shown to be particularly radioresistant partly because of efficient and redundant DNA repair capacities. Therefore, RT efficacy might be enhanced by using drugs that can disrupt cancer cells' DNA repair machinery. Here we review the recent advances in the development of novel inhibitors of DNA repair pathways in combination with RT. A large number of these compounds are the subject of preclinical/clinical studies and target key enzymes involved in one or more DNA repair pathways. A totally different strategy consists of mimicking DNA double-strand breaks via small interfering DNA (siDNA) to bait the whole DNA repair machinery, leading to its global inhibition.
Collapse
Affiliation(s)
- Julian Biau
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France.,Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Pathology Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Pierre Verrelle
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France
| |
Collapse
|
9
|
Mukhopadhyay A, Drew Y, Matheson E, Salehan M, Gentles L, Pachter JA, Curtin NJ. Evaluating the potential of kinase inhibitors to suppress DNA repair and sensitise ovarian cancer cells to PARP inhibitors. Biochem Pharmacol 2019; 167:125-132. [PMID: 30342021 DOI: 10.1016/j.bcp.2018.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
PARP inhibitors (PARPi) represent a major advance in the treatment of ovarian cancer associated with defects in homologous recombination DNA repair (HRR), primarily due to mutations in BRCA genes. Imatinib and PI3K inhibitors are reported to downregulate HRR and, in some cases, sensitise cells to PARPi. We investigated the ability of imatinib, and the PI3K inhibitors: NVP-BEZ235 and VS-5584, to downregulate HRR and sensitise paired ovarian cancer cells with mutant and reconstituted BRCA1 to the PARPi, olaparib and rucaparib. Olaparib and imatinib combinations were also measured in primary cultures of ovarian cancer. NVP-BEZ235 and imatinib reduced RAD51 levels and focus formation (an indication of HRR function), but VS-5584 did not. In colony-forming assays none of the inhibitors sensitised cells to PARPi cytotoxicity, in fact there was a mild protective effect. These conflicting data were resolved by the observation that the kinase inhibitors reduced the S-phase fraction, when HRR proteins are at their peak and cells are sensitive to PARPi cytotoxicity. In contrast, in primary cultures in 96-well plate assays, imatinib did increase olaparib-induced growth inhibition. However, in one primary culture that could be used in colony-formation cytotoxicity assays, imatinib protected from olaparib cytotoxicity. The kinase inhibitors protect from PARPi cytotoxicity by arresting cell growth, but this may be interpreted as synergy on the basis of 96-well cell growth assays. We urge caution before combining these drugs clinically.
Collapse
Affiliation(s)
- Asima Mukhopadhyay
- Northern Institute of Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Tata Medical Center and Tata Translational Cancer Research Center, 14 MAR, Rajarhat, Kolkata, India
| | - Yvette Drew
- Northern Institute of Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Elizabeth Matheson
- Northern Institute of Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mo Salehan
- Northern Institute of Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lucy Gentles
- Northern Institute of Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Nicola J Curtin
- Northern Institute of Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
10
|
Jiang WD, Yuan PC. Molecular network-based identification of competing endogenous RNAs in bladder cancer. PLoS One 2019; 14:e0220118. [PMID: 31369587 PMCID: PMC6675086 DOI: 10.1371/journal.pone.0220118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to interact with microRNAs (miRNA) as competitive endogenous RNAs (ceRNAs) to regulate target gene expression and participate in tumorigenesis. However, the role of circRNA-mediated ceRNAs in bladder cancer (BC) remains unknown. Accordingly, the aim of this study was to elucidate the regulatory mechanisms in BC based on construction of the ceRNA network. METHODS The RNA expression profiles were obtained from public datasets in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database, and were used to establish a circRNA-miRNA-mRNA network. The interactions among proteins were analyzed using the STRING database and hubgenes were extracted using the cytoHubba application. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of differentially expressed mRNAs in BC and normal tissue samples were performed to determine the functions of the intersecting mRNAs. RESULTS A total of 27 circRNAs, 76 miRNAs, and 4744 mRNAs were found to be differentially expressed between BC and normal tissues. The circRNA-miRNA-mRNA ceRNA network was established based on 21 circRNAs, 14 miRNAs, and 150 mRNAs differentially expressed in BC. We also established a protein-protein interaction network and identified 10 hubgenes, which were used to construct circRNA-miRNA-hubgene regulatory modules. The most enriched biological process GO term was strand displacement (P<0.05), and the homologous recombination and Fanconi anemia pathways were significantly enriched (P<0.05) for the differentially expressed genes in BC. CONCLUSIONS We screened several dysregulated circRNAs and established a circRNA-associated ceRNA network by bioinformatics analysis. The identified ceRNAs are likely critical in the pathogenesis of BC and may serve as future therapeutic biomarkers.
Collapse
Affiliation(s)
- Wei-dong Jiang
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Ping-cheng Yuan
- Department of Urology and Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| |
Collapse
|
11
|
Agyeman MB, Vanderpuye VD, Yarney J. Abscopal Effect of Radiotherapy in Imatinib-resistant Dermatofibrosarcoma Protuberans. Cureus 2019; 11:e3857. [PMID: 30899608 PMCID: PMC6414193 DOI: 10.7759/cureus.3857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Local tumor control and symptom relief have been the major advantage of radiotherapy in clinical practice. In the past years, the systemic anti-tumor effect of radiotherapy, also known as the abscopal effect, has been reported with limited studies. With the advent of immunotherapy, the frequency of the abscopal effect has increased in patients who receive sequential treatment with radiotherapy and immunotherapy or patients who receive radiotherapy after acquiring resistance to immunotherapy. A novel cancer treatment modality, such as molecular targeted therapy, has been associated with the immune response within the tumor but its systemic anti-tumor effect, when combined with radiotherapy, is yet to be documented. There have been few studies to date assessing the immunological effects of imatinib on tumors; however, the mechanism of tumor regression or resistance acquisition is poorly understood. We present a 56-year-old male diagnosed with dermatofibrosarcoma protuberans (DFSP) who developed resistance to imatinib after five months of treatment. Following subsequent local radiotherapy to the primary tumor, he had complete clinical remission of the primary and metastatic lesions.
Collapse
Affiliation(s)
- Mervin B Agyeman
- Radiation Oncology, National Radiotherapy Oncology and Nuclear Medicine Centre, Korle-Bu Teaching Hospital, Accra, GHA
| | - Verna D Vanderpuye
- Radiation Oncology, National Radiotherapy Oncology and Nuclear Medicine Centre, Korle-Bu Teaching Hospital, Accra, GHA
| | - Joel Yarney
- Radiation Oncology, National Radiotherapy Oncology and Nuclear Medicine Centre, Korle-Bu Teaching Hospital, Accra, GHA
| |
Collapse
|
12
|
Ratnayake G, Bain AL, Fletcher N, Howard CB, Khanna KK, Thurecht KJ. RNA interference to enhance radiation therapy: Targeting the DNA damage response. Cancer Lett 2018; 439:14-23. [PMID: 30240587 DOI: 10.1016/j.canlet.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi) therapy is an emerging class of biopharmaceutical that has immense potential in cancer medicine. RNAi medicines are based on synthetic oligonucleotides that can suppress a target protein in tumour cells with high specificity. This review explores the attractive prospect of using RNAi as a radiosensitiser by targeting the DNA damage response. There are a multitude of molecular targets involved in the detection and repair of DNA damage that are suitable for this purpose. Recent developments in delivery technologies such nanoparticle carriers and conjugation strategies have allowed RNAi therapeutics to enter clinical trials in the treatment of cancer. With further progress, RNAi targeting of the DNA damage response may hold great promise in guiding radiation oncology into the era of precision medicine.
Collapse
Affiliation(s)
- G Ratnayake
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia; QIMR Berghofer Medical Research Institute, Australia; Royal Brisbane and Women's Hospital, Australia.
| | - A L Bain
- QIMR Berghofer Medical Research Institute, Australia
| | - N Fletcher
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia
| | - C B Howard
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia
| | - K K Khanna
- QIMR Berghofer Medical Research Institute, Australia
| | - K J Thurecht
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| |
Collapse
|
13
|
Groselj B, Ruan JL, Scott H, Gorrill J, Nicholson J, Kelly J, Anbalagan S, Thompson J, Stratford MRL, Jevons SJ, Hammond EM, Scudamore CL, Kerr M, Kiltie AE. Radiosensitization In Vivo by Histone Deacetylase Inhibition with No Increase in Early Normal Tissue Radiation Toxicity. Mol Cancer Ther 2018; 17:381-392. [PMID: 28839000 PMCID: PMC5712223 DOI: 10.1158/1535-7163.mct-17-0011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/01/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
Abstract
As the population ages, more elderly patients require radiotherapy-based treatment for their pelvic malignancies, including muscle-invasive bladder cancer, as they are unfit for major surgery. Therefore, there is an urgent need to find radiosensitizing agents minimally toxic to normal tissues, including bowel and bladder, for such patients. We developed methods to determine normal tissue toxicity severity in intestine and bladder in vivo, using novel radiotherapy techniques on a small animal radiation research platform (SARRP). The effects of panobinostat on in vivo tumor growth delay were evaluated using subcutaneous xenografts in athymic nude mice. Panobinostat concentration levels in xenografts, plasma, and normal tissues were measured in CD1-nude mice. CD1-nude mice were treated with drug/irradiation combinations to assess acute normal tissue effects in small intestine using the intestinal crypt assay, and later effects in small and large intestine at 11 weeks by stool assessment and at 12 weeks by histologic examination. In vitro effects of panobinostat were assessed by qPCR and of panobinostat, TMP195, and mocetinostat by clonogenic assay, and Western blot analysis. Panobinostat resulted in growth delay in RT112 bladder cancer xenografts but did not significantly increase acute (3.75 days) or 12 weeks' normal tissue radiation toxicity. Radiosensitization by panobinostat was effective in hypoxic bladder cancer cells and associated with class I HDAC inhibition, and protein downregulation of HDAC2 and MRE11. Pan-HDAC inhibition is a promising strategy for radiosensitization, but more selective agents may be more useful radiosensitizers clinically, resulting in fewer systemic side effects. Mol Cancer Ther; 17(2); 381-92. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."
Collapse
Affiliation(s)
- Blaz Groselj
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Jia-Ling Ruan
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Helen Scott
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jessica Gorrill
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Judith Nicholson
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Jacqueline Kelly
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Selvakumar Anbalagan
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Thompson
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael R L Stratford
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sarah J Jevons
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ester M Hammond
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Cheryl L Scudamore
- Mary Lyons Centre MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Martin Kerr
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anne E Kiltie
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Concurrent Imatinib and Radiation Therapy for Unresectable and Symptomatic Desmoid Tumors. Sarcoma 2017; 2017:2316839. [PMID: 28761389 PMCID: PMC5516706 DOI: 10.1155/2017/2316839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/23/2017] [Accepted: 06/04/2017] [Indexed: 11/25/2022] Open
Abstract
Desmoid tumors are locally aggressive fibroproliferative neoplasms that can lead to pain and dysfunction due to compression of nerves and surrounding structures. Desmoid tumors often progress through medical therapy, and there is frequently a delay of multiple months before radiation can provide symptomatic relief. To achieve more rapid symptomatic relief and tumor regression for unresectable desmoid tumors causing significant morbidity such as brachial plexus impingement with loss of extremity function, we have selectively utilized a combination of imatinib and radiation therapy. Here, we retrospectively review four patients treated with concurrent imatinib and radiation therapy. The treatment was typically tolerated with minimal toxicity though one patient developed avascular necrosis of the irradiated humeral head possibly related to the combined treatment. All the patients treated have had a partial response or stable disease on imaging. Improvement of symptoms was observed in all the treated patients with a median time to relief of 2.5 months after starting radiation therapy. Concurrent radiation and imatinib may represent a viable treatment option for unresectable and symptomatic desmoid tumors where rapid relief is needed to prevent permanent loss of function.
Collapse
|
15
|
Nicholson J, Jevons SJ, Groselj B, Ellermann S, Konietzny R, Kerr M, Kessler BM, Kiltie AE. E3 Ligase cIAP2 Mediates Downregulation of MRE11 and Radiosensitization in Response to HDAC Inhibition in Bladder Cancer. Cancer Res 2017; 77:3027-3039. [PMID: 28363998 DOI: 10.1158/0008-5472.can-16-3232] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022]
Abstract
The MRE11/RAD50/NBS1 (MRN) complex mediates DNA repair pathways, including double-strand breaks induced by radiotherapy. Meiotic recombination 11 homolog (MRE11) is downregulated by histone deacetylase inhibition (HDACi), resulting in reduced levels of DNA repair in bladder cancer cells and radiosensitization. In this study, we show that the mechanism of this downregulation is posttranslational and identify a C-terminally truncated MRE11, which is formed after HDAC inhibition as full-length MRE11 is downregulated. Truncated MRE11 was stabilized by proteasome inhibition, exhibited a decreased half-life after treatment with panobinostat, and therefore represents a newly identified intermediate induced and degraded in response to HDAC inhibition. The E3 ligase cellular inhibitor of apoptosis protein 2 (cIAP2) was upregulated in response to HDAC inhibition and was validated as a new MRE11 binding partner whose upregulation had similar effects to HDAC inhibition. cIAP2 overexpression resulted in downregulation and altered ubiquitination patterns of MRE11 and mediated radiosensitization in response to HDAC inhibition. These results highlight cIAP2 as a player in the DNA damage response as a posttranscriptional regulator of MRE11 and identify cIAP2 as a potential target for biomarker discovery or chemoradiation strategies in bladder cancer. Cancer Res; 77(11); 3027-39. ©2017 AACR.
Collapse
Affiliation(s)
- Judith Nicholson
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| | - Sarah J Jevons
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Blaz Groselj
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Sophie Ellermann
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Rebecca Konietzny
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin Kerr
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anne E Kiltie
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Li T, Niu X, Zhang X, Wang S, Liu Z. Recombinant Human IFNα-2b Response Promotes Vaginal Epithelial Cells Defense against Candida albicans. Front Microbiol 2017; 8:697. [PMID: 28473823 PMCID: PMC5397410 DOI: 10.3389/fmicb.2017.00697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classical antifungal drugs have been subjected to restrictions due to drug toxicity, drug resistance, bioavailability, and detrimental drug interactions. Type I interferon (IFN) exerts direct distinct immunostimulatory or immunomodulatory actions; however, little is known regarding the anti-fungal reactions of vaginal epithelial cells (VECs) induced by the type I IFN response. Therefore, in the present study, we evaluated the cytotoxic activity, immunocompetent cytokine responses, and non-B IgG production of the VK2/E6E7 VEC line following recombinant human IFN α-2b (rhIFNα-2b) treatment in response to Candida albicans. When treated with rhIFNα-2b, the production of IL-2, IL-4, and IL-17 were significantly up-regulated compared to the infected control cells (P < 0.05). Our scanning electron microscopy results revealed that C. albicans can invade VECs by inducing both endocytosis and active penetration. RhIFNα-2b was able to transform the VECs into a thallus and stretched pattern, promoting the fusion of filopodia to form a lamellipodium and enhancing the mobility and the repair capacity of the VECs. In addition, rhIFNα-2b could effectively inhibit the adhesion, hyphal formation, and proliferation of C. albicans. Collectively, these responses restored the immune function of the infected VECs against C. albicans in vitro, providing a theoretical basis for this novel treatment strategy.
Collapse
Affiliation(s)
- Ting Li
- Department of Obstetrics and Gynecology, Peking University First HospitalBeijing, China
| | - Xiaoxi Niu
- Department of Obstetrics and Gynecology, Peking University First HospitalBeijing, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First HospitalBeijing, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First HospitalBeijing, China
| | - Zhaohui Liu
- Department of Obstetrics and Gynecology, Peking University First HospitalBeijing, China
| |
Collapse
|
17
|
Eberle F, Leinberger FH, Saulich MF, Seeger W, Engenhart-Cabillic R, Hänze J, Hattar K, Dikomey E, Subtil FS. In cancer cell lines inhibition of SCF/c-Kit pathway leads to radiosensitization only when SCF is strongly over-expressed. Clin Transl Radiat Oncol 2017; 2:69-75. [PMID: 29658004 PMCID: PMC5893519 DOI: 10.1016/j.ctro.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/25/2023] Open
Abstract
Background and purpose The SCF/c-Kit pathway is often overexpressed in human tumors leading to an enhanced tumorigenesis, proliferation and migration. It was now tested for NSCLC and prostate cancer cells growing in 2D and 3D whether the inhibition of this pathway can be used to achieve a significant radiosensitization and whether a respective biomarker may be identified. Material and methods Experiments were performed with different cancer cell lines (NSCLC: H23, H520, H226, H1975 and PrCa: DU145) growing either under 2D or 3D conditions. Expression of SCF and c-Kit was determined by RT-PCR and Western blot, SCF was knocked down by siRNA, c-Kit was inhibited by ISCK03 inhibitor and cell survival was determined by colony formation assay. Results There is a profound variation in the expression of both c-Kit and SCF with no association between each other. Neither levels did correlate with the respective cellular radiosensitivity determined for 2D or 3D with only a trend seen for SCF. Knock-down of SCF was generally found to result in no or only minor reduction of plating efficiency or cellular radioresistance. A significant reduction was only obtained for H520 cells characterized by an extreme over-expression of SCF. The inhibition of c-Kit by a specific inhibitor was also found to result only in minor radiosensitization. Conclusion Generally, the SCF/c-Kit pathway does not have a dominant effect on both, cell survival and radioresponse and, as a consequence, knockdown of this pathway does not result in a strong effect on radioresistance, except when SCF is strongly over-expressed.
Collapse
Affiliation(s)
- Fabian Eberle
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
- Corresponding author at: Department of Radiotherapy and Radiooncology, Philipps-University, Baldingerstraße, D-35034 Marburg, Germany. Fax: +49 6421 58 66426.at: Department of Radiotherapy and RadiooncologyPhilipps-UniversityBaldingerstraßeD-35034 MarburgGermany
| | | | - Miriam F. Saulich
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
| | - Werner Seeger
- Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
- Department of Radiotherapy, Justus-Liebig-University, Giessen, Germany
| | - Jörg Hänze
- Department of Urology and Pediatric Urology, Philipps-University, Marburg, Germany
| | - Katja Hattar
- Department of Internal Medicine IV/V, Universities of Giessen & Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
| | - Florentine S.B. Subtil
- Department of Radiotherapy and Radiooncology, Philipps University, Marburg, Germany
- Corresponding author at: Department of Radiotherapy and Radiooncology, Philipps-University, Baldingerstraße, D-35034 Marburg, Germany. Fax: +49 6421 58 66426.at: Department of Radiotherapy and RadiooncologyPhilipps-UniversityBaldingerstraßeD-35034 MarburgGermany
| |
Collapse
|
18
|
Li T, Niu X, Zhang X, Wang S, Liu Z. Baofukang suppository promotes the repair of vaginal epithelial cells in response to Candida albicans. AMB Express 2016; 6:109. [PMID: 27830496 PMCID: PMC5102987 DOI: 10.1186/s13568-016-0281-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is an opportunistic fungal infection predominantly caused by Candida albicans affecting a significant number of women of reproductive age. The Chinese medicine, the Baofukang suppository is widely used in the clinic for its antimicrobial activity and is therefore of great interest as a potential antifungal drug for the prevention of VVC. We evaluated the cytotoxic activity of the Baofukang suppository using the VK2/E6E7 vaginal epithelial cell (VEC) line. When treated with the Baofukang suppository, all of the immunocompetent cytokines and chemokines (e.g., IL-2, IL-4, IL-6, IL-8, and IL-17) by infected VK2/E6E7 cells was statistically up-regulated (P < 0.05), except IL-4 (11.70 ± 1.82 vs. 14.88 ± 4.72, P = 0.343) compared to the infected control cells. The secretion of non-B IgG also exhibited the same trend. Our scanning electron microscopy results revealed that C. albicans can invade VECs by both induced endocytosis and active penetration. The Baofukang suppository could effectively inhibit the adhesion, hyphal formation, and proliferation, as well as notably restore the vaginal epithelial cell morphology, viability, and enhance the local immune function of the VECs. These preliminary results suggest promising antimicrobial properties of the Baofukang suppository, which may be efficacious as an antifungal therapy candidate via up-regulating Th1 cellular immunity, the Th17-axis of the innate immune response, and the secretion of vaginal epithelial-derived IgG. These combined effects collectively restore the immune function of the infected VECs against C. albicans in vitro.
Collapse
|
19
|
Radojewski P, Dumont RA, Marincek N, Brunner P, Müller-Brand J, Maecke HR, Briel M, Walter MA. Reply: Somatostatin Receptor–Targeted Radiopeptide Therapy in Patients with Progressive Unresectable Meningioma. J Nucl Med 2016; 57:1657-1658. [DOI: 10.2967/jnumed.116.178145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Abstract
Hepatocellular cancer (HCC) is a leading cause of cancer death worldwide, and most patients who are diagnosed with HCC are ineligible for curative local therapy. The targeted agent sorafenib provides modest survival benefits in the setting of advanced disease. Novel systemic treatment options for HCC are sorely needed. In this review, we identify and categorize the drugs and targets that are in various phases of testing for use against HCC. We also focus on the potential for combining these agents with radiotherapy. This would help identify directions for future study that are likely to yield positive findings and improve outcomes for patients with HCC.
Collapse
Affiliation(s)
- Nitin Ohri
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Andreas Kaubisch
- Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Madhur Garg
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
21
|
Mahajan K, Mahajan NP. Cross talk of tyrosine kinases with the DNA damage signaling pathways. Nucleic Acids Res 2015; 43:10588-601. [PMID: 26546517 PMCID: PMC4678820 DOI: 10.1093/nar/gkv1166] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023] Open
Abstract
Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies.
Collapse
Affiliation(s)
- Kiran Mahajan
- Tumor Biology Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA Department of Oncological Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Nupam P Mahajan
- Drug Discovery Department, Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA Department of Oncological Sciences, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
22
|
Mu X, Ma J, Zhang Z, Zhou H, Xu S, Qin Y, Huang J, Yang K, Wu G. Famitinib enhances nasopharyngeal cancer cell radiosensitivity by attenuating radiation-induced phosphorylation of platelet-derived growth factor receptor and c-kit and inhibiting microvessel formation. Int J Radiat Biol 2015; 91:771-6. [PMID: 26073526 DOI: 10.3109/09553002.2015.1062574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Famitinib is a novel tyrosine kinase inhibitor. We investigated the effects of famitinib on the radiosensitivity of human nasopharyngeal carcinoma (NPC) cell radiosensitivity in vitro and in vivo, and explored its possible mechanisms. MATERIALS AND METHODS Human nasopharyngeal carcinoma cell line (CNE-2) were treated with famitinib and radiation, and analyzed by3-(4,5-dimethylthaizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenic survival assay, and Western blot. A xenograft model using CNE-2 cells was established to analyze the effects of famitinib and radiation on tumor volume and microvessel density (MVD). RESULTS Famitinib dose-dependently inhibited CNE-2 cells growth and significantly reduced clonogenic survival (p < 0.05), with a sensitivity enhancement ratio (SER) of 1.45. The tumor inhibition rate of the combined treatment group was 91%, which was significantly higher than the radiation group (35%, p < 0.05) and famitinib group (46%, p < 0.05). Famitinib attenuated radiation-induced phosphorylation of the platelet-derived growth factor receptor (PDGFR) and stem cell factor (c-kit) at 0, 30, 60 min after radiation treatment. Furthermore, radiation combined with famitinib decreased tumor MVD (p < 0.05). CONCLUSIONS Famitinib significantly increased CNE-2 cell radiosensitivity in vitro and in vivo by attenuating radiation-induced PDGFR and c-kit phosphorylation and by inhibiting microvessel formation.
Collapse
Affiliation(s)
- Xiaoqian Mu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,b Department of Medical Oncology , Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , Henan, China
| | - Jia Ma
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhanjie Zhang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Hongxia Zhou
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Shuangbing Xu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - You Qin
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jing Huang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Kunyu Yang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Gang Wu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
23
|
Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:938475. [PMID: 26180600 PMCID: PMC4477247 DOI: 10.1155/2015/938475] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/02/2014] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes.
Collapse
|
24
|
Alagpulinsa DA, Yaccoby S, Ayyadevara S, Shmookler Reis RJ. A peptide nucleic acid targeting nuclear RAD51 sensitizes multiple myeloma cells to melphalan treatment. Cancer Biol Ther 2015; 16:976-86. [PMID: 25996477 DOI: 10.1080/15384047.2015.1040951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells. We constructed a PNA complementary to a unique segment of the RAD51 gene promoter, spanning the transcription start site, and conjugated it to a nuclear localization signal (PKKKRKV) to enhance cellular uptake and nuclear delivery without transfection reagents. This synthetic construct, (PNArad51_nls), significantly reduced RAD51 transcripts in MM cells, and markedly reduced the number and intensity of de novo and melphalan-induced nuclear RAD51 foci, while increasing the level of melphalan-induced γH2AX foci. Melphalan alone markedly induced the expression of 5 other genes involved in homologous-recombination repair, yet suppression of RAD51 by PNArad51_nls was sufficient to synergize with melphalan, producing significant synthetic lethality of MM cells in vitro. In a SCID-rab mouse model mimicking the MM bone marrow microenvironment, treatment with PNArad51_nls ± melphalan significantly suppressed tumor growth after 2 weeks, whereas melphalan plus control PNArad4µ_nls was ineffectual. This study highlights the importance of RAD51 in myeloma growth and is the first to demonstrate that anti-RAD51 PNA can potentiate conventional MM chemotherapy.
Collapse
|
25
|
Magin S, Papaioannou M, Saha J, Staudt C, Iliakis G. Inhibition of Homologous Recombination and Promotion of Mutagenic Repair of DNA Double-Strand Breaks Underpins Arabinoside–Nucleoside Analogue Radiosensitization. Mol Cancer Ther 2015; 14:1424-33. [DOI: 10.1158/1535-7163.mct-14-0682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 03/22/2015] [Indexed: 11/16/2022]
|
26
|
Young A, Berry R, Holloway AF, Blackburn NB, Dickinson JL, Skala M, Phillips JL, Brettingham-Moore KH. RNA-seq profiling of a radiation resistant and radiation sensitive prostate cancer cell line highlights opposing regulation of DNA repair and targets for radiosensitization. BMC Cancer 2014; 14:808. [PMID: 25369795 PMCID: PMC4233036 DOI: 10.1186/1471-2407-14-808] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Radiotherapy is a chosen treatment option for prostate cancer patients and while some tumours respond well, up to 50% of patients may experience tumour recurrence. Identification of functionally relevant predictive biomarkers for radioresponse in prostate cancer would enable radioresistant patients to be directed to more appropriate treatment options, avoiding the side-effects of radiotherapy. METHODS Using an in vitro model to screen for novel biomarkers of radioresistance, transcriptome analysis of a radioresistant (PC-3) and radiosensitive (LNCaP) prostate cancer cell line was performed. Following pathway analysis candidate genes were validated using qRT-PCR. The DNA repair pathway in radioresistant PC-3 cells was then targeted for radiation sensitization using the PARP inhibitor, niacinimide. RESULTS Opposing regulation of a DNA repair and replication pathway was observed between PC-3 and LNCaP cells from RNA-seq analysis. Candidate genes BRCA1, RAD51, FANCG, MCM7, CDC6 and ORC1 were identified as being significantly differentially regulated post-irradiation. qRT-PCR validation confirmed BRCA1, RAD51 and FANCG as being significantly differentially regulated at 24 hours post radiotherapy (p-value =0.003, 0.045 and 0.003 respectively). While the radiosensitive LNCaP cells down-regulated BRCA1, FANCG and RAD51, the radioresistant PC-3 cell line up-regulated these candidates to promote cell survival post-radiotherapy and a similar trend was observed for MCM7, CDC6 and ORC1. Inhibition of DNA repair using niacinamide sensitised the radioresistant cells to irradiation, reducing cell survival at 2 Gy from 66% to 44.3% (p-value =0.02). CONCLUSIONS These findings suggest that the DNA repair candidates identified via RNA-seq hold potential as both targets for radiation sensitization and predictive biomarkers in prostate cancer.
Collapse
|
27
|
Nicolay NH, Sommer E, Perez RL, Wirkner U, Bostel T, Ho AD, Lahn M, Debus J, Saffrich R, Huber PE. Mesenchymal stem cells are sensitive to treatment with kinase inhibitors and ionizing radiation. Strahlenther Onkol 2014; 190:1037-45. [DOI: 10.1007/s00066-014-0686-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
28
|
Huang F, Mazin AV. Targeting the homologous recombination pathway by small molecule modulators. Bioorg Med Chem Lett 2014; 24:3006-13. [PMID: 24856061 DOI: 10.1016/j.bmcl.2014.04.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
During the last decade, the use of small molecule (MW <500 Da) compounds that modulate (inhibit or activate) important proteins of different biological pathways became widespread. Recently, the homologous recombination (HR) pathway emerged as a target for such modulators. Development of small molecule modulators pursues two distinct but not mutually exclusive purposes: to create a research tool to study the activities or functions of proteins of interest and to produce drugs targeting specific pathologies. Here, we review the progress of small molecule development in the area of HR.
Collapse
Affiliation(s)
- Fei Huang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, United States
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, United States.
| |
Collapse
|
29
|
Carvalho JFS, Kanaar R. Targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets 2014; 18:427-58. [PMID: 24491188 DOI: 10.1517/14728222.2014.882900] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION DNA is the target of many traditional non-specific chemotherapeutic drugs. New drugs or therapeutic approaches with a more rational and targeted component are mandatory to improve the success of cancer therapy. The homologous recombination (HR) pathway is an attractive target for the development of inhibitors because cancer cells rely heavily on HR for repair of DNA double-strand breaks resulting from chemotherapeutic treatments. Additionally, the discovery that poly(ADP)ribose polymerase-1 inhibitors selectively kill cells with genetic defects in HR has spurned an even greater interest in inhibitors of HR. AREAS COVERED HR drives the repair of broken DNA via numerous protein-mediated sequential DNA manipulations. Due to extensive number of steps and proteins involved, the HR pathway provides a rich pool of potential drug targets. This review discusses the latest developments concerning the strategies being explored to inhibit HR. Particular attention is given to the identification of small molecule inhibitors of key HR proteins, including the BRCA proteins and RAD51. EXPERT OPINION Current HR inhibitors are providing the basis for pharmaceutical development of more potent and specific inhibitors to be applied in mono- or combinatorial therapy regimes, while novel targets will be uncovered by experiments aimed to gain a deeper mechanistic understanding of HR and its subpathways.
Collapse
Affiliation(s)
- João F S Carvalho
- Erasmus MC Cancer Institute, Department of Genetics, Department of Radiation Oncology, Cancer Genomics Netherlands , PO Box 2040, 3000 CA Rotterdam , The Netherlands
| | | |
Collapse
|
30
|
Groselj B, Kerr M, Kiltie AE. Radiosensitisation of bladder cancer cells by panobinostat is modulated by Ku80 expression. Radiother Oncol 2013; 108:429-33. [PMID: 23932191 PMCID: PMC3824066 DOI: 10.1016/j.radonc.2013.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE In muscle-invasive bladder cancer there is an urgent need to identify relatively non-toxic radiosensitising agents for use in elderly patients. Histone deacetylase inhibitors radiosensitise tumour cells but not normal cells in vitro and variously downregulate DNA damage signalling, homologous recombination (HR) and non-homologous end-joining (NHEJ) repair proteins. We investigated panobinostat (PAN) as a potential radiosensitiser in bladder cancer cells. MATERIALS AND METHODS Clonogenic assays were performed in RT112 bladder cancer cells, and RT112 cells stably knocked down for RAD51 or Ku80 by shRNAi. Resolution of γH2AX foci was determined by immunofluorescence confocal microscopy, cell cycle progression by FACS analysis and protein expression by western blotting. RESULTS PAN had a greater radiosensitising effect in Ku80KD than RT112 or RAD51KD cells; enhancement ratios 1.35 for Ku80KD at 10nM (IC(20) for Ku80KD) and 1.31 for RT112 and RAD51KD at 25 nM (IC(40) for both). PAN downregulated MRE11, NBS1 and RAD51, but not Ku70 and Ku80, increased γH2AX foci formation in a dose-dependent manner and delayed γH2AX foci repair after ionising radiation. CONCLUSIONS PAN acts as a radiosensitiser in bladder cancer cell lines, and appears to target HR rather than NHEJ. As muscle-invasive bladder tumours have reduced Ku-DNA binding, PAN could be particularly useful as a radiosensitiser in bladder cancer.
Collapse
Affiliation(s)
| | | | - Anne E. Kiltie
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, United Kingdom
| |
Collapse
|
31
|
Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 2013; 3:113. [PMID: 23675572 PMCID: PMC3650303 DOI: 10.3389/fonc.2013.00113] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/24/2013] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress – a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School Essen, Germany
| | | | | | | |
Collapse
|