1
|
Newman MJ. Invention and characterization of a systemically administered, attenuated and killed bacteria-based multiple immune receptor agonist for anti-tumor immunotherapy. Front Immunol 2024; 15:1462221. [PMID: 39606250 PMCID: PMC11599860 DOI: 10.3389/fimmu.2024.1462221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Activation of immune receptors, such as Toll-like (TLR), NOD-like (NLR) and Stimulator of Interferon Genes (STING) is critical for efficient innate and adaptive immunity. Gram-negative bacteria (G-NB) contain multiple TLR, NOD and STING agonists. Potential utility of G-NB for cancer immunotherapy is supported by observations of tumor regression in the setting of infection and Coley's Toxins. Coley reported that intravenous (i.v.) administration was likely most effective but produced uncontrollable toxicity. The discovery of TLRs and their agonists, particularly the potent TLR4 agonist lipopolysaccharide (LPS)-endotoxin, comprising ~75% of the outer membrane of G-NB, suggests that LPS may be both a critical active ingredient and responsible for dose-limiting i.v. toxicity of G-NB. This communication reports the production of killed, stabilized, intact bacteria products from non-pathogenic G-NB with ~96% reduction of LPS-endotoxin activity. One resulting product candidate, Decoy10, was resistant to standard methods of cell disruption and contained TLR2,4,8,9, NOD2 and STING agonist activity. Decoy10 also exhibited reduced i.v. toxicity in mice and rabbits, and a largely uncompromised ability to induce cytokine and chemokine secretion by human immune cells in vitro, all relative to unprocessed, parental bacterial cells. Decoy10 and a closely related product, Decoy20, produced single agent anti-tumor activity or combination-mediated durable regression of established subcutaneous, metastatic or orthotopic colorectal, hepatocellular (HCC), pancreatic, and non-Hodgkin's lymphoma (NHL) tumors in mice, with induction of both innate and adaptive immunological memory (syngeneic and human tumor xenograft models). Decoy bacteria combination-mediated regressions were observed with a low-dose, oral non-steroidal anti-inflammatory drug (NSAID), anti-PD-1 checkpoint therapy, low-dose cyclophosphamide (LDC), and/or a targeted antibody (rituximab). Efficient tumor eradication was associated with plasma expression of 15-23 cytokines and chemokines, broad induction of cytokine, chemokine, innate and adaptive immune pathway genes in tumors, cold to hot tumor inflammation signature transition, and required NK, CD4+ and CD8+ T cells, collectively demonstrating a role for both innate and adaptive immune activation in the anti-tumor immune response.
Collapse
|
2
|
Dawson RE, Jenkins BJ. The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. Immune Netw 2024; 24:e38. [PMID: 39513025 PMCID: PMC11538610 DOI: 10.4110/in.2024.24.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated activation of the innate immune system is a critical driver of chronic inflammation that is associated with at least 30% of all cancers. Innate immunity can also exert tumour-promoting effects (e.g. proliferation) directly on cancer cells in an intrinsic manner. Conversely, innate immunity can influence adaptive immunity-based anti-tumour immune responses via Ag-presenting dendritic cells that activate natural killer and cytotoxic T cells to eradicate tumours. While adaptive anti-tumour immunity has underpinned immunotherapy approaches with immune checkpoint inhibitors and chimeric Ag receptor-T cells, the clinical utility of innate immunity in cancer is underexplored. Innate immune responses are governed by pattern recognition receptors, which comprise several families, including Toll-like, nucleotide-binding oligomerization domain-containing (NOD)-like and absent-in-melanoma 2 (AIM2)-like receptors. Notably, a subset of NOD-like and AIM2-like receptors can form large multiprotein "inflammasome" complexes which control maturation of biologically active IL-1β and IL-18 cytokines. Over the last decade, it has emerged that inflammasomes can coordinate contrasting pro- and anti-tumour responses in cancer and non-cancer (e.g. immune, stromal) cells. Considering the importance of inflammasomes to the net output of innate immune responses, here we provide an overview and discuss recent advancements on the diverse role of inflammasomes in cancer that have underpinned their potential targeting in diverse malignancies.
Collapse
Affiliation(s)
- Ruby E. Dawson
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| | - Brendan J. Jenkins
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Shi W, Gao Y, Yang H, Li H, Liu T, Zhao J, Wei Z, Lin L, Huang Y, Guo Y, Xu A, Bai Z, Xiao X. Bavachinin, a main compound of Psoraleae Fructus, facilitates GSDMD-mediated pyroptosis and causes hepatotoxicity in mice. Chem Biol Interact 2024; 400:111133. [PMID: 38969277 DOI: 10.1016/j.cbi.2024.111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Psoraleae Fructus (PF, Psoralea corylifolia L.), a traditional medicine with a long history of application, is widely used clinically for the treatment of various diseases. However, the reports of PF-related adverse reactions, such as hepatotoxicity, phototoxic dermatitis, and allergy, are increasing year by year, with liver injury being the mostly common. Our previous studies have demonstrated that PF and its preparations can cause liver injury in lipopolysaccharide (LPS)-mediated susceptibility mouse model, but the mechanism of PF-related liver injury is unclear. In this study, we showed that PF and bavachinin, a major component of PF, can directly induce the expression of caspase-1 and interleukin-1β (IL-1β), indicating that PF and bavachinin can directly triggered the activation of inflammasome. Furthermore, pretreatment with NLR family pyrin domain-containing 3 (NLRP3), NLR family CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome inhibitors, containing MCC950, ODN TTAGGG (ODN) and carnosol, all significantly reversed bavachinin-induced inflammasome activation. Mechanistically, bavachinin dose-dependently promote Gasdermin D (GSDMD) post-shear activation and then induce mitochondrial reactive oxygen species (mtROS) production and this effect is markedly inhibited by pretreatment with N-Acetylcysteine amide (NAC). In addition, combination treatment of LPS and bavachinin significantly induced liver injury in mice, but not LPS or bavachinin alone, and transcriptome analysis further validated these results. Thus, PF and bavachinin can induce the activation of inflammasome by promoting GSDMD cleavage and cause hepatotoxicity in mice. Therefore, PF, bavachinin, and PF-related preparations should be avoided in patients with inflammasome activation-associated diseases.
Collapse
Affiliation(s)
- Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Huijie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuming Guo
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; National Key Laboratory of Kidney Diseases, China.
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; National Key Laboratory of Kidney Diseases, China.
| |
Collapse
|
4
|
Nagano T, Takada K, Narutomi F, Kinoshita F, Akamine T, Kohno M, Shimokawa M, Takenaka T, Oda Y, Yoshizumi T. Clinical Significance of SIRPα Expression on Tumor-Associated Macrophages in Patients with Lung Squamous Cell Carcinoma. Ann Surg Oncol 2024; 31:6309-6319. [PMID: 38951413 DOI: 10.1245/s10434-024-15649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Signal-regulatory protein alpha (SIRPα) is an immune checkpoint molecule expressed on macrophages that functions to inhibit phagocytosis by binding to CD47 expressed on tumor cells. SIRPα has attracted increasing attention as a novel target for cancer immunotherapy; however, the expression and immune function of SIRPα in lung squamous cell carcinoma (LUSC) remain unclear. Therefore, this study aimed to identify the clinical importance of SIRPα expression in LUSC and to explore the factors that elevate SIRPα expression. PATIENTS AND METHODS Primary LUSC specimens surgically resected from 172 patients underwent immunohistochemical evaluation of the association of SIRPα expression on tumor-associated macrophages with clinicopathological features and clinical outcomes. Furthermore, we analyzed the association of SIRPα expression with tumor-infiltrating lymphocytes and the expression of programmed cell death ligand 1 (PD-L1). In vitro, monocytes were treated with cytokines, and SIRPα protein expression was assessed by flow cytometry. RESULTS There were no differences in SIRPα expression and clinicopathological factors. High SIRPα expression was significantly associated with PD-L1-positive expression, and high CD8, PD-1, and CD163 expression. The high SIRPα expression group showed significantly shorter recurrence-free survival (RFS) and overall survival (OS). On multivariate analysis, high SIRPα expression was an independent poor prognostic factor for RFS and OS. The expression of SIRPα protein in monocytes was upregulated by treatment with IFNγ. CONCLUSION Our analysis revealed that high SIRPα expression significantly predicts poor prognosis in patients with surgically resected LUSC.
Collapse
Affiliation(s)
- Taichi Nagano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Fumiya Narutomi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Fletcher K, Rehman S, Irlmeier R, Ye F, Johnson D. Immune checkpoint inhibitor infusion times and clinical outcomes in patients with melanoma. Oncologist 2024:oyae197. [PMID: 39191524 DOI: 10.1093/oncolo/oyae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Circadian rhythms impact immune function; a previous study demonstrated that immunotherapy treatment times taking place later in the day correlated with poorer outcomes in patients with melanoma. However, this finding has not been replicated, and other infusion timing schemas are unexplored. The objective of this retrospective, cohort study was to determine if the time of immunotherapy infusion affects outcomes. MATERIALS AND METHODS Five hundred and sixteen participants age ≥18 years diagnosed with cutaneous, acral, mucosal, or unknown primary melanoma treated with >1 infusion of nivolumab, pembrolizumab, or combination ipilimumab/PD-1 inhibitors were included. Response rate, toxicity rate, overall survival (OS), and progression-free survival (PFS) were determined based on infusion timing. RESULTS Patients with ≥1 late infusion (after 4 pm) among their first 4 infusions had slightly poorer objective response rate compared with only pre-4 pm infusions (39.7% vs 44.5%), but no significant associations with late infusions and PFS and OS (P = .23, .93, respectively). Multivariable analyses showed no statistically significant association with outcomes for patients with any post-4 pm infusion among the first 4; median infusion time was also not associated with outcomes. However, considering all infusion times, we found inferior PFS (median 10.6 vs 38.9 months, P < .0001), and numerically inferior OS (median 54.6 vs 81.2 months, P = .19) in patients with ≥20% late infusions. Multivariable models had similarly inferior response and PFS for patients with ≥20% late infusions, and later median infusion times were associated with inferior response, PFS, and OS. CONCLUSIONS Late immunotherapy infusion times were associated with inferior outcomes when considering all infusions, but not when considering initial (first 4) infusions.
Collapse
Affiliation(s)
- Kylie Fletcher
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Saba Rehman
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rebecca Irlmeier
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Douglas Johnson
- Department of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Boleti APDA, Jacobowski AC, Monteiro-Alfredo T, Pereira APR, Oliva MLV, Maria DA, Macedo MLR. Cutaneous Melanoma: An Overview of Physiological and Therapeutic Aspects and Biotechnological Use of Serine Protease Inhibitors. Molecules 2024; 29:3891. [PMID: 39202970 PMCID: PMC11357276 DOI: 10.3390/molecules29163891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.
Collapse
Affiliation(s)
- Ana Paula De Araújo Boleti
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Cristina Jacobowski
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Tamaeh Monteiro-Alfredo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Ana Paula Ramos Pereira
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, SP, Brazil;
| | - Durvanei Augusto Maria
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Bioquímica, Instituto Butantan, São Paulo 05585-000, SP, Brazil;
| | - Maria Lígia Rodrigues Macedo
- Laboratory of Protein Purification and Their Biological Functions, Food Technology and Public Health Unit, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (A.P.D.A.B.); (A.C.J.); (T.M.-A.); (A.P.R.P.)
- Department of Pharmaceutical Sciences, Food, and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
7
|
Wilson J, Kimmel B, Arora K, Chada N, Bharti V, Kwiatkowski A, Finklestein J, Hanna A, Arner E, Sheehy T, Pastora L, Yang J, Pagendarm H, Stone P, Taylor B, Hubert L, Gibson-Corley K, May J, McLean J, Rathmell J, Richmond A, Rathmell W, Balko J, Fingleton B, Hargrove-Wiley E. Programable Albumin-Hitchhiking Nanobodies Enhance the Delivery of STING Agonists to Potentiate Cancer Immunotherapy. RESEARCH SQUARE 2024:rs.3.rs-3243545. [PMID: 38766114 PMCID: PMC11100900 DOI: 10.21203/rs.3.rs-3243545/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Stimulator of interferon genes (STING) is a promising target for potentiating antitumor immunity, but multiple pharmacological barriers limit the clinical utility, efficacy, and/or safety of STING agonists. Here we describe a modular platform for systemic administration of STING agonists based on nanobodies engineered for in situ hitchhiking of agonist cargo on serum albumin. Using site-selective bioconjugation chemistries to produce molecularly defined products, we found that covalent conjugation of a STING agonist to anti-albumin nanobodies improved pharmacokinetics and increased cargo accumulation in tumor tissue, stimulating innate immune programs that increased the infiltration of activated natural killer cells and T cells, which potently inhibited tumor growth in multiple mouse tumor models. We also demonstrated the programmability of the platform through the recombinant integration of a second nanobody domain that targeted programmed cell death ligand-1 (PD-L1), which further increased cargo delivery to tumor sites while also blocking immunosuppressive PD-1/PD-L1 interactions. This bivalent nanobody carrier for covalently conjugated STING agonists stimulated robust antigen-specific T cell responses and long-lasting immunological memory, conferred enhanced therapeutic efficacy, and was effective as a neoadjuvant treatment for improving responses to adoptive T cell transfer therapy. Albumin-hitchhiking nanobodies thus offer an enabling, multimodal, and programmable platform for systemic delivery of STING agonists with potential to augment responses to multiple immunotherapeutic modalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ann Hanna
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang-Bishop L, Wehbe M, Pastora LE, Yang J, Kimmel BR, Garland KM, Becker KW, Carson CS, Roth EW, Gibson-Corley KN, Ulkoski D, Krishnamurthy V, Fedorova O, Richmond A, Pyle AM, Wilson JT. Nanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy. ACS NANO 2024; 18:11631-11643. [PMID: 38652829 PMCID: PMC11080455 DOI: 10.1021/acsnano.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.
Collapse
Affiliation(s)
- Lihong Wang-Bishop
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Mohamed Wehbe
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Lucinda E. Pastora
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jinming Yang
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Department
of Veterans Affairs, Tennessee Valley Healthcare
System, Nashville, Tennessee 37212, United States
| | - Blaise R. Kimmel
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle M. Garland
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle W. Becker
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Carcia S. Carson
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Eric W. Roth
- Northwestern
University Atomic and Nanoscale Characterization Experimental (NUANCE)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine N. Gibson-Corley
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department
of Medicine, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - David Ulkoski
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Venkata Krishnamurthy
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, Massachusetts 02451, United States
| | - Olga Fedorova
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
- Howard
Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Ann Richmond
- Department
of Pharmacology, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Department
of Veterans Affairs, Tennessee Valley Healthcare
System, Nashville, Tennessee 37212, United States
| | - Anna Marie Pyle
- Department
of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
- Howard
Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - John T. Wilson
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Ingram Cancer Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Kane G, Lusi C, Brassil M, Atukorale P. Engineering approaches for innate immune-mediated tumor microenvironment remodeling. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100406. [PMID: 38213392 PMCID: PMC10777078 DOI: 10.1016/j.iotech.2023.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cancer immunotherapy offers transformative promise particularly for the treatment of lethal cancers, since a correctly trained immune system can comprehensively orchestrate tumor clearance with no need for continued therapeutic intervention. Historically, the majority of immunotherapies have been T cell-focused and have included immune checkpoint inhibitors, chimeric antigen receptor T cells, and T-cell vaccines. Unfortunately T-cell-focused therapies have failed to achieve optimal efficacy in most solid tumors largely because of a highly immunosuppressed 'cold' or immune-excluded tumor microenvironment (TME). Recently, a rapidly growing treatment paradigm has emerged that focuses on activation of tumor-resident innate antigen-presenting cells, such as dendritic cells and macrophages, which can drive a proinflammatory immune response to remodel the TME from 'cold' or immune-excluded to 'hot'. Early strategies for TME remodeling centered on free cytokines and agonists, but these approaches have faced significant hurdles in both delivery and efficacy. Systemic toxicity from off-target inflammation is a paramount concern in these therapies. To address this critical gap, engineering approaches have provided the opportunity to add 'built-in' capabilities to cytokines, agonists, and other therapeutic agents to mediate improved delivery and efficacy. Such capabilities have included protective encapsulation to shield them from degradation, targeting to direct them with high specificity to tumors, and co-delivery strategies to harness synergistic proinflammatory pathways. Here, we review innate immune-mediated TME remodeling engineering approaches that focus on cytokines, innate immune agonists, immunogenic viruses, and cell-based methods, highlighting emerging preclinical approaches and strategies that are either being tested in clinical trials or already Food and Drug Administration approved.
Collapse
Affiliation(s)
- G.I. Kane
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - C.F. Lusi
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - M.L. Brassil
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - P.U. Atukorale
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, USA
| |
Collapse
|
10
|
Chan H, Trout CV, Mikolon D, Adams P, Guzman R, Mavrommatis K, Abbasian M, Hadjivassiliou H, Dearth L, Fox BA, Sivakumar P, Cho H, Hariharan K. Discovery and Preclinical Activity of BMS-986351, an Antibody to SIRPα That Enhances Macrophage-mediated Tumor Phagocytosis When Combined with Opsonizing Antibodies. CANCER RESEARCH COMMUNICATIONS 2024; 4:505-515. [PMID: 38319147 PMCID: PMC10883291 DOI: 10.1158/2767-9764.crc-23-0634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In normal cells, binding of the transmembrane protein CD47 to signal regulatory protein-α (SIRPα) on macrophages induces an antiphagocytic signal. Tumor cells hijack this pathway and overexpress CD47 to evade immune destruction. Macrophage antitumor activity can be restored by simultaneously blocking the CD47-SIRPα signaling axis and inducing a prophagocytic signal via tumor-opsonizing antibodies. We identified a novel, fully human mAb (BMS-986351) that binds SIRPα with high affinity. BMS-986351 demonstrated broad binding coverage across SIRPα polymorphisms and potently blocked CD47-SIRPα binding at the CD47 binding site in a dose-dependent manner. In vitro, BMS-986351 increased phagocytic activity against cell lines from solid tumors and hematologic malignancies, and this effect was markedly enhanced when BMS-986351 was combined with the opsonizing antibodies cetuximab and rituximab. A phase I dose-escalation/-expansion study of BMS-986351 for the treatment of advanced solid and hematologic malignancies is underway (NCT03783403). SIGNIFICANCE Increasing the phagocytotic capabilities of tumor-associated macrophages by modulating macrophage-tumor cell surface signaling via the CD47-SIRPα axis is a novel strategy. Molecules targeting CD47 have potential but its ubiquitous expression necessitates higher therapeutic doses to overcome potential antigen sink effects. The restricted expression pattern of SIRPα may limit toxicities and lower doses of the SIRPα antibody BMS-986351 may overcome target mediated drug disposition while maintaining the desired pharmacology.
Collapse
Affiliation(s)
- Henry Chan
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California
| | - Christina V Trout
- Strategy and Business Development, Avidity Biosciences, Inc., San Diego, California
| | - David Mikolon
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California
| | - Preston Adams
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California
| | | | | | | | | | - Lawrence Dearth
- Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, California
| | - Brian A Fox
- Informatics and Predictive Sciences, Bristol Myers Squibb, Seattle, Washington
| | - Pallavur Sivakumar
- Immuno-Oncology and Cell Therapy Discovery, Bristol Myers Squibb, Seattle, Washington
| | - Ho Cho
- Samsung Bioepis, Seoul, Republic of South Korea
| | | |
Collapse
|
11
|
O’Hara MP, Yanamandra AV, Sastry KJ. Immunity from NK Cell Subsets Is Important for Vaccine-Mediated Protection in HPV+ Cancers. Vaccines (Basel) 2024; 12:206. [PMID: 38400189 PMCID: PMC10892709 DOI: 10.3390/vaccines12020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are associated with genital and oral cancers, and the incidence of HPV+ head and neck squamous cell cancers is fast increasing in the USA and worldwide. Survival rates for patients with locally advanced disease are poor after standard-of-care chemoradiation treatment. Identifying the antitumor host immune mediators important for treatment response and designing strategies to promote them are essential. We reported earlier that in a syngeneic immunocompetent preclinical HPV tumor mouse model, intranasal immunization with an HPV peptide therapeutic vaccine containing the combination of aGalCer and CpG-ODN adjuvants (TVAC) promoted clearance of HPV vaginal tumors via induction of a strong cytotoxic T cell response. However, TVAC was insufficient in the clearance of HPV oral tumors. To overcome this deficiency, we tested substituting aGalCer with a clinically relevant adjuvant QS21 (TVQC) and observed sustained, complete regression of over 70% of oral and 80% of vaginal HPV tumors. The TVQC-mediated protection in the oral tumor model correlated with not only strong total and HPV-antigen-specific CD8 T cells, but also natural killer dendritic cells (NKDCs), a novel subset of NK cells expressing the DC marker CD11c. Notably, we observed induction of significantly higher overall innate NK effector responses by TVQC relative to TVAC. Furthermore, in mice treated with TVQC, the frequencies of total and functional CD11c+ NK cell populations were significantly higher than the CD11c- subset, highlighting the importance of the contributions of NKDCs to the vaccine response. These results emphasize the importance of NK-mediated innate immune effector responses in total antitumor immunity to treat HPV+ cancers.
Collapse
Affiliation(s)
- Madison P. O’Hara
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.P.O.); (A.V.Y.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ananta V. Yanamandra
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.P.O.); (A.V.Y.)
| | - K. Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.P.O.); (A.V.Y.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Drakes DJ, Abbas AM, Shields J, Steinbuck MP, Jakubowski A, Seenappa LM, Haqq CM, DeMuth PC. Lymph Node-Targeted Vaccine Boosting of TCR T-cell Therapy Enhances Antitumor Function and Eradicates Solid Tumors. Cancer Immunol Res 2024; 12:214-231. [PMID: 38270373 PMCID: PMC10835214 DOI: 10.1158/2326-6066.cir-22-0978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/11/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
T-cell receptor (TCR)-modified T-cell therapies have shown promise against solid tumors, but overall therapeutic benefits have been modest due in part to suboptimal T-cell persistence and activation in vivo, alongside potential tumor antigen escape. In this study, we demonstrate an approach to enhance the in vivo persistence and function of TCR T cells through combination with Amphiphile (AMP) vaccination including cognate TCR T peptides. AMP modification improves lymph node targeting of conjugated tumor immunogens and adjuvants, thereby coordinating a robust T cell-activating endogenous immune response. AMP vaccine combination with TCR T-cell therapy led to complete eradication and durable responses against established murine solid tumors refractory to TCR T-cell monotherapy. Enhanced antitumor efficacy was correlated with simultaneous in vivo invigoration of adoptively transferred TCR T cells and in situ expansion of the endogenous antitumor T-cell repertoire. Long-term protection against tumor recurrence in AMP-vaccinated mice was associated with antigen spreading to additional tumor-associated antigens not targeted by vaccination. AMP vaccination further correlated with pro-inflammatory lymph node transcriptional reprogramming and increased antigen presenting-cell maturation, resulting in TCR T-cell expansion and functional enhancement in lymph nodes and solid tumor parenchyma without lymphodepletion. In vitro evaluation of AMP peptides with matched human TCR T cells targeting NY-ESO-1, mutant KRAS, and HPV16 E7 illustrated the clinical potential of AMP vaccination to enhance human TCR T-cell proliferation, activation, and antitumor activity. Taken together, these studies provide rationale and evidence to support clinical evaluation of combining AMP vaccination with TCR T-cell therapies to augment antitumor activity.
Collapse
|
13
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
14
|
Li J, Han X, Gao S, Yan Y, Li X, Wang H. Tumor microenvironment-responsive DNA-based nanomedicine triggers innate sensing for enhanced immunotherapy. J Nanobiotechnology 2023; 21:382. [PMID: 37858171 PMCID: PMC10585899 DOI: 10.1186/s12951-023-02132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Lack of proper innate sensing inside the tumor microenvironment could reduce both innate and adaptive immunity, which remains a critical cause of immunotherapy failure in various tumor treatments. Double-stranded DNA (dsDNA) has been evidenced to be a promising immunostimulatory agent to induce type I interferons (IFN-Is) production for innate immunity activation through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, yet the unsatisfactory delivery and susceptibility to nuclease degradation hindered its feasibility for further clinical applications. Herein, we report on the constructed tumor microenvironment-responsive DNA-based nanomedicine loaded by dendritic mesoporous organosilica nanoparticles (DMONs), which provide efficient delivery of dsDNA to induce intratumoral IFN-Is production for triggering innate sensing for enhanced anti-tumor immunotherapy. Extensive in vitro and in vivo evaluations have demonstrated the dramatic IFN-Is production induced by dsDNA@DMONs in both immune cells and tumor cells, which facilitates dendritic cells (DCs) maturation and T cells activation for eliciting the potent innate immune and adaptive immune responses. Desirable biosafety and marked therapeutic efficacy with a tumor growth inhibition (TGI) of 51.0% on the murine B16-F10 melanoma model were achieved by the single agent dsDNA@DMONs. Moreover, dsDNA@DMONs combined with anti-PD-L1 antibody further enhanced the anti-tumor efficacy and led to almost complete tumor regression. Therefore, this work highlighted the immunostimulatory DNA-based nanomedicine as a promising strategy for overcoming the resistance to immunotherapy, by promoting the IFN-Is production for innate immunity activation and remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Jinyang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyu Han
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shanshan Gao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yumeng Yan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Ma J, Ma R, Zeng X, Zhang L, Liu J, Zhang W, Li T, Niu H, Bao G, Wang C, Wang PG, Wang J, Li X, Zou T, Xie S. Lysosome blockade induces divergent metabolic programs in macrophages and tumours for cancer immunotherapy. J Exp Clin Cancer Res 2023; 42:192. [PMID: 37537587 PMCID: PMC10401909 DOI: 10.1186/s13046-023-02768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Platinum-drugs based chemotherapy in clinic increases the potency of tumor cells to produce M2 macrophages, thus leading to poor anti-metastatic activity and immunosuppression. Lysosome metabolism is critical for cancer cell migration and invasion, but how it promotes antitumor immunity in tumours and macrophages is poorly understood and the underlying mechanisms are elusive. The present study aimed to explore a synergistic strategy to dismantle the immunosuppressive microenvironment of tumours and metallodrugs discovery by using the herent metabolic plasticity. METHODS Naphplatin was prepared by coordinating an active alkaline moiety to cisplatin, which can regulate the lysosomal functions. Colorectal carcinoma cells were selected to perform the in vivo biological assays. Blood, tumour and spleen tissues were collected and analyzed by flow cytometry to further explore the relationship between anti-tumour activity and immune cells. Transformations of bone marrow derived macrophage (BMDM) and M2-BMDM to the M1 phenotype was confirmed after treatment with naphplatin. The key mechanisms of lysosome-mediated mucolipin-1(Mcoln1) and mitogen-activated protein kinase (MAPK) activation in M2 macrophage polarization have been unveiled. RNA sequencing (RNA-seq) was used to further explore the key mechanism underlying high-mobility group box 1(HMGB1)-mediated Cathepsin L(CTSL)-lysosome function blockade. RESULTS We demonstrated that naphplatin induces divergent lysosomal metabolic programs and reprograms macrophages in tumor cells to terminate the vicious tumour-associated macrophages (TAMs)-MDSCs-Treg triangle. Mechanistically, macrophages treated with naphplatin cause lysosome metabolic activation by triggering Ca2+ release via Mcoln1, which induces the activation of p38 and nuclear factor-κB (NF-κB) and finally results in polarizing M2 macrophages. In contrast, HMGB1-mediated lysosome metabolic blockade in cancer cells is strongly linked to antitumor effects by promoting cytoplasmic translocation of HMGB1. CONCLUSIONS This study reveals the crucial strategies of macrophage-based metallodrugs discovery that are able to treat both immunologically "hot" and "cold" cancers. Different from traditional platinum-based antitumour drugs by inhibition of DNAs, we also deliver a strong antitumour strategy by targeting lysosome to induce divergent metabolic programs in macrophages and tumours for cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Ma
- School of Pharmacy, Institute of Chemical Biology, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Ruijuan Ma
- School of Pharmacy, Institute of Chemical Biology, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Xueke Zeng
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Liming Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Jianing Liu
- School of Pharmacy, Institute of Chemical Biology, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Wei Zhang
- School of Pharmacy, Institute of Chemical Biology, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Tao Li
- School of Pharmacy, Institute of Chemical Biology, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Hanjing Niu
- School of Pharmacy, Institute of Chemical Biology, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Peng George Wang
- School of Medicine, The Southern University of Science and Technology, Shenzhen, 518005, Guangdong, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China.
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, Henan, 475004, China.
| | - Taotao Zou
- School of Pharmaceutical Sciences Sun Yat, Sen University, Guangzhou, 510006, Guangdong, China
| | - Songqiang Xie
- School of Pharmacy, Institute of Chemical Biology, Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, State key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
16
|
Chen F, Shen L, Wang Y, Chen Y, Pan X, Liang H, Yu H. Signatures of immune cell infiltration for predicting immune escape and immunotherapy in cervical cancer. Aging (Albany NY) 2023; 15:1685-1698. [PMID: 36917087 PMCID: PMC10042703 DOI: 10.18632/aging.204583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
The cervical cancer tumor microenvironment is a diverse and complex ecosystem. Tumor-immune cell infiltration (ICI) may influence immune escape and immunotherapeutic responses. However, the relationship between immune cell infiltrations, immune escape, and immunotherapy in cervical cancer has not been fully clarified. Here, Principal component analysis (PCA) and Tumor immune dysfunction and exclusion (TIDE) were applied to calculate individual ICI scores and probabilities of immune escape, respectively. Through the IMvigor210 and the Cancer Immunome Atlas (TCIA) datasets, we validated the different responses to immunotherapy in two subgroups of patients. Furthermore, therapeutic benefits of different patients were predicted by the pRRophetic package. We found that patients with high ICI scores were prone to immune escape due to the activated JAK-STAT signaling pathway, along with lower CD8+ T cells. High ICI scores patients could benefit more from anti-PD-L1 immunotherapy, and individuals with low scores may be better candidates for the anti-CTLA-4 treatment. Combinations of immunotherapies with targeted inhibitors may improve clinical efficacy and reduce the risk of tumor recurrence. The ICI model not only helps us enhance the cognition of immune escape, but also guides the application of immunotherapy in cervical cancer patients.
Collapse
Affiliation(s)
- Fuxing Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Lingzhi Shen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Ying Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Yaping Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Xuejiao Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Hui Liang
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| | - Hu Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Institute of Immunization and Prevention, Hangzhou, China
| |
Collapse
|
17
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
18
|
Knight A, Karapetyan L, Kirkwood JM. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers (Basel) 2023; 15:1106. [PMID: 36831449 PMCID: PMC9954703 DOI: 10.3390/cancers15041106] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The use of immunotherapy in the treatment of advanced and high-risk melanoma has led to a striking improvement in outcomes. Although the incidence of melanoma has continued to rise, median survival has improved from approximately 6 months to nearly 6 years for patients with advanced inoperable stage IV disease. Recent understanding of the tumor microenvironment and its interplay with the immune system has led to the explosive development of novel immunotherapy treatments. Since the approval of the therapeutic cytokines interleukin-2 and interferon alfa-2 in the 1990s, the development of novel immune checkpoint inhibitors (ICIs), oncolytic virus therapy, and modulators of the tumor microenvironment have given way to a new era in melanoma treatment. Monoclonal antibodies directed at programmed cell death protein 1 receptor (PD-1) and its ligand (PDL-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), and lymphocyte-activation gene 3 (LAG-3) have provided robust activation of the adaptive immune system, restoring immune surveillance leading to host tumor recognition and destruction. Multiple other immunomodulatory therapeutics are under investigation to overcome resistance to ICI therapy, including the toll-like receptor-9 (TLR-9) and 7/8 (TLR-7/8) agonists, stimulator of interferon genes (STING) agonists, and fecal microbiota transplantation. In this review, we focus on the recent advances in immunotherapy for the treatment of melanoma and provide an update on novel therapies currently under investigation.
Collapse
Affiliation(s)
- Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
19
|
Liu Z, Shan S, Yuan Z, Wu F, Zheng M, Wang Y, Gui J, Xu W, Wang C, Ren T, Wen Z. Mitophagy bridges DNA sensing with metabolic adaption to expand lung cancer stem-like cells. EMBO Rep 2023; 24:e54006. [PMID: 36416244 PMCID: PMC9900345 DOI: 10.15252/embr.202154006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
While previous studies have identified cancer stem-like cells (CSCs) as a crucial driver for chemoresistance and tumor recurrence, the underlying mechanisms for populating the CSC pool remain unclear. Here, we identify hypermitophagy as a feature of human lung CSCs, promoting metabolic adaption via the Notch1-AMPK axis to drive CSC expansion. Specifically, mitophagy is highly active in CSCs, resulting in increased mitochondrial DNA (mtDNA) content in the lysosome. Lysosomal mtDNA acts as an endogenous ligand for Toll-like receptor 9 (TLR9) that promotes Notch1 activity. Notch1 interacts with AMPK to drive lysosomal AMPK activation by inducing metabolic stress and LKB1 phosphorylation. This TLR9-Notch1-AMPK axis supports mitochondrial metabolism to fuel CSC expansion. In patient-derived xenograft chimeras, targeting mitophagy and TLR9-dependent Notch1-AMPK pathway restricts tumor growth and CSC expansion. Taken together, mitochondrial hemostasis is interlinked with innate immune sensing and Notch1-AMPK activity to increase the CSC pool of human lung cancer.
Collapse
Affiliation(s)
- Zhen Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Shan Shan
- Department of Respiratory MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zixin Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary HospitalTongji University School of MedicineShanghaiChina
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Ying Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Jun Gui
- State Key Laboratory of Oncogenes and Related Genes; Renji‐Med X Clinical Stem Cell Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| | - Chunhong Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Tao Ren
- Department of Respiratory MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Kay Laboratory of Sleep Disordered BreathingShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
20
|
Liu X, Ni G, Zhang P, Li H, Li J, Cavallazzi Sebold B, Wu X, Chen G, Yuan S, Wang T. Single-nucleus RNA sequencing and deep tissue proteomics reveal distinct tumour microenvironment in stage-I and II cervical cancer. J Exp Clin Cancer Res 2023; 42:28. [PMID: 36683048 PMCID: PMC9869594 DOI: 10.1186/s13046-023-02598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the 3rd most common cancer in women and the 4th leading cause of deaths in gynaecological malignancies, yet the exact progression of CC is inconclusive, mainly due to the high complexity of the changing tumour microenvironment (TME) at different stages of tumorigenesis. Importantly, a detailed comparative single-nucleus transcriptomic analysis of tumour microenvironment (TME) of CC patients at different stages is lacking. METHODS In this study, a total of 42,928 and 29,200 nuclei isolated from the tumour tissues of stage-I and II CC patients and subjected to single-nucleus RNA sequencing (snRNA-seq) analysis. The cell heterogeneity and functions were comparatively investigated using bioinformatic tools. In addition, label-free quantitative mass spectrometry based proteomic analysis was carried out. The proteome profiles of stage-I and II CC patients were compared, and an integrative analysis with the snRNA-seq was performed. RESULTS Compared with the stage-I CC (CCI) patients, the immune response relevant signalling pathways were largely suppressed in various immune cells of the stage-II CC (CCII) patients, yet the signalling associated with cell and tissue development was enriched, as well as metabolism for energy production suggested by the upregulation of genes associated with mitochondria. This was consistent with the quantitative proteomic analysis that showed the dominance of proteins promoting cell growth and intercellular matrix development in the TME of CCII group. The interferon-α and γ responses appeared the most activated pathways in many cell populations of the CCI patients. Several collagens, such as COL12A1, COL5A1, COL4A1 and COL4A2, were found significantly upregulated in the CCII group, suggesting their roles in diagnosing CC progression. A novel transcript AC244205.1 was detected as the most upregulated gene in CCII patients, and its possible mechanistic role in CC may be investigated further. CONCLUSIONS Our study provides important resources for decoding the progression of CC and set the foundation for developing novel approaches for diagnosing CC and tackling the immunosuppressive TME.
Collapse
Affiliation(s)
- Xiaosong Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | | | - Xiaolian Wu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Guoqiang Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Songhua Yuan
- Department of Gynaecology, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
21
|
Gutic B, Bozanovic T, Mandic A, Dugalic S, Todorovic J, Stanisavljevic D, Dugalic MG, Sengul D, Detanac DA, Sengul I, Detanac D, Soares JM. Programmed cell death-1 and its ligands: Current knowledge and possibilities in immunotherapy. Clinics (Sao Paulo) 2023; 78:100177. [PMID: 36931099 PMCID: PMC10025950 DOI: 10.1016/j.clinsp.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023] Open
Abstract
Programmed Cell Death-1 (PCD-1) is a key immune checkpoint receptor, which mainly expresses on activated T, B, Dendritic (DC), Natural Killer (NK), and Treg cells. On the surface of activated T-cells, PCD-1 expression is upregulated after the recognition of peripherals antigens by T cells; subsequently, the elevated binding of PD-1 to Programmed Death Ligand-1 (PD-L1) and Programmed Death Ligand-2 (PD-L2) becomes a key step for downstream inhibitory signaling. Although the role of PD-L1 has been evaluated more thoroughly by clinical research, and PD-L1 has also been used more widely in the clinical setting, PD-L2 also plays an important role in the negative regulation of T-cells, one of the necessary conditions that lead to immune tolerance. Expression of PD-L1 either in tumors or in infiltrating immune cells has been verified predominantly by Immunohistochemistry (IHC) in a variety of tumors, suggesting a role for the PD-1/PD-L1 axis as a prognostic trait and therapeutic target across multiple histotypes. The complex interplay between these factors plays a major role in the diffusion and clinical application of PD-L1 IHC assays as predictive biomarkers of response to PD-1/PD-L1 inhibitors. Checkpoint blockades are registered for the treatment of various cancers, including gynecological malignancies.
Collapse
Affiliation(s)
- Bojana Gutic
- Oncology Institute of Vojvodina, Faculty of Medicine University Novi Sad, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Bozanovic
- Department of Gynecology and Obstetrics, University Clinical Center of Serbia, Clinic for Gynecology and Obstetrics, Belgrade, Serbia
| | - Aljosa Mandic
- Oncology Institute of Vojvodina, Faculty of Medicine University Novi Sad, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Stefan Dugalic
- Department of Gynecology and Obstetrics, University Clinical Center of Serbia, Clinic for Gynecology and Obstetrics, Belgrade, Serbia
| | - Jovana Todorovic
- Institute for Social Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Statistics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miroslava Gojnic Dugalic
- Department of Gynecology and Obstetrics, University Clinical Center of Serbia, Clinic for Gynecology and Obstetrics, Belgrade, Serbia
| | - Demet Sengul
- Department of Pathology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Dzenana A Detanac
- Department of Ophthalmology, General Hospital Novi Pazar, Novi Pazar, Serbia
| | - Ilker Sengul
- Division of Endocrine Surgery, Faculty of Medicine, Giresun University, Giresun, Turkey; Department of Surgery, Faculty of Medicine, Giresun University, Giresun, Turkey.
| | - Dzemail Detanac
- Department of Surgery, General Hospital Novi Pazar, Novi Pazar, Serbia
| | - José Maria Soares
- Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Piñón-Zárate G, Hernández-Téllez B, Jarquín-Yáñez K, Herrera-Enríquez MÁ, Fuerte-Pérez AE, Valencia-Escamilla EA, Castell-Rodríguez AE. Gelatin/Hyaluronic Acid Scaffold Coupled to CpG and MAGE-A5 as a Treatment against Murine Melanoma. Polymers (Basel) 2022; 14:4608. [PMID: 36365602 PMCID: PMC9657831 DOI: 10.3390/polym14214608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
The half-time of cells and molecules used in immunotherapy is limited. Scaffolds-based immunotherapy against cancer may increase the half-life of the molecules and also support the migration and activation of leukocytes in situ. For this purpose, the use of gelatin (Ge)/hyaluronic acid (HA) scaffolds coupled to CpG and the tumor antigen MAGE-A5 is proposed. Ge and HA are components of the extracellular matrix that stimulate cell adhesion and activation of leucocytes; CpG can promote dendritic cell maturation, and MAGE-A5 a specific antitumor response. C57BL/6 mice were treated with Ge/HA/scaffolds coupled to MAGE-A5 and/or CpG and then challenged with the B16-F10 melanoma cell line. Survival, tumor growth rate and the immune response induced by the scaffolds were analyzed. Ge/HA/CpG and Ge/HA/MAGE-A5 mediated dendritic cell maturation and macrophage activation, increased survival, and decreased the tumor growth rate and a tumor parenchyma with abundant cell death areas and abundant tumor cells with melanin granules. Only the scaffolds coupled to MAGE-A5 induced the activation of CD8 T cells. In conclusion, Ge/HA scaffolds coupled to CpG or MAGE-A5, but not the mixture, can induce a successful immune response capable of promoting tumor cell clearance and increased survival.
Collapse
Affiliation(s)
- Gabriela Piñón-Zárate
- Facultad de Medicina, National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
23
|
Borchmann S, Selenz C, Lohmann M, Ludwig H, Gassa A, Brägelmann J, Lohneis P, Meder L, Mattlener J, Breid S, Nill M, Fassunke J, Wisdom AJ, Compes A, Gathof B, Alakus H, Kirsch D, Hekmat K, Büttner R, Reinhardt HC, Hallek M, Ullrich RT. Tripartite antigen-agnostic combination immunotherapy cures established poorly immunogenic tumors. J Immunother Cancer 2022; 10:e004781. [PMID: 36223955 PMCID: PMC9562723 DOI: 10.1136/jitc-2022-004781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Single-agent immunotherapy has shown remarkable efficacy in selected cancer entities and individual patients. However, most patients fail to respond. This is likely due to diverse immunosuppressive mechanisms acting in a concerted way to suppress the host anti-tumor immune response. Combination immunotherapy approaches that are effective in such poorly immunogenic tumors mostly rely on precise knowledge of antigenic determinants on tumor cells. Creating an antigen-agnostic combination immunotherapy that is effective in poorly immunogenic tumors for which an antigenic determinant is not known is a major challenge. METHODS We use multiple cell line and poorly immunogenic syngeneic, autochthonous, and autologous mouse models to evaluate the efficacy of a novel combination immunotherapy named tripartite immunotherapy (TRI-IT). To elucidate TRI-ITs mechanism of action we use immune cell depletions and comprehensive tumor and immune infiltrate characterization by flow cytometry, RNA sequencing and diverse functional assays. RESULTS We show that combined adoptive cellular therapy (ACT) with lymphokine-activated killer cells, cytokine-induced killer cells, Vγ9Vδ2-T-cells (γδ-T-cells) and T-cells enriched for tumor recognition (CTLs) display synergistic antitumor effects, which are further enhanced by cotreatment with anti-PD1 antibodies. Most strikingly, the full TRI-IT protocol, a combination of this ACT with anti-PD1 antibodies, local immunotherapy of agonists against toll-like receptor 3, 7 and 9 and pre-ACT lymphodepletion, eradicates and induces durable anti-tumor immunity in a variety of poorly immunogenic syngeneic, autochthonous, as well as autologous humanized patient-derived models. Mechanistically, we show that TRI-IT coactivates adaptive cellular and humoral, as well as innate antitumor immune responses to mediate its antitumor effect without inducing off-target toxicity. CONCLUSIONS Overall, TRI-IT is a novel, highly effective, antigen-agnostic, non-toxic combination immunotherapy. In this study, comprehensive insights into its preclinical efficacy, even in poorly immunogenic tumors, and mode of action are given, so that translation into clinical trials is the next step.
Collapse
Affiliation(s)
- Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Carolin Selenz
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Mia Lohmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Hanna Ludwig
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Asmae Gassa
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | - Johannes Brägelmann
- Mildred Scheel School of Oncology, University Hospital Cologne, Medical Faculty, Cologne, Germany
| | - Philipp Lohneis
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Lydia Meder
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Julia Mattlener
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Sara Breid
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Marieke Nill
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Jana Fassunke
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Amy J Wisdom
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Anik Compes
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, University of Cologne, Cologne, Germany
| | - David Kirsch
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Khosro Hekmat
- Department of Cardiothoracic Surgery, University of Cologne, Cologne, Germany
| | | | - H Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen,University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Roland T Ullrich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
- Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Correa S, Meany EL, Gale EC, Klich JH, Saouaf OM, Mayer AT, Xiao Z, Liong CS, Brown RA, Maikawa CL, Grosskopf AK, Mann JL, Idoyaga J, Appel EA. Injectable Nanoparticle-Based Hydrogels Enable the Safe and Effective Deployment of Immunostimulatory CD40 Agonist Antibodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103677. [PMID: 35975424 PMCID: PMC9534946 DOI: 10.1002/advs.202103677] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/27/2022] [Indexed: 05/31/2023]
Abstract
When properly deployed, the immune system can eliminate deadly pathogens, eradicate metastatic cancers, and provide long-lasting protection from diverse diseases. Unfortunately, realizing these remarkable capabilities is inherently risky as disruption to immune homeostasis can elicit dangerous complications or autoimmune disorders. While current research is continuously expanding the arsenal of potent immunotherapeutics, there is a technological gap when it comes to controlling when, where, and how long these drugs act on the body. Here, this study explored the ability of a slow-releasing injectable hydrogel depot to reduce dose-limiting toxicities of immunostimulatory CD40 agonist (CD40a) while maintaining its potent anticancer efficacy. A previously described polymer-nanoparticle (PNP) hydrogel system is leveraged that exhibits shear-thinning and yield-stress properties that are hypothesized to improve locoregional delivery of CD40a immunotherapy. Using positron emission tomography, it is demonstrated that prolonged hydrogel-based delivery redistributes CD40a exposure to the tumor and the tumor draining lymph node (TdLN), thereby reducing weight loss, hepatotoxicity, and cytokine storm associated with standard treatment. Moreover, CD40a-loaded hydrogels mediate improved local cytokine induction in the TdLN and improve treatment efficacy in the B16F10 melanoma model. PNP hydrogels, therefore, represent a facile, drug-agnostic method to ameliorate immune-related adverse effects and explore locoregional delivery of immunostimulatory drugs.
Collapse
Affiliation(s)
- Santiago Correa
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Emily L. Meany
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Emily C. Gale
- Department of BiochemistryStanford University School of MedicineStanfordCA94305USA
| | - John H. Klich
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Olivia M. Saouaf
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Aaron T. Mayer
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Zunyu Xiao
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Celine S. Liong
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Ryanne A. Brown
- Department of PathologyStanford University School of MedicineStanfordCA94305USA
| | | | | | - Joseph L. Mann
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Juliana Idoyaga
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCA94305USA
- Stanford ChEM‐H InstituteStanford University School of MedicineStanfordCA94305USA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCA94305USA
| | - Eric A. Appel
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
- Stanford ChEM‐H InstituteStanford University School of MedicineStanfordCA94305USA
- Stanford Cancer InstituteStanford University School of MedicineStanfordCA94305USA
- Department of Pediatrics – EndocrinologyStanford University School of MedicineStanfordCA94305USA
| |
Collapse
|
25
|
The Regulatory Effects of MicroRNAs on Tumor Immunity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2121993. [PMID: 35909469 PMCID: PMC9329000 DOI: 10.1155/2022/2121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs are endogenous noncoding small RNAs that posttranscriptionally regulate the expressions of their target genes. Accumulating research shows that miRNAs are crucial regulators of immune cell growth and antitumor immune response. Studies on miRNAs and tumors primarily focus on the tumor itself. At the same time, relatively few studies on the indirect regulatory effects of miRNAs in the development of tumors are achieved by affecting the immune system of tumor hosts and altering their immune responses. This review discusses the influence of miRNAs on the antitumor immune system.
Collapse
|
26
|
Proteomic networks associated with tumor-educated macrophage polarization and cytotoxicity potentiated by heat-killed tuberculosis. Sci Rep 2022; 12:6881. [PMID: 35477732 PMCID: PMC9046162 DOI: 10.1038/s41598-022-10463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Local administration of attenuated mycobacterium has been used as a cancer treatment adjuvant to re-boost patient immune responses with variable clinical outcomes. We aimed to clarify the impact of attenuated heat-killed tuberculosis (HKTB) on tumor-associated macrophages which play critical roles in shaping immunological regulation in the tumor microenvironment. Upon HKTB stimulation, both primary macrophages derived from the peripheral blood of healthy subjects and from lung cancer patients as well as THP1-derived classically activated macrophages (Ms) and tumor-educated macrophages (TEMs) were polarized into the proinflammatory phenotype, as characterized by increased expression cluster of differentiation 86. A quantitative proteomic analysis revealed that stimulated TEMs were unable to activate the toll-like receptor 2, signal transducer and activator of transcription 1, or nuclear factor-κB signaling. Instead, they showed distinct intercellular adhesion molecule 1 signaling, impaired cell adhesion, and mitochondrial dysfunction. These molecular mechanisms might contribute to lower cytotoxicity of HKTB-stimulated TEMs against A549 cells via the release of distinct inflammatory cytokines compared to HKTB-stimulated Ms. Our study provides an unbiased and systematic interpretation of cellular and molecular alterations of HKTB-reeducated macrophages which should help illuminate potential strategies of HKTB-stimulated macrophage-based combination therapy for cancer treatment.
Collapse
|
27
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
28
|
Panayiotidis P, Tumyan G, Thieblemont C, Ptushkin VV, Marin-Niebla A, García-Sanz R, Le Gouill S, Stathis A, Bottos A, Hamidi H, Katz P, Perretti T, Willis JC, Buske C. A phase-II study of atezolizumab in combination with obinutuzumab or rituximab for relapsed or refractory mantle cell or marginal zone lymphoma or Waldenström's macroglobulinemia. Leuk Lymphoma 2022; 63:1058-1069. [PMID: 35045765 DOI: 10.1080/10428194.2021.2015765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report efficacy, safety and biomarker data from a phase-II study evaluating atezolizumab (eight 21-day cycle as induction therapy) in combination with obinutuzumab in patients with relapsed/refractory mantle cell lymphoma (MCL, n = 30) or Waldenström's macroglobulinemia (WM, n = 4), and in combination with rituximab in patients with marginal zone lymphoma (MZL, n = 21). All patients received atezolizumab monotherapy as maintenance for ≤10 cycles. Objective response rates at end of induction were 16.7% (MCL) and 42.9% (MZL), with no responses in WM. Median duration of response was 6.8 months (range 5.7-not estimable) for MCL and not reached for MZL. Treatment-emergent adverse events (TEAEs) occurred in 93.3%, 95.2% and 100% of MCL, MZL and WM patients, respectively. One fatal TEAE (pneumonia) occurred in each of the MCL and MZL groups. Biomarker analysis highlighted the importance of characterizing the immune environment to optimize efficacy of immunotherapy regimens.Trial registration details: EudraCT: 2016-003579-22.
Collapse
Affiliation(s)
| | - Gayane Tumyan
- N.N. Blokhin Russian Cancer Research Centre, Moscow, Russian Federation
| | | | - Vadim V Ptushkin
- City Clinical Hospital Named After S.P. Botkin, Moscow, Russian Federation
| | | | - Ramon García-Sanz
- Hospital Universitario de Salamanca (HUSA/IBSAL/CIBERONC), Salamanca, Spain
| | - Steven Le Gouill
- Service d'Hématologie Clinique du CHU de Nantes, INSERM CRCINA Nantes-Angers, NeXT Université de Nantes, Nantes, France
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland, and Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | | | | | - Pablo Katz
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Christian Buske
- CCC Ulm, Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
29
|
Milling LE, Garafola D, Agarwal Y, Wu S, Thomas A, Donahue N, Adams J, Thai N, Suh H, Irvine DJ. Neoadjuvant STING Activation, Extended Half-life IL2, and Checkpoint Blockade Promote Metastasis Clearance via Sustained NK-cell Activation. Cancer Immunol Res 2022; 10:26-39. [PMID: 34686488 PMCID: PMC8732307 DOI: 10.1158/2326-6066.cir-21-0247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Combination immunotherapy treatments that recruit both innate and adaptive immunity have the potential to increase cancer response rates by engaging a more complete repertoire of effector mechanisms. Here, we combined intratumoral STimulator of INterferon Genes (STING) agonist therapy with systemically injected extended half-life IL2 and anti-PD-1 checkpoint blockade (hereafter CIP therapy) to drive innate and adaptive antitumor immunity in models of triple-negative breast cancer. Unlike treatment with the individual components, this trivalent immunotherapy halted primary tumor progression and led to long-term remission for a majority of animals in two spontaneously metastasizing orthotopic breast tumor models, though only as a neoadjuvant therapy but not adjuvant therapy. CIP therapy induced antitumor T-cell responses, but protection from metastatic relapse depended on natural killer (NK) cells. The combination of STING agonists with IL2/anti-PD-1 synergized to stimulate sustained granzyme and cytokine expression by lung-infiltrating NK cells. Type I IFNs generated as a result of STING agonism, combined with IL2, acted in a positive-feedback loop by enhancing the expression of IFNAR-1 and CD25 on lung NK cells. These results suggest that NK cells can be therapeutically targeted to effectively eliminate tumor metastases.See related Spotlight by Demaria, p. 3.
Collapse
Affiliation(s)
- Lauren E Milling
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel Garafola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yash Agarwal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nathan Donahue
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Josetta Adams
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nikki Thai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
30
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
31
|
Li K, Zhang Z, Mei Y, Li M, Yang Q, WU Q, Yang H, HE LIANGCAN, Liu S. Targeting innate immune system by nanoparticles for cancer immunotherapy. J Mater Chem B 2022; 10:1709-1733. [DOI: 10.1039/d1tb02818a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various cancer therapies have advanced remarkably over the past decade. Unlike the direct therapeutic targeting of tumor cells, cancer immunotherapy is a new strategy that boosts the host's immune system...
Collapse
|
32
|
Wang C, Cui A, Bukenya M, Aung A, Pradhan D, Whittaker CA, Agarwal Y, Thomas A, Liang S, Amlashi P, Suh H, Spranger S, Hacohen N, Irvine DJ. Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade. Cell Rep 2021; 37:110021. [PMID: 34818534 PMCID: PMC8653865 DOI: 10.1016/j.celrep.2021.110021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Treatments aiming to augment immune checkpoint blockade (ICB) in cancer often focus on T cell immunity, but innate immune cells may have important roles to play. Here, we demonstrate a single-dose combination treatment (termed AIP) using a pan-tumor-targeting antibody surrogate, half-life-extended interleukin-2 (IL-2), and anti-programmed cell death 1 (PD-1), which primes tumors to respond to subsequent ICB and promotes rejection of large established tumors in mice. Natural killer (NK) cells and macrophages activated by AIP treatment underwent transcriptional reprogramming; rapidly killed cancer cells; governed the recruitment of cross-presenting dendritic cells (DCs) and other leukocytes; and induced normalization of the tumor vasculature, facilitating further immune infiltration. Thus, innate cell-activating therapies can initiate critical steps leading to a self-sustaining cycle of T cell priming driven by ICB. Wang et al. report an immune priming therapy based on a single dose of anti-tumor antibodies, IL-2, and anti-PD-1, which engages natural killer cells and macrophages, promotes lymphocyte recruitment and activation, and elicits vascular normalization. This priming strategy allows subsequent immune checkpoint blockade (ICB) to eradicate large, established tumors.
Collapse
Affiliation(s)
- Chensu Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Maurice Bukenya
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dikshant Pradhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Liang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
33
|
Guo N, Ni K, Luo T, Lan G, Arina A, Xu Z, Mao J, Weichselbaum RR, Spiotto M, Lin W. Reprogramming of Neutrophils as Non-canonical Antigen Presenting Cells by Radiotherapy-Radiodynamic Therapy to Facilitate Immune-Mediated Tumor Regression. ACS NANO 2021; 15:17515-17527. [PMID: 34709030 DOI: 10.1021/acsnano.1c04363] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ineffective antigen cross-presentation in the tumor microenvironment compromises the generation of antitumor immune responses. Radiotherapy-radiodynamic therapy (RT-RDT) with nanoscale metal-organic frameworks (nMOFs) induces robust adaptive immune responses despite modest activation of canonical antigen presenting dendritic cells. Here, using transplantable and autochthonous murine tumor models, we demonstrate that RT-RDT induces antitumor immune responses via early neutrophil infiltration and reprogramming. Intravenous or intratumoral injection of nMOFs recruited peripheral CD11b+Ly6G+CD11c- neutrophils into tumors. The activation of nMOFs by low-dose X-rays significantly increased the population of CD11b+Ly6G+CD11c+ hybrid neutrophils with upregulated expression of the co-stimulatory molecules CD80 and CD86 as well as major histocompatibility complex class II molecules. Thus, nMOF-enabled RT-RDT reshapes a favorable tumor microenvironment for antitumor immune responses by reprogramming tumor-infiltrating neutrophils to function as non-canonical antigen presenting cells for effective cross-presentation of tumor antigens.
Collapse
Affiliation(s)
- Nining Guo
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ainhoa Arina
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jianming Mao
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| | - Michael Spiotto
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Radiation and Cellular Oncology and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
34
|
Persano S, Vicini F, Poggi A, Fernandez JLC, Rizzo GMR, Gavilán H, Silvestri N, Pellegrino T. Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study. Pharmaceutics 2021; 13:1668. [PMID: 34683961 PMCID: PMC8537446 DOI: 10.3390/pharmaceutics13101668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapies have been approved as standard second-line or in some cases even as first-line treatment for a wide range of cancers. However, immunotherapy has not shown clinically relevant success in glioblastoma (GBM). This is principally due to the brain's "immune-privileged" status and the peculiar tumor microenvironment (TME) of GBM characterized by a lack of tumor-infiltrating lymphocytes and the establishment of immunosuppressive mechanisms. Herein, we explore a local mild thermal treatment, generated via cubic-shaped iron oxide magnetic nanoparticles (size ~17 nm) when exposed to an external alternating magnetic field (AMF), to induce immunogenic cell death (ICD) in U87 glioblastoma cells. In accordance with what has been observed with other tumor types, we found that mild magnetic hyperthermia (MHT) modulates the immunological profile of U87 glioblastoma cells by inducing stress-associated signals leading to enhanced phagocytosis and killing of U87 cells by macrophages. At the same time, we demonstrated that mild magnetic hyperthermia on U87 cells has a modulatory effect on the expression of inhibitory and activating NK cell ligands. Interestingly, this alteration in the expression of NK ligands in U87 cells upon MHT treatment increased their susceptibility to NK cell killing and enhanced NK cell functionality. The overall findings demonstrate that mild MHT stimulates ICD and sensitizes GBM cells to NK-mediated killing by inducing the upregulation of specific stress ligands, providing a novel immunotherapeutic approach for GBM treatment, with potential to synergize with existing NK cell-based therapies thus improving their therapeutic outcomes.
Collapse
Affiliation(s)
- Stefano Persano
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Francesco Vicini
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (A.P.); (J.L.C.F.)
| | | | - Giusy Maria Rita Rizzo
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Helena Gavilán
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Niccolo Silvestri
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| |
Collapse
|
35
|
Jang H, Kim EH, Chi SG, Kim SH, Yang Y. Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. Int J Mol Sci 2021; 22:10009. [PMID: 34576180 PMCID: PMC8468472 DOI: 10.3390/ijms221810009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
A variety of innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, natural killer cells, and neutrophils in the tumor microenvironments, contribute to tumor progression. However, while several recent reports have studied the use of immune checkpoint-based cancer immunotherapy, little work has focused on modulating the innate immune cells. This review focuses on the recent studies and challenges of using nanoparticles to target innate immune cells. In particular, we also examine the immunosuppressive properties of certain innate immune cells that limit clinical benefits. Understanding the cross-talk between tumors and innate immune cells could contribute to the development of strategies for manipulating the nanoparticles targeting tumor microenvironments.
Collapse
Affiliation(s)
- Hochung Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
36
|
Song Q, Zhang G, Wang B, Cao G, Li D, Wang Y, Zhang Y, Geng J, Li H, Li Y. Reinforcing the Combinational Immuno-Oncotherapy of Switching "Cold" Tumor to "Hot" by Responsive Penetrating Nanogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36824-36838. [PMID: 34314148 DOI: 10.1021/acsami.1c08201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although immuno-oncotherapy in clinic has gained great success, the immunosuppressive tumor microenvironment (TME) existing in the "cold" tumor with insufficient and exhausted lymphocytes may result in a lower-than-expected therapeutic efficiency. Therefore, a properly designed synergistic strategy that can effectively turn the "cold" tumor to "hot" should be considered to improve the therapeutic effects of immuno-oncotherapy. Herein, TME-responsive penetrating nanogels (NGs) were developed, which can improve the delivery and penetration of the co-loaded resiquimod (R848) and green tea catechin (EGCG) in tumors by a nano-sized controlled releasing system of the soluble cyclodextrin-drug inclusion complex. Consequently, the NGs effectively promoted the maturation of dendritic cells, stimulated the cytotoxic T lymphocytes (CTLs), and decreased the PD-L1 expression in tumors. The combination of NGs with the OX40 agonist (αOX40) further synergistically enhanced the activation and infiltration of CTLs into the deep tumor and inhibited the suppression effects from the regulatory T cells (Tregs). As a result, an increased ratio of active CTLs to Tregs in tumors (20.66-fold) was achieved with a 91.56% tumor suppression effect, indicating a successful switch of "cold" tumors to "hot" for an immunologically beneficial TME with significantly improved anti-tumor immune therapeutics. This strategy could be tailored to other immuno-oncotherapeutic approaches to solve the urgent efficiency concerns of the checkpoint-based treatment in clinic.
Collapse
Affiliation(s)
- Qingle Song
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoli Cao
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Yu Wang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuqian Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Geng
- Center for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
37
|
Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ. Arginine Signaling and Cancer Metabolism. Cancers (Basel) 2021; 13:3541. [PMID: 34298755 PMCID: PMC8306961 DOI: 10.3390/cancers13143541] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Arginine is an amino acid critically involved in multiple cellular processes including the syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino acid, due to normal cells' intrinsic ability to synthesize arginine from citrulline and aspartate via ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling metabolite, arginine's role in cancer metabolism, arginine as an epigenetic regulator, arginine as an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various cancer types will also be described.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
| | - Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu 30035, Taiwan;
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan
| | - David K. Ann
- Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Miaoli County, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
| |
Collapse
|
38
|
Jaynes JM, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye-Ogunniyan A, Li D, Calvo R, Dashnyam M, Singh A, Guerin T, White J, Ravichandran S, Kumar P, Talsania K, Chen V, Ghebremedhin A, Karanam B, Bin Salam A, Amin R, Odzorig T, Aiken T, Nguyen V, Bian Y, Zarif JC, de Groot AE, Mehta M, Fan L, Hu X, Simeonov A, Pate N, Abu-Asab M, Ferrer M, Southall N, Ock CY, Zhao Y, Lopez H, Kozlov S, de Val N, Yates CC, Baljinnyam B, Marugan J, Rudloff U. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med 2021; 12:12/530/eaax6337. [PMID: 32051227 DOI: 10.1126/scitranslmed.aax6337] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023]
Abstract
Solid tumors elicit a detectable immune response including the infiltration of tumor-associated macrophages (TAMs). Unfortunately, this immune response is co-opted into contributing toward tumor growth instead of preventing its progression. We seek to reestablish an antitumor immune response by selectively targeting surface receptors and endogenous signaling processes of the macrophage subtypes driving cancer progression. RP-182 is a synthetic 10-mer amphipathic analog of host defense peptides that selectively induces a conformational switch of the mannose receptor CD206 expressed on TAMs displaying an M2-like phenotype. RP-182-mediated activation of this receptor in human and murine M2-like macrophages elicits a program of endocytosis, phagosome-lysosome formation, and autophagy and reprograms M2-like TAMs to an antitumor M1-like phenotype. In syngeneic and autochthonous murine cancer models, RP-182 suppressed tumor growth, extended survival, and was an effective combination partner with chemo- or immune checkpoint therapy. Antitumor activity of RP-182 was also observed in CD206high patient-derived xenotransplantation models. Mechanistically, via selective reduction of immunosuppressive M2-like TAMs, RP-182 improved adaptive and innate antitumor immune responses, including increased cancer cell phagocytosis by reprogrammed TAMs.
Collapse
Affiliation(s)
- Jesse M Jaynes
- College of Agriculture, Environment and Nutrition Sciences, Integrative Biosciences Program, Tuskegee University, Tuskegee, AL 36088, USA.,Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Rushikesh Sable
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wendy Bautista
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Zachary Knotts
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Abisola Abisoye-Ogunniyan
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.,Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dandan Li
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Raul Calvo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Myagmarjav Dashnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anju Singh
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Theresa Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA
| | - Parimal Kumar
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Keyur Talsania
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Vicky Chen
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ruksana Amin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Taivan Odzorig
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Taylor Aiken
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.,Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Victoria Nguyen
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yansong Bian
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jelani C Zarif
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Amber E de Groot
- James Buchanan Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Mehta
- Sequencing Facility and Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility, Center for Cancer Research of the National Cancer Institute, Frederick, MD 21701, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Nathan Pate
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Mones Abu-Asab
- Section of Histopathology, National Eye Institute, Bethesda, MD 20892, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Chan-Young Ock
- Department of Hemato Oncology, Seoul National University Hospital, Seoul 03080, Korea
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | | | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Natalia de Val
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA.,Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 21701, USA
| | - Clayton C Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA.
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Juan Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Udo Rudloff
- Rare Tumor Initiative, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Piatakova A, Polakova I, Smahelova J, Johari SD, Nunvar J, Smahel M. Distinct Responsiveness of Tumor-Associated Macrophages to Immunotherapy of Tumors with Different Mechanisms of Major Histocompatibility Complex Class I Downregulation. Cancers (Basel) 2021; 13:cancers13123057. [PMID: 34205330 PMCID: PMC8235485 DOI: 10.3390/cancers13123057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Tumor-associated macrophages (TAMs) are one of the major cell subpopulations in the tumor microenvironment (TME) where they can either be pro-tumorigenic or contribute to an anti-tumor immunity. The TME and TAM phenotype were analyzed after combined immuno-therapy (IT) in tumor models characterized by distinct expression of major histocompatibility class I complex (MHC-I) molecules, i.e., tumors induced with TC-1 (MHC-I-proficient), TC-1/A9 (reversibly downregulated), and TC-1/dB2m (irreversibly downregulated) cells. We found out that combined IT highly activated immune reactions in the TME of TC-1 and TC-1/A9 tumors, but the TME of TC-1/dB2m tumors remained almost unchanged. Correspondingly, TAMs from TC-1/A9 tumors were able to destroy tumor cells in vitro, while TAMs isolated from TC-1/dB2m tumors showed profoundly decreased cytotoxicity. Hence, various capabilities of TAMs in tumors with distinct expression of MHC-I molecules should be considered when applying IT, particularly IT focused on TAMs. Abstract Tumor-associated macrophages (TAMs) plentifully infiltrate the tumor microenvironment (TME), but their role in anti-tumor immunity is controversial. Depending on the acquired polarization, they can either support tumor growth or participate in the elimination of neoplastic cells. In this study, we analyzed the TME by RNA-seq and flow cytometry and examined TAMs after ex vivo activation. Tumors with normal and either reversibly or irreversibly decreased expression of major histocompatibility complex class I (MHC-I) molecules were induced with TC-1, TC-1/A9, and TC-1/dB2m cells, respectively. We found that combined immunotherapy (IT), composed of DNA immunization and the CpG oligodeoxynucleotide (ODN) ODN1826, evoked immune reactions in the TME of TC-1- and TC-1/A9-induced tumors, while the TME of TC-1/dB2m tumors was mostly immunologically unresponsive. TAMs infiltrated both tumor types with MHC-I downregulation, but only TAMs from TC-1/A9 tumors acquired the M1 phenotype upon IT and were cytotoxic in in vitro assay. The anti-tumor effect of combined IT was markedly enhanced by a blockade of the colony-stimulating factor-1 receptor (CSF-1R), but only against TC-1/A9 tumors. Overall, TAMs from tumors with irreversible MHC-I downregulation were resistant to the stimulation of cytotoxic activity. These data suggest the dissimilarity of TAMs from different tumor types, which should be considered when utilizing TAMs in cancer IT.
Collapse
|
40
|
Koga N, Hu Q, Sakai A, Takada K, Nakanishi R, Hisamatsu Y, Ando K, Kimura Y, Oki E, Oda Y, Mori M. Clinical significance of signal regulatory protein alpha (SIRPα) expression in esophageal squamous cell carcinoma. Cancer Sci 2021; 112:3018-3028. [PMID: 34009732 PMCID: PMC8353899 DOI: 10.1111/cas.14971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Signal regulatory protein alpha (SIRPα) is a type I transmembrane protein that inhibits macrophage phagocytosis of tumor cells upon interaction with CD47, and the CD47‐SIRPα pathway acts as an immune checkpoint factor in cancers. This study aims to clarify the clinical significance of SIRPα expression in esophageal squamous cell carcinoma (ESCC). First, we assessed SIRPα expression using RNA sequencing data of 95 ESCC tissues from The Cancer Genome Atlas (TCGA) and immunohistochemical analytic data from our cohort of 131 patients with ESCC. Next, we investigated the correlation of SIRPα expression with clinicopathological factors, patient survival, infiltration of tumor immune cells, and expression of programmed cell death‐ligand 1 (PD‐L1). Overall survival was significantly poorer with high SIRPα expression than with low expression in both TCGA and our patient cohort (P < .001 and P = .027, respectively). High SIRPα expression was associated with greater depth of tumor invasion (P = .0017). Expression of SIRPα was also significantly correlated with the tumor infiltration of M1 macrophages, M2 macrophages, CD8+ T cells, and PD‐L1 expression (P < .001, P < .001, P = .03, and P < .001, respectively). Moreover, patients with SIRPα/PD‐L1 coexpression tended to have a worse prognosis than patients with expression of either protein alone or neither. Taken together, SIRPα indicates poor prognosis in ESCC, possibly through inhibiting macrophage phagocytosis of tumor cells and inducing suppression of antitumor immunity. Signal regulatory protein alpha should be considered as a potential therapeutic target in ESCC, especially if combined with PD‐1‐PD‐L1 blockade.
Collapse
Affiliation(s)
- Naomichi Koga
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Qingjiang Hu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Sakai
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathological Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Hisamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasue Kimura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathological Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Gurule NJ, McCoach CE, Hinz TK, Merrick DT, Van Bokhoven A, Kim J, Patil T, Calhoun J, Nemenoff RA, Tan AC, Doebele RC, Heasley LE. A tyrosine kinase inhibitor-induced interferon response positively associates with clinical response in EGFR-mutant lung cancer. NPJ Precis Oncol 2021; 5:41. [PMID: 34001994 PMCID: PMC8129124 DOI: 10.1038/s41698-021-00181-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting EGFR-mutant lung cancers promote a range of tumor regression responses to yield variable residual disease, a likely incubator for acquired resistance. Herein, rapid transcriptional responses induced by TKIs early in treatment that associate with the range of patient responses were explored. RNAseq was performed on EGFR mutant cell lines treated in vitro with osimertinib and on tumor biopsies of eight EGFR mutant lung cancer patients before and after 2 weeks of TKI treatment. Data were evaluated for gene expression programs altered upon TKI treatment. Chemokine and cytokine expression were measured by ELISA and quantitative RT-PCR. IκB Kinase (IKK) and JAK-STAT pathway dependence was tested with pharmacologic and molecular inhibitors. Tumor sections were stained for the T-cell marker CD3. Osimertinib stimulated dynamic, yet wide-ranging interferon (IFN) program regulation in EGFR mutant cell lines. IL6 and CXCL10 induction varied markedly among the EGFR mutant cell lines and was sensitive to IKK and JAK-STAT inhibitors. Analysis of matched patient biopsy pairs revealed marked, yet varied enrichment of IFN transcriptional programs, effector immune cell signatures and T-cell content in treated tumors that positively correlated with time to progression in the patients. EGFR-specific TKIs induce wide-ranging IFN response program activation originating within the cancer cell. The strong association of IFN program induction and duration of clinical response indicates that the TKI-induced IFN program instructs variable recruitment and participation of immune cells in the overall therapeutic response.
Collapse
Affiliation(s)
- Natalia J Gurule
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caroline E McCoach
- Department of Medicine and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trista K Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Adriaan Van Bokhoven
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jihye Kim
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tejas Patil
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Calhoun
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raphael A Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Robert C Doebele
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Lynn E Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
42
|
Immune checkpoint molecules B7-H6 and PD-L1 co-pattern the tumor inflammatory microenvironment in human breast cancer. Sci Rep 2021; 11:7550. [PMID: 33824367 PMCID: PMC8024320 DOI: 10.1038/s41598-021-87216-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 01/29/2023] Open
Abstract
B7-H6 and PD-L1 belong to the B7 family co-stimulatory molecules fine-tuning the immune response. The present work investigates the clinical effect of B7-H6 protein expression with PD-L1 status and the infiltration of natural killer cells as potential biomarkers in breast tumor inflammatory microenvironment. The expression levels of B7-H6 protein by cancer cells and immune infiltrating cells in human breast cancer tissues and evaluate their associations with PD-L1 expression, NK cell status, clinical pathological features and prognosis were explored. The immunohistochemistry labeling method was used to assess B7-H6 and PD-L1 proteins expression by cancer and immune cells. The associations between immune checkpoint, major clinical pathological variables and survival rates were analyzed. B7-H6 protein was depicted in both breast and immune cells. Results showed that Tumor B7-H6 expression is highly associated with Her-2 over expression. B7-H6 + immune cells are highly related to the Scarff–Bloom–Richardson grade and associated with PD-L1 expression and NK cells status. Survival analysis revealed a better prognosis in patients with low expression of B7-H6 by cancer cells. Conversely, B7-H6 + immune cells were significantly associated with longer survival. Findings strongly suggest an interaction between B7 molecules that contributes to a particular design of the inflammatory microenvironment. This may influence the efficiency of therapies based on antibodies blocking the PD-L1/PD1 pathway and can explain the detection of clinical benefits only in a fraction of patients treated with immune checkpoint inhibitors.
Collapse
|
43
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Shelton SE, Nguyen HT, Barbie DA, Kamm RD. Engineering approaches for studying immune-tumor cell interactions and immunotherapy. iScience 2021; 24:101985. [PMID: 33490895 PMCID: PMC7808917 DOI: 10.1016/j.isci.2020.101985] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review describes recent research that has advanced our understanding of the role of immune cells in the tumor microenvironment (TME) using advanced 3D in vitro models and engineering approaches. The TME can hinder effective eradication of tumor cells by the immune system, but immunotherapy has been able to reverse this effect in some cases. However, patient-to-patient variability in response suggests that we require deeper understanding of the mechanistic interactions between immune and tumor cells to improve response and develop novel therapeutics. Reconstruction of the TME using engineered 3D models allows high-resolution observation of cell interactions while allowing control of conditions such as hypoxia, matrix stiffness, and flow. Moreover, patient-derived organotypic models are an emerging tool for prediction of drug efficacy. This review highlights the importance of modeling and understanding the immune TME and describes new tools for identifying new biological targets, drug testing, and strategies for personalized medicine.
Collapse
Affiliation(s)
- Sarah E. Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Huu Tuan Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
45
|
Green SE, McCusker MG, Mehra R. Emerging immune checkpoint inhibitors for the treatment of head and neck cancers. Expert Opin Emerg Drugs 2020; 25:501-514. [PMID: 33196319 DOI: 10.1080/14728214.2020.1852215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The benefits of immune checkpoint inhibitors (ICIs) in recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) have been demonstrated through multiple studies to improve overall survival (OS) with decreased side effects when compared to the standard of care (SOC) treatment regimens in place for decades, leading to the approval of two ICIs, nivolumab and pembrolizumab. There has been a subsequent influx in the development of novel immunotherapy agents for the treatment of HNSCC. Areas covered: Data for anti-programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4) antibodies in treatment of R/M HNSCC will be reviewed. Emerging immune checkpoint inhibitors as well as combined therapies in HNSCC will be discussed. The role of predictive biomarkers, HPV-status, PD-L1 expression, and challenges related to treating patients with ICIs will be summarized. Expert opinion: A shift toward ICIs as SOC for the treatment of R/M HNSCC will continue as emerging immune checkpoints and combination therapies are evaluated. Response rates are variable in this patient population underlying the importance of identifying predictive biomarkers to aid in patient selection for ICI treatment.
Collapse
Affiliation(s)
- Sarah E Green
- University of Maryland Medical Center, Greenebaum Comprehensive Cancer Center , Baltimore, MD, USA
| | - Michael G McCusker
- University of Maryland Medical Center, Greenebaum Comprehensive Cancer Center , Baltimore, MD, USA
| | - Ranee Mehra
- University of Maryland Medical Center, Greenebaum Comprehensive Cancer Center , Baltimore, MD, USA
| |
Collapse
|
46
|
Horiguchi H, Kadomatsu T, Miyata K, Terada K, Sato M, Torigoe D, Morinaga J, Moroishi T, Oike Y. Stroma-derived ANGPTL2 establishes an anti-tumor microenvironment during intestinal tumorigenesis. Oncogene 2020; 40:55-67. [PMID: 33051596 DOI: 10.1038/s41388-020-01505-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Previous studies show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. However, we recently reported that host ANGPTL2 also shows tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses in mouse kidney cancer and murine syngeneic models. However, mechanisms underlying ANGPTL2-mediated tumor suppression are complex and not well known. Here, we investigated ANGPTL2 tumor suppressive function in chemically-induced intestinal tumorigenesis. ANGPTL2 deficiency enhanced intestinal tumor growth in an experimental mouse colitis-associated colon cancer (CAC) model. Angptl2-deficient mice also showed a decrease not only in CD8+ T cell responses but in CD4+ T cell responses during intestinal tumorigenesis. Furthermore, we show that stroma-derived ANGPTL2 can activate the myeloid immune response. Notably, ANGPTL2 drove generation of immunostimulatory macrophages via the NF-κB pathway, accelerating CD4+ T helper 1 (Th1) cell activation. These findings overall provide novel insight into the complex mechanisms underlying ANGPTL2 anti-tumor function in cancer pathology.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Kazutoyo Terada
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Daisuke Torigoe
- Institute of Resource Development and Analysis (IRDA), Kumamoto University, Kumamoto, 860-0811, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
47
|
Karapetyan L, Luke JJ, Davar D. Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther 2020; 13:10039-10060. [PMID: 33116588 PMCID: PMC7553670 DOI: 10.2147/ott.s247050] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is a pattern recognition receptor that is predominantly located intracellularly in immune cells, including dendritic cells, macrophages, natural killer cells, and other antigen-presenting cells (APC). The primary ligands for TLR9 receptors are unmethylated cytidine phosphate guanosine (CpG) oligodinucleotides (ODN). TLR9 agonists induce inflammatory processes that result in the enhanced uptake and killing of microorganisms and cancer cells as well as the generation of adaptive immune responses. Preclinical studies of TLR9 agonists suggested efficacy both as monotherapy and in combination with several agents, which led to clinical trials in patients with advanced cancer. In these studies, intravenous, intratumoral, and subcutaneous routes of administration have been tested; with anti-tumor responses in both treated and untreated metastatic sites. TLR9 agonist monotherapy is safe, although efficacy is minimal in advanced cancer patients; conversely, combinations appear to be more promising. Several ongoing phase I and II clinical trials are evaluating TLR9 agonists in combination with a variety of agents including chemotherapy, radiotherapy, targeted therapy, and immunotherapy agents. In this review article, we describe the distribution, structure and signaling of TLR9; discuss the results of preclinical studies of TLR9 agonists; and review ongoing clinical trials of TLR9 agonists singly and in combination in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Lilit Karapetyan
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA
| | - Jason J Luke
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diwakar Davar
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Zhang D, Wang Y, Hu X. Identification and Comprehensive Validation of a DNA Methylation-Driven Gene-Based Prognostic Model for Clear Cell Renal Cell Carcinoma. DNA Cell Biol 2020; 39:1799-1812. [PMID: 32716214 DOI: 10.1089/dna.2020.5601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent renal malignancy in adults with generally poor prognosis. This study aimed to establish a DNA methylation-driven gene-based prognostic model for ccRCC. We collected DNA methylation and gene expression profiles of over 1500 ccRCC samples from The Cancer Genome Atlas (TCGA) dataset, four Gene Expression Omnibus (GEO) datasets, the Genotype-Tissue Expression (GTEx) dataset, and cancer cell lines from Cancer Cell Line Encyclopedia database and performed comprehensive bioinformatics analysis. As a result, a total of 31 differentially expressed methylation-driven genes (DEMDGs) were identified. After univariate Cox regression, least absolute shrinkage and selection operator, and multivariate Cox regression analyses, four (NFE2L3, HHLA2, IFI16, and ZNF582) were finally selected to construct a risk score prognostic model. The high-risk group demonstrated significantly poor prognosis than the low-risk group did in TCGA training (hazard ratio [HR] = 3.533, p < 0.001), TCGA internal, and GEO external validation datasets. Furthermore, the nomogram, including the prognostic model and clinical factors, showed promising prognostic value (HR = 5.756, p < 0.001, and area under the curve at 1 year = 0.856). In addition, the model was found to be significantly associated with drug sensitivity of eight targeted agents. These findings provided a novel and reliable four DEMDG-based prognostic model for ccRCC.
Collapse
Affiliation(s)
- Di Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Yicun Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Medina R, Wang H, Caisová V, Cui J, Indig IH, Uher O, Ye J, Nwankwo A, Sanchez V, Wu T, Nduom E, Heiss J, Gilbert MR, Terabe M, Ho W, Zenka J, Pacak K, Zhuang Z. Induction of Immune Response Against Metastatic Tumors via Vaccination of Mannan-BAM, TLR Ligands and Anti-CD40 Antibody (MBTA). ADVANCED THERAPEUTICS 2020; 3. [PMID: 33709018 DOI: 10.1002/adtp.202000044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging evidence is demonstrating the extent of T-cell infiltration within the tumor microenvironment has favorable prognostic and therapeutic implications. Hence, immunotherapeutic strategies that augment the T-cell signature of tumors hold promising therapeutic potential. Recently, immunotherapy based on intratumoral injection of mannan-BAM, toll-like receptor ligands and anti-CD40 antibody (MBTA) demonstrated promising potential to modulate the immune phenotype of injected tumors. The strategy promotes the phagocytosis of tumor cells to facilitate the recognition of tumor antigens and induce a tumor-specific adaptive immune response. Using a syngeneic colon carcinoma model, we demonstrate MBTA's potential to augment CD8+ T-cell tumor infiltrate when administered intratumorally or subcutaneously as part of a whole tumor cell vaccine. Both immunotherapeutic strategies proved effective at controlling tumor growth, prolonged survival and induced immunological memory against the parental cell line. Collectively, our investigation demonstrates MBTA's potential to trigger a potent anti-tumor immune response.
Collapse
Affiliation(s)
- Rogelio Medina
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States.,David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Veronika Caisová
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States
| | - Jing Cui
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Iris H Indig
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ondrej Uher
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States.,Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Juan Ye
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anthony Nwankwo
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Victoria Sanchez
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Tianxia Wu
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Edjah Nduom
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Masaki Terabe
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Winson Ho
- UT Health Austin Pediatric Neurosciences at Dell Children's, Austin, Texas, United States
| | - Jan Zenka
- Department of Medical Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
50
|
Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapeutics. Proc Natl Acad Sci U S A 2020; 117:13428-13436. [PMID: 32493746 PMCID: PMC7306768 DOI: 10.1073/pnas.2001569117] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Checkpoint inhibitor (CPI) immunotherapies have revolutionized the treatment of a wide array of cancers, but their utility remains limited to a subset of patients with favorable disease phenotypes. We show that the generation of peptide-based nanocomplexes carrying immunostimulatory oligonucleotides dramatically increases the potency of certain of these compounds to stimulate toll-like receptor signaling. The administration of immunostimulatory nanocomplexes carrying CpG oligonucleotides generates antitumor effects and enhances the efficacy of checkpoint inhibitor antibody therapy in mouse models of cancer, and the nanocomplex formulation enables drastic reductions in the dose required to generate therapeutic effects. The recent advent of immune checkpoint inhibitor (CPI) antibodies has revolutionized many aspects of cancer therapy, but the efficacy of these breakthrough therapeutics remains limited, as many patients fail to respond for reasons that still largely evade understanding. An array of studies in human patients and animal models has demonstrated that local signaling can generate strongly immunosuppressive microenvironments within tumors, and emerging evidence suggests that delivery of immunostimulatory molecules into tumors can have therapeutic effects. Nanoparticle formulations of these cargoes offer a promising way to maximize their delivery and to enhance the efficacy of checkpoint inhibitors. We developed a modular nanoparticle system capable of encapsulating an array of immunostimulatory oligonucleotides that, in some cases, greatly increase their potency to activate inflammatory signaling within immune cells in vitro. We hypothesized that these immunostimulatory nanoparticles could suppress tumor growth by activating similar signaling in vivo, and thereby also improve responsiveness to immune checkpoint inhibitor antibody therapies. We found that our engineered nanoparticles carrying a CpG DNA ligand of TLR9 can suppress tumor growth in several animal models of various cancers, resulting in an abscopal effect on distant tumors, and improving responsiveness to anti-CTLA4 treatment with combinatorial effects after intratumoral administration. Moreover, by incorporating tumor-homing peptides, immunostimulatory nucleotide-bearing nanoparticles facilitate antitumor efficacy after systemic intravenous (i.v.) administration.
Collapse
|