1
|
Wang Y, Zhang D, Huang X, Wu G, Wang C, Li J, Wang S, Xian X, Fu B, Li K. From heterogeneity to prognosis: understanding the complexity of tertiary lymphoid structures in tumors. Mol Biol Rep 2025; 52:197. [PMID: 39903372 DOI: 10.1007/s11033-025-10319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Tertiary lymphoid structures (TLSs) are aberrant lymphoid tissues found in persistent inflammatory settings, including malignancies, autoimmune disorders, and transplanted organs. The organization and architecture of TLS closely resemble that of secondary lymphoid organs (SLOs). The formation of TLS is an ongoing process, with varying structural features observed at different stages of maturation. The tumor microenvironment (TME) is a multifaceted milieu comprising cells, molecules, and extracellular matrix components in close proximity to the neoplasm. TLS within the TME have the capacity to actively elicit anti-tumor immune responses. TLSs exhibit tumor-specific and individual-specific characteristics, leading to varying immune responses towards tumor immunity based on their distinct cellular components, maturity levels, and spatial distribution. Cell interaction is the foundational elements of tumor immunity. Despite differences in the cellular composition of TLS, B cells and T cells are the main components of tumor-associated TLS。Recent research has highlighted the significance of diverse subtypes of B cells and T cells within TLSs in influencing the therapeutic outcomes and prognostic indicators of individual tumors. This review elucidates the diversity of TLS in terms of cellular composition, developmental stage, anatomical location, and the influence of cytokines on their initiation and progression. Furthermore, the article examines the involvement of B and T cells within TLS and the significance of TLS in relation to tumor prognosis.
Collapse
Affiliation(s)
- Yingying Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Dongyan Zhang
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Xueping Huang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Guohao Wu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Chuanbao Wang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, PR China
| | - Jun Li
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Song Wang
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Xinmiao Xian
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China
| | - Bo Fu
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
| | - Keyi Li
- Department of Precision Biomedical Key Laboratory, Shandong Provincial Key Medical and Health Laboratory of Precision Medicine for Aging Intervention and Active Health, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, PR China.
- Department of Stomatology, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, Shandong, 252000, PR China.
| |
Collapse
|
2
|
Wang Q, Yu Y, Wang C, Jiang Z, Li J, Li X, Huang X, Song Y, Li Z, Tang S, Song C. Heterogeneity of tertiary lymphoid structures predicts the response to neoadjuvant therapy and immune microenvironment characteristics in triple-negative breast cancer. Br J Cancer 2025; 132:295-310. [PMID: 39658606 PMCID: PMC11790963 DOI: 10.1038/s41416-024-02917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) impact cancer outcomes, including in triple-negative breast cancer (TNBC), where their role in immune modulation during neoadjuvant therapy (NAT) is underexplored. METHODS This study employed single-cell RNA sequencing (scRNA-seq), multiplex immunofluorescence (mIF) staining, and radiomic techniques to evaluate TLSs and the tumour microenvironment (TME) in TNBC patient samples before and after NAT. RESULTS The presence of TLSs in TNBC was associated with B-cell maturation and T-cell activation. Compared with TLS-low TNBC, TLS-high TNBC showed significantly greater expression of immunoglobulin family genes (IGHM and IGHG1) in B cells and greater cytotoxicity of neoantigen-specific CD8 + T cells (neoTCR8). Additionally, mIF revealed notable differences between TLSs and the TME in TNBC. Although CD8 + T-cell levels do not predict the NAT response effectively, TLS maturity strongly correlated with better NAT outcomes and prognosis (P < 0.05). An imaging biomarker scoring system was also developed to predict TLS status and NAT efficacy. CONCLUSION Our results demonstrated changes in TLSs and the TME in TNBC patients post-NAT. These findings confirm the predictive value of mature TLSs (mTLSs) and support the use of personalised immunotherapy based on post-NAT immune characteristics, thereby improving clinical outcomes.
Collapse
Affiliation(s)
- Qing Wang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Yushuai Yu
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Chenxi Wang
- Department of Breast Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Zirong Jiang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Jialu Li
- Rehabilitation College, Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Xiaofen Li
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Xiewei Huang
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Ying Song
- Department of Breast Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China
| | - Zhenhui Li
- Department of Radiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| | - Shicong Tang
- Department of Breast Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650118, China.
| | - Chuangui Song
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, 350014, China.
| |
Collapse
|
3
|
Zeng L, Yan H, Jiang W, Qin H, Dai J, Zhang Y, Wei S, Chen S, Liu L, Xiong Y, Yang H, Li Y, Wang Z, Deng L, Xu Q, Peng L, Zhang R, Fang C, Chen X, Deng J, Wang J, Li T, Liu H, Zhang G, Yang N, Zhang Y. Toripalimab plus platinum-doublet chemotherapy as perioperative therapy for initially unresectable NSCLC: An open-label, phase 2 trial. MED 2025:100574. [PMID: 39892382 DOI: 10.1016/j.medj.2025.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Perioperative treatment with toripalimab combined with chemotherapy was efficacious and safe in resectable stage II-IIIA non-small cell lung cancer (NSCLC); however, little is known about whether this treatment regimen could convert unresectable NSCLC to resectable. METHODS This study enrolled 40 treatment-naive patients with initially unresectable stage IIIA-IIIB NSCLC. Toripalimab (240 mg) and platinum-doublet chemotherapy were administered every 3 weeks for 2-4 cycles. Surgical resection was decided after assessing the efficacy of induction therapy. The primary outcome was the R0 resection rate. The secondary outcomes included safety, overall survival, disease-free survival, event-free survival, objective response rate, major pathological response (MPR), and pathological complete response (pCR). Available baseline tumor biopsy samples were used for molecular biomarker analyses, including bulk RNA sequencing and multiplex immunostaining. This study was registered at ClinicalTrials.gov: NCT04144608. FINDINGS Of the 40 patients who received induction toripalimab plus chemotherapy, 29 (72.5%) patients received surgery, and all achieved R0 resection (100% R0 rate). Of these patients, 17 (58.6%) achieved MPR, with 10 (34.5%) patients evaluated as pCR. With a median follow-up of 31.8 months (95% confidence interval [CI]: 24.2-39.4), the median event-free survival and overall survival were not reached. Molecular analyses revealed highly expressed gene sets for germinal center B cells (signatures of tertiary lymphoid structure [TLS]) at baseline among patients with pCR compared to patients with non-pCR, suggesting that the TLS status of the patients was associated with the induction of immunotherapy responses. CONCLUSIONS Toripalimab-based induction treatment of initially unresectable NSCLC yielded a high R0 rate and MPR rate, with a good safety profile and encouraging survival outcomes. FUNDING This work was funded by the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Huan Yan
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Haoyue Qin
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jiacheng Dai
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yuda Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shiyou Wei
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shanmei Chen
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Li Liu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yi Xiong
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Haiyan Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yizhi Li
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Qinqin Xu
- Department of Medical Oncology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Ling Peng
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Fang
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Jun Deng
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Jing Wang
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Ting Li
- Department of Medical Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Gao Zhang
- Faculty of Dentistry, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Department of Medical Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
4
|
Fang Q, Chen S, Chen X, Zou W, Chen D, Huang Y, Wu C. Mature tertiary lymphoid structure associated CD103+ CD8+ Trm cells determined improved anti-tumor immune in breast cancer. Front Oncol 2025; 15:1480461. [PMID: 39926286 PMCID: PMC11802804 DOI: 10.3389/fonc.2025.1480461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Although tertiary lymphoid structures (TLS) play crucial roles in the anti-tumor immune response and are associated with favorable prognoses in many solid tumors, the precise mechanisms by which TLSs enhance anti-tumor immunity remain poorly understood. The current study aimed to explore the relationship between the maturity of tertiary lymphoid structures and their key immune cells in combating breast cancer. Patients and methods In this study, we utilized immunofluorescence and H&E staining to detect tumor-resident memory T cells (Trm) and assess the maturity of TLS, analyzing their distribution and proportion in an annotated cohort of 95 breast cancer patients. Results The presence of tumor-associated TLSs was correlated with an improved prognosis in patients with breast cancer. The proportion of CD8+CD103+ resident memory T cells and natural killer (NK) cells within the TLSs was significantly higher than that in areas outside of these structures. Additionally, the proportions of CD103+ CD8+ Trm cells and NK cells were significantly increased with the gradual maturation of TLS. Furthermore, the secretion function of effector molecules by CD8+ CD103+ Trm cells and NK cells within TLSs was significantly enhanced, indicating a strong correlation between the effector function of CD103+ CD8+ Trm and NK cells and the maturity of TLSs. Conclusion Our study identifies potential additional prognostic information for the clinical prognosis of breast cancer patients, underscoring the prognostic significance of immune cells within TLS, with a particular focus on CD103+ CD8+ Trm cells and NK cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chucheng Wu
- Huizhou Central People’s Hospital, Huizhou,
China
| |
Collapse
|
5
|
Onder L, Papadopoulou C, Lütge A, Cheng HW, Lütge M, Perez-Shibayama C, Gil-Cruz C, De Martin A, Kurz L, Cadosch N, Pikor NB, Rodriguez R, Born D, Jochum W, Leskow P, Dutly A, Robinson MD, Ludewig B. Fibroblastic reticular cells generate protective intratumoral T cell environments in lung cancer. Cell 2025; 188:430-446.e20. [PMID: 39566495 DOI: 10.1016/j.cell.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/28/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Stringent control of T cell activity in the tumor microenvironment is essential for the generation of protective antitumor immunity. However, the identity, differentiation, and functions of the cells that create critical fibroblastic niches promoting tumor-infiltrating T cells remain elusive. Here, we show that CCL19-expressing fibroblastic reticular cells (FRCs) generate interconnected T cell environments (TEs) in human non-small cell lung cancer, including tertiary lymphoid structures and T cell tracks. Analysis of the FRC-T cell interactome in TEs indicated molecular networks regulating niche-specific differentiation of CCL19-expressing fibroblasts and T cell activation pathways. Single-cell transcriptomics and cell fate-mapping analyses in mice confirmed that FRCs in TEs originate from mural and adventitial progenitors. Ablation of intratumoral FRC precursors decreased antitumor T cell activity, resulting in reduced tumor control during coronavirus vector-based immunotherapy. In summary, specialized FRC niches in the tumor microenvironment govern the quality and extent of antitumor T cell immunity.
Collapse
Affiliation(s)
- Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland.
| | - Chrysa Papadopoulou
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Almut Lütge
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich 8057, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | | | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Lisa Kurz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Nadine Cadosch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland; Institute of Microbiology and Immunology, ETH Zurich, Zurich 8093, Switzerland
| | - Regulo Rodriguez
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Diana Born
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Pawel Leskow
- Department of Thoracic Surgery, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Andre Dutly
- Department of Thoracic Surgery, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich 8057, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen 9007, Switzerland; University Heart Center, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland; Center for Translational and Experimental Cardiology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland.
| |
Collapse
|
6
|
Cui X, Gu X, Li D, Wu P, Sun N, Zhang C, He J. Tertiary lymphoid structures as a biomarker in immunotherapy and beyond: Advancing towards clinical application. Cancer Lett 2025; 613:217491. [PMID: 39862919 DOI: 10.1016/j.canlet.2025.217491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic immune cell clusters formed in nonlymphoid tissues affected by persistent inflammation, such as in cancer and prolonged infections. They have features of the structure and function of secondary lymphoid organs, featuring central CD20+ B cells, surrounded by CD3+ T cells, CD21+ follicular dendritic cells, and CD68+ macrophages, with a complex vascular system. TLS formation is governed by lymphotoxin-α1β2, TNF, and chemokines like CCL19, CCL21, and CXCL13, differing from secondary lymphoid organ development in developing later in life at sites of chronic inflammation. Their role in enhancing immune responses, particularly in the context of cancer, makes them a focal point in immunotherapy. This review discusses recent advances in TLS assessment that involves complex gene expression signatures, histological analysis, artificial intelligence, and spatial omics. The presence and maturity of TLS are associated with better outcomes in various cancers, acting as a biomarker for immunotherapy effectiveness. This review explores the structure, formation, and role of TLS in disease prognosis, including their roles in immunotherapy and non-immunotherapy treatments, highlighting a need to develop novel techniques for precise characterization of TLS as well as their significance as predictive biomarkers beyond traditional biomarkers.
Collapse
Affiliation(s)
- Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
7
|
Ribeiro V, Teillaud JL, Dieu-Nosjean MC, Lescaille G, Rochefort J. The prognostic significance of tertiary lymphoid structures in oral squamous cell carcinomas: a systematic review. FRONTIERS IN ORAL HEALTH 2025; 5:1524313. [PMID: 39911478 PMCID: PMC11794802 DOI: 10.3389/froh.2024.1524313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Upper aerodigestive tract cancers are prevalent, with a global incidence surpassing 500,000 new cases in 2018. Among these, oral squamous cell carcinomas (OSCC) constitute the majority. OSCC has a low 5-year survival rate due to late-stage diagnosis. Risk factors include alcohol and tobacco use. However, non-smokers and non-drinkers are also affected, especially young patients with tongue cancer. The impact of tumor microenvironment (TME) and tumor-infiltrating lymphocytes (TILs) on OSCC prognosis remains debated. Remarkably, Tertiary Lymphoid Structures (TLS) identified in solid tumors have shown associations with favorable outcomes, yet their prognostic significance in OSCC remains understudied. Objective Thus, this systematic review aims to explore the value of TLS in OSCC reported in the literature. Method A scoping review was conducted and six retrospective cohort studies involving 1,203 patients met the inclusion criteria. Results Predominantly male patients, with an average age of 49.3 years were included. Immunohistochemistry was the primary method to identify TLS, present in 21% up to 100% of cases. TLS were predominantly located in the peri-tumoral area (75.4%-84.8%) compared to the intra-tumoral area (33.8%-33.9%). Our review shows that the presence of TLS is associated with improved survival in OSCC. Discussion However, variations in TLS detection and classification methods across studies introduce potential biases, hindering direct comparisons between findings. For instance, reports that are based solely on examining HES-stained slides for TLS identification may raise reliability concerns. Standardization of methodologies is imperative to ensure consistency in criteria utilization, thereby facilitating meaningful data comparisons. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023428010, PROSPERO (CRD42023428010).
Collapse
Affiliation(s)
- V. Ribeiro
- Faculté de Santé, UFR Odontologie, Université Paris-Cité, Paris, France
| | - J-L. Teillaud
- UMRS 1135, Faculté de Santé Sorbonne Université, Sorbonne Université, Paris, France
- INSERM Unit 1135, Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre D’Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - M-C. Dieu-Nosjean
- UMRS 1135, Faculté de Santé Sorbonne Université, Sorbonne Université, Paris, France
- INSERM Unit 1135, Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre D’Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
| | - G. Lescaille
- Faculté de Santé, UFR Odontologie, Université Paris-Cité, Paris, France
- UMRS 1135, Faculté de Santé Sorbonne Université, Sorbonne Université, Paris, France
- INSERM Unit 1135, Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre D’Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
- Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - J. Rochefort
- Faculté de Santé, UFR Odontologie, Université Paris-Cité, Paris, France
- UMRS 1135, Faculté de Santé Sorbonne Université, Sorbonne Université, Paris, France
- INSERM Unit 1135, Paris, France
- Laboratory “Immune Microenvironment and Immunotherapy”, Centre D’Immunologie et des Maladies Infectieuses-Paris (CIMI-Paris), Paris, France
- Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
8
|
Amisaki M, Zebboudj A, Yano H, Zhang SL, Payne G, Chandra AK, Yu R, Guasp P, Sethna ZM, Ohmoto A, Rojas LA, Cheng C, Waters T, Solovyov A, Martis S, Doane AS, Reiche C, Bruno EM, Milighetti M, Soares K, Odgerel Z, Moral JA, Zhao JN, Gönen M, Gardner R, Tumanov AV, Khan AG, Vergnolle O, Nyakatura EK, Lorenz IC, Baca M, Patterson E, Greenbaum B, Artis D, Merghoub T, Balachandran VP. IL-33-activated ILC2s induce tertiary lymphoid structures in pancreatic cancer. Nature 2025:10.1038/s41586-024-08426-5. [PMID: 39814891 DOI: 10.1038/s41586-024-08426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway1, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues2, induces TLSs. In mice, Il33 deficiency severely attenuates inflammation- and LTβR-activation-induced TLSs in models of colitis and pancreatic ductal adenocarcinoma (PDAC). In PDAC, the alarmin domain of IL-33 activates group 2 innate lymphoid cells (ILC2s) expressing LT that engage putative LTβR+ myeloid organizer cells to initiate tertiary lymphoneogenesis. Notably, lymphoneogenic ILC2s migrate to PDACs from the gut, can be mobilized to PDACs in different tissues and are modulated by gut microbiota. Furthermore, we detect putative lymphoneogenic ILC2s and IL-33-expressing cells within TLSs in human PDAC that correlate with improved prognosis. To harness this lymphoneogenic pathway for immunotherapy, we engineer a recombinant human IL-33 protein that expands intratumoural lymphoneogenic ILC2s and TLSs and demonstrates enhanced anti-tumour activity in PDAC mice. In summary, we identify the molecules and cells of a druggable pathway that induces inflammation-triggered TLSs. More broadly, we reveal a lymphoneogenic function for alarmins and ILC2s.
Collapse
Affiliation(s)
- Masataka Amisaki
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abderezak Zebboudj
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Siqi Linsey Zhang
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - George Payne
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Kaya Chandra
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Yu
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary M Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akihiro Ohmoto
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis A Rojas
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Cheng
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Waters
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen Martis
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley S Doane
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel M Bruno
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Milighetti
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zagaa Odgerel
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Alec Moral
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia N Zhao
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Olivia Vergnolle
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Manuel Baca
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Erin Patterson
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Greenbaum
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Liu X, Lv W, Huang D, Cui H. The predictive role of tertiary lymphoid structures in the prognosis and response to immunotherapy of lung cancer patients: a systematic review and meta-analysis. BMC Cancer 2025; 25:87. [PMID: 39815237 PMCID: PMC11734324 DOI: 10.1186/s12885-025-13484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND There is still no consensus regarding the correlation between TLS and the prognosis of lung cancer patients. This meta-analysis aimed to investigate the association between TLS and prognosis in patients with lung cancer. In addition, the prognostic value of TLS for the efficacy of immunotherapy was also studied. METHODS We systematically searched the PubMed, Embase, Cochrane Library, and Web of Science databases from database inception to November 1, 2023. The hazard ratio (HR) and corresponding 95% confidence interval (CI) for overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), progression-free survival (PFS) and disease-specific survival (DSS) were extracted and merged with STATA 14.0. The study protocol was registered with PROSPERO (CRD42024502483). RESULTS A total of 17 studies comprising 4291 patients were included in this meta-analysis. The pooled results revealed that high TLS/TLS + patients had better OS (HR = 0.66, 95% CI: 0.50-0.88), DFS (HR = 0.46, 95% CI: 0.33-0.64), DSS (HR = 0.48, 95% CI: 0.39-0.60) and RFS (HR = 0.43, 95% CI: 0.33-0.57). High TLS/TLS + patients tended to have longer PFS than low TLS/TLS + patients (HR = 0.68, 95% CI: 0.35-1.35). Interestingly, in the Asia subgroup, the association between TLS and survival was especially significant, whereas there was no significant difference in Europe. In addition, in patients who received neoadjuvant chemoimmunotherapy, high TLS/TLS + was associated with prolonged DFS (HR = 0.21, 95%CI: 0.05-0.93). CONCLUSION High TLS/TLS + was associated with improved survival and an improved response to neoadjuvant chemoimmunotherapy in lung cancer patients, suggesting that TLS may be a prognostic biomarker and may also be a promising predictive marker for the response to neoadjuvant chemoimmunotherapy. However, additional original studies are needed to further confirm these findings.
Collapse
Affiliation(s)
- Xin Liu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wu Lv
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Danxue Huang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongxia Cui
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| |
Collapse
|
10
|
Peyraud F, Guegan JP, Vanhersecke L, Brunet M, Teyssonneau D, Palmieri LJ, Bessede A, Italiano A. Tertiary lymphoid structures and cancer immunotherapy: From bench to bedside. MED 2025; 6:100546. [PMID: 39798544 DOI: 10.1016/j.medj.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 01/15/2025]
Abstract
Tertiary lymphoid structures (TLSs) are organized ectopic lymphoid aggregates within the tumor microenvironment that serve as crucial sites for the development of adaptive antitumor cellular and humoral immunity. TLSs have been consistently documented in numerous cancer types, correlating with improved prognosis and enhanced responses to immunotherapy, especially immune-checkpoint blockade (ICB). Given the potential role of TLSs as predictive biomarkers for the efficacy of ICB in cancer patients, the therapeutic manipulation of TLSs is gaining significant attention as a promising avenue for cancer treatment. Herein, we comprehensively review the composition, definition, and detection methods of TLSs in humans. We also discuss the contributions of TLSs to antitumor immunity, their prognostic value in cancer patients, and their association with therapeutic response to ICB-based immunotherapy. Finally, we present preclinical data supporting the potential of therapeutically manipulating TLSs as a promising approach for innovative cancer immunotherapy.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France.
| | | | - Lucile Vanhersecke
- Faculty of Medicine, University of Bordeaux, Bordeaux, France; Department of Pathology, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France
| | - Diego Teyssonneau
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | - Lola-Jade Palmieri
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France; Explicyte Immuno-Oncology, Bordeaux, France
| | | | - Antoine Italiano
- Department of Medicine, Institut Bergonié, Bordeaux, France; Faculty of Medicine, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
11
|
Shenasa E, Thornton S, Gao D, Kommoss FKF, Nielsen TO. Immune Biomarkers on Tissue Microarray Cores Support the Presence of Adjacent Tertiary Lymphoid Structures in Soft Tissue Sarcoma. J Transl Med 2025; 105:104091. [PMID: 39800049 DOI: 10.1016/j.labinv.2025.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/29/2024] [Accepted: 12/15/2024] [Indexed: 01/15/2025] Open
Abstract
Immunotherapy has emerged as a new treatment modality in some soft tissue sarcomas, particularly for tumors associated with tertiary lymphoid structures (TLSs). These structures are functional lymphoid aggregates, and their presence is indicative of an active anticancer immune response in the tumor microenvironment. The assessment of TLS as a predictive biomarker at scale on patient specimens remains challenging. Although tissue microarrays (TMAs) could facilitate this assessment, it is unclear whether small microarray cores can represent and identify associated TLS responses. We sought to use multiplex immunohistochemistry to identify key components of TLS: T cells, B cells, and dendritic cells. The multiplex panels (CD3, CD20, CD208, and PNAd) were applied to 80 cases both on TMAs and on their cognate available full-faced sections from epithelioid sarcoma and dedifferentiated/well-differentiated liposarcoma case series. TMAs were digitally scored for the number of immune cells using the HALO image analysis platform, and cognate full-faced sections were visually evaluated for the presence of TLS. An independent validation set of soft tissue sarcomas (N = 49) was stained with the CD3, CD20, and CD208, and scored by QuPath. A combined immune marker (defined as the presence of more than 24% CD3+ T cells, or 0.51% CD20+ B cells, or >0.14% CD208+ mature dendritic cells on tissue microarray cores) is highly specific (100%) and moderately sensitive (61%) to predict the existence of TLS on full-faced sections. The combined immune marker showed a sensitivity of 25% and specificity of 91% on the validation set. The combined immune marker assessed on tissue microarrays is highly specific in inferring the presence of TLS on cognate full-faced sections. Therefore, despite the small area sampled, tissue microarrays may be utilized to assess the clinical value of TLS on data sets where specificity is critical and large sample size can mitigate low-to-moderate sensitivity.
Collapse
Affiliation(s)
- Elahe Shenasa
- Interdisciplinary Oncology, University of British Columbia, Vancouver, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada
| | - Dongxia Gao
- Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada
| | - Felix K F Kommoss
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Torsten O Nielsen
- Interdisciplinary Oncology, University of British Columbia, Vancouver, Canada; Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
12
|
Wang H, Zhan Y, Luo J, Wang W, Fan S. Unveiling immune resistance mechanisms in nasopharyngeal carcinoma and emerging targets for antitumor immune response: tertiary lymphoid structures. J Transl Med 2025; 23:38. [PMID: 39789621 PMCID: PMC11721552 DOI: 10.1186/s12967-024-05880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 01/12/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy. TLSs have demonstrated positive prognostic value in NPC, making them a promising target for future therapies. This review summarizes the key characteristics of TLSs and latest research in the context of NPC. We are optimistic that targeting TLSs could improve immunotherapy outcomes for NPC patients, ultimately leading to more effective treatment strategies and better patient survival.
Collapse
Affiliation(s)
- Huilin Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan, 410011, China.
| |
Collapse
|
13
|
Chen W, Zhang L, Gao M, Zhang N, Wang R, Liu Y, Niu Y, Jia L. Role of tertiary lymphoid structures and B cells in clinical immunotherapy of gastric cancer. Front Immunol 2025; 15:1519034. [PMID: 39840050 PMCID: PMC11747648 DOI: 10.3389/fimmu.2024.1519034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Gastric cancer is a common malignant tumor of the digestive tract, and its treatment remains a significant challenge. In recent years, the role of various immune cells in the tumor microenvironment in cancer progression and treatment has gained increasing attention. Immunotherapy, primarily based on immune checkpoint inhibitors, has notably improved the prognosis of patients with gastric cancer; however, challenges regarding therapeutic efficacy persist. Histological features within the tumor microenvironment, such as tertiary lymphoid structures (TLSs), tumor-infiltrating lymphocytes, and the proportion of intratumoral stroma, are emerging as potentially effective prognostic factors. In gastric cancer, TLSs may serve as local immune hubs, enhancing the ability of immune cells to interact with and recognize tumor antigens, which is closely linked to the effectiveness of immunotherapy and improved survival rates in patients. However, the specific cell type driving TLS formation in tumors has not yet been elucidated. Mature TLSs are B-cell regions containing germinal centers. During germinal center formation, B cells undergo transformations to become mature cells with immune function, exerting anti-tumor effects. Therefore, targeting B cells within TLSs could provide new avenues for gastric cancer immunotherapy. This review, combined with current research on TLSs and B cells in gastric cancer, elaborates on the relationship between TLSs and B cells in the prognosis and immunotherapy of patients with gastric cancer, aiming to provide effective guidance for precise immunotherapy.
Collapse
Affiliation(s)
- Weiyi Chen
- Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lingli Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Man Gao
- Bayannur Clinical Medical College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ning Zhang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Rumeng Wang
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yang Liu
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
| | - Yan Niu
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Lizhou Jia
- Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia, China
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
14
|
Yan Y, Sun D, Hu J, Chen Y, Sun L, Yu H, Xiong Y, Huang Z, Xia H, Zhu X, Bian D, Sun F, Hou L, Wu C, Fan OR, Hu H, Zeng A, Zhang L, Sun YE, Wang C, Zhang P. Multi-omic profiling highlights factors associated with resistance to immuno-chemotherapy in non-small-cell lung cancer. Nat Genet 2025; 57:126-139. [PMID: 39658657 DOI: 10.1038/s41588-024-01998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2024] [Indexed: 12/12/2024]
Abstract
Although immune checkpoint blockade (ICB) therapies have shifted the treatment paradigm for non-small-cell lung cancer (NSCLC), many patients remain resistant. Here we characterize the tumor cell states and spatial cellular compositions of the NSCLC tumor microenvironment (TME) by analyzing single-cell transcriptomes of 232,080 cells and spatially resolved transcriptomes of tumors from 19 patients before and after ICB-chemotherapy. We find that tumor cells and secreted phosphoprotein 1-positive macrophages interact with collagen type XI alpha 1 chain-positive cancer-associated fibroblasts to stimulate the deposition and entanglement of collagen fibers at tumor boundaries, obstructing T cell infiltration and leading to poor prognosis. We also reveal distinct states of tertiary lymphoid structures (TLSs) in the TME. Activated TLSs are associated with improved prognosis, whereas a hypoxic microenvironment appears to suppress TLS development and is associated with poor prognosis. Our study provides novel insights into different cellular and molecular components corresponding to NSCLC ICB-chemotherapeutic responsiveness, which will benefit future individualized immuno-chemotherapy.
Collapse
Affiliation(s)
- Yilv Yan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Junjie Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yue Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liangdong Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huansha Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yicheng Xiong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhida Huang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haoran Xia
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongliang Bian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fenghuan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orion R Fan
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiyang Hu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - An Zeng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Lele Zhang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, China.
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, Shanghai, China.
- Frontier Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai, China.
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
- Department of Thoracic Surgery, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China.
| |
Collapse
|
15
|
Vaccaro A, de Alves Pereira B, van de Walle T, Dimberg A. Tertiary Lymphoid Structures in Central Nervous System Disorders. Methods Mol Biol 2025; 2864:21-42. [PMID: 39527215 DOI: 10.1007/978-1-0716-4184-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The central nervous system (CNS) constitutes a tightly regulated milieu, where immune responses are strictly controlled to prevent neurological damage. This poses considerable challenges to the therapeutic management of CNS pathologies, such as autoimmune disorders and cancer. Tertiary lymphoid structures (TLS) are ectopic, lymph node-like structures containing B- and T-cells, often associated with chronic inflammation or cancer, which have been shown to be detrimental in autoimmunity but beneficial in cancer. In-depth studies of TLS induction in CNS disorders, as well as their precise role in regulating adaptive immune responses in this context, will be paramount to the development of novel TLS-targeting therapies. In the present chapter, we review the anatomical and physiological peculiarities shaping TLS formation in the CNS, their relevance in autoimmunity and cancer, as well as their implications for the development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Alessandra Vaccaro
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Beatriz de Alves Pereira
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tiarne van de Walle
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Silina K, Ciompi F. Cancer-Associated Lymphoid Aggregates in Histology Images: Manual and Deep Learning-Based Quantification Approaches. Methods Mol Biol 2025; 2864:231-246. [PMID: 39527225 DOI: 10.1007/978-1-0716-4184-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Quantification of lymphoid aggregates including tertiary lymphoid structures (TLS) with germinal centers in histology images of cancer is a promising approach for developing prognostic and predictive tissue biomarkers. In this article, we provide recommendations for identifying lymphoid aggregates in tissue sections from routine pathology workflows such as hematoxylin and eosin staining. To overcome the intrinsic variability associated with manual image analysis (such as subjective decision-making, attention span), we recently developed a deep learning-based algorithm called HookNet-TLS to detect lymphoid aggregates and germinal centers in various tissues. Here, we additionally provide a guideline for using manually annotated images for training and implementing HookNet-TLS for automated and objective quantification of lymphoid aggregates in various cancer types.
Collapse
Affiliation(s)
- Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland.
| | - Francesco Ciompi
- Pathology Department, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
17
|
Devi-Marulkar P, Kaplon H, Dieu-Nosjean MC, Lawand M. Method Development for Sorting Immune Cell Populations Within Tertiary Lymphoid Structures. Methods Mol Biol 2025; 2864:247-262. [PMID: 39527226 DOI: 10.1007/978-1-0716-4184-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The tumor microenvironment is a complex network of interacting cells composed of immune and nonimmune cells. It has been reported that the composition of the immune contexture has a significant impact on tumor growth and patient survival in different solid tumors. For instance, we and other groups have previously demonstrated that a strong infiltration of T-helper type 1 (Th1), memory CD8+ T cells, and immune cells organized into tertiary lymphoid structures is associated with the long-term survival of cancer patients. Nevertheless, the prognostic value of the other immune populations, namely regulatory T cells (Treg), B cells, and gamma-delta (γδ) T cells remains a matter of debate. Herein, we describe novel flow cytometry-based strategies to sort out these different immune populations to evaluate their role in non-small-cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Priyanka Devi-Marulkar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Pole promotion de la recherche clinique, Direction de la Recherche de l'Ensemble Hospitalier (DREH), Institut Curie, Paris, France
| | - Hélène Kaplon
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France
- Translational Medicine Department, Institut de Recherches Internationales Servier, Gif-sur-Yvette, France
| | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France
- Inserm U1135, Paris, France
- Team "Immune Microenvironment and Immunotherapy", Centre of Immunology and Microbial Infections (CIMI), Faculté de Médecine Sorbonne Université, Paris, France
| | - Myriam Lawand
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1138, Cordeliers Research Center, Laboratory "Cancer, Immune Control and Escape", Paris, France.
- Université Paris Cité, UMRS 1138, Cordeliers Research Center, Paris, France.
- Sorbonne University, UMRS 1138, Cordeliers Research Center, Paris, France.
- Department of Biology, University of Balamand, Souk El-Gharb, Aley, Lebanon.
| |
Collapse
|
18
|
Shu DH, Sidiropoulos DN. Maturation of Tertiary Lymphoid Structures. Methods Mol Biol 2025; 2864:43-55. [PMID: 39527216 DOI: 10.1007/978-1-0716-4184-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tertiary lymphoid structures (TLS) are organized collections of B and T lymphocytes that arise in nonlymphoid tissue in response to chronic, unresolved inflammation. TLS have structural and functional similarities to germinal centers found in lymph nodes and are believed to support the establishment of lymph node-like adaptive immune responses at local sites of inflammation. However, understanding of the underlying biology of these structures remains limited, particularly the different stages of TLS life cycle and the signals governing the initiation, maturation, and termination of TLS. Here, we review current understanding of the maturation of TLS and the signals and cell types involved in various stages of development with particular emphasis on recent studies of TLS in cancer, where evidence suggests that TLS may play an important role in supporting antitumor immune responses in solid tumors.
Collapse
Affiliation(s)
- Daniel H Shu
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
- Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Liu W, Chen C, Li C, Wu X, Ma Y, Xie J, Wang D, Xu F, Zheng X, Zhang Z, Wang C, Yue D, Zhang B. Comprehensive Analysis of Immune Responses to Neoadjuvant Immunotherapy in Resectable Non-small Cell Lung Cancer. Ann Surg Oncol 2024; 31:9332-9343. [PMID: 39190094 DOI: 10.1245/s10434-024-16053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Neoadjuvant immunotherapy using immune checkpoint inhibitors (ICIs) has revolutionized the treatment of early stage non-small cell lung cancer (NSCLC). However, little is known about which patients are likely to benefit most from neoadjuvant immunotherapy. In this study, we performed a multiplatform analysis on samples from resectable NSCLC treated with neoadjuvant immunotherapy to explore molecular characteristics related to immune responses. PATIENTS AND METHODS A total of 17 patients with resectable stage IB-IIIA NSCLC treated with neoadjuvant immunotherapy were included. A multiplex cytokine assay, bulk TCR sequencing in peripheral blood, and multiplexed immunohistochemistry were performed. RESULTS Low levels of stromal cell-derived factor (SDF)-1alpha at baseline were associated with unfavorable disease-free survival (DFS). Patients with major pathologic response (MPR) showed a decrease in HGF after one cycle of neoadjuvant immunotherapy. An increase in IDO and IP-10 was observed in patients who developed immune-related adverse events (irAEs) after neoadjuvant immunotherapy. There were no correlations between irAEs and MPR or DFS. The MPR group presented a significant decrease in white blood cells and neutrophil count after neoadjuvant immunotherapy. The high peripheral baseline TCR convergence was correlated with MPR and favorable DFS in lung squamous cell carcinoma (LUSC) receiving neoadjuvant immunotherapy. Neoadjuvant immunotherapy led to a significant increase in CD4+, CD8+, and CD8+CD39+ T-cell infiltration in tumor areas. CONCLUSIONS This study suggests the potential roles of cytokines and TCR convergence for predicting ICIs response in resectable NSCLC and LUSC. CD8+CD39+T cells and CD4+ T cells could be involved in the action of neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Weiran Liu
- Department of Anesthesiology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chen Chen
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chenguang Li
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xinyi Wu
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchen Ma
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jiping Xie
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Dingli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fei Xu
- Genecast Biotechnology Co., Ltd, Wuxi City, Jiangsu, China
| | - Xue Zheng
- Genecast Biotechnology Co., Ltd, Wuxi City, Jiangsu, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Dongsheng Yue
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
20
|
Bod L, Shalapour S. B cells spatial organization defines their phenotype and function in cancer "Tell me with whom you consort, and I will tell you who you are" - Goethe. Curr Opin Immunol 2024; 91:102504. [PMID: 39547092 DOI: 10.1016/j.coi.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The presence of B cells and their subtypes in the tumor environment has been recognized a for very long time. Immunoglobulins specific for more than thousands of tumor-associated antigens were detected in the sera of patients with cancer; however, antibody-mediated cancer cell killing is usually impaired. The role of humoral immune response remained elusive until recently, with new discoveries regarding their contribution in regulating antitumor immunity, particularly during immunotherapy. Humoral immunity has been described to promote or attenuate tumorigenesis and can have opposing effects on therapeutic outcome in different tumor entities. The antagonism effect of B cells depends on their subtypes and immunoglobulin isotypes and is regulated by their spatial distribution and localization. In this short review, we will focus on how the spatial organization of B cells within the tumor microenvironment, tumor-associated lymph nodes, and tertiary lymphoid structures define their fate and function and contribute to the regulation of antitumor immunity.
Collapse
Affiliation(s)
- Lloyd Bod
- Department of Medicine, Krantz Family Center for Cancer Research, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
21
|
Wang C, Zhao Y, Liang W. Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review). Oncol Lett 2024; 28:600. [PMID: 39483967 PMCID: PMC11525615 DOI: 10.3892/ol.2024.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/26/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a type of rare and highly lethal tumor. Immune checkpoint blockade (ICB)-based therapy has shown encouraging clinical activity for MPeM. However, no definitive biomarkers have been identified for predicting which patients with MPeM will benefit from ICB-based therapy. At present, there are several novel potential biomarkers proposed for predicting the response to ICB-based therapy, and biomarkers available in MPeM cells and in the tumor microenvironment have been identified with the potential to predict the efficacy of ICB-based therapy in MPeM. According to the molecular characteristics of MPeM itself, the feasibility of biomarkers in practice, and the body of available evidence, we hypothesize that the following five types of biomarkers can be used to predict the response of ICB-based therapy in patients with MPeM: Tertiary lymphoid structures, immune checkpoints and their ligands, fusion gene neoantigen burden, BRCA1-associated protein-1 haploinsufficiency and transcriptome-based biomarkers. The present review discusses the value and limitations of each type of biomarker, and potential solutions to address the limitations are proposed. The aim of the present review is to provide a background for future studies on ICB-based therapy for MPeM.
Collapse
Affiliation(s)
- Chunhong Wang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yan Zhao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wanru Liang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
22
|
Lv J, Zhang X, Zhou M, Yan J, Chao G, Zhang S. Tertiary lymphoid structures in colorectal cancer. Ann Med 2024; 56:2400314. [PMID: 39575712 PMCID: PMC11616745 DOI: 10.1080/07853890.2024.2400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are ectopic clusters of immune cells found in non-lymphoid tissues, particularly within the tumor microenvironment (TME). These structures resemble secondary lymphoid organs and have been identified in various solid tumors, including colorectal cancer (CRC), where they are associated with favorable prognosis. The role of TLS in modulating the immune response within the TME and their impact on cancer prognosis has garnered increasing attention in recent years. OBJECTIVE This review aims to summarize the current understanding of TLS in CRC, focusing on their formation, function, and potential as prognostic markers and therapeutic targets. We explore the mechanisms by which TLS influence the immune response within the TME and their correlation with clinical outcomes in CRC patients. METHODS We conducted a comprehensive review of recent studies that investigated the presence and role of TLS in CRC. The review includes data from histopathological analyses, immunohistochemical studies, and clinical trials, examining the association between TLS density, composition, and CRC prognosis. Additionally, we explored emerging therapeutic strategies targeting TLS formation and function within the TME. RESULTS The presence of TLS in CRC is generally associated with an improved prognosis, particularly in early-stage disease. TLS formation is driven by chronic inflammation and is characterized by the organization of B and T cell zones, high endothelial venules (HEVs), and follicular dendritic cells (FDCs). The density and maturity of TLS are linked to better patient outcomes, including reduced recurrence rates and increased survival. Furthermore, the interplay between TLS and immune checkpoint inhibitors (ICIs) suggests potential therapeutic implications for enhancing anti-tumor immunity in CRC. CONCLUSIONS TLS represent a significant prognostic marker in CRC, with their presence correlating with favorable clinical outcomes. Ongoing research is required to fully understand the mechanisms by which TLS modulate the immune response within the TME and to develop effective therapies that harness their potential. The integration of TLS-focused strategies in CRC treatment could lead to improved patient management and outcomes.
Collapse
Affiliation(s)
- Jianyu Lv
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mi Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Junbin Yan
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
23
|
Yang C, Cai YX, Wang ZF, Tian SF, Li ZQ. Tertiary lymphoid structures in the central nervous system. Trends Mol Med 2024:S1471-4914(24)00281-8. [PMID: 39578120 DOI: 10.1016/j.molmed.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Tertiary lymphoid structures (TLSs) frequently occur at sites of chronic inflammation. A more advanced stage of multiple sclerosis (MS) has been associated with certain TLSs. However, tumor-associated TLSs have been shown to correlate with a greater treatment response rate and a better prognosis in glioma mouse models. In this review, we evaluate the clinical significances of TLSs in prognosis and treatment response, as well as the status of TLS-directed therapies targeting alternative biochemical pathways in various central nervous system (CNS) disorders. Potential molecular mechanisms underlying the development of TLSs are also discussed. Exploring these areas may provide an essential understanding of the processes behind disease advancement, uncover new therapeutic objectives, and detect biomarkers that forecast disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu-Xiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Su-Fang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
24
|
Yu C, Xu J, Xu S, Tang L, Han Q, Sun Z. Research trends, hotspots and future directions of tertiary lymphoid structures in cancer: a comprehensive informatics analysis and visualization study. Discov Oncol 2024; 15:665. [PMID: 39549226 PMCID: PMC11569082 DOI: 10.1007/s12672-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Many studies have reported the presence of tertiary lymphoid structures (TLSs) in cancer, but the research progress of TLSs in cancer has not been systematically analyzed. Therefore, we analyzed the global scientific knowledge in the field using informatics methods. The results showed that TLSs in cancer have received increasing attention since the 21st century, with an annual publication growth rate of 27.86%. Unsupervised hierarchical clustering based on machine learning further categorized the research features into four clusters, with the cluster related to immunotherapy being considered an emerging cluster. TLSs and immunotherapy were identified as the top two hotspots with the highest occurrence frequency and total link strength. The Walktrap algorithm indicated that "TLSs, carcinoma, prognostic value" and "high endothelial venules, germinal-centers, node-like structures" are important to TLSs but remain underexplored, representing promising research directions. These findings suggest that cancer-related TLSs have brought new insights into antitumor immunity, and targeting TLSs has the potential to transform the landscape of antitumor immunotherapy.
Collapse
Affiliation(s)
- Chengdong Yu
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Jiawei Xu
- Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Siyi Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Lei Tang
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Qinyuan Han
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengkui Sun
- Jiangxi Medical College, Nanchang University, Nanchang, China.
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China.
| |
Collapse
|
25
|
MacFawn IP, Magnon G, Gorecki G, Kunning S, Rashid R, Kaiza ME, Atiya H, Ruffin AT, Taylor S, Soong TR, Bao R, Coffman LG, Bruno TC. The activity of tertiary lymphoid structures in high grade serous ovarian cancer is governed by site, stroma, and cellular interactions. Cancer Cell 2024; 42:1864-1881.e5. [PMID: 39393357 DOI: 10.1016/j.ccell.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
Most high grade serous ovarian cancers (HGSOC) originate in the fallopian tube but spread to the ovary and peritoneal cavity, highlighting the need to understand antitumor immunity across HGSOC sites. Using spatial analyses, we discover that tertiary lymphoid structures (TLSs) within ovarian tumors are less developed compared with TLSs in fallopian tube or omental tumors. We reveal transcriptional differences across a spectrum of lymphoid structures, demonstrating that immune cell activity increases when residing in more developed TLSs and produce a prognostic, spatially derived TLS signature from HGSOC tumors. We interrogate TLS-adjacent stroma and assess how normal mesenchymal stem cells MSCs (nMSCs) may support B cell function and TLS, contrary to cancer-educated MSCs (CA-MSCs) which negate the prognostic benefit of our TLS signature, suggesting that pro-tumorigenic stroma could limit TLS formation.
Collapse
Affiliation(s)
- Ian P MacFawn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Grant Magnon
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Grace Gorecki
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sheryl Kunning
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Rufiaat Rashid
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Medard Ernest Kaiza
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Huda Atiya
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ayana T Ruffin
- Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Rinda Soong
- Magee Women's Research Institute, Pittsburgh, PA 15213, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Riyue Bao
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Lan G Coffman
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Magee Women's Research Institute, Pittsburgh, PA 15213, USA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Tumor Microenvironment Center, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
26
|
Ohno M, Kuramitsu S, Yamashita K, Nagasaka T, Haimoto S, Fujita M. Tumor-Infiltrating B Cells and Tissue-Resident Memory T Cells as Prognostic Indicators in Brain Metastases Derived from Gastrointestinal Cancers. Cancers (Basel) 2024; 16:3765. [PMID: 39594720 PMCID: PMC11591993 DOI: 10.3390/cancers16223765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Tumor-infiltrating B cells (TIBs) and tissue-resident memory T cells (TRMs) play significant roles in antitumor immunity. However, their prognostic relevance in brain metastases (BMs) derived from gastrointestinal (GI) cancers remains unclear. This study aimed to investigate the prognostic significance of TIBs and TRMs in GI cancer-derived BMs (GIBMs). METHODS Retrospective histopathological analyses were performed on surgically resected GIBM tissues from 13 patients. The densities of tumor-infiltrating lymphocytes (TIL) subsets (TIBs, CD4+ T cells, CD8+CD103+ TRMs, and CD8+CD103- non-TRMs) were quantified and correlated with clinical parameters and overall survival (OS) including the Graded Prognostic Assessment (GPA). RESULTS TIBs and CD4+ T cells were predominantly accumulated in the tumor stroma, particularly around blood vessels, where they formed lymphocyte clusters without characteristics of tertiary lymphoid structures (TLSs). In contrast, TRMs more deeply infiltrated into the tumor epithelium than their counterpart non-TRMs. Positive correlations were found between TIB density and both the prognostic prediction of GPA and overall survival (OS) after BM diagnosis or surgery. Furthermore, increased densities of TIBs and TRMs were associated with enhanced survival after BM diagnosis. CONCLUSIONS TIB and TRM densities in BM tissues could serve as reliable prognostic indicators for survival in patients with GIBMs. This study provides crucial insights for the development of novel immunotherapeutic strategies against this lethal disease.
Collapse
Affiliation(s)
- Masasuke Ohno
- Department of Neurosurgery, Aichi Cancer Center, Nagoya 464-8681, Japan
| | | | - Kimihiro Yamashita
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Toru Nagasaka
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Association of Medical Artificial Intelligence Curation, Nagoya 460-0008, Japan
| | - Shoichi Haimoto
- Department of Neurosurgery, Aichi Cancer Center, Nagoya 464-8681, Japan
| | - Mitsugu Fujita
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
- Center for Medical Education and Clinical Training, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
27
|
Sun G, Liu Y. Tertiary lymphoid structures in ovarian cancer. Front Immunol 2024; 15:1465516. [PMID: 39569184 PMCID: PMC11576424 DOI: 10.3389/fimmu.2024.1465516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Ovarian cancer (OC) is a significant cause of cancer-related mortality in women worldwide. Despite advances in treatment modalities, including surgery and chemotherapy, the overall prognosis for OC patients remains poor, particularly for patients with advanced or recurrent disease. Immunotherapy, particularly immune checkpoint blockade (ICB), has revolutionized cancer treatment in various malignancies but has shown limited efficacy in treating OC, which is primarily attributed to the immunologically. Tertiary lymphoid structures (TLSs), which are ectopic aggregates of immune cells, have emerged as potential mediators of antitumor immunity. This review explores the composition, formation, and induction of tumor associated TLS (TA-TLS) in OC, along with their role and therapeutic implications in disease development and treatment. By elucidating the roles TA-TLSs and their cellular compositions played in OC microenvironment, novel therapeutic targets may be identified to overcome immune suppression and enhance immunotherapy efficacy in ovarian cancer.
Collapse
Affiliation(s)
- Guojuan Sun
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- Department of Gynaecology and Obstetrics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
28
|
Shu DH, Ho WJ, Kagohara LT, Girgis A, Shin SM, Danilova L, Lee JW, Sidiropoulos DN, Mitchell S, Munjal K, Howe K, Bendinelli KJ, Kartalia E, Qi H, Mo G, Montagne J, Leatherman JM, Lopez-Vidal TY, Zhu Q, Huff AL, Yuan X, Hernandez A, Coyne EM, Zaidi N, Zabransky DJ, Engle LL, Ogurtsova A, Baretti M, Laheru D, Durham JN, Wang H, Sunshine JC, Johnston RJ, Deutsch JS, Taube JM, Anders RA, Jaffee EM, Fertig EJ, Yarchoan M. Immunotherapy response induces divergent tertiary lymphoid structure morphologies in hepatocellular carcinoma. Nat Immunol 2024; 25:2110-2123. [PMID: 39455893 DOI: 10.1038/s41590-024-01992-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
Tertiary lymphoid structures (TLS) are associated with improved response in solid tumors treated with immune checkpoint blockade, but understanding of the prognostic and predictive value of TLS and the circumstances of their resolution is incomplete. Here we show that in hepatocellular carcinoma treated with neoadjuvant immunotherapy, high intratumoral TLS density at the time of surgery is associated with pathologic response and improved relapse-free survival. In areas of tumor regression, we identify a noncanonical involuted morphology of TLS marked by dispersion of the B cell follicle, persistence of a T cell zone enriched for T cell-mature dendritic cell interactions and increased expression of T cell memory markers. Collectively, these data suggest that TLS can serve as both a prognostic and predictive marker of response to immunotherapy in hepatocellular carcinoma and that late-stage TLS may support T cell memory formation after elimination of a viable tumor.
Collapse
Affiliation(s)
- Daniel H Shu
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Luciane T Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander Girgis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah M Shin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ludmila Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jae W Lee
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dimitrios N Sidiropoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Mitchell
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kabeer Munjal
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn Howe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kayla J Bendinelli
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Emma Kartalia
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hanfei Qi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Guanglan Mo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Janelle Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - James M Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Tamara Y Lopez-Vidal
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Qingfeng Zhu
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Amanda L Huff
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Xuan Yuan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alexei Hernandez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Erin M Coyne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel J Zabransky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Logan L Engle
- Department of Dermatology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Aleksandra Ogurtsova
- Department of Dermatology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Marina Baretti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer N Durham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joel C Sunshine
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | | | - Julie Stein Deutsch
- Department of Dermatology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Janis M Taube
- Department of Dermatology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- The Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Robert A Anders
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Convergence Institute, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
29
|
Chen C, Han J, He Q, Yao Q, Wang X, Peng Z, Sun Y, Ji J, Xing X. Tumor-infiltrating immune cell profiles and changes associate with additional trastuzumab in preoperative chemotherapy for patients with HER2-positive gastric cancer. Br J Cancer 2024; 131:1463-1472. [PMID: 39313575 PMCID: PMC11519888 DOI: 10.1038/s41416-024-02835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND HER2(+) gastric cancer (GC) can benefit from trastuzumab. However, the impact of additional trastuzumab in preoperative treatment on immune cells remains largely unknown. METHODS In cohort I, immune cells were detected by immunohistochemistry in 1321 patients. Then 88 HER2(+) patients received preoperative therapy were collected as cohort II. Immune cell profiles and changes were analyzed in paired pre- and post-operative specimens using multiple immunohistochemistry staining. RESULTS In the treatment-naive GC patients (n = 1002), CD3+ and CD8+ T cell infiltration was significantly lower in the HER2(+) GC patients together with higher FoxP3+ T cells compared with HER2(-). However, FoxP3+ T and CD20+ B cell infiltration was significantly higher in HER2(+) GC after neoadjuvant chemotherapy (n = 319). The trastuzumab-exposed group had higher CD8+ T and lower FoxP3+ T cell infiltration and CD8+ T cell was even more significant in responders. Additionally, tertiary lymphoid structure (TLS) density increased in invasion margin of residual tumors. Patients with lower TLS in the tumor core or lower FoxP3+ T cells had better overall survival in the trastuzumab-exposed group. CONCLUSION Addition of trastuzumab modulates the immune microenvironment, suggesting the potential mechanism of the favorable outcome of anti-HER2 therapy and providing a theoretical rationale for the combinational immunotherapy in resectable HER2(+) GC patients.
Collapse
Affiliation(s)
- Cong Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Jing Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Qifei He
- Department of Orthopedics, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Qian Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Xueying Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Zuofu Peng
- Alpha X(Beijing) Biotech Co., Ltd., 102629, Beijing, China
| | - Yu Sun
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| | - Jiafu Ji
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| |
Collapse
|
30
|
Jia HQ, Zhang SP, Chen Y, Qiao YH, Yao YF, Zhang XY, Wu SY, Song YL, Xing XM. Characteristics and Significance of Tertiary Lymphoid Structures Based on Molecular Subtypes in Endometrial Cancer. Int J Gynecol Pathol 2024; 43:595-604. [PMID: 39418587 DOI: 10.1097/pgp.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The purpose of this study is to investigate the characteristics and significance of tertiary lymphoid structures (TLSs) in endometrial cancer (EC) based on molecular subtypes. A total of 220 patients with EC were retrospectively enrolled, including 20 with polymerase epsilon ultramutated (POLE-mut), 63 with mismatch repair deficient, 32 with p53 abnormal, and 105 with no specific molecular profile. The presence and maturity of TLSs were determined by immunohistochemical markers (CD3, CD20, CD21, and Bcl6). Disease-free survival served as the endpoint event. TLSs were found in 91 out of 220 patients (41.1%), with 68 located in peritumoral tissues and 37 exhibiting well-formed germinal center structures. The presence and different maturity of TLSs were closely associated with tumor-infiltrating lymphocytes and the programmed cell death ligand-1 expression. Moreover, TLSs displayed heterogeneity across different molecular subtypes. Notably, the TLSs, tumor-infiltrating lymphocytes, and expression of the programmed cell death ligand-1 were significantly enriched in POLE-mut EC. Multivariate logistic regression analysis showed the presence of TLSs (odds ratio: 3.483, 95% CI: 1.044-11.623, P = 0.042) as a potential predictor of POLE-mut EC. Kaplan-Meier survival curves revealed that molecular subtypes significantly stratified prognosis in patients with EC (P = 0.002), whereas TLSs did not. Multivariate Cox regression analysis indicated that The International Federation of Gynecology and Obstetrics stage and Ki-67 expression were independent prognostic factors affecting disease-free survival in patients with EC, and TLSs were not included. In conclusion, TLSs in EC exhibit heterogeneity based on molecular subtypes, necessitating further exploration to determine their clinical application value.
Collapse
Affiliation(s)
- Hui-Qing Jia
- Departments of Pathology, The Affiliated Hospital of Qingdao University, Qingdao (H.-Q.J., Y.C., Y.-H.Q., Y.-F.Y., X.-Y.Z., Y.-L.S., X.-M.X.); Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital) (S.-P.Z.), Qingdao; Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai (S.-Y.W.), Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
D’Orsi L, Capasso B, Lamacchia G, Pizzichini P, Ferranti S, Liverani A, Fontana C, Panunzi S, De Gaetano A, Lo Presti E. Recent Advances in Artificial Intelligence to Improve Immunotherapy and the Use of Digital Twins to Identify Prognosis of Patients with Solid Tumors. Int J Mol Sci 2024; 25:11588. [PMID: 39519142 PMCID: PMC11546512 DOI: 10.3390/ijms252111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
To date, the public health system has been impacted by the increasing costs of many diagnostic and therapeutic pathways due to limited resources. At the same time, we are constantly seeking to improve these paths through approaches aimed at personalized medicine. To achieve the required levels of diagnostic and therapeutic precision, it is necessary to integrate data from different sources and simulation platforms. Today, artificial intelligence (AI), machine learning (ML), and predictive computer models are more efficient at guiding decisions regarding better therapies and medical procedures. The evolution of these multiparametric and multimodal systems has led to the creation of digital twins (DTs). The goal of our review is to summarize AI applications in discovering new immunotherapies and developing predictive models for more precise immunotherapeutic decision-making. The findings from this literature review highlight that DTs, particularly predictive mathematical models, will be pivotal in advancing healthcare outcomes. Over time, DTs will indeed bring the benefits of diagnostic precision and personalized treatment to a broader spectrum of patients.
Collapse
Affiliation(s)
- Laura D’Orsi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Biagio Capasso
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Giuseppe Lamacchia
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Paolo Pizzichini
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Sergio Ferranti
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Andrea Liverani
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Costantino Fontana
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Simona Panunzi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Andrea De Gaetano
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
- Department of Biomatics, Óbuda University, Bécsi Road 96/B, H-1034 Budapest, Hungary
| | - Elena Lo Presti
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
| |
Collapse
|
32
|
Rugh KM, Ashton LV, Schaffer PA, Olver CS. Lymphoid Aggregates in Canine Cutaneous and Subcutaneous Sarcomas: Immunohistochemical and Gene Expression Evidence for Tertiary Lymphoid Structures. Vet Comp Oncol 2024. [PMID: 39462771 DOI: 10.1111/vco.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Canine cutaneous/subcutaneous soft-tissue sarcomas (STS) are diversely derived mesenchymal neoplasms with a risk of recurrence and/or metastasis depending on the extent of surgical excision and histologic grade. Lymphoid aggregates (LAs) are often described in these tumours but not characterised. In humans, LA characterised as tertiary lymphoid structures (TLSs) improve the prognosis of many tumours, including sarcomas. We sought to determine if LA meeting a size criterion (> 700 cells) in canine sarcomas met the criteria of TLS and the overall prevalence of LA of any size. RNA expression in large LAs versus aggregate-adjacent sarcoma tissue (AAS) was measured in laser capture microdissected tissue and compared to curl-derived RNA from aggregate-free sarcomas and lymph nodes. CD3, CD20, MUM-1 and PNAd expressions were measured using immunohistochemistry. CD20 and CD3 mRNA were more highly expressed in LA versus AAS (13.8 fold, p = 0.0003 and 2.3 fold, p = 0.043). This was supported by the IHC findings. The large LAs were also enriched in chemokine RNA expression characteristic of TLS (CXCR5 5.8 fold, p < 00001, CCL19 3.68 fold, p = 0.0209, CCL21 6.87 fold, p = 0.0209 and CXCL13 2.68 fold, p = 0.0924). Plasma cells and high endothelial venules were identified in LA containing tumours but not in control tissue. Large LAs were present in 12% of tumours, and LA of any size in 30%. We conclude that large LAs in canine STS are consistent with TLS.
Collapse
|
33
|
Wang Y, Cheng X, Li W, Zhang H. Study on correlation between CXCL13 and prognosis and immune characteristics of ovarian cancer. Medicine (Baltimore) 2024; 103:e40272. [PMID: 39470479 PMCID: PMC11521060 DOI: 10.1097/md.0000000000040272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Ovarian cancer (OC) has a limited immunotherapeutic response; hence, this study aimed to investigate the relationship between CXC-chemokine ligand 13 (CXCL13) expression and overall survival (OS) rate, key immune pathways, degree of immune cell infiltration, and progressive disease (PD)-1 checkpoint blockade. A total of 703 differentially expressed genes were obtained from "The Cancer Genome Atlas" (TCGA) database based on the immune and stromal scores of 379 OC patients for getting the targeted gene CXCL13. The association between CXCL13 and OS in OC patients, biological function annotation of CXCL13, and its correlation with immune components were assessed. The results indicated that upregulated CXCL13 expression was positively correlated with better OC patient prognosis. CXCL13 expression was associated with 6 immune-related pathways, 10 immune cells, and PD-1 expression of OC micro-environment. Moreover, high expression of CXCL13 was related to a better tumor response and more extended tumor-stable stage after PD-1 blocking therapy in IMvigor210. The study concluded that CXCL13 could be a prognostic marker and a potential immunotherapy target for OC patients, especially PD-1 checkpoint blockade.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Gynecology and Obstetrics, Hua Zhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xin Cheng
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wan Li
- Department of Gynecology and Obstetrics, Hua Zhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Hongmei Zhang
- Department of Gynecology and Obstetrics, Hua Zhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
34
|
Zhang X, Yao J, Xie M, Liang Y, Lin X, Song J, Bao X, Ma X, Wang Y, Zhang Y, Liu Y, Han W, Pan L, Xue X. Tertiary lymphoid structures as potential biomarkers for cancer prediction and prognosis. Int Immunopharmacol 2024; 140:112790. [PMID: 39088920 DOI: 10.1016/j.intimp.2024.112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates formed in non-lymphoid tissues, including cancers, and are loci for the generation of in situ anti-tumor immune responses, which play a crucial role in cancer control. The state of TLS presence in cancer and its composition can significantly impact the treatment response and prognosis of patients. TLSs have the potential to serve as predictive and prognostic biomarkers for cancer. However, the mechanisms underlying TLS formation in cancer and how the essential components of TLSs affect cancer are not fully understood. In this review, we summarized TLS formation in cancer, the value of the TLS in different states of existence, and its key constituents for cancer prediction and prognosis. Finally, we discussed the impact of cancer treatment on TLSs.
Collapse
Affiliation(s)
- Xin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jialin Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xinyu Bao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shanxi, 710038, China
| | - Yinguang Zhang
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yiming Liu
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Wenya Han
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Xinying Xue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China; Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
35
|
Deng S, Yang X, He L, Hou Y, Meng H. Tertiary Lymphoid Structures in Microorganism-Related Cancer. Cancers (Basel) 2024; 16:3464. [PMID: 39456558 PMCID: PMC11505735 DOI: 10.3390/cancers16203464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid tissues formed by the accumulation of lymphocytes and other components outside lymphoid organs. They have been shown to be widespread in cancers and have predictive effects on prognosis and immunotherapy efficacy; however, there is no standardized measurement guide. This paper provides a reference for future research. Moreover, the induction strategy for the formation mechanism of TLSs is a new direction for future cancer treatment, such as cancer vaccines for microorganisms. The effects of microorganisms on cancer are dual. The role of microorganisms, including bacteria, parasites, viruses, and fungi, in promoting cancer has been widely confirmed. However, the specific mechanism of their tumor suppressor effect, particularly the promotion of TLS formation, is currently unknown. In this review, we summarize the role of TLSs in cancer related to microbial infection and provide new ideas for further understanding their mechanisms of action in cancer.
Collapse
Affiliation(s)
- Shuzhe Deng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150086, China;
| | - Xinxin Yang
- Precision Medical Center, Harbin Medical University Cancer Hospital, Harbin 150086, China; (X.Y.); (Y.H.)
| | - Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin 150000, China;
| | - Yunjing Hou
- Precision Medical Center, Harbin Medical University Cancer Hospital, Harbin 150086, China; (X.Y.); (Y.H.)
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin 150086, China;
- Precision Medical Center, Harbin Medical University Cancer Hospital, Harbin 150086, China; (X.Y.); (Y.H.)
| |
Collapse
|
36
|
Reste M, Ajazi K, Sayi-Yazgan A, Jankovic R, Bufan B, Brandau S, Bækkevold ES, Petitprez F, Lindstedt M, Adema GJ, Almeida CR. The role of dendritic cells in tertiary lymphoid structures: implications in cancer and autoimmune diseases. Front Immunol 2024; 15:1439413. [PMID: 39483484 PMCID: PMC11526390 DOI: 10.3389/fimmu.2024.1439413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are organized aggregates of immune cells such as T cells, B cells, and Dendritic Cells (DCs), as well as fibroblasts, formed postnatally in response to signals from cytokines and chemokines. Central to the function of TLS are DCs, professional antigen-presenting cells (APCs) that coordinate the adaptive immune response, and which can be classified into different subsets, with specific functions, and markers. In this article, we review current data on the contribution of different DC subsets to TLS function in cancer and autoimmunity, two opposite sides of the immune response. Different DC subsets can be found in different tumor types, correlating with cancer prognosis. Moreover, DCs are also present in TLS found in autoimmune and inflammatory conditions, contributing to disease development. Broadly, the presence of DCs in TLS appears to be associated with favorable clinical outcomes in cancer while in autoimmune pathologies these cells are associated with unfavorable prognosis. Therefore, it is important to analyze the complex functions of DCs within TLS in order to enhance our fundamental understanding of immune regulation but also as a possible route to create innovative clinical interventions designed for the specific needs of patients with diverse pathological diseases.
Collapse
Affiliation(s)
- Mariana Reste
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Kristi Ajazi
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ayca Sayi-Yazgan
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Radmila Jankovic
- Faculty of Medicine, Institute of Pathology, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Espen S. Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Florent Petitprez
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Gosse J. Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Catarina R. Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
37
|
Chen X, Wu P, Liu Z, Li T, Wu J, Zeng Z, Guo W, Xiong W. Tertiary lymphoid structures and their therapeutic implications in cancer. Cell Oncol (Dordr) 2024; 47:1579-1592. [PMID: 39133439 DOI: 10.1007/s13402-024-00975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2024] [Indexed: 08/13/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid aggregates formed by the structured accumulation of immune cells such as B cells and T cells in non-lymphoid tissues induced by infection, inflammation, and tumors. They play a crucial role in the immune response, particularly in association with tumor development, where they primarily exert anti-tumor immune functions during tumorigenesis. Current research suggests that TLSs inhibit tumor growth by facilitating immune cell infiltration and are correlated with favorable prognosis in various solid tumors, serving as an indicator of immunotherapy effectiveness to some extent. Therefore, TLSs hold great promise as a valuable biomarker. Most importantly, immunotherapies aimed to prompting TLSs formation are anticipated to be potent adjuncts to current cancer treatment. This review focuses on the formation process of TLSs and their potential applications in cancer therapy.
Collapse
Affiliation(s)
- Xun Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ziqi Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Tiansheng Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenjia Guo
- Departments of Cancer Research Institute, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China.
- Xinjiang Key Laboratory of Translational Biomedical Engineering, Urumqi, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
38
|
Chen Y, Sun Z, Yin J, Ahmad MU, Zhou Z, Feng W, Yang F, Zhou K, Xie J, Bie C, Chen H, Jiang Y. Digital assessment of tertiary lymphoid structures and therapeutic responses in gastric cancer: a multicentric retrospective study. Int J Surg 2024; 110:6732-6747. [PMID: 38884256 PMCID: PMC11486929 DOI: 10.1097/js9.0000000000001834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) are associated with favorable prognosis and enhanced response to anticancer therapy. A digital assessment of TLSs could provide an objective alternative that mitigates variability inherent in manual evaluation. This study aimed to develop and validate a digital gene panel based on biological prior knowledge for assessment of TLSs, and further investigate its associations with survival and multiple anticancer therapies. MATERIALS AND METHODS The present study involved 1704 patients with gastric cancer from seven cancer centers. TLSs were identified morphologically through hematoxylin-and-eosin staining. The authors further developed a digital score based on targeted gene expression profiling to assess TLSs status, recorded as gene signature of tertiary lymphoid structures (gsTLS). For enhanced interpretability, we employed the SHapley Additive exPlanation (SHAP) analysis to elucidate its contribution to the prediction. The authors next evaluated the signature's associations with prognosis, and investigated its predictive accuracy for multiple anticancer therapies, including adjuvant chemotherapy and immunotherapy. RESULTS The gsTLS panel with nine gene features achieved high accuracies in predicting TLSs status in the training, internal, and external validation cohorts (area under the curve, range: 0.729-0.791). In multivariable analysis, gsTLS remained an independent predictor of disease-free and overall survival (hazard ratio, range: 0.346-0.743, all P <0.05) after adjusting for other clinicopathological variables. SHAP analysis highlighted gsTLS as the strongest predictor of TLSs status compared with clinical features. Importantly, patients with high gsTLS (but not those with low gsTLS) exhibited substantial benefits from adjuvant chemotherapy ( P <0.05). Furthermore, the authors found that the objective response rate to antiprogrammed cell death protein 1 (anti-PD-1) immunotherapy was significantly higher in the high-gsTLS group (40.7%) versus the low-gsTLS group (5.6%, P =0.036), and the diagnosis was independent from Epstein-Barr virus, tumor mutation burden, and programmed cell death-ligand 1 (PD-L1) expression. CONCLUSION The gsTLS digital panel enables accurate assessment of TLSs status, and provides information regarding prognosis and responses to multiple therapies for gastric cancer.
Collapse
Affiliation(s)
- Yan Chen
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Zepang Sun
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junmei Yin
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - M. Usman Ahmad
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zixia Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wanying Feng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Yang
- Department of Computer Science, Wake Forest University, Winston Salem
| | - Kangneng Zhou
- College of Computer Science, Nankai University, Tianjin, People’s Republic of China
| | - Jingjing Xie
- Graduate Group of Epidemiology, University of California Davis, Davis, California USA
| | - Caiqun Bie
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Hongzhuan Chen
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
39
|
Xie M, Lin X, Bao X, Liang Y, Deng H, Song J, Ma X, Zhang X, Yao J, Pan L, Xue X. Tertiary Lymphoid Structure in Tumor Microenvironment and Immunotherapy of Lung Cancer. Arch Bronconeumol 2024; 60 Suppl 2:S77-S85. [PMID: 39174437 DOI: 10.1016/j.arbres.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024]
Abstract
Immune checkpoint inhibitors have opened an era of lung cancer therapy. However, a notable disparity exists in the efficacy of immunotherapy among individual patients. The tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregation that appears under pathological conditions and is the primary site of action for anti-tumor immunity. It is commonly reported that the presence of TLS within the tumor microenvironment (TME) relates to a favorable clinical prognosis and an excellent response to immunotherapy in lung cancer patients. A thorough understanding of TLS and its dynamic changes in TME has become an attractive focus for optimizing immunotherapy strategies for lung cancer. In this review, we comprehensively generalize the composition, formation, mechanism, detection methods of TLS, and summarize the role of TLS in lung cancer immunotherapy. Finally, induction of TLS is also discussed, which may provide more effective therapeutic strategies for lung cancer therapy.
Collapse
Affiliation(s)
- Mei Xie
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Hui Deng
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Jialin Song
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, People's Republic of China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China.
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China.
| |
Collapse
|
40
|
Calvanese AL, Cecconi V, Stäheli S, Schnepf D, Nater M, Pereira P, Gschwend J, Heikenwälder M, Schneider C, Ludewig B, Silina K, van den Broek M. Sustained innate interferon is an essential inducer of tertiary lymphoid structures. Eur J Immunol 2024; 54:e2451207. [PMID: 38980268 DOI: 10.1002/eji.202451207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Tertiary lymphoid structures (TLS) resemble follicles of secondary lymphoid organs and develop in nonlymphoid tissues during inflammation and cancer. Which cell types and signals drive the development of TLS is largely unknown. To investigate early events of TLS development in the lungs, we repeatedly instilled p(I:C) plus ovalbumin (Ova) intranasally. This induced TLS ranging from lymphocytic aggregates to organized and functional structures containing germinal centers. We found that TLS development is independent of FAP+ fibroblasts, alveolar macrophages, or CCL19 but crucially depends on type I interferon (IFN-I). Mechanistically, IFN-I initiates two synergistic pathways that culminate in the development of TLS. On the one hand, IFN-I induces lymphotoxin (LT)α in lymphoid cells, which stimulate stromal cells to produce the B-cell-attracting chemokine CXCL13 through LTβR-signaling. On the other hand, IFN-I is sensed by stromal cells that produce the T-cell-attracting chemokines CXCL9, CXCL10 as well as CCL19 and CCL21 independently of LTβR. Consequently, B-cell aggregates develop within a week, whereas follicular dendritic cells and germinal centers appear after 3 weeks. Thus, sustained production of IFN-I together with an antigen is essential for the induction of functional TLS in the lungs.
Collapse
Affiliation(s)
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Severin Stäheli
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany
| | - Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Karina Silina
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
41
|
Huang H, Zhao G, Wang T, You Y, Zhang T, Chen X, Dong J, Gong L, Shang X, Cao F, Tang P, Jiang H, Wang P, Pang Q, Yan C, Zhang W. Survival benefit and spatial properties of tertiary lymphoid structures in esophageal squamous cell carcinoma with neoadjuvant therapies. Cancer Lett 2024; 601:217178. [PMID: 39142497 DOI: 10.1016/j.canlet.2024.217178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Tertiary lymphoid structures (TLSs) were associated with survival in esophageal squamous cell carcinoma (ESCC) undergoing surgery alone (SA). However, their clinical relevance in neoadjuvant therapies remains less known. Here, we firstly investigated the presence, maturation and spatial distribution of TLSs in 359 ESCC patients receiving neoadjuvant chemotherapy (NCT), neoadjuvant immunotherapy (NCI), neoadjuvant chemoradiotherapy (NCRT) or SA. We found mature TLS (MTLS) was an independent prognostic factor in ESCC. NCI group had the lowest immature TLS cases. NCRT group had the lowest MTLSs. MTLSs mostly located in stromal and normal compartments; these MTLSs were positively correlated with neoadjuvant therapy outcomes. NCI group displayed the highest T cells within 150 μm proximity of TLSs among the four groups. Most T cells were dispersed up to more than 150 μm from TLSs, while B cells remained concentrated within TLSs. Innate lymphoid cells and follicular dendritic cells infiltrated and connected with survival differently in NCRT and NCI groups compared with SA group. The novel PD-L1 combined positive score, NCPS, was positively connected with MTLSs and neoadjuvant therapy efficacy. ScRNA-seq analysis revealed TLS+ tumors had increased plasma cells, B cells, Th17, Tfh and Th1, and elevated exhausted CD8+ T cells that highly expressed checkpoint molecules and granzymes. Conclusively, MTLSs favored treatment outcome in ESCC patients receiving multiple neoadjuvant therapies. The spatial distribution of MTLSs was associated with multiregional immune status modified by the neoadjuvant therapies.
Collapse
Affiliation(s)
- Hui Huang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tierun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yi You
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Dong
- Department of Nutrition Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaobin Shang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fuliang Cao
- Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hongjing Jiang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
42
|
Deng M, Liu X, Jiang Y, Luo R, Xu L, Zhang X, Su J, Xu C, Hou Y. Tertiary lymphoid structures' pattern and prognostic value in primary adenocarcinoma of jejunum and ileum. World J Surg Oncol 2024; 22:261. [PMID: 39350287 PMCID: PMC11441114 DOI: 10.1186/s12957-024-03543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
To date, there have been no reports on tertiary lymphoid structures (TLS) in primary adenocarcinoma of jejunum and ileum. In this study, we employed digital pathology image analysis software to classify and quantify TLS, and evaluated the maturity of TLS using immunohistochemistry. Molecular genetics and immunotherapy biomarker detection were performed using next-generation sequencing technology, such as tumor mutational burden (TMB) and microsatellite instability (MSI). The aim of this study was to investigate the presence, location, maturity, association with immunotherapy biomarkers, and prognostic value of TLS in primary adenocarcinoma of jejunum and ileum. Compared to secondary follicle-like TLS (SFL-TLS), intra-tumoral TLS (IT-TLS) were more likely to manifest as early TLS (E-TLS) (P = 0.007). Compared to IT-TLS, SFL-TLS had a higher propensity to occur at the invasive margin (IM) (P = 0.032) and showed a trend towards being more prevalent at the tumor periphery (P = 0.057). In terms of immunotherapy biomarkers, there was a higher trend of IM-TLS density in PD-L1(22C3) score CPS < 1 group compared to PD-L1(22C3) score CPS ≥ 1 group (P = 0.071). TMB-H was significantly associated with MSI-H (P = 0.040). Univariate survival analysis demonstrated a correlation between high SFL-TLS group and prolonged disease free survival (DFS) (P = 0.047). There was also a trend towards prolonged DFS in the E-TLS-high group compared to the E-TLS-low group (P = 0.069). The peri-tumoral TLS (PT-TLS)-high group showed a trend of prolonged overall survival (OS) compared to the PT-TLS-low group (P = 0.090). In conclusion, the majority of TLS were located at the invasive margin and tumor periphery, predominantly consisting of mature TLS, while IT-TLS were mainly immature. Notably, TMB was closely associated with MSI and PD-L1, indicating potential predictive value for immunotherapy in primary adenocarcinoma of jejunum and ileum.
Collapse
Affiliation(s)
- Minying Deng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Liu
- Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
43
|
Li J, Xu H, Han J, Sun P, Zhang X, Wang H, Bian T, Xu Q, Ji J, Huang J. Lymphocyte Function in Tertiary Lymphoid Structures Predicts Hepatocellular Carcinoma Outcome. J Transl Med 2024; 104:102144. [PMID: 39343010 DOI: 10.1016/j.labinv.2024.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
An increasing number of studies have revealed a correlation between tertiary lymphoid structures (TLSs) and the outcome of hepatocellular carcinoma (HCC). Nevertheless, the associations between the heterogeneity of cellular composition and the overall survival (OS) in HCC remain unexplored. Here, we evaluated the cancer tissues from 150 HCC individuals using multiplex immunofluorescence to determine the presence and characteristics of TLS and to investigate the relationship between intra-TLS immunologic activity, TLS maturation, and intratumoral immune cell infiltration. Prognostic factors influencing the outcome were identified through both univariate and multivariate analyses. Additionally, the levels of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death 1, programmed death-ligand 1, and lymphocyte activation gene-3 were determined, as well as their relationship with TLS features were determined. TLS was detected in 71 (47.3%) of the 150 HCC cases and was related to higher intratumoral infiltration levels of lymphocytes. Additionally, intra-TLS lymphocyte proliferation correlated with that of intratumoral lymphocytes, and the presence of TLS and a high proportion of mature TLS demonstrated a significant correlation with better prognosis (P = .013 and P = .03, respectively). Among TLS-positive tumors, a high proportion of B cells expressing activation-induced cytidine deaminase and a high proportion of CD8+ T cells expressing CD45RO were significantly related to improved OS (P = .01 and P < .001, respectively). Comparatively, a high proportion of CD21+CD20+ B cells demonstrated a significant correlation with poorer OS (P < .001). A markedly reduced number of CTLA-4+ cells in the stromal regions in TLS-negative tumors was observed compared with TLS-positive tumors (P = .01). These findings reveal a correlation between TLS presence and improved OS in HCC patients. However, TLS exhibited significant variation in maturation state, T- and B-cell proliferation, and expression of markers related to B- and T-cell function. Notably, these characteristics were also found to possess prognostic significance, indicating that certain TLS might hinder tumor immunity by inhibiting immune cells, whereas others may foster antigen-driven immune responses, likely influenced by the composition and functional status of intra-TLS lymphocytes.
Collapse
Affiliation(s)
- Jieying Li
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China
| | - Haiyan Xu
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China
| | - Jiayi Han
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China
| | - Pingping Sun
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China
| | - Xiaojing Zhang
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China
| | - Hui Wang
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China
| | - Tongyao Bian
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China
| | - Qiang Xu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Juling Ji
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China.
| | - Jianfei Huang
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Pathology, Medical School of Nantong University, Jiangsu, China.
| |
Collapse
|
44
|
Berthe J, Poudel P, Segerer FJ, Jennings EC, Ng F, Surace M, Andoni A, Testori M, Saraiya M, Vuko M, Hessel H, Heininen-Brown M, Blando J, Jones EV, Willis SE, Galon J, van de Ven R, de Gruijl TD, Angell HK. Exploring the impact of tertiary lymphoid structures maturity in NSCLC: insights from TLS scoring. Front Immunol 2024; 15:1422206. [PMID: 39376565 PMCID: PMC11457083 DOI: 10.3389/fimmu.2024.1422206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Tertiary Lymphoid Structures (TLS) are lymphoid structures commonly associated with improved survival of cancer patients and response to immunotherapies. However, conflicting reports underscore the need to consider TLS heterogeneity and multiple features such as TLS size, composition, and maturation status, when assessing their functional impact. With the aim of gaining insights into TLS biology and evaluating the prognostic impact of TLS maturity in Non-Small Cell Lung Carcinoma (NSCLC), we developed a multiplex immunofluorescent (mIF) panel including T cell (CD3, CD8), B cell (CD20), Follicular Dendritic cell (FDC) (CD21, CD23) and mature dendritic cell (DC-LAMP) markers. We deployed this panel across a cohort of primary tumor resections from NSCLC patients (N=406) and established a mIF image analysis workstream to specifically detect TLS structures and evaluate the density of each cell phenotype. We assessed the prognostic significance of TLS size, number, and composition, to develop a TLS scoring system representative of TLS biology within a tumor. TLS relative area, (total TLS area divided by the total tumor area), was the most prognostic TLS feature (C-index: 0.54, p = 0.04). CD21 positivity was a marker driving the favorable prognostic impact, where CD21+ CD23- B cells (C-index: 0.57, p = 0.04) and CD21+ CD23- FDC (C-index: 0.58, p = 0.01) were the only prognostic cell phenotypes in TLS. Combining the three most robust prognostic TLS features: TLS relative area, the density of B cells, and FDC CD21+ CD23- we generated a TLS scoring system that demonstrated strong prognostic value in NSCLC when considering the effect of age, sex, histology, and smoking status. This TLS Score also demonstrated significant association with Immunoscore, EGFR mutational status and gene expression-based B-cell and TLS signature scores. It was not correlated with PD-L1 status in tumor cells or immune cells. In conclusion, we generated a prognostic TLS Score representative of the TLS heterogeneity and maturity undergoing within NSCLC tissues. This score could be used as a tool to explore how TLS presence and maturity impact the organization of the tumor microenvironment and support the discovery of spatial biomarker surrogates of TLS maturity, that could be used in the clinic.
Collapse
Affiliation(s)
- Julie Berthe
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pawan Poudel
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Felix J. Segerer
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Emily C. Jennings
- Oncology Data Science, Oncology R&D, AstraZeneca, Waltham, MA, United States
| | - Felicia Ng
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael Surace
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Alma Andoni
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marco Testori
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Megha Saraiya
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Miljenka Vuko
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | - Harald Hessel
- Computational Pathology, Oncology R&D, AstraZeneca, Munich, Germany
| | | | - Jorge Blando
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Emma V. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sophie E. Willis
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, France
- Sorbonne Université, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Rieneke van de Ven
- Department of Otolaryngology, Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Theme, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Tanja D. de Gruijl
- Cancer Center Amsterdam, Cancer Biology and Immunology Theme, Amsterdam, Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helen K. Angell
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
45
|
Kludt C, Wang Y, Ahmad W, Bychkov A, Fukuoka J, Gaisa N, Kühnel M, Jonigk D, Pryalukhin A, Mairinger F, Klein F, Schultheis AM, Seper A, Hulla W, Brägelmann J, Michels S, Klein S, Quaas A, Büttner R, Tolkach Y. Next-generation lung cancer pathology: Development and validation of diagnostic and prognostic algorithms. Cell Rep Med 2024; 5:101697. [PMID: 39178857 PMCID: PMC11524894 DOI: 10.1016/j.xcrm.2024.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors. In this study, we develop a clinically useful computational pathology platform for NSCLC that can be a foundation for multiple downstream applications and provide immediate value for patient care optimization and individualization. We train the primary multi-class tissue segmentation algorithm on a substantial, high-quality, manually annotated dataset of whole-slide images with lung adenocarcinoma and squamous cell carcinomas. We investigate two downstream applications. NSCLC subtyping algorithm is trained and validated using a large, multi-institutional (n = 6), multi-scanner (n = 5), international cohort of NSCLC cases (slides/patients 4,097/1,527). Moreover, we develop four AI-derived, fully explainable, quantitative, prognostic parameters (based on tertiary lymphoid structure and necrosis assessment) and validate them for different clinical endpoints. The computational platform enables the high-precision, quantitative analysis of H&E-stained slides. The developed prognostic parameters facilitate robust and independent risk stratification of patients with NSCLC.
Collapse
Affiliation(s)
- Carina Kludt
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Yuan Wang
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Waleed Ahmad
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa 296-0041, Japan; Department of Pathology Informatics, Nagasaki University, Nagasaki 852-8131, Japan
| | - Junya Fukuoka
- Department of Pathology, Kameda Medical Center, Kamogawa 296-0041, Japan; Department of Pathology Informatics, Nagasaki University, Nagasaki 852-8131, Japan
| | - Nadine Gaisa
- Institute of Pathology, University Hospital Aachen, 52074 Aachen, Germany; Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Mark Kühnel
- Institute of Pathology, University Hospital Aachen, 52074 Aachen, Germany
| | - Danny Jonigk
- Institute of Pathology, University Hospital Aachen, 52074 Aachen, Germany; German Center for Lung Research, DZL, BREATH, 30625 Hanover, Germany
| | - Alexey Pryalukhin
- Institute of Clinical Pathology and Molecular Pathology, Wiener Neustadt State Hospital, 2700 Wiener Neustadt, Austria
| | - Fabian Mairinger
- Institute of Pathology, University Hospital Essen, 45147 Essen, Germany
| | - Franziska Klein
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany
| | - Anne Maria Schultheis
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany; Medical Faculty University of Cologne, 50937 Cologne, Germany
| | - Alexander Seper
- Institute of Clinical Pathology and Molecular Pathology, Wiener Neustadt State Hospital, 2700 Wiener Neustadt, Austria; Danube Private University, 3500 Krems an der Donau, Austria
| | - Wolfgang Hulla
- Institute of Clinical Pathology and Molecular Pathology, Wiener Neustadt State Hospital, 2700 Wiener Neustadt, Austria
| | - Johannes Brägelmann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, 50937 Cologne, Germany; Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, 50937 Cologne, Germany
| | - Sebastian Michels
- University of Cologne, Faculty of Medicine and University Hospital of Colone, Lung Cancer Group Cologne, Department I for Internal Medicine and Center for Integrated Oncology Aachen Bonn Cologne Dusseldorf, 50937 Cologne, Germany
| | - Sebastian Klein
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany; Medical Faculty University of Cologne, 50937 Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany; Medical Faculty University of Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany; Medical Faculty University of Cologne, 50937 Cologne, Germany.
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Cologne, 50937 Cologne, Germany; Medical Faculty University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
46
|
Sati S, Huang J, Kersh AE, Jones P, Ahart O, Murphy C, Prouty SM, Hedberg ML, Jain V, Gregory SG, Leung DH, Seykora JT, Rosenbach M, Leung TH. Recruitment of CXCR4+ type 1 innate lymphoid cells distinguishes sarcoidosis from other skin granulomatous diseases. J Clin Invest 2024; 134:e178711. [PMID: 39225100 PMCID: PMC11364400 DOI: 10.1172/jci178711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
Sarcoidosis is a multiorgan granulomatous disease that lacks diagnostic biomarkers and targeted treatments. Using blood and skin from patients with sarcoid and non-sarcoid skin granulomas, we discovered that skin granulomas from different diseases exhibit unique immune cell recruitment and molecular signatures. Sarcoid skin granulomas were specifically enriched for type 1 innate lymphoid cells (ILC1s) and B cells and exhibited molecular programs associated with formation of mature tertiary lymphoid structures (TLSs), including increased CXCL12/CXCR4 signaling. Lung sarcoidosis granulomas also displayed similar immune cell recruitment. Thus, granuloma formation was not a generic molecular response. In addition to tissue-specific effects, patients with sarcoidosis exhibited an 8-fold increase in circulating ILC1s, which correlated with treatment status. Multiple immune cell types induced CXCL12/CXCR4 signaling in sarcoidosis, including Th1 T cells, macrophages, and ILCs. Mechanistically, CXCR4 inhibition reduced sarcoidosis-activated immune cell migration, and targeting CXCR4 or total ILCs attenuated granuloma formation in a noninfectious mouse model. Taken together, our results show that ILC1s are a tissue and circulating biomarker that distinguishes sarcoidosis from other skin granulomatous diseases. Repurposing existing CXCR4 inhibitors may offer a new targeted treatment for this devastating disease.
Collapse
Affiliation(s)
- Satish Sati
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jianhe Huang
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anna E. Kersh
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Parker Jones
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Olivia Ahart
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Christina Murphy
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen M. Prouty
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew L. Hedberg
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | | | - John T. Seykora
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Misha Rosenbach
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas H. Leung
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Teillaud JL, Houel A, Panouillot M, Riffard C, Dieu-Nosjean MC. Tertiary lymphoid structures in anticancer immunity. Nat Rev Cancer 2024; 24:629-646. [PMID: 39117919 DOI: 10.1038/s41568-024-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Tertiary lymphoid structures (TLS) are transient ectopic lymphoid aggregates where adaptive antitumour cellular and humoral responses can be elaborated. Initially described in non-small cell lung cancer as functional immune lymphoid structures associated with better clinical outcome, TLS have also been found in many other carcinomas, as well as melanomas and sarcomas, and associated with improved response to immunotherapy. The manipulation of TLS as a therapeutic strategy is now coming of age owing to the likely role of TLS in the improved survival of patients with cancer receiving immune checkpoint inhibitor treatment. TLS have also garnered considerable interest as a predictive biomarker of the response to antitumour therapies, including immune checkpoint blockade and, possibly, chemotherapy. However, several important questions still remain regarding the definition of TLS in terms of both their cellular composition and functions. Here, we summarize the current views on the composition of TLS at different stages of their development. We also discuss the role of B cells and T cells associated with TLS and their dialogue in mounting antibody and cellular antitumour responses, as well as some of the various mechanisms that negatively regulate antitumour activity of TLS. The prognostic value of TLS to the clinical outcome of patients with cancer and the relationship between TLS and the response to therapy are then addressed. Finally, we present some preclinical evidence that favours the idea that manipulating the formation and function of TLS could lead to a potent next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Teillaud
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Ana Houel
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Transgene, Illkirch-Graffenstaden, France
| | - Marylou Panouillot
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
- Sanofi, Vitry-sur-Seine, France
| | - Clémence Riffard
- Sorbonne University UMRS1135, Paris, France
- Inserm U1135, Paris, France
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Sorbonne University UMRS1135, Paris, France.
- Inserm U1135, Paris, France.
- Center of Immunology and Microbial Infections (Cimi), Faculty of Health, Paris, France.
| |
Collapse
|
48
|
Niu L, Chen T, Yang A, Yan X, Jin F, Zheng A, Song X. Macrophages and tertiary lymphoid structures as indicators of prognosis and therapeutic response in cancer patients. Biochim Biophys Acta Rev Cancer 2024; 1879:189125. [PMID: 38851437 DOI: 10.1016/j.bbcan.2024.189125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Tertiary lymphoid structures (TLS) can reflect cancer prognosis and clinical outcomes in various tumour tissues. Tumour-associated macrophages (TAMs) are indispensable components of the tumour microenvironment and play crucial roles in tumour development and immunotherapy. TAMs are associated with TLS induction via the modulation of the T cell response, which is a major component of the TLS. Despite their important roles in cancer immunology, the subtypes of TAMs that influence TLS and their correlation with prognosis are not completely understood. Here, we provide novel insights into the role of TAMs in regulating TLS formation. Furthermore, we discuss the prognostic value of these TAM subtypes and TLS, as well as the current antitumour therapies for inducing TLS. This study highlights an entirely new field of TLS regulation that may lead to the development of an innovative perspective on immunotherapy for cancer treatment.
Collapse
Affiliation(s)
- Li Niu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aodan Yang
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Xiwen Yan
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|
49
|
Chen J, Larsson L, Swarbrick A, Lundeberg J. Spatial landscapes of cancers: insights and opportunities. Nat Rev Clin Oncol 2024; 21:660-674. [PMID: 39043872 DOI: 10.1038/s41571-024-00926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Solid tumours comprise many different cell types organized in spatially structured arrangements, with substantial intratumour and intertumour heterogeneity. Advances in spatial profiling technologies over the past decade hold promise to capture the complexity of these cellular architectures to build a holistic view of the intricate molecular mechanisms that shape the tumour ecosystem. Some of these mechanisms act at the cellular scale and are controlled by cell-autonomous programmes or communication between nearby cells, whereas other mechanisms result from coordinated efforts between large networks of cells and extracellular molecules organized into tissues and organs. In this Review we provide insights into the application of single-cell and spatial profiling tools, with a focus on spatially resolved transcriptomic tools developed to understand the cellular architecture of the tumour microenvironment and identify opportunities to use them to improve clinical management of cancers.
Collapse
Affiliation(s)
- Julia Chen
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
- Department of Medical Oncology, St George Hospital, Sydney, New South Wales, Australia
| | - Ludvig Larsson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Alexander Swarbrick
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia.
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| |
Collapse
|
50
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|