1
|
Sigvardsson I, Ludvigsson J, Andersson B, Størdal K, Mårild K. Tobacco Smoke Exposure in Early Childhood and Later Risk of Inflammatory Bowel Disease: A Scandinavian Birth Cohort Study. J Crohns Colitis 2024; 18:661-670. [PMID: 38329478 PMCID: PMC11140631 DOI: 10.1093/ecco-jcc/jjae020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 02/09/2024]
Abstract
OBJECTIVES To examine the association between early-life smoking exposure and later risk of inflammatory bowel disease [IBD]. METHODS We followed 115663 participants from the Norwegian Mother, Father and Child [MoBa] and All Babies in Southeast Sweden [ABIS] cohorts from birth [1997-2009] through 2021. IBD was identified through national patient registers. Validated questionnaire data defined maternal smoking during pregnancy, maternal environmental tobacco smoke [ETS] exposure during pregnancy, and child ETS exposure by ages 12 and 36 months. Cox regression was used to estimate adjusted hazard ratios [aHRs] for sex, maternal age, education level, parental IBD, and origin. Cohort-specific estimates were pooled using a random-effects model. RESULTS During 1 987 430 person-years of follow-up, 444 participants developed IBD [ABIS, 112; MoBa, 332]. Any vs no maternal smoking during pregnancy yielded a pooled aHR of 1.30 [95% CI = 0.97-1.74] for offspring IBD. Higher level of maternal smoking during pregnancy (compared with no smoking, average ≥6 cigarettes/day: pooled aHR = 1.60 [95% CI = 1.08-2.38]) was associated with offspring IBD, whereas a lower smoking level was not (average 1-5 cigarettes/day: pooled aHR = 1.09 [95% CI = 0.73-1.64]). Child ETS exposure in the first year of life was associated with later IBD (any vs no ETS, pooled aHR = 1.32 [95% CI = 1.03-1.69]). Estimates observed for child ETS exposure by 36 months were similar but not statistically significant. CONCLUSIONS In this prospective Scandinavian cohort study, children exposed to higher levels of maternal smoking during pregnancy or ETS during the first year of life were at increased risk of later IBD.
Collapse
Affiliation(s)
- Ida Sigvardsson
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children’s Hospital, Region Östergötland, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Björn Andersson
- Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ketil Størdal
- Department of Pediatric Research, Faculty of Medicine, University of Oslo, Oslo, Norway
- Children’s Center, Oslo University Hospital, Oslo, Norway
| | - Karl Mårild
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden
- Department of Pediatrics, Queen Silvia Children’s Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Barrio E, Lerma-Puertas D, Jaulín-Pueyo JJ, Labarta JI, Gascón-Catalán A. Epigenetic modifications in the ferroptosis pathway in cord blood cells from newborns of smoking mothers and their influence on fetal growth. Reprod Toxicol 2024; 125:108581. [PMID: 38552991 DOI: 10.1016/j.reprotox.2024.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Maternal smoking during pregnancy increases oxidative stress and decreases antioxidant capacity in newborns. Uncontrolled oxidative stress plays a role in fetal development disorders and in adverse perinatal outcomes. In order to identify molecular pathways involved in low fetal growth, epigenetic modifications in newborns of smoking and non-smoking mothers were examined. Low birth weight newborns of mothers who smoked more than 10 cigarettes per day during the first trimester of pregnancy and normal birth weight newborns of mothers who did not smoke during pregnancy were included in the study. DNA was extracted from umbilical cord blood of term newborns. 125 differentially methylated regions were identified by MeDIP-Seq. Functional analysis revealed several pathways, such as ferroptosis, that were enriched in differentially methylated genes after prenatal smoke exposure. GPX4 and PCBP1 were found to be hypermethylated and associated with low fetal growth. These epigenetic modifications in ferroptosis pathway genes in newborns of smoking mothers can potentially contribute to intrauterine growth restriction through the induction of cell death via lipid peroxidation of cell membranes. The identification of epigenetic modifications in the ferroptosis pathway sheds light on the potential mechanisms underlying the pathophysiology of low birth weight in infants born to smoking mothers.
Collapse
Affiliation(s)
- Eva Barrio
- Facultad de Medicina, Universidad de Zaragoza, Spain
| | - Diego Lerma-Puertas
- Facultad de Medicina, Universidad de Zaragoza, Spain; Servicio de Obstetricia y Ginecología, Hospital Universitario Clínico Lozano Blesa, Zaragoza, Spain
| | - José Javier Jaulín-Pueyo
- Facultad de Medicina, Universidad de Zaragoza, Spain; Servicio de Pediatría. Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - José Ignacio Labarta
- Facultad de Medicina, Universidad de Zaragoza, Spain; Servicio de Pediatría. Hospital Universitario Miguel Servet, Zaragoza, Spain
| | | |
Collapse
|
3
|
Upadhyaya P, Milillo C, Bruno A, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Nicotine-induced Genetic and Epigenetic Modifications in Primary Human Amniotic Fluid Stem Cells. Curr Pharm Des 2024; 30:1995-2006. [PMID: 38867535 PMCID: PMC11348467 DOI: 10.2174/0113816128305232240607084420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Smoking during pregnancy has been linked to adverse health outcomes in offspring, but the underlying mechanisms are not fully understood. To date, the effect of maternal smoking has been tested in primary tissues and animal models, but the scarcity of human tissues limits experimental studies. Evidence regarding smoking-related molecular alteration and gene expression profiles in stem cells is still lacking. METHODS We developed a cell culture model of human amniotic fluid stem cells (hAFSCs) of nicotine (NIC) exposure to examine the impact of maternal smoking on epigenetic alterations of the fetus. RESULTS NIC 0.1 μM (equivalent to "light" smoking, i.e., 5 cigarettes/day) did not significantly affect cell viability; however, significant alterations in DNA methylation and N6-methyladenosine (m6A) RNA methylation in hAFSCs occurred. These epigenetic changes may influence the gene expression and function of hAFSCs. Furthermore, NIC exposure caused time-dependent alterations of the expression of pluripotency genes and cell surface markers, suggesting enhanced cell stemness and impaired differentiation potential. Furthermore, NICtreated cells showed reduced mRNA levels of key adipogenic markers and hypomethylation of the promoter region of the imprinted gene H19 during adipogenic differentiation, potentially suppressing adipo/lipogenesis. Differential expression of 16 miRNAs, with predicted target genes involved in various metabolic pathways and linked to pathological conditions, including cognitive delay and fetal growth retardation, has been detected. CONCLUSION Our findings highlight multi-level effects of NIC on hAFSCs, including epigenetic modifications, altered gene expression, and impaired cellular differentiation, which may contribute to long-term consequences of smoking in pregnancy and its potential impact on offspring health and development.
Collapse
Affiliation(s)
- Prabin Upadhyaya
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
4
|
Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:126001. [PMID: 38048101 PMCID: PMC10695268 DOI: 10.1289/ehp12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter < 10 μ m and < 2.5 μ m , nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.
Collapse
Affiliation(s)
| | - Freida Blostein
- University of Michigan, Ann Arbor, Michigan, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
6
|
Vidal AC, Chandramouli SA, Marchesoni J, Brown N, Liu Y, Murphy SK, Maguire R, Wang Y, Abdelmalek MF, Mavis AM, Bashir MR, Jima D, Skaar DA, Hoyo C, Moylan CA. AHRR Hypomethylation mediates the association between maternal smoking and metabolic profiles in children. Hepatol Commun 2023; 7:e0243. [PMID: 37755881 PMCID: PMC10531191 DOI: 10.1097/hc9.0000000000000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/09/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Tobacco smoking during pregnancy is associated with metabolic dysfunction in children, but mechanistic insights remain limited. Hypomethylation of cg05575921 in the aryl hydrocarbon receptor repressor (AHRR) gene is associated with in utero tobacco smoke exposure. In this study, we evaluated whether AHRR hypomethylation mediates the association between maternal smoking and metabolic dysfunction in children. METHODS We assessed metabolic dysfunction using liver fat content (LFC), serum, and clinical data in children aged 7-12 years (n=78) followed since birth. Maternal smoking was self-reported at 12 weeks gestation. Methylation was measured by means of pyrosequencing at 3 sequential CpG sites, including cg05575921, at birth and at ages 7-12. Regression models were used to evaluate whether AHRR methylation mediated the association between maternal smoking and child metabolic dysfunction. RESULTS Average AHRR methylation at birth was significantly higher among children of nonsmoking mothers compared with children of mothers who smoked (69.8% ± 4.4% vs. 63.5% ± 5.5, p=0.0006). AHRR hypomethylation at birth was associated with higher liver fat content (p=0.01), triglycerides (p=0.01), and alanine aminotransferase levels (p=0.03), and lower HDL cholesterol (p=0.01) in childhood. AHRR hypomethylation significantly mediated associations between maternal smoking and liver fat content (indirect effect=0.213, p=0.018), triglycerides (indirect effect=0.297, p=0.044), and HDL cholesterol (indirect effect = -0.413, p=0.007). AHRR methylation in childhood (n=78) was no longer significantly associated with prenatal smoke exposure or child metabolic parameters (p>0.05). CONCLUSIONS AHRR hypomethylation significantly mediates the association between prenatal tobacco smoke exposure and features of childhood metabolic dysfunction, despite the lack of persistent hypomethylation of AHRR into childhood. Further studies are needed to replicate these findings and to explore their causal and long-term significance.
Collapse
Affiliation(s)
- Adriana C. Vidal
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Joddy Marchesoni
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Nia Brown
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Yukun Liu
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Rachel Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Yaxu Wang
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Alisha M. Mavis
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Duke University Medical Center, Durham, North Carolina, USA
| | - Mustafa R. Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Dereje Jima
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - David A. Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Cynthia A. Moylan
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Fang F, Andersen AM, Philibert R, Hancock DB. Epigenetic biomarkers for smoking cessation. ADDICTION NEUROSCIENCE 2023; 6:100079. [PMID: 37123087 PMCID: PMC10136056 DOI: 10.1016/j.addicn.2023.100079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cigarette smoking has been associated with epigenetic alterations that may be reversible upon cessation. As the most-studied epigenetic modification, DNA methylation is strongly associated with smoking exposure, providing a potential mechanism that links smoking to adverse health outcomes. Here, we reviewed the reversibility of DNA methylation in accessible peripheral tissues, mainly blood, in relation to cigarette smoking cessation and the utility of DNA methylation as a biomarker signature to differentiate current, former, and never smokers and to quantify time since cessation. We summarized thousands of differentially methylated Cytosine-Guanine (CpG) dinucleotides and regions associated with smoking cessation from candidate gene and epigenome-wide association studies, as well as the prediction accuracy of the multi-CpG predictors for smoking status. Overall, there is robust evidence for DNA methylation signature of cigarette smoking cessation. However, there are still gaps to fill, including (1) cell-type heterogeneity in measuring blood DNA methylation; (2) underrepresentation of non-European ancestry populations; (3) limited longitudinal data to quantitatively measure DNA methylation after smoking cessation over time; and (4) limited data to study the impact of smoking cessation on other epigenetic features, noncoding RNAs, and histone modifications. Epigenetic machinery provides promising biomarkers that can improve success in smoking cessation in the clinical setting. To achieve this goal, larger and more-diverse samples with longitudinal measures of a broader spectrum of epigenetic marks will be essential to developing a robust DNA methylation biomarker assay, followed by meeting validation requirements for the assay before being implemented as a clinically useful tool.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| | - Allan M. Andersen
- Department of Psychiatry, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Behavioral Diagnostics LLC, 2500 Crosspark Rd, Coralville, IA 52241, USA
- Department of Biomedical Engineering, 5601 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Dana B. Hancock
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| |
Collapse
|
8
|
Kurihara C, Kuniyoshi KM, Rehan VK. Preterm Birth, Developmental Smoke/Nicotine Exposure, and Life-Long Pulmonary Sequelae. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10040608. [PMID: 37189857 DOI: 10.3390/children10040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
This review delineates the main pulmonary issues related to preterm birth, perinatal tobacco/nicotine exposure, and its effects on offspring, focusing on respiratory health and its possible transmission to subsequent generations. We review the extent of the problem of preterm birth, prematurity-related pulmonary effects, and the associated increased risk of asthma later in life. We then review the impact of developmental tobacco/nicotine exposure on offspring asthma and the significance of transgenerational pulmonary effects following perinatal tobacco/nicotine exposure, possibly via its effects on germline epigenetics.
Collapse
Affiliation(s)
- Chie Kurihara
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine M Kuniyoshi
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Virender K Rehan
- Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Wang Y, Tzeng JY, Huang Y, Maguire R, Hoyo C, Allen TK. Duration of exposure to epidural anesthesia at delivery, DNA methylation in umbilical cord blood and their association with offspring asthma in Non-Hispanic Black women. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac026. [PMID: 36694712 PMCID: PMC9854336 DOI: 10.1093/eep/dvac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Epidural anesthesia is an effective pain relief modality, widely used for labor analgesia. Childhood asthma is one of the commonest chronic medical illnesses in the USA which places a significant burden on the health-care system. We recently demonstrated a negative association between the duration of epidural anesthesia and the development of childhood asthma; however, the underlying molecular mechanisms still remain unclear. In this study of 127 mother-child pairs comprised of 75 Non-Hispanic Black (NHB) and 52 Non-Hispanic White (NHW) from the Newborn Epigenetic Study, we tested the hypothesis that umbilical cord blood DNA methylation mediates the association between the duration of exposure to epidural anesthesia at delivery and the development of childhood asthma and whether this differed by race/ethnicity. In the mother-child pairs of NHB ancestry, the duration of exposure to epidural anesthesia was associated with a marginally lower risk of asthma (odds ratio = 0.88, 95% confidence interval = 0.76-1.01) for each 1-h increase in exposure to epidural anesthesia. Of the 20 CpGs in the NHB population showing the strongest mediation effect, 50% demonstrated an average mediation proportion of 52%, with directional consistency of direct and indirect effects. These top 20 CpGs mapped to 21 genes enriched for pathways engaged in antigen processing, antigen presentation, protein ubiquitination and regulatory networks related to the Major Histocompatibility Complex (MHC) class I complex and Nuclear Factor Kappa-B (NFkB) complex. Our findings suggest that DNA methylation in immune-related pathways contributes to the effects of the duration of exposure to epidural anesthesia on childhood asthma risk in NHB offspring.
Collapse
Affiliation(s)
- Yaxu Wang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7633, USA
- Department of Statistics, North Carolina State University, Raleigh, NC 27607, USA
| | - Yueyang Huang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Rachel Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695-7633, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Terrence K Allen
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
10
|
Grandmaternal smoking during pregnancy is associated with differential DNA methylation in peripheral blood of their grandchildren. Eur J Hum Genet 2022; 30:1373-1379. [PMID: 35347270 PMCID: PMC9712525 DOI: 10.1038/s41431-022-01081-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 02/24/2022] [Indexed: 01/29/2023] Open
Abstract
The idea that information can be transmitted to subsequent generation(s) by epigenetic means has been studied for decades but remains controversial in humans. Epidemiological studies have established that grandparental exposures are associated with health outcomes in their grandchildren, often with sex-specific effects; however, the mechanism of transmission is still unclear. We conducted Epigenome Wide Association Studies (EWAS) to test whether grandmaternal smoking during pregnancy is associated with altered DNA methylation (DNAm) in peripheral blood from their adolescent grandchildren. We used data from a birth cohort, with discovery and replication datasets of up to 1225 and 708 individuals (respectively, for the maternal line), aged 15-17 years, and tested replication in the same individuals at birth and 7 years. We show for the first time that DNAm at a small number of loci in cord blood is associated with grandmaternal smoking in humans. In adolescents we see suggestive associations in regions of the genome which we hypothesised a priori could be involved in transgenerational transmission - we observe sex-specific associations at two sites on the X chromosome and one in an imprinting control region. All are within transcription factor binding sites (TFBSs), and we observe enrichment for TFBS among the CpG sites with the strongest associations; however, there is limited evidence that the associations we see replicate between timepoints. The implication of this work is that effects of smoking during pregnancy may induce DNAm changes in later generations and that these changes are often sex-specific, in line with epidemiological associations.
Collapse
|
11
|
The stress-vulnerability model on the path to schizophrenia: Interaction between BDNF methylation and schizotypy on the resting-state brain network. SCHIZOPHRENIA 2022; 8:49. [PMID: 35853898 PMCID: PMC9261098 DOI: 10.1038/s41537-022-00258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Abstract
The interplay between schizophrenia liability and environmental influences has been considered to be responsible for the development of schizophrenia. Recent neuroimaging studies have linked aberrant functional connectivity (FC) between the default-mode network (DMN) and the frontoparietal network (FPN) in the resting-state to the underlying neural mechanism of schizophrenia. By using schizotypy as the proxy for genetic-based liability to schizophrenia and methylation of brain-derived neurotrophic factor (BDNF) to represent environmental exposure, this study investigated the impact of the interaction between vulnerability and the environment on the neurobiological substrates of schizophrenia. Participants in this study included 101 healthy adults (HC) and 46 individuals with ultra-high risk for psychosis (UHR). All participants were tested at resting-state by functional magnetic resonance imaging, and group-independent component analysis was used to identify the DMN and the FPN. The Perceptual Aberration Scale (PAS) was used to evaluate the schizotypy level. The methylation status of BDNF was measured by pyrosequencing. For moderation analysis, the final sample consisted of 83 HC and 32 UHR individuals. UHR individuals showed reduced DMN-FPN network FC compared to healthy controls. PAS scores significantly moderated the relationship between the percentage of BDNF methylation and DMN-FPN network FC. The strength of the positive relationship between BDNF methylation and the network FC was reduced when the schizotypy level increased. These findings support the moderating role of schizotypy on the neurobiological mechanism of schizophrenia in conjunction with epigenetic changes.
Collapse
|
12
|
Moore BF, Kreitner KJ, Starling AP, Martenies SE, Magzamen S, Clark M, Dabelea D. Early-life exposure to tobacco and childhood adiposity: Identifying windows of susceptibility. Pediatr Obes 2022; 17:e12967. [PMID: 36350199 PMCID: PMC10035041 DOI: 10.1111/ijpo.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Early-life exposure to tobacco is associated with obesity, but the most susceptible developmental periods are unknown. OBJECTIVE To explore windows of susceptibility in a cohort of 568 mother-child pairs. METHODS We measured seven measures of tobacco exposure (five self-reported and two biomarkers) spanning from pre-conception to age 5 years. Mothers self-reported active smoking (pre-conception, 17 weeks, and delivery) and household smokers (5 and 18 months postnatally). Cotinine was measured in maternal urine (27 weeks) and child urine (5 years). Adiposity (fat mass percentage) was measured at birth and 5 years via air displacement plethysmography. Using a multiple informant approach, we tested whether adiposity (5 years) and changes in adiposity (from birth to 5 years) differed by the seven measures of tobacco exposure. RESULTS The associations may depend on timing. For example, only pre-conception (β = 3.1%; 95% CI: 1.0-5.1) and late gestation (β = 4.0%; 95% CI: 0.4-7.6) exposures influenced adiposity accretion from birth to 5 years (p for interaction = 0.01). Early infancy exposure was also associated with 1.7% higher adiposity at 5 years (95% CI: 0.1-3.2). Mid-pregnancy and early childhood exposures did not influence adiposity. CONCLUSIONS Pre-conception, late gestation, and early infancy exposures to tobacco may have the greatest impact on childhood adiposity.
Collapse
Affiliation(s)
- Brianna F. Moore
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center, Austin, Texas, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, Aurora, Colorado, USA
| | - Kimberly J. Kreitner
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center, Austin, Texas, USA
| | - Anne P. Starling
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, Aurora, Colorado, USA
| | - Sheena E. Martenies
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Maggie Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, Aurora, Colorado, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
13
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
14
|
Salmeri N, Carbone IF, Cavoretto PI, Farina A, Morano D. Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview. Mol Diagn Ther 2022; 26:607-626. [PMID: 36028645 DOI: 10.1007/s40291-022-00611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Fetal growth restriction is a pathological condition occurring when the fetus does not reach the genetically determined growth potential. The etiology of fetal growth restriction is expected to be multifactorial and include fetal, maternal, and placental factors, the latter being the most frequent cause of isolated fetal growth restriction. Severe fetal growth restriction has been related to both an increased risk of perinatal morbidity and mortality, and also a greater susceptibility to developing diseases (especially cardio-metabolic and neurological disorders) later in life. In the last decade, emerging evidence has supported the hypothesis of the Developmental Origin of Health and Disease, which states that individual developmental 'programming' takes place via a delicate fine tuning of fetal genetic and epigenetic marks in response to a large variety of 'stressor' exposures during pregnancy. As the placenta is the maternal-fetal interface, it has a crucial role in fetal programming, such that any perturbation altering placental function interferes with both in-utero fetal growth and also with the adult life phenotype. Several epigenetic mechanisms have been highlighted in modulating the dynamic placental epigenome, including alterations in DNA methylation status, post-translational modification of histones, and non-coding RNAs. This review aims to provide a comprehensive and critical overview of the available literature on the epigenetic background of fetal growth restriction. A targeted research strategy was performed using PubMed, MEDLINE, Embase, and The Cochrane Library up to January 2022. A detailed and fully referenced synthesis of available literature following the Scale for the Assessment of Narrative Review Articles guidelines is provided. A variety of epigenetic marks predominantly interfering with placental development, function, and metabolism were found to be potentially associated with fetal growth restriction. Available evidence on the role of environmental exposures in shaping the placental epigenome and the fetal phenotype were also critically discussed. Because of the highly dynamic crosstalk between epigenetic mechanisms and the extra level of complexity in interpreting the final placental transcriptome, a full comprehension of these phenomenon is still lacking and advances in multi-omics approaches are urgently needed. Elucidating the role of epigenetics in the developmental origins of health and disease represents a new challenge for the coming years, with the goal of providing early interventions and prevention strategies and, hopefully, new treatment opportunities.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ilma Floriana Carbone
- Unit of Obstetrics, Department of Woman, Child and Neonate, Mangiagalli Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Ivo Cavoretto
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Antonio Farina
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC), IRCCS Sant'Orsola-Malpighi Hospital, University of Bologna, 40138, Bologna, Italy.
| | - Danila Morano
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria S. Anna, University of Ferrara, Cona, Ferrara, Italy
| |
Collapse
|
15
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
16
|
Cosin-Tomas M, Cilleros-Portet A, Aguilar-Lacasaña S, Fernandez-Jimenez N, Bustamante M. Prenatal Maternal Smoke, DNA Methylation, and Multi-omics of Tissues and Child Health. Curr Environ Health Rep 2022; 9:502-512. [PMID: 35670920 PMCID: PMC9363403 DOI: 10.1007/s40572-022-00361-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Maternal tobacco smoking during pregnancy is of public health concern, and understanding the biological mechanisms can help to promote smoking cessation campaigns. This non-systematic review focuses on the effects of maternal smoking during pregnancy on offspring's epigenome, consistent in chemical modifications of the genome that regulate gene expression. RECENT FINDINGS Recent meta-analyses of epigenome-wide association studies have shown that maternal smoking during pregnancy is consistently associated with offspring's DNA methylation changes, both in the placenta and blood. These studies indicate that effects on blood DNA methylation can persist for years, and that the longer the duration of the exposure and the higher the dose, the larger the effects. Hence, DNA methylation scores have been developed to estimate past exposure to maternal smoking during pregnancy as biomarkers. There is robust evidence for DNA methylation alterations associated with maternal smoking during pregnancy; however, the role of sex, ethnicity, and genetic background needs further exploration. Moreover, there are no conclusive studies about exposure to low doses or during the preconception period. Similarly, studies on tissues other than the placenta and blood are scarce, and cell-type specificity within tissues needs further investigation. In addition, biological interpretation of DNA methylation findings requires multi-omics data, poorly available in epidemiological settings. Finally, although several mediation analyses link DNA methylation changes with health outcomes, they do not allow causal inference. For this, a combination of data from multiple study designs will be essential in the future to better address this topic.
Collapse
Affiliation(s)
- Marta Cosin-Tomas
- ISGlobal, Institute for Global Health, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,CIBER Epidemiología Y Salud Pública, Madrid, Spain.
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Sofía Aguilar-Lacasaña
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología Y Salud Pública, Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Basque Country, Spain
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología Y Salud Pública, Madrid, Spain
| |
Collapse
|
17
|
Caramaschi D, Neumann A, Cardenas A, Tindula G, Alemany S, Zillich L, Pesce G, Lahti JMT, Havdahl A, Mulder R, Felix JF, Tiemeier H, Sirignano L, Frank J, Witt SH, Rietschel M, Deuschle M, Huen K, Eskenazi B, Send TS, Ferrer M, Gilles M, de Agostini M, Baïz N, Rifas-Shiman SL, Kvist T, Czamara D, Tuominen ST, Relton CL, Rai D, London SJ, Räikkönen K, Holland N, Annesi-Maesano I, Streit F, Hivert MF, Oken E, Sunyer J, Cecil CAM, Sharp G. Meta-analysis of epigenome-wide associations between DNA methylation at birth and childhood cognitive skills. Mol Psychiatry 2022; 27:2126-2135. [PMID: 35145228 PMCID: PMC9126809 DOI: 10.1038/s41380-022-01441-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Cognitive skills are a strong predictor of a wide range of later life outcomes. Genetic and epigenetic associations across the genome explain some of the variation in general cognitive abilities in the general population and it is plausible that epigenetic associations might arise from prenatal environmental exposures and/or genetic variation early in life. We investigated the association between cord blood DNA methylation at birth and cognitive skills assessed in children from eight pregnancy cohorts within the Pregnancy And Childhood Epigenetics (PACE) Consortium across overall (total N = 2196), verbal (total N = 2206) and non-verbal cognitive scores (total N = 3300). The associations at single CpG sites were weak for all of the cognitive domains investigated. One region near DUSP22 on chromosome 6 was associated with non-verbal cognition in a model adjusted for maternal IQ. We conclude that there is little evidence to support the idea that variation in cord blood DNA methylation at single CpG sites is associated with cognitive skills and further studies are needed to confirm the association at DUSP22.
Collapse
Affiliation(s)
- Doretta Caramaschi
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK.
- Department of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Gwen Tindula
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Silvia Alemany
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Giancarlo Pesce
- Epidemiology of Allergic and Respiratory Diseases Team (EPAR), Institute Pierre Louis of Epidemiology and Public Health, UMR-S 1136 INSERM and Sorbonne Université, Paris, France
| | - Jari M T Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alexandra Havdahl
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK
- Department of Mental Disorders, Norwegian Institute of Public Health and Nic Waals Institute of Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Rosa Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karen Huen
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Tabea Sarah Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Muriel Ferrer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria de Agostini
- Inserm, Centre for Research in Epidemiology and StatisticS (CRESS), Research Team on Early Life Origins of Health (EAROH), Villejuif, France
| | - Nour Baïz
- Epidemiology of Allergic and Respiratory Diseases Team (EPAR), Institute Pierre Louis of Epidemiology and Public Health, UMR-S 1136 INSERM and Sorbonne Université, Paris, France
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Tuomas Kvist
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | - Samuli T Tuominen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK
| | - Dheeraj Rai
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK
| | - Stephanie J London
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Holland
- Children's Environmental Health Laboratory, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Team (EPAR), Institute Pierre Louis of Epidemiology and Public Health, UMR-S 1136 INSERM and Sorbonne Université, Paris, France
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Jordi Sunyer
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Gemma Sharp
- Medical Research Council Integrative Epidemiology Unit (MRC IEU), Bristol Medical School, Population Health Science, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Joglekar R, Grenier C, Hoyo C, Hoffman K, Murphy SK. Maternal tobacco smoke exposure is associated with increased DNA methylation at human metastable epialleles in infant cord blood. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac005. [PMID: 35355955 PMCID: PMC8962709 DOI: 10.1093/eep/dvac005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Metastable epialleles (MEs) are genomic regions that are stochastically methylated prior to germ layer specification and exhibit high interindividual but low intra-individual variability across tissues. ME methylation is vulnerable to environmental stressors, including diet. Tobacco smoke (TS) exposure during pregnancy is associated with adverse impacts on fetal health and maternal micronutrient levels as well as altered methylation. Our objective was to determine if maternal smoke exposure impacts methylation at MEs. Consistent with prior studies, we observed reductions in one-carbon pathway micronutrients with gestational TS exposure, including maternal folate (P = 0.02) and vitamins B6 (P = 0.05) and B12 (P = 0.007). We examined putative MEs BOLA3, PAX8, and ZFYVE28 in cord blood specimens from 85 Newborn Epigenetics STudy participants. Gestational TS exposure was associated with elevated DNA methylation at PAX8 (+5.22% average methylation; 95% CI: 0.33% to 10.10%; P = 0.037). In human conceptal kidney tissues, higher PAX8 transcription was associated with lower methylation (R s = 0.55; P = 0.07), suggesting that the methylation levels established at MEs, and their environmentally induced perturbation, may have meaningful, tissue-specific functional consequences. This may be particularly important because PAX8 is implicated in several cancers, including pediatric kidney cancer. Our data are the first to indicate vulnerability of human ME methylation establishment to TS exposure, with a general trend of increasing levels of methylation at these loci. Further investigation is needed to determine how TS exposure-mediated changes in DNA methylation at MEs, and consequent expression levels, might affect smoking-related disease risk.
Collapse
Affiliation(s)
- Rashmi Joglekar
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, PO Box 90328, Durham, NC 27708, USA
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, 70 W Main Street, Suite 510, Durham, NC 27701, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, 70 W Main Street, Suite 510, Durham, NC 27701, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Epidemiology and Environmental Epigenomics Lab, North Carolina State University, 850 Main Campus Drive, Suite 1104, Raleigh, NC 27606, USA
| | - Kate Hoffman
- Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Grainger Hall, 9 Circuit Drive, Durham, NC 27708, USA
| | - Susan K Murphy
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, PO Box 90328, Durham, NC 27708, USA
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, 70 W Main Street, Suite 510, Durham, NC 27701, USA
- Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Grainger Hall, 9 Circuit Drive, Durham, NC 27708, USA
- Department of Pathology, Duke University Medical Center, DUMC 3712, Durham, NC 27710, USA
| |
Collapse
|
19
|
Luo R, Zhang H, Mukherjee N, Karmaus W, Patil V, Arshad H, Mzayek F. Association of grandmaternal smoking during pregnancy with DNA methylation of grandchildren: the Isle of Wight study. Epigenomics 2021; 13:1473-1483. [PMID: 34596434 DOI: 10.2217/epi-2020-0433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: To investigate the intergenerational effects of grandmaternal smoking during pregnancy (GMSDP) on the DNA methylation of grandchildren. Methods: Data from the Isle of Wight birth cohort with information regarding GMSDP and DNA methylation profiling at the birth of grandchildren (n = 161) were used. Differentially methylated CpG sites related to GMSDP were identified using testing-training screening, analysis of variance and multivariate analysis of covariance. The association between identified CpG sites and expression levels of neighboring genes was tested by linear regression. Results: Twenty-three CpG sites were differentially methylated in grandchildren because of GMSDP, and eight of these were associated with expression levels of 13 neighboring genes. Conclusion: GMSDP has an intergenerational effect on the DNA methylation profile of grandchildren independent of maternal smoking during pregnancy.
Collapse
Affiliation(s)
- Rui Luo
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Veeresh Patil
- David Hide Asthma and Allergy Research Centre, Newport, PO30 5TG, UK
| | - Hasan Arshad
- David Hide Asthma and Allergy Research Centre, Newport, PO30 5TG, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Fawaz Mzayek
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
20
|
Everson TM, Vives-Usano M, Seyve E, Cardenas A, Lacasaña M, Craig JM, Lesseur C, Baker ER, Fernandez-Jimenez N, Heude B, Perron P, Gónzalez-Alzaga B, Halliday J, Deyssenroth MA, Karagas MR, Íñiguez C, Bouchard L, Carmona-Sáez P, Loke YJ, Hao K, Belmonte T, Charles MA, Martorell-Marugán J, Muggli E, Chen J, Fernández MF, Tost J, Gómez-Martín A, London SJ, Sunyer J, Marsit CJ, Lepeule J, Hivert MF, Bustamante M. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun 2021; 12:5095. [PMID: 34429407 PMCID: PMC8384884 DOI: 10.1038/s41467-021-24558-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Maternal smoking during pregnancy (MSDP) contributes to poor birth outcomes, in part through disrupted placental functions, which may be reflected in the placental epigenome. Here we present a meta-analysis of the associations between MSDP and placental DNA methylation (DNAm) and between DNAm and birth outcomes within the Pregnancy And Childhood Epigenetics (PACE) consortium (N = 1700, 344 with MSDP). We identify 443 CpGs that are associated with MSDP, of which 142 associated with birth outcomes, 40 associated with gene expression, and 13 CpGs are associated with all three. Only two CpGs have consistent associations from a prior meta-analysis of cord blood DNAm, demonstrating substantial tissue-specific responses to MSDP. The placental MSDP-associated CpGs are enriched for environmental response genes, growth-factor signaling, and inflammation, which play important roles in placental function. We demonstrate links between placental DNAm, MSDP and poor birth outcomes, which may better inform the mechanisms through which MSDP impacts placental function and fetal growth.
Collapse
Affiliation(s)
- Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA.
| | - Marta Vives-Usano
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Emie Seyve
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Andres Cardenas
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marina Lacasaña
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jeffrey M Craig
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily R Baker
- Department of Obstetrics & Gynecology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Nora Fernandez-Jimenez
- University of the Basque Country (UPV/EHU), Leioa, Spain
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Barbara Heude
- Université de Paris, CRESS, INSERM, INRAE, Paris, France
| | - Patrice Perron
- Department of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Beatriz Gónzalez-Alzaga
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Carmen Íñiguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Statistics and Computational Research, Universitat de València, València, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Pedro Carmona-Sáez
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Statistics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Yuk J Loke
- Epigenetics Group, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jordi Martorell-Marugán
- Bioinformatics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Atrys Health S.A., Barcelona, Spain
| | - Evelyne Muggli
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Reproductive Epidemiology, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mariana F Fernández
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Investigación Biosantaria (ibs.GRANADA), Granada, Spain
- Biomedical Research Centre (CIBM) and School of Medicine, University of Granada, Granada, Spain
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | - Antonio Gómez-Martín
- Genomics Unit, GENYO. Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, NC, USA
| | - Jordi Sunyer
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public health at Emory University, Atlanta, GA, USA
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mariona Bustamante
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
| |
Collapse
|
21
|
Exposure to Stress and Air Pollution from Bushfires during Pregnancy: Could Epigenetic Changes Explain Effects on the Offspring? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147465. [PMID: 34299914 PMCID: PMC8305161 DOI: 10.3390/ijerph18147465] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022]
Abstract
Due to climate change, bushfires are becoming a more frequent and more severe phenomenon which contributes to poor health effects associated with air pollution. In pregnancy, environmental exposures can have lifelong consequences for the fetus, but little is known about these consequences in the context of bushfire smoke exposure. In this review we summarise the current knowledge in this area, and propose a potential mechanism linking bushfire smoke exposure in utero to poor perinatal and respiratory outcomes in the offspring. Bushfire smoke exposure is associated with poor pregnancy outcomes including reduced birth weight and an increased risk of prematurity. Some publications have outlined the adverse health effects on young children, particularly in relation to emergency department presentations and hospital admissions for respiratory problems, but there are no studies in children who were exposed to bushfire smoke in utero. Prenatal stress is likely to occur as a result of catastrophic bushfire events, and stress is known to be associated with poor perinatal and respiratory outcomes. Changes to DNA methylation are potential epigenetic mechanisms linking both smoke particulate exposure and prenatal stress to poor childhood respiratory health outcomes. More research is needed in large pregnancy cohorts exposed to bushfire events to explore this further, and to design appropriate mitigation interventions, in this area of global public health importance.
Collapse
|
22
|
Breton CV, Landon R, Kahn LG, Enlow MB, Peterson AK, Bastain T, Braun J, Comstock SS, Duarte CS, Hipwell A, Ji H, LaSalle JM, Miller RL, Musci R, Posner J, Schmidt R, Suglia SF, Tung I, Weisenberger D, Zhu Y, Fry R. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol 2021; 4:769. [PMID: 34158610 PMCID: PMC8219763 DOI: 10.1038/s42003-021-02316-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Environmental exposures, psychosocial stressors and nutrition are all potentially important influences that may impact health outcomes directly or via interactions with the genome or epigenome over generations. While there have been clear successes in large-scale human genetic studies in recent decades, there is still a substantial amount of missing heritability to be elucidated for complex childhood disorders. Mounting evidence, primarily in animals, suggests environmental exposures may generate or perpetuate altered health outcomes across one or more generations. One putative mechanism for these environmental health effects is via altered epigenetic regulation. This review highlights the current epidemiologic literature and supporting animal studies that describe intergenerational and transgenerational health effects of environmental exposures. Both maternal and paternal exposures and transmission patterns are considered, with attention paid to the attendant ethical, legal and social implications.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Remy Landon
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda G Kahn
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia K Peterson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa Bastain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Sarah S Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Cristiane S Duarte
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Alison Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hong Ji
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, Davis, CA, USA
| | | | - Rashelle Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jonathan Posner
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Rebecca Schmidt
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA, USA
| | | | - Irene Tung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California and Department of Epidemiology and Biostatistics, University of California, San Francisco, Oakland, CA, USA
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Dugué PA, Hodge AM, Wong EM, Joo JE, Jung CH, Hopper JL, English DR, Giles GG, Milne RL, Southey MC. Methylation marks of prenatal exposure to maternal smoking and risk of cancer in adulthood. Int J Epidemiol 2021; 50:105-115. [PMID: 33169152 DOI: 10.1093/ije/dyaa210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prenatal exposure to maternal smoking is detrimental to child health but its association with risk of cancer has seldom been investigated. Maternal smoking induces widespread and long-lasting DNA methylation changes, which we study here for association with risk of cancer in adulthood. METHODS Eight prospective case-control studies nested within the Melbourne Collaborative Cohort Study were used to assess associations between maternal-smoking-associated methylation marks in blood and risk of several cancers: breast (n = 406 cases), colorectal (n = 814), gastric (n = 166), kidney (n = 139), lung (n = 327), prostate (n = 847) and urothelial (n = 404) cancer and B-cell lymphoma (n = 426). We used conditional logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations between cancer and five methylation scores calculated as weighted averages for 568, 19, 15, 28 and 17 CpG sites. Models were adjusted for confounders, including personal smoking history (smoking status, pack-years, age at starting and quitting) and methylation scores for personal smoking. RESULTS All methylation scores for maternal smoking were strongly positively associated with risk of urothelial cancer. Risk estimates were only slightly attenuated after adjustment for smoking history, other potential confounders and methylation scores for personal smoking. Potential negative associations were observed with risk of lung cancer and B-cell lymphoma. No associations were observed for other cancers. CONCLUSIONS We found that methylation marks of prenatal exposure to maternal smoking are associated with increased risk of urothelial cancer. Our study demonstrates the potential for using DNA methylation to investigate the impact of early-life, unmeasured exposures on later-life cancer risk.
Collapse
Affiliation(s)
- Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Allison M Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - JiHoon E Joo
- Department of Clinical Pathology, Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, The University of Melbourne, Parkville, VIC, Australia
| | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Parkville VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Dallas R English
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Xu K, Li S, Whitehead TP, Pandey P, Kang AY, Morimoto LM, Kogan SC, Metayer C, Wiemels JL, de Smith AJ. Epigenetic Biomarkers of Prenatal Tobacco Smoke Exposure Are Associated with Gene Deletions in Childhood Acute Lymphoblastic Leukemia. Cancer Epidemiol Biomarkers Prev 2021; 30:1517-1525. [PMID: 34020997 DOI: 10.1158/1055-9965.epi-21-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/17/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Parental smoking is implicated in the etiology of acute lymphoblastic leukemia (ALL), the most common childhood cancer. We recently reported an association between an epigenetic biomarker of early-life tobacco smoke exposure at the AHRR gene and increased frequency of somatic gene deletions among ALL cases. METHODS Here, we further assess this association using two epigenetic biomarkers for maternal smoking during pregnancy-DNA methylation at AHRR CpG cg05575921 and a recently established polyepigenetic smoking score-in an expanded set of 482 B-cell ALL (B-ALL) cases in the California Childhood Leukemia Study with available Illumina 450K or MethylationEPIC array data. Multivariable Poisson regression models were used to test the associations between the epigenetic biomarkers and gene deletion numbers. RESULTS We found an association between DNA methylation at AHRR CpG cg05575921 and deletion number among 284 childhood B-ALL cases with MethylationEPIC array data, with a ratio of means (RM) of 1.31 [95% confidence interval (CI), 1.02-1.69] for each 0.1 β value reduction in DNA methylation, an effect size similar to our previous report in an independent set of 198 B-ALL cases with 450K array data [meta-analysis summary RM (sRM) = 1.32; 95% CI, 1.10-1.57]. The polyepigenetic smoking score was positively associated with gene deletion frequency among all 482 B-ALL cases (sRM = 1.31 for each 4-unit increase in score; 95% CI, 1.09-1.57). CONCLUSIONS We provide further evidence that prenatal tobacco-smoke exposure may influence the generation of somatic copy-number deletions in childhood B-ALL. IMPACT Analyses of deletion breakpoint sequences are required to further understand the mutagenic effects of tobacco smoke in childhood ALL.
Collapse
Affiliation(s)
- Keren Xu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shaobo Li
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Todd P Whitehead
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Priyatama Pandey
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alice Y Kang
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Libby M Morimoto
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Scott C Kogan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Joseph L Wiemels
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Adam J de Smith
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. .,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
25
|
Nakamura A, François O, Lepeule J. Epigenetic Alterations of Maternal Tobacco Smoking during Pregnancy: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5083. [PMID: 34064931 PMCID: PMC8151244 DOI: 10.3390/ijerph18105083] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
In utero exposure to maternal tobacco smoking is the leading cause of birth complications in addition to being associated with later impairment in child's development. Epigenetic alterations, such as DNA methylation (DNAm), miRNAs expression, and histone modifications, belong to possible underlying mechanisms linking maternal tobacco smoking during pregnancy and adverse birth outcomes and later child's development. The aims of this review were to provide an update on (1) the main results of epidemiological studies on the impact of in utero exposure to maternal tobacco smoking on epigenetic mechanisms, and (2) the technical issues and methods used in such studies. In contrast with miRNA and histone modifications, DNAm has been the most extensively studied epigenetic mechanism with regard to in utero exposure to maternal tobacco smoking. Most studies relied on cord blood and children's blood, but placenta is increasingly recognized as a powerful tool, especially for markers of pregnancy exposures. Some recent studies suggest reversibility in DNAm in certain genomic regions as well as memory of smoking exposure in DNAm in other regions, upon smoking cessation before or during pregnancy. Furthermore, reversibility could be more pronounced in miRNA expression compared to DNAm. Increasing evidence based on longitudinal data shows that maternal smoking-associated DNAm changes persist during childhood. In this review, we also discuss some issues related to cell heterogeneity as well as downstream statistical analyses used to relate maternal tobacco smoking during pregnancy and epigenetics. The epigenetic effects of maternal smoking during pregnancy have been among the most widely investigated in the epigenetic epidemiology field. However, there are still huge gaps to fill in, including on the impact on miRNA expression and histone modifications to get a better view of the whole epigenetic machinery. The consistency of maternal tobacco smoking effects across epigenetic marks and across tissues will also provide crucial information for future studies. Advancement in bioinformatic and biostatistics approaches is key to develop a comprehensive analysis of these biological systems.
Collapse
Affiliation(s)
- Aurélie Nakamura
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France;
| | - Olivier François
- Université Grenoble Alpes, Laboratoire TIMC, CNRS UMR 5525, 38000 Grenoble, France;
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France;
| |
Collapse
|
26
|
Miyake K, Miyashita C, Ikeda-Araki A, Miura R, Itoh S, Yamazaki K, Kobayashi S, Masuda H, Ooka T, Yamagata Z, Kishi R. DNA methylation of GFI1 as a mediator of the association between prenatal smoking exposure and ADHD symptoms at 6 years: the Hokkaido Study on Environment and Children's Health. Clin Epigenetics 2021; 13:74. [PMID: 33827680 PMCID: PMC8028116 DOI: 10.1186/s13148-021-01063-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prenatal smoking exposure has been associated with childhood attention-deficit/hyperactivity disorder (ADHD). However, the mechanism underlying this relationship remains unclear. We assessed whether DNA methylation differences may mediate the association between prenatal smoking exposure and ADHD symptoms at the age of 6 years. RESULTS We selected 1150 mother-infant pairs from the Hokkaido Study on the Environment and Children's Health. Mothers were categorized into three groups according to plasma cotinine levels at the third trimester: non-smokers (≤ 0.21 ng/mL), passive smokers (0.21-11.48 ng/mL), and active smokers (≥ 11.49 ng/mL). The children's ADHD symptoms were determined by the ADHD-Rating Scale at the age of 6 years. Maternal active smoking during pregnancy was significantly associated with an increased risk of ADHD symptoms (odds ratio, 1.89; 95% confidence interval, 1.14-3.15) compared to non-smoking after adjusting for covariates. DNA methylation of the growth factor-independent 1 transcriptional repressor (GFI1) region, as determined by bisulfite next-generation sequencing of cord blood samples, mediated 48.4% of the total effect of the association between maternal active smoking during pregnancy and ADHD symptoms. DNA methylation patterns of other genes (aryl-hydrocarbon receptor repressor [AHRR], cytochrome P450 family 1 subfamily A member 1 [CYP1A1], estrogen receptor 1 [ESR1], and myosin IG [MYO1G]) regions did not exert a statistically significant mediation effect. CONCLUSIONS Our findings demonstrated that DNA methylation of GFI1 mediated the association between maternal active smoking during pregnancy and ADHD symptoms at the age of 6 years.
Collapse
Affiliation(s)
- Kunio Miyake
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Ryu Miura
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Keiko Yamazaki
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Hideyuki Masuda
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Tadao Ooka
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Zentaro Yamagata
- Departments of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
27
|
De Queiroz Andrade E, Gomes GMC, Collison A, Grehan J, Murphy VE, Gibson P, Mattes J, Karmaus W. Variation of DNA Methylation in Newborns Associated with Exhaled Carbon Monoxide during Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1597. [PMID: 33567599 PMCID: PMC7915220 DOI: 10.3390/ijerph18041597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022]
Abstract
Fetal exposure to tobacco smoke is an adverse risk factor for newborns. A plausible mechanism of how this exposure may negatively impact long term health is differential methylation of deoxyribonucleic acid (DNAm) and its relation to birth weight. We examined whether self-reported gestational smoking status and maternal exhaled carbon monoxide (eCO) during early pregnancy were associated with methylation of cytosine by guanines (CpG) sites that themselves predicted birth weight. We focused first on CpGs associated with maternal smoking, and secondly, among these, on CpGs related to birth weight found in another cohort. Then in 94 newborns from the Breathing for Life Trial (BLT) DNAm levels in cord blood were determined using Infinium Methylation EPIC BeadChip measuring >850K CpGs. We regressed CpGs on eCO and tested via mediation analysis whether CpGs link eCO to birth weight. Nine smoking related CpG sites were significantly associated with birth weight. Among these nine CpGs the methylation of cg02264407 on the LMO7 gene was statistically significant and linked with eCO measurements. eCO greater than six ppm showed a 2.3% decrease in infant DNAm (p = 0.035) on the LMO7 gene. A 1% decrease in methylation at this site resulted in decreased birth weight by 44.8 g (p = 0.003). None of the nine CpGs tested was associated with self-reported smoking. This is the first study to report potential mediation of DNA methylation, linking eCO measurements during early pregnancy with birth weight.
Collapse
Affiliation(s)
- Ediane De Queiroz Andrade
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (E.D.Q.A.); (G.M.C.G.); (J.G.); (V.E.M.); (J.M.)
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Gabriela Martins Costa Gomes
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (E.D.Q.A.); (G.M.C.G.); (J.G.); (V.E.M.); (J.M.)
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Adam Collison
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (E.D.Q.A.); (G.M.C.G.); (J.G.); (V.E.M.); (J.M.)
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Jane Grehan
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (E.D.Q.A.); (G.M.C.G.); (J.G.); (V.E.M.); (J.M.)
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Vanessa E. Murphy
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (E.D.Q.A.); (G.M.C.G.); (J.G.); (V.E.M.); (J.M.)
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Peter Gibson
- Priority Research Centre Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia;
- Respiratory & Sleep Medicine Department, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Joerg Mattes
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia; (E.D.Q.A.); (G.M.C.G.); (J.G.); (V.E.M.); (J.M.)
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
- Paediatric Respiratory & Sleep Medicine Department, John Hunter Children’s Hospital, Newcastle, NSW 2305, Australia
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Science, School of Public Health, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
28
|
Silva CP, Kamens HM. Cigarette smoke-induced alterations in blood: A review of research on DNA methylation and gene expression. Exp Clin Psychopharmacol 2021; 29:116-135. [PMID: 32658533 PMCID: PMC7854868 DOI: 10.1037/pha0000382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Worldwide, smoking remains a threat to public health, causing preventable diseases and premature mortality. Cigarette smoke is a powerful inducer of DNA methylation and gene expression alterations, which have been associated with negative health consequences. Here, we review the current knowledge on smoking-related changes in DNA methylation and gene expression in human blood samples. We identified 30 studies focused on the association between active smoking, DNA methylation modifications, and gene expression alterations. Overall, we identified 1,758 genes with differentially methylated sites (DMS) and differentially expressed genes (DEG) between smokers and nonsmokers, of which 261 were detected in multiple studies (≥4). The most frequently (≥10 studies) reported genes were AHRR, GPR15, GFI1, and RARA. Functional enrichment analysis of the 261 genes identified the aryl hydrocarbon receptor repressor and T cell pathways (T helpers 1 and 2) as influenced by smoking status. These results highlight specific genes for future mechanistic and translational research that may be associated with cigarette smoke exposure and smoking-related diseases. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Constanza P. Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America.,Correspondence concerning this article should be addressed to Helen M. Kamens, 228 Biobehavioral Health Building, The Pennsylvania State University, University Park, PA 16802; ; Phone number: 814-865-1269; Fax number: 814-863-7525
| |
Collapse
|
29
|
Monasso GS, Jaddoe VWV, de Jongste JC, Duijts L, Felix JF. Timing- and Dose-Specific Associations of Prenatal Smoke Exposure With Newborn DNA Methylation. Nicotine Tob Res 2021; 22:1917-1922. [PMID: 32330269 PMCID: PMC7542646 DOI: 10.1093/ntr/ntaa069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/22/2020] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Fetal changes in DNA methylation may underlie associations of maternal smoking during pregnancy with adverse outcomes in children. We examined critical periods and doses of maternal smoking during pregnancy in relation to newborn DNA methylation, and associations of paternal smoking with newborn DNA methylation. AIMS AND METHODS This study was embedded in the Generation R Study, a population-based prospective cohort study from early pregnancy onwards. We assessed parental smoking during pregnancy using questionnaires. We analyzed associations of prenatal smoke exposure with newborn DNA methylation at 5915 known maternal smoking-related cytosine-phosphate-guanine sites (CpGs) in 1261 newborns using linear regression. Associations with false discovery rate-corrected p-values < .05 were taken forward. RESULTS Sustained maternal smoking was associated with newborn DNA methylation at 1391 CpGs, compared with never smoking. Neither quitting smoking early in pregnancy nor former smoking was associated with DNA methylation, compared with never smoking. Among sustained smokers, smoking ≥5, compared with <5, cigarettes/d was associated with DNA methylation at seven CpGs. Paternal smoking was not associated with DNA methylation, independent of maternal smoking status. CONCLUSIONS Our results suggest that CpGs associated with sustained maternal smoking are not associated with maternal smoking earlier in pregnancy or with paternal smoking. Some of these CpGs show dose-response relationships with sustained maternal smoking. The third trimester may comprise a critical period for associations of smoking with newborn DNA methylation, or sustained smoking may reflect higher cumulative doses. Alternatively, maternal smoking limited to early pregnancy and paternal smoking may be associated with DNA methylation at specific other CpGs not studied here. IMPLICATIONS Our results suggest that quitting maternal smoking before the third trimester of pregnancy, and possibly lowering smoking dose, may prevent differential DNA methylation in the newborns at CpGs associated with sustained smoking. If the relevance of DNA methylation for clinical outcomes is established, these results may help in counseling parents-to-be about quitting smoking.
Collapse
Affiliation(s)
- Giulietta S Monasso
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johan C de Jongste
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Corresponding Author: Janine F. Felix, MD, PhD, Generation R Study Group (Na-2918), Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. Telephone: +31-10-7043405; Fax: +31-10-7044645; E-mail:
| |
Collapse
|
30
|
Rauschert S, Melton PE, Heiskala A, Karhunen V, Burdge G, Craig JM, Godfrey KM, Lillycrop K, Mori TA, Beilin LJ, Oddy WH, Pennell C, Järvelin MR, Sebert S, Huang RC. Machine Learning-Based DNA Methylation Score for Fetal Exposure to Maternal Smoking: Development and Validation in Samples Collected from Adolescents and Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97003. [PMID: 32930613 PMCID: PMC7491641 DOI: 10.1289/ehp6076] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Fetal exposure to maternal smoking during pregnancy is associated with the development of noncommunicable diseases in the offspring. Maternal smoking may induce such long-term effects through persistent changes in the DNA methylome, which therefore hold the potential to be used as a biomarker of this early life exposure. With declining costs for measuring DNA methylation, we aimed to develop a DNA methylation score that can be used on adolescent DNA methylation data and thereby generate a score for in utero cigarette smoke exposure. METHODS We used machine learning methods to create a score reflecting exposure to maternal smoking during pregnancy. This score is based on peripheral blood measurements of DNA methylation (Illumina's Infinium HumanMethylation450K BeadChip). The score was developed and tested in the Raine Study with data from 995 white 17-y-old participants using 10-fold cross-validation. The score was further tested and validated in independent data from the Northern Finland Birth Cohort 1986 (NFBC1986) (16-y-olds) and 1966 (NFBC1966) (31-y-olds). Further, three previously proposed DNA methylation scores were applied for comparison. The final score was developed with 204 CpGs using elastic net regression. RESULTS Sensitivity and specificity values for the best performing previously developed classifier ("Reese Score") were 88% and 72% for Raine, 87% and 61% for NFBC1986 and 72% and 70% for NFBC1966, respectively; corresponding figures using the elastic net regression approach were 91% and 76% (Raine), 87% and 75% (NFBC1986), and 72% and 78% for NFBC1966. CONCLUSION We have developed a DNA methylation score for exposure to maternal smoking during pregnancy, outperforming the three previously developed scores. One possible application of the current score could be for model adjustment purposes or to assess its association with distal health outcomes where part of the effect can be attributed to maternal smoking. Further, it may provide a biomarker for fetal exposure to maternal smoking. https://doi.org/10.1289/EHP6076.
Collapse
Affiliation(s)
- Sebastian Rauschert
- Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Phillip E. Melton
- Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Anni Heiskala
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Graham Burdge
- Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton, UK
| | - Jeffrey M. Craig
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Molecular Epidemiology, Murdoch Children’s Research Institute, Parkville, Australia
| | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Karen Lillycrop
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, Hampshire, UK
| | - Trevor A. Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia
| | - Lawrence J. Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia
| | - Wendy H. Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Craig Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Department of Metabolism, Digestion and Reproduction, Genomic Medicine, Imperial College London, London, UK
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Western Australia, Australia
| |
Collapse
|
31
|
Wang B, Chen H, Chan YL, Wang G, Oliver BG. Why Do Intrauterine Exposure to Air Pollution and Cigarette Smoke Increase the Risk of Asthma? Front Cell Dev Biol 2020; 8:38. [PMID: 32117969 PMCID: PMC7012803 DOI: 10.3389/fcell.2020.00038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
The prevalence of childhood asthma is increasing worldwide and increased in utero exposure to environmental toxicants may play a major role. As current asthma treatments are not curative, understanding the mechanisms underlying the etiology of asthma will allow better preventative strategies to be developed. This review focuses on the current understanding of how in utero exposure to environmental factors increases the risk of developing asthma in children. Epidemiological studies show that maternal smoking and particulate matter exposure during pregnancy are prominent risk factors for the development of childhood asthma. We discuss the changes in the developing fetus due to reduced oxygen and nutrient delivery affected by intrauterine environmental change. This leads to fetal underdevelopment and abnormal lung structure. Concurrently an altered immune response and aberrant epithelial and mesenchymal cellular function occur possibly due to epigenetic reprograming. The sequelae of these early life events are airway remodeling, airway hyperresponsiveness, and inflammation, the hallmark features of asthma. In summary, exposure to inhaled oxidants such as cigarette smoking or particulate matter increases the risk of childhood asthma and involves multiple mechanisms including impaired fetal lung development (structural changes), endocrine disorders, abnormal immune responses, and epigenetic modifications. These make it challenging to reduce the risk of asthma, but knowledge of the mechanisms can still help to develop personalized medicines.
Collapse
Affiliation(s)
- Baoming Wang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Centre for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Meler E, Sisterna S, Borrell A. Genetic syndromes associated with isolated fetal growth restriction. Prenat Diagn 2020; 40:432-446. [PMID: 31891188 DOI: 10.1002/pd.5635] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022]
Abstract
Early onset fetal growth restriction (FGR) may be due to impaired placentation, environmental or toxic exposure, congenital infections or genetic abnormalities. Remarkable research, mainly based on retrospective series, has been published on the diverse genetic causes. Those have become more and more relevant with the improvement in the accuracy of the analysis techniques and the rising of breakthrough genomewide methods such as the whole genome sequencing. However, no publication has presented an integrated view of management of those fetuses with an early and severe affection. In this review, we explored to which extent genetic syndromes can cause FGR fetuses without structural defects. The most common chromosomal abnormalities (Triploidies and Trisomy 18), submicroscopic chromosomal anomalies (22q11.2 microduplication syndrome) and single gene disorders (often associated with mild ultrasound findings) related to early and severe FGR had been analysed. Finally, we addressed the impact of epigenetic marks on fetal growth, a matter of growing importance. At the end of this review, we should be able to provide an adequate counseling to parents in terms of diagnosis, prognosis and management of those pregnancies.
Collapse
Affiliation(s)
- Eva Meler
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Fetal i+D Fetal Medicine Research, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Catalonia, Spain
| | - Silvina Sisterna
- Clinical Genetics and Prenatal Diagnosis, Hospital Privado de Comunidad - Maternal Fetal Medicine, Clínica Colon - Reproduction and human genetics center CRECER. Mar del Plata, Buenos Aires, Argentina
| | - Antoni Borrell
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clinic de Ginecologia, Obstetricia i Neonatologia, IDIBAPS, University of Barcelona, Fetal i+D Fetal Medicine Research, and Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Catalonia, Spain
| |
Collapse
|
33
|
The role of epigenetics in respiratory health in urban populations in low and middle-income countries. GLOBAL HEALTH EPIDEMIOLOGY AND GENOMICS 2019; 4:e8. [PMID: 32047643 PMCID: PMC6983949 DOI: 10.1017/gheg.2019.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As urbanization increases in low- and middle-income countries (LMICs), urban populations will be increasingly exposed to a range of environmental risk factors for non-communicable diseases. Inadequate living conditions in urban settings may influence mechanisms that regulate gene expression, leading to the development of non-communicable respiratory diseases. We conducted a systematic review of the literature to assess the relationship between respiratory health and epigenetic factors to urban environmental exposures observed in LMICs using MEDLINE, PubMed, EMBASE, and Google Scholar searching a combination of the terms: epigenetics, chronic respiratory diseases (CRDs), lung development, chronic obstructive airway disease, and asthma. A total of 2835 articles were obtained, and 48 articles were included in this review. We found that environmental factors during early development are related to epigenetic effects that may be associated with a higher risk of CRDs. Epigenetic dysregulation of gene expression of the histone deacetylase (HDAC) and histone acetyltransferase gene families was likely involved in lung health of slum dwellers. Respiratory-related environmental exposures influence HDAC function and deoxyribonucleic acid methylation and are important risk factors in the development of CRD. Additional epigenetic research is needed to improve our understanding of associations between environmental exposures and non-communicable respiratory diseases.
Collapse
|
34
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
35
|
Rogers JM. Smoking and pregnancy: Epigenetics and developmental origins of the metabolic syndrome. Birth Defects Res 2019; 111:1259-1269. [PMID: 31313499 PMCID: PMC6964018 DOI: 10.1002/bdr2.1550] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
Maternal smoking causes lower birth weight, birth defects, and other adverse pregnancy outcomes. Epidemiological evidence over the past four decades has grown stronger and the adverse outcomes attributed to maternal smoking and secondhand smoke exposure have expanded. This review presents findings of latent and persistent metabolic effects in offspring of smoking mothers like those observed in studies of maternal undernutrition during pregnancy. The phenotype of offspring of smoking mothers is like that associated with maternal undernutrition. Born smaller than offspring of nonsmokers, these children have increased risk of being overweight or obese later. Plausible mechanisms include in utero hypoxia, nicotine-induced reductions in uteroplacental blood flow, placental toxicity, or toxic growth restriction from the many toxicants in tobacco smoke. Studies have reported increased risk of insulin resistance, type 2 diabetes and hypertension although the evidence here is weaker than for overweight/obesity. Altered DNA methylation has been consistently documented in smoking mothers' offspring, and these epigenetic alterations are extensive and postnatally durable. A causal link between altered DNA methylation and the phenotypic changes observed in offspring remains to be firmly established, yet the association is strong, and mediation analyses suggest a causal link. Studies examining expression patterns of affected genes during childhood development and associated health outcomes should be instructive in this regard. The adverse effects of exposure to tobacco smoke during pregnancy now clearly include permanent metabolic derangements in offspring that can adversely affect life-long health.
Collapse
Affiliation(s)
- John M Rogers
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
36
|
Kuniyoshi KM, Rehan VK. The impact of perinatal nicotine exposure on fetal lung development and subsequent respiratory morbidity. Birth Defects Res 2019; 111:1270-1283. [PMID: 31580538 DOI: 10.1002/bdr2.1595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 01/18/2023]
Abstract
Maternal smoking during pregnancy remains as a significant public health crisis as it did decades ago. Although its prevalence is decreasing in high-income countries, it has worsened globally, along with a concerning emergence of electronic-cigarette usage within the last two decades. Extensive epidemiologic and experimental evidence exists from both human and animal studies, demonstrating the detrimental long-term pulmonary outcomes in the offspring of mothers who smoke during pregnancy. Even secondhand and thirdhand smoke exposure to the developing lung might be as or even more harmful than firsthand smoke exposure. Furthermore, these effects are not limited only to the exposed progeny, but can also be transmitted transgenerationally. There is compelling evidence to support that the majority of the effects of perinatal smoke exposure on the developing lung, including the transgenerational transmission of asthma, is mediated by nicotine. Nicotine exposure induces cell-specific molecular changes in lungs, which offers a unique opportunity to prevent, halt, and/or reverse the resultant damage through targeted molecular interventions. Experimentally, the proposed interventions, such as administration of peroxisome proliferator-activated receptor gamma (PPARγ) agonists can not only block but also potentially reverse the perinatal nicotine exposure-induced respiratory morbidity in the exposed offspring. However, the development of a safe and effective intervention is still many years away. In the meantime, electropuncture at specific acupoints appears to be emerging as a more practical and safe physiologic approach to block the harmful pulmonary consequences of perinatal nicotine exposure.
Collapse
Affiliation(s)
- Katherine M Kuniyoshi
- Department of Pediatrics, David Geffen School of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, California
| | - Virender K Rehan
- Department of Pediatrics, David Geffen School of Medicine, The Lundquist Institute for Biomedical Innovation at Harbor, UCLA Medical Center, Torrance, California
| |
Collapse
|
37
|
Sikdar S, Joehanes R, Joubert BR, Xu CJ, Vives-Usano M, Rezwan FI, Felix JF, Ward JM, Guan W, Richmond RC, Brody JA, Küpers LK, Baïz N, Håberg SE, Smith JA, Reese SE, Aslibekyan S, Hoyo C, Dhingra R, Markunas CA, Xu T, Reynolds LM, Just AC, Mandaviya PR, Ghantous A, Bennett BD, Wang T, Consortium TBIOS, Bakulski KM, Melen E, Zhao S, Jin J, Herceg Z, van Meurs J, Taylor JA, Baccarelli AA, Murphy SK, Liu Y, Munthe-Kaas MC, Deary IJ, Nystad W, Waldenberger M, Annesi-Maesano I, Conneely K, Jaddoe VWV, Arnett D, Snieder H, Kardia SLR, Relton CL, Ong KK, Ewart S, Moreno-Macias H, Romieu I, Sotoodehnia N, Fornage M, Motsinger-Reif A, Koppelman GH, Bustamante M, Levy D, London SJ. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics 2019; 11:1487-1500. [PMID: 31536415 PMCID: PMC6836223 DOI: 10.2217/epi-2019-0066] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring.
Collapse
Affiliation(s)
- Sinjini Sikdar
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Roby Joehanes
- Hebrew SeniorLife, Harvard Medical School, Boston, MA 02115, USA
- Framingham Heart Study, Framingham, MA 01702, USA
| | - Bonnie R Joubert
- Department of Health & Human Services, Division of Extramural Research & Training, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Cheng-Jian Xu
- Department of Pediatric Pulmonology & Pediatric Allergology, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, The Netherlands
- GRIAC Research Institute Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, The Netherlands
| | - Marta Vives-Usano
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science & Technology, Barcelona, Spain
| | - Faisal I Rezwan
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Janine F Felix
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - James M Ward
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - Jennifer A Brody
- Department of Medicine, Epidemiology, & Health Services, Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98101, USA
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Human Nutrition & Health, Wageningen University, Wageningen, The Netherlands
| | - Nour Baïz
- Epidemiology of Allergic & Respiratory Diseases Department (EPAR), Sorbonne Universités, INSERM, Pierre Louis Institute of Epidemiology & Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - Siri E Håberg
- Centre for Fertility & Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah E Reese
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Stella Aslibekyan
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Cathrine Hoyo
- Department of Biological Sciences & Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Radhika Dhingra
- Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christina A Markunas
- Behavioral Health Research Division, RTI International, Research Triangle Park, NC 27709, USA
| | - Tao Xu
- Research Unit of Molecular Epidemiology, Helmhotz Zentrum Muenchen, Munich, Germany
| | - Lindsay M Reynolds
- Department of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Allan C Just
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Pooja R Mandaviya
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Brian D Bennett
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - The BIOS Consortium
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Hebrew SeniorLife, Harvard Medical School, Boston, MA 02115, USA
- Framingham Heart Study, Framingham, MA 01702, USA
- Department of Health & Human Services, Division of Extramural Research & Training, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
- Department of Pediatric Pulmonology & Pediatric Allergology, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, The Netherlands
- GRIAC Research Institute Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, The Netherlands
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science & Technology, Barcelona, Spain
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, UK
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
- Department of Medicine, Epidemiology, & Health Services, Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98101, USA
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Division of Human Nutrition & Health, Wageningen University, Wageningen, The Netherlands
- Epidemiology of Allergic & Respiratory Diseases Department (EPAR), Sorbonne Universités, INSERM, Pierre Louis Institute of Epidemiology & Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
- Centre for Fertility & Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA
- Department of Biological Sciences & Center for Human Health & the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Department of Environmental Sciences & Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
- Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA
- Behavioral Health Research Division, RTI International, Research Triangle Park, NC 27709, USA
- Research Unit of Molecular Epidemiology, Helmhotz Zentrum Muenchen, Munich, Germany
- Department of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Westat, Durham, NC 27703, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, NY 10032, USA
- Departments of Obstetrics & Gynecology & Pathology, Duke University School of Medicine, Durham, NC 27708, USA
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
- National Institute of Public Health, Oslo, Norway
- Centre for Cognitive Ageing & Cognitive Epidemiology, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
- Division of Mental & Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
- Autonomous Metropolitan University Iztapalapa, Mexico City, Mexico
- Nutrition & Metabolism Section, International Agency for Research on Cancer, Lyon, France
- Center for Research on Population Health, National Institute of Public Health, Mexico
- Hubert Department of Global Health, Emory University, Atlanta, GA 30329, USA
- Institute of Molecular Medicine & Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
- Population Sciences Branch, National Heart, Lung, & Blood Institute, National Institutes of Health, Bethesda, MD 01702, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erik Melen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shanshan Zhao
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jack A Taylor
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York City, NY 10032, USA
| | - Susan K Murphy
- Departments of Obstetrics & Gynecology & Pathology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Monica Cheng Munthe-Kaas
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
- National Institute of Public Health, Oslo, Norway
| | - Ian J Deary
- Centre for Cognitive Ageing & Cognitive Epidemiology, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Wenche Nystad
- Division of Mental & Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmhotz Zentrum Muenchen, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic & Respiratory Diseases Department (EPAR), Sorbonne Universités, INSERM, Pierre Louis Institute of Epidemiology & Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - Karen Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vincent WV Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Donna Arnett
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sharon LR Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, School of Social & Community Medicine, University of Bristol, Bristol, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | | | - Isabelle Romieu
- Nutrition & Metabolism Section, International Agency for Research on Cancer, Lyon, France
- Center for Research on Population Health, National Institute of Public Health, Mexico
- Hubert Department of Global Health, Emory University, Atlanta, GA 30329, USA
| | - Nona Sotoodehnia
- Department of Medicine, Epidemiology, & Health Services, Cardiovascular Health Research Unit, University of Washington, Seattle, WA 98101, USA
| | - Myriam Fornage
- Institute of Molecular Medicine & Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77225, USA
| | - Alison Motsinger-Reif
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology & Pediatric Allergology, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, The Netherlands
- GRIAC Research Institute Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen, The Netherlands
| | - Mariona Bustamante
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science & Technology, Barcelona, Spain
| | - Daniel Levy
- Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, National Heart, Lung, & Blood Institute, National Institutes of Health, Bethesda, MD 01702, USA
| | - Stephanie J London
- Department of Health & Human Services, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
38
|
Mørkve Knudsen GT, Rezwan FI, Johannessen A, Skulstad SM, Bertelsen RJ, Real FG, Krauss-Etschmann S, Patil V, Jarvis D, Arshad SH, Holloway JW, Svanes C. Epigenome-wide association of father's smoking with offspring DNA methylation: a hypothesis-generating study. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz023. [PMID: 31827900 PMCID: PMC6896979 DOI: 10.1093/eep/dvz023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/22/2019] [Accepted: 11/04/2019] [Indexed: 05/23/2023]
Abstract
Epidemiological studies suggest that father's smoking might influence their future children's health, but few studies have addressed whether paternal line effects might be related to altered DNA methylation patterns in the offspring. To investigate a potential association between fathers' smoking exposures and offspring DNA methylation using epigenome-wide association studies. We used data from 195 males and females (11-54 years) participating in two population-based cohorts. DNA methylation was quantified in whole blood using Illumina Infinium MethylationEPIC Beadchip. Comb-p was used to analyse differentially methylated regions (DMRs). Robust multivariate linear models, adjusted for personal/maternal smoking and cell-type proportion, were used to analyse offspring differentially associated probes (DMPs) related to paternal smoking. In sensitivity analyses, we adjusted for socio-economic position and clustering by family. Adjustment for inflation was based on estimation of the empirical null distribution in BACON. Enrichment and pathway analyses were performed on genes annotated to cytosine-phosphate-guanine (CpG) sites using the gometh function in missMethyl. We identified six significant DMRs (Sidak-corrected P values: 0.0006-0.0173), associated with paternal smoking, annotated to genes involved in innate and adaptive immunity, fatty acid synthesis, development and function of neuronal systems and cellular processes. DMP analysis identified 33 CpGs [false discovery rate (FDR) < 0.05]. Following adjustment for genomic control (λ = 1.462), no DMPs remained epigenome-wide significant (FDR < 0.05). This hypothesis-generating study found that fathers' smoking was associated with differential methylation in their adolescent and adult offspring. Future studies are needed to explore the intriguing hypothesis that fathers' exposures might persistently modify their future offspring's epigenome.
Collapse
Affiliation(s)
- G T Mørkve Knudsen
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Department of Occupational Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Correspondence address. Haukanesvegen 260, N-5650 Tysse, Norway; Tel: +47 977 98 147; E-mail: and
| | - F I Rezwan
- Human Genetics and Genomic Medicine, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - A Johannessen
- Department of Occupational Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, N-5018 Bergen, Norway
| | - S M Skulstad
- Department of Occupational Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - R J Bertelsen
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | - F G Real
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | - S Krauss-Etschmann
- Division of Experimental Asthma Research, Research Center Borstel, 23845 Borstel, Germany
- German Center for Lung Research (DZL) and Institute of Experimental Medicine, Christian-Albrechts University of Kiel, 24118 Kiel, Germany
| | - V Patil
- David Hide Asthma and Allergy Research Centre, St. Mary’s Hospital, Isle of Wight PO30 5TG, UK
| | - D Jarvis
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, London SW3 6LY, UK
| | - S H Arshad
- Clinical and Experimental Sciences, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
- NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, UK
| | - J W Holloway
- Human Genetics and Genomic Medicine, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - C Svanes
- Department of Occupational Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, N-5018 Bergen, Norway
| |
Collapse
|
39
|
Kaur G, Begum R, Thota S, Batra S. A systematic review of smoking-related epigenetic alterations. Arch Toxicol 2019; 93:2715-2740. [PMID: 31555878 DOI: 10.1007/s00204-019-02562-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study is to provide a systematic review of the known epigenetic alterations caused by cigarette smoke; establish an evidence-based perspective of their clinical value for screening, diagnosis, and treatment of smoke-related disorders; and discuss the challenges and ethical concerns associated with epigenetic studies. A well-defined, reproducible search strategy was employed to identify relevant literature (clinical, cellular, and animal-based) between 2000 and 2019 based on AMSTAR guidelines. A total of 80 studies were identified that reported alterations in DNA methylation, histone modifications, and miRNA expression following exposure to cigarette smoke. Changes in DNA methylation were most extensively documented for genes including AHRR, F2RL3, DAPK, and p16 after exposure to cigarette smoke. Likewise, miR16, miR21, miR146, and miR222 were identified to be differentially expressed in smokers and exhibit potential as biomarkers for determining susceptibility to COPD. We also identified 22 studies highlighting the transgenerational effects of maternal and paternal smoking on offspring. This systematic review lists the epigenetic events/alterations known to occur in response to cigarette smoke exposure and identifies the major genes and miRNAs that are potential targets for translational research in associated pathologies. Importantly, the limitations and ethical concerns related to epigenetic studies are also highlighted, as are the effects on the ability to address specific questions associated with exposure to tobacco/cigarette smoke. In the future, improved interpretation of epigenetic signatures will lead to their increased use as biomarkers and/or in drug development.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rizwana Begum
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
40
|
Litzky JF, Marsit CJ. Epigenetically regulated imprinted gene expression associated with IVF and infertility: possible influence of prenatal stress and depression. J Assist Reprod Genet 2019; 36:1299-1313. [PMID: 31127477 PMCID: PMC6642239 DOI: 10.1007/s10815-019-01483-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Despite the growing body of research implying an impact of in vitro fertilization (IVF) on imprinted genes and epigenetics, few studies have examined the effects of underlying subfertility or prenatal stress on epigenetics, particularly in terms of their role in determining infant birthweights. Both subfertility and prenatal stressors have been found to impact epigenetics and may be confounding the effect of IVF on epigenetics and imprinted genes. Like IVF, both of these exposures-infertility and prenatal stressors-have been associated with lower infant birthweights. The placenta, and specifically epigenetically regulated placental imprinted genes, provides an ideal but understudied mechanism for evaluating the relationship between underlying genetics, environmental exposures, and birthweight. METHODS AND RESULTS In this review, we discuss the impacts of IVF and infertility on birthweight, epigenetic mechanisms and genomic imprinting, and the role of these mechanisms in the IVF population and discuss the role and importance of the placenta in infant development. We then highlight recent work on the relationships between infertility, IVF, and prenatal stressors in terms of placental imprinting. CONCLUSIONS In combination, the studies discussed, as well as two recent projects of our own on placental imprinted gene expression, suggest that lower birthweights in IVF infants are secondary to a combination of exposures including the infertility and prenatal stress that couples undergoing IVF are experiencing. The work highlighted herein emphasizes the need for appropriate control populations that take infertility into account and also for consideration of prenatal psychosocial stressors as confounders and causes of variation in IVF infant outcomes.
Collapse
Affiliation(s)
- Julia F Litzky
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, CNR 202, Atlanta, GA, 30322, USA.
| |
Collapse
|
41
|
Bergens MA, Pittman GS, Thompson IJB, Campbell MR, Wang X, Hoyo C, Bell DA. Smoking-associated AHRR demethylation in cord blood DNA: impact of CD235a+ nucleated red blood cells. Clin Epigenetics 2019; 11:87. [PMID: 31182156 PMCID: PMC6558773 DOI: 10.1186/s13148-019-0686-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Numerous studies have demonstrated that DNA methylation levels in the aryl hydrocarbon receptor repressor (AHRR) gene measured in cord blood are significantly associated with prenatal tobacco smoke exposure and can be used as a fetal exposure biomarker. The mechanism driving this demethylation has not been determined and it is unclear if all cord blood cell types are impacted. Nucleated red blood cells (nRBCs/CD235a+ cells) are developmentally immature RBCs that display genome-wide hypomethylation and are observed at increased frequency in the cord blood of smoking mothers. We tested if AHRR methylation levels in CD235a+ nRBCs or nRBC counts influenced AHRR methylation in whole cord blood. METHODS Cord blood was collected from smoking (n = 34) and nonsmoking (n = 19) mothers and DNA was prepared from whole cord blood, isolated CD235a+ nRBCs, and CD14+ monocytes. AHRR methylation in cord blood DNA was measured using Illumina 850K arrays (cg05575921, chr5:373378). Pyrosequencing was used to compare methylation levels among cord blood, CD235a+, and CD14+ cells. We measured nRBC percentages using conventional complete blood counts and estimated percent nRBCs by a deconvolution model. RESULTS Methylation levels in AHRR were significantly lower in nRBCs relative to whole cord blood and CD14+ monocytes. While AHRR methylation levels in the cell types were significantly correlated across all subjects, methylation values at the chr5:373378 CpG averaged 14.6% lower in nRBCs (range 0.4 to 24.8%; p = 3.8E-13) relative to CD14+, with nonsmokers showing a significantly greater hypomethylation (- 4.1%, p = 1.8E-02). Methylation level at the AHRR chr5:373378 CpG was strongly associated with self-reported smoking in both CD14+ monocytes (t test p = 5.7E-09) and nRBCs (p = 4.8E-08), as well as cotinine levels (regression p = 1.1E-07 and p = 3.6E-04, respectively). For subjects with whole blood 850K data, robust linear regression models adjusting for estimated cell type composition, either including nRBCs counts or estimates, modestly increased the association between smoking and cg05575921 methylation. CONCLUSIONS Prenatal smoke exposure was highly significantly associated with AHRR methylation in cord blood, CD14+ monocytes, and CD235a+ nRBCs. AHRR methylation levels in nRBCs and nRBC counts had minimal effect on cord blood methylation measurements. However, regression models using estimated nRBCs or actual nRBC counts outperformed those lacking these covariates.
Collapse
Affiliation(s)
- Matthew A. Bergens
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Gary S. Pittman
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Isabel J. B. Thompson
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Michelle R. Campbell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Cathrine Hoyo
- Epidemiology and Environmental Epigenomics Laboratory, North Carolina State University, Raleigh, NC 27695 USA
| | - Douglas A. Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| |
Collapse
|
42
|
Caramaschi D, Taylor AE, Richmond RC, Havdahl KA, Golding J, Relton CL, Munafò MR, Davey Smith G, Rai D. Maternal smoking during pregnancy and autism: using causal inference methods in a birth cohort study. Transl Psychiatry 2018; 8:262. [PMID: 30498225 PMCID: PMC6265272 DOI: 10.1038/s41398-018-0313-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 11/22/2022] Open
Abstract
An association between maternal smoking in pregnancy and autism may be biologically plausible, but the evidence to date is inconsistent. We aimed to investigate the causal relationship between maternal smoking during pregnancy and offspring autism using conventional analysis and causal inference methods. In the Avon Longitudinal Study of Parents and Children we investigated the association of maternal smoking during pregnancy (exposure) with offspring autism spectrum disorder (ASD) or possible ASD diagnosis (n = 11,946) and high scores on four autism-related traits (outcomes) (n = 7402-9152). Maternal smoking was self-reported and also measured using an epigenetic score (n = 866-964). Partner's smoking was used as a negative control for intrauterine exposure (n = 6616-10,995). Mendelian randomisation (n = 1002-2037) was carried out using a genetic variant at the CHRNA3 locus in maternal DNA as a proxy for heaviness of smoking. In observational analysis, we observed an association between smoking during pregnancy and impairments in social communication [OR = 1.56, 95% CI = 1.29, 1.87] and repetitive behaviours, but multivariable adjustment suggested evidence for confounding. There was weaker evidence of such association for the other traits or a diagnosis of autism. The magnitude of association for partner's smoking with impairments in social communication was similar [OR = 1.56, 95% CI = 1.30, 1.87] suggesting potential for shared confounding. There was weak evidence for an association of the epigenetic score or genetic variation at CHRNA3 with ASD or any of the autism-related traits. In conclusion, using several analytic methods, we did not find enough evidence to support a causal association between maternal smoking during pregnancy and offspring autism or related traits.
Collapse
Affiliation(s)
- Doretta Caramaschi
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Amy E Taylor
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Child and Adolescent Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jean Golding
- Centre for Child and Adolescent Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marcus R Munafò
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Dheeraj Rai
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bristol, UK
| |
Collapse
|
43
|
Wang XB, Cui NH, Liu XN, Ma JF, Zhu QH, Guo SR, Zhao JW, Ming L. Identification of DAPK1 Promoter Hypermethylation as a Biomarker for Intra-Epithelial Lesion and Cervical Cancer: A Meta-Analysis of Published Studies, TCGA, and GEO Datasets. Front Genet 2018; 9:258. [PMID: 30065752 PMCID: PMC6056635 DOI: 10.3389/fgene.2018.00258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/26/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Promoter hypermethylation in death-associated protein kinase 1 (DAPK1) gene has been long linked to cervical neoplasia, but the established results remained controversial. Here, we performed a meta-analysis to assess the associations of DAPK1 promoter hypermethylation with low-grade intra-epithelial lesion (HSIL), high-grade intra-epithelial lesion (HSIL), cervical cancer (CC), and clinicopathological features of CC. Methods: Published studies with qualitative methylation data were initially searched from PubMed, Web of Science, EMBASE, and China National Knowledge Infrastructure databases (up to March 2018). Then, quantitative methylation datasets, retrieved from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, were pooled to validate the results of published studies. Results: In a meta-analysis of 37 published studies, DAPK1 promoter hypermethylation progressively increased the risk of LSIL by 2.41-fold (P = 0.012), HSIL by 7.62-fold (P < 0.001), and CC by 23.17-fold (P < 0.001). Summary receiver operating characteristic curves suggested a potential diagnostic value of DAPK1 promoter hypermethylation in CC, with a large area-under-the-curve of 0.83, a high specificity of 97%, and a moderate sensitivity of 59%. There were significant impacts of DAPK1 promoter hypermethylation on histological type (odds ratio (OR) = 3.53, P < 0.001) and FIGO stage of CC (OR = 2.15, P = 0.003). Then, a pooled analysis of nine TCGA and GEO datasets, covering 13 CPG sites within DAPK1 promoter, identified eight CC-associated sites, six sites with diagnostic values for CC (pooled specificities: 74–90%; pooled sensitivities: 70–81%), nine loci associated with the histological type of CC, and all 13 loci with down-regulated effects on DAPK1 mRNA expression. Conclusion: The meta-analysis suggests that DAPK1 promoter hypermethylation is significantly associated with the disease severity of cervical neoplasia. DAPK1 methylation detection exhibits a promising ability to discriminate CC from cancer-free controls.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning-Hua Cui
- Department of Clinical Laboratory, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xia-Nan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Fen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing-Hua Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu-Ren Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Wei Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Bauer M. Cell-type-specific disturbance of DNA methylation pattern: a chance to get more benefit from and to minimize cohorts for epigenome-wide association studies. Int J Epidemiol 2018; 47:917-927. [DOI: 10.1093/ije/dyy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, UFZ, Permoserst, 15, 04318 Leipzig, Germany
| |
Collapse
|
45
|
Farzan N, Vijverberg SJ, Kabesch M, Sterk PJ, Maitland-van der Zee AH. The use of pharmacogenomics, epigenomics, and transcriptomics to improve childhood asthma management: Where do we stand? Pediatr Pulmonol 2018; 53:836-845. [PMID: 29493882 DOI: 10.1002/ppul.23976] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/01/2018] [Indexed: 01/11/2023]
Abstract
Asthma is a complex multifactorial disease and it is the most common chronic disease in children. There is a high variability in response to asthma treatment, even in patients with good adherence to maintenance treatment, and a correct inhalation technique. Distinct underlying disease mechanisms in childhood asthma might be the reason of this heterogeneity. A deeper knowledge of the underlying molecular mechanisms of asthma has led to the recent development of advanced and mechanism-based treatments such as biologicals. However, biologicals are recommended only for patients with specific asthma phenotypes who remain uncontrolled despite high dosages of conventional asthma treatment. One of the main unmet needs in their application is lack of clinically available biomarkers to individualize pediatric asthma management and guide treatment. Pharmacogenomics, epigenomics, and transcriptomics are three omics fields that are rapidly advancing and can provide tools to identify novel asthma mechanisms and biomarkers to guide treatment. Pharmacogenomics focuses on variants in the DNA, epigenomics studies heritable changes that do not involve changes in the DNA sequence but lead to alteration of gene expression, and transcriptomics investigates gene expression by studying the complete set of mRNA transcripts in a cell or a population of cells. Advances in high-throughput technologies and statistical tools together with well-phenotyped patient inclusion and collaborations between different centers will expand our knowledge of underlying molecular mechanisms involved in disease onset and progress. Furthermore, it could help to select and stratify appropriate therapeutic strategies for subgroups of patients and hopefully bring precision medicine to daily practice.
Collapse
Affiliation(s)
- Niloufar Farzan
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J Vijverberg
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Leung YK, Ouyang B, Niu L, Xie C, Ying J, Medvedovic M, Chen A, Weihe P, Valvi D, Grandjean P, Ho SM. Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics 2018; 13:290-300. [PMID: 29560787 DOI: 10.1080/15592294.2018.1445901] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Faroe islanders consume marine foods contaminated with methylmercury (MeHg), polychlorinated biphenyls (PCBs), and other toxicants associated with chronic disease risks. Differential DNA methylation at specific CpG sites in cord blood may serve as a surrogate biomarker of health impacts from chemical exposures. We aimed to identify key environmental chemicals in cord blood associated with DNA methylation changes in a population with elevated exposure to chemical mixtures. We studied 72 participants of a Faroese birth cohort recruited between 1986 and 1987 and followed until adulthood. The cord blood DNA methylome was profiled using Infinium HumanMethylation450 BeadChips. We determined the associations of CpG site changes with concentrations of MeHg, major PCBs, other organochlorine compounds [hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and p,p'-dichlorodiphenyltrichloroethane], and perfluoroalkyl substances. In a combined sex analysis, among the 16 chemicals studied, PCB congener 105 (CB-105) exposure was associated with the majority of differentially methylated CpG sites (214 out of a total of 250). In female-only analysis, only 73 CB-105 associated CpG sites were detected, 44 of which were mapped to genes in the ELAV1-associated cancer network. In males-only, methylation changes were seen for perfluorooctane sulfonate, HCB, and p,p'-DDE in 10,598, 1,238, and 1,473 CpG sites, respectively, 15% of which were enriched in cytobands of the X-chromosome associated with neurological disorders. In this multiple-pollutant and genome-wide study, we identified key epigenetic toxicants. The significant enrichment of specific X-chromosome sites in males implies potential sex-specific epigenome responses to prenatal chemical exposures.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- a Division of Environmental Genetics and Molecular Toxicology.,e Center of Environmental Genetics.,f Cincinnati Cancer Center , University of Cincinnati Medical Center , Cincinnati , USA
| | - Bin Ouyang
- a Division of Environmental Genetics and Molecular Toxicology.,e Center of Environmental Genetics
| | - Liang Niu
- b Biostatistics & Bioinformatics.,e Center of Environmental Genetics
| | - Changchun Xie
- b Biostatistics & Bioinformatics.,e Center of Environmental Genetics
| | - Jun Ying
- b Biostatistics & Bioinformatics.,c Public Health Science and
| | - Mario Medvedovic
- b Biostatistics & Bioinformatics.,e Center of Environmental Genetics.,f Cincinnati Cancer Center , University of Cincinnati Medical Center , Cincinnati , USA
| | - Aimin Chen
- d Epidemiology Department of Environmental Health.,e Center of Environmental Genetics
| | - Pal Weihe
- h Department of Occupational Medicine and Public Health , Faroese Hospital System , Torshavn , Faroe Islands
| | - Damaskini Valvi
- i Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , USA
| | - Philippe Grandjean
- i Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , USA.,j Department of Environmental Medicine , University of Southern Denmark , Odense , Denmark
| | - Shuk-Mei Ho
- a Division of Environmental Genetics and Molecular Toxicology.,e Center of Environmental Genetics.,f Cincinnati Cancer Center , University of Cincinnati Medical Center , Cincinnati , USA.,g Cincinnati Veteran Affairs Medical Center , Cincinnati , USA
| |
Collapse
|
47
|
Witt SH, Frank J, Gilles M, Lang M, Treutlein J, Streit F, Wolf IAC, Peus V, Scharnholz B, Send TS, Heilmann-Heimbach S, Sivalingam S, Dukal H, Strohmaier J, Sütterlin M, Arloth J, Laucht M, Nöthen MM, Deuschle M, Rietschel M. Impact on birth weight of maternal smoking throughout pregnancy mediated by DNA methylation. BMC Genomics 2018; 19:290. [PMID: 29695247 PMCID: PMC5922319 DOI: 10.1186/s12864-018-4652-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/08/2018] [Indexed: 12/12/2022] Open
Abstract
Background Cigarette smoking has severe adverse health consequences in adults and in the offspring of mothers who smoke during pregnancy. One of the most widely reported effects of smoking during pregnancy is reduced birth weight which is in turn associated with chronic disease in adulthood. Epigenome-wide association studies have revealed that smokers show a characteristic “smoking methylation pattern”, and recent authors have proposed that DNA methylation mediates the impact of maternal smoking on birth weight. The aims of the present study were to replicate previous reports that methylation mediates the effect of maternal smoking on birth weight, and for the first time to investigate whether the observed mediation effects are sex-specific in order to account for known sex-specific differences in methylation levels. Methods Methylation levels in the cord blood of 313 newborns were determined using the Illumina HumanMethylation450K Beadchip. A total of 5,527 CpG sites selected on the basis of evidence from the literature were tested. To determine whether the observed association between maternal smoking and birth weight was attributable to methylation, mediation analyses were performed for significant CpG sites. Separate analyses were then performed in males and females. Results Following quality control, 282 newborns eventually remained in the analysis. A total of 25 mothers had smoked consistently throughout the pregnancy. The birthweigt of newborns whose mothers had smoked throughout pregnancy was reduced by >200g. After correction for multiple testing, 30 CpGs showed differential methylation in the maternal smoking subgroup including top “smoking methylation pattern” genes AHRR, MYO1G, GFI1, CYP1A1, and CNTNAP2. The effect of maternal smoking on birth weight was partly mediated by the methylation of cg25325512 (PIM1); cg25949550 (CNTNAP2); and cg08699196 (ITGB7). Sex-specific analyses revealed a mediating effect for cg25949550 (CNTNAP2) in male newborns. Conclusion The present data replicate previous findings that methylation can mediate the effect of maternal smoking on birth weight. The analysis of sex-dependent mediation effects suggests that the sex of the newborn may have an influence. Larger studies are warranted to investigate the role of both the identified differentially methylated loci and the sex of the newborn in mediating the association between maternal smoking during pregnancy and birth weight. Electronic supplementary material The online version of this article (10.1186/s12864-018-4652-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maria Gilles
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maren Lang
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Isabell A C Wolf
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Verena Peus
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Barbara Scharnholz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tabea S Send
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Helene Dukal
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marc Sütterlin
- Department of Gynecology and Obstetrics, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Janine Arloth
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Manfred Laucht
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Department of Psychology, University of Potsdam, Potsdam, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Michael Deuschle
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
48
|
Lee HJ, Choi NY, Park YS, Lee SW, Bang JS, Lee Y, Ryu JS, Choi SJ, Lee SH, Kim GS, Chung HW, Ko K, Lee K, Ko K. Multigenerational effects of maternal cigarette smoke exposure during pregnancy on sperm counts of F1 and F2 male offspring. Reprod Toxicol 2018; 78:169-177. [PMID: 29689290 DOI: 10.1016/j.reprotox.2018.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 11/15/2022]
Abstract
Animal models and human studies showed that in utero cigarette smoke exposure decreases sperm counts of offspring. This study used a mouse model to investigate the effects of maternal exposure to cigarette smoke on reproductive systems in F1 and F2 male offspring. Female ICR mice were exposed either to clean air or to cigarette smoke during pregnancy at the post-implantation stage. Epididymal sperm counts were decreased in a cigarette smoke dose-dependent manner in F1 (by 40-60%) and F2 males (by 23-40%) at postnatal day 56. In F1, the seminiferous epithelium heights were lower in the cigarette smoke-exposed groups than in the control group, and these effects were sustained in F2 males. Results suggest that maternal cigarette smoke exposure during pregnancy can have a multigenerational adverse effect on sperm counts in male offspring, which is mediated through in utero exposure of fetal germ cells to cigarette smoke.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Na Young Choi
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Yo Seph Park
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Seung-Won Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Jin Seok Bang
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Yukyeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| | - Jae-Sung Ryu
- Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | - Seong-Jin Choi
- Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Sang-Hyub Lee
- Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea
| | - Gwang Soo Kim
- Department of Nuclear Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Seoul, Republic of Korea; Department of Nuclear Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kisung Ko
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Kyuhong Lee
- Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeonbuk, Republic of Korea; Department of Human and Environment Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea; Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Association between DNA methylation in cord blood and maternal smoking: The Hokkaido Study on Environment and Children's Health. Sci Rep 2018; 8:5654. [PMID: 29618728 PMCID: PMC5884848 DOI: 10.1038/s41598-018-23772-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022] Open
Abstract
Maternal smoking is reported to cause adverse effects on the health of the unborn child, the underlying mechanism for which is thought to involve alterations in DNA methylation. We examined the effects of maternal smoking on DNA methylation in cord blood, in 247 mother–infant pairs in the Sapporo cohort of the Hokkaido Study, using the Infinium HumanMethylation 450K BeadChip. We first identified differentially methylated CpG sites with a false discovery rate (FDR) of <0.05 and the magnitude of DNA methylation changes (|β| >0.02) from the pairwise comparisons of never-smokers (Ne-S), sustained-smokers (Su-S), and stopped-smokers (St-S). Subsequently, secondary comparisons between St-S and Su-S revealed nine common sites that mapped to ACSM3, AHRR, CYP1A1, GFI1, SHANK2, TRIM36, and the intergenic region between ANKRD9 and RCOR1 in Ne-S vs. Su-S, and one common CpG site mapping to EVC2 in Ne-S vs. St-S. Further, we verified these CpG sites and examined neighbouring sites using bisulfite next-generation sequencing, except for AHRR cg21161138. These changes in DNA methylation implicate the effect of smoking cessation. Our findings add to the current knowledge of the association between DNA methylation and maternal smoking and suggest future studies for clarifying this relationship in disease development.
Collapse
|
50
|
Chen CH, Jiang SS, Chang IS, Wen HJ, Sun CW, Wang SL. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth. ENVIRONMENTAL RESEARCH 2018; 162:261-270. [PMID: 29367177 DOI: 10.1016/j.envres.2018.01.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/20/2017] [Accepted: 01/11/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phthalic acid esters are ubiquitous and antiandrogenic, and may cause systemic effects in humans, particularly with in utero exposure. Epigenetic modification, such as DNA methylation, has been hypothesized to be an important mechanism that mediates certain biological processes and pathogenic effects of in utero phthalate exposure. OBJECTIVE The aim of this study was to examine the association between genome-wide DNA methylation at birth and prenatal exposure to phthalate. METHODS We studied 64 infant-mother pairs included in TMICS (Taiwan Maternal and Infant Cohort Study), a long-term follow-up birth cohort from the general population. DNA methylation levels at more than 450,000 CpG sites were measured in cord blood samples using Illumina Infinium HumanMethylation450 BeadChips. The concentrations of three metabolites of di-(2-ethylhexyl) phthalate (DEHP) were measured using liquid chromatography tandem-mass spectrometry (LC-MS/MS) in urine samples collected from the pregnant women during 28-36 weeks gestation. RESULTS We identified 25 CpG sites whose methylation levels in cord blood were significantly correlated with prenatal DEHP exposure using a false discovery rate (FDR) of 5% (q-value < 0.05). Via gene-set enrichment analysis (GSEA), we also found that there was significant enrichment of genes involved in the androgen response, estrogen response, and spermatogenesis within those genes showing DNA methylation changes in response to exposure. Specifically, PA2G4, HMGCR, and XRCC6 genes were involved in genes in response to androgen. CONCLUSIONS Phthalate exposure in utero may cause significant alterations in the DNA methylation in cord blood. These changes in DNA methylation might serve as biomarkers of maternal exposure to phthalate in infancy and potential candidates for studying mechanisms via which phthalate may impact on health in later life. Future investigations are warranted.
Collapse
Affiliation(s)
- Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Taiwan Bioinformatics Core, National Health Research Institutes, Zhunan, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan.
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Taiwan Bioinformatics Core, National Health Research Institutes, Zhunan, Taiwan; Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan; School of Public Health, National Defense Medical Center, Taipei.
| |
Collapse
|