1
|
Iqbal J, Inghirami G, Chan WC. New insights into the biology of T-cell lymphomas. Blood 2024; 144:1873-1886. [PMID: 39213420 DOI: 10.1182/blood.2023021787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Peripheral T-cell lymphomas (PTCLs) encompass a heterogeneous group of postthymic T-cell lymphomas with >30 distinct subtypes associated with varied clinicopathological features. Unfortunately, the overall survival of the major PTCL subtypes is dismal and has not improved for decades; thus, there is an urgent unmet clinical need to improve diagnosis, therapies, and clinical outcomes. The diagnosis is often challenging, requiring a combinatorial evaluation of clinical, morphologic, and immunophenotypic features. PTCL pathobiology is difficult to investigate due to enormous intertumor and intratumor heterogeneity, limited tissue availability, and the paucity of authentic T-cell lymphoma cell lines or genetically faithful animal models. The application of transcriptomic profiling and genomic sequencing has markedly accelerated the discovery of new biomarkers, molecular signatures, and genetic lesions, and some of the discoveries have been included in the revised World Health Organization or International Consensus Classification. Genome-wide investigations have revealed the mutational landscape and transcriptomic profiles of PTCL entities, defined the cell of origin as a major determinant of T-cell lymphoma biology, and allowed for the refinement of biologically and clinically meaningful entities for precision therapy. In this review, we prioritize the discussion on common nodal PTCL subtypes together with 2 virus-associated T-cell and natural killer cell lymphomas. We succinctly review normal T-cell development, differentiation, and T-cell receptor signaling as they relate to PTCL pathogenesis and biology. This review will facilitate a better biological understanding of the different PTCL entities and their stratification for additional studies and target-directed clinical trials.
Collapse
Affiliation(s)
- Javeed Iqbal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
2
|
Herrera-Uribe J, Convery O, ALmohammadi D, Weinberg FI, Stevenson NJ. The Neglected Suppressor of Cytokine Signalling (SOCS): SOCS4-7. Inflammation 2024:10.1007/s10753-024-02163-7. [PMID: 39460806 DOI: 10.1007/s10753-024-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
SOCS proteins are essential for the regulation of oncogenic, anti-pathogenic, and proinflammatory signalling cascades, including the JAK/STAT and NF-kB pathways, where they act as negative feedback regulators. Given their powerful role in a broad spectrum of biological processes, it is surprising that the functions of many SOCS proteins have not been widely explored. While the mechanisms of action of CIS, SOCS1-3 are well-documented, information regarding SOCS4-7 remains limited. However, recent studies have begun to elucidate the regulatory functions of these proteins during infection and disease, such as influenza infection, cancer and diabetes. Therefore, this review aims to describe and discuss studies detailing our current understanding of SOCS4-7, painting a clearer picture of the biological processes these regulatory proteins maintain. Indeed, our review highlights important evidence proving that all SOCS play a role in biological processes that are essential for normal immunological homeostasis, clearance of infection and avoidance of disease. Understanding how SOCS proteins interact with other proteins or how they are dysregulated in disease is likely to provide valuable insights for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla Convery
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniah ALmohammadi
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Fabienne Ingrid Weinberg
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Wang C, Wang L. Resistance mechanisms and potential therapeutic strategies in relapsed or refractory natural killer/T cell lymphoma. Chin Med J (Engl) 2024; 137:2308-2324. [PMID: 39175124 PMCID: PMC11441923 DOI: 10.1097/cm9.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 08/24/2024] Open
Abstract
ABSTRACT Natural killer/T cell lymphoma (NKTCL) is a malignant tumor originating from NK or T cells, characterized by its highly aggressive and heterogeneous nature. NKTCL is predominantly associated with Epstein-Barr virus infection, disproportionately affecting Asian and Latin American populations. Owing to the application of asparaginase and immunotherapy, clinical outcomes have improved significantly. However, for patients in whom first-line treatment fails, the prognosis is exceedingly poor. Overexpression of multidrug resistance genes, abnormal signaling pathways, epigenetic modifications and active Epstein-Barr virus infection may be responsible for resistance. This review summarized the mechanisms of resistance for NKTCL and proposed potential therapeutic approaches.
Collapse
Affiliation(s)
- Chengji Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
4
|
Ng CS. From the midfacial destructive drama to the unfolding EBV story: a short history of EBV-positive NK-cell and T-cell lymphoproliferative diseases. Pathology 2024; 56:773-785. [PMID: 39127542 DOI: 10.1016/j.pathol.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus that has been related to oncogenesis of lymphoid and epithelial malignancies. Although the mechanism of EBV infection of NK and T cells remains enigmatic, it plays a pathogenic role in various EBV+ NK-cell and T-cell lymphoproliferative diseases (LPDs), through promotion of cell activation pathways, inhibition of cell apoptotic pathways, behaving as oncogenes, interacting with host oncogenes or acting epigenetically. The study of NK-cell LPDs, previously hampered by the lack of immunophenotypical and genotypical criteria of NK cells, has become feasible with the recently accepted criteria. EBV+ NK- and T-cell LPDs are mostly of poor prognosis. This review delivers a short history from primeval to recent EBV+ NK- and T-cell LPDs in non-immunocompromised subjects, coupled with increasing interest, and work on the biological and oncogenic roles of EBV.
Collapse
Affiliation(s)
- Chi Sing Ng
- Department of Pathology, Caritas Medical Center, Shamshuipo, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Bi C, Huang Y, Ali R, Wang F, Yang X, Bouska A, Xu L, Hao X, Lunning MA, Chan WC, Iqbal J, Weisenburger DD, Vose JM, Fu K. MYC overexpression in natural killer cell lymphoma: prognostic and therapeutic implications. Haematologica 2024; 109:2810-2821. [PMID: 38546691 PMCID: PMC11367202 DOI: 10.3324/haematol.2023.283811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/18/2024] [Indexed: 09/03/2024] Open
Abstract
The current clinical management of extranodal natural killer (NK)/T-cell lymphoma (ENKTL) primarily depends on conventional chemotherapy and radiotherapy, underscoring the need for innovative therapeutic strategies. This study explores the clinical significance and therapeutic implication of c-MYC (MYC) in ENKTL. Initially, we identified MYC protein overexpression in approximately 75% of cases within a large cohort of 111 patients. MYC overexpression was strongly correlated with lymphoma cell proliferation and poor clinical outcomes. Intriguingly, integrating MYC expression into the prognostic index of NK cells lymphoma with Epstein-Barr virus (PINK-E) prognostic model significantly enhanced its predictive power. Subsequently, we implemented MYC knockdown in NK malignancy cell lines with MYC overexpression, resulting in significant viability reduction. RNA sequencing used to determine MYC function revealed a high overlap with canonical MYC-regulated genes and enrichment in metabolism and cell cycle regulation. Integrative analysis of the RNA-sequencing data upon MYC knockdown with gene expression profiles of primary ENKTL cases identified a subset of genes closely associated with MYC overexpression. Among these, CDK4 emerged as a potential therapeutic target, and its inhibition not only abrogated MYC function but also decreased MYC expression in NK malignancy cells. Furthermore, the clinical-grade CDK4/6 inhibitor palbociclib exhibited a potent anti-tumor effect in xenograft mouse models, especially when combined with gemcitabine. In summary, our study firmly establishes MYC as an oncogene with prognostic significance in ENKTL and highlights CDK4 inhibition as a promising therapeutic strategy for treating ENKTL with MYC overexpression.
Collapse
Affiliation(s)
- Chengfeng Bi
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE.
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong
| | - Roshia Ali
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Molecular Diagnosis, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Lu Xu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan
| | - Xinbao Hao
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing
| | - Matthew A Lunning
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Dennis D Weisenburger
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Julie M Vose
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY.
| |
Collapse
|
6
|
Liu Y, Yi J, Wu P, Zhang J, Li X, Li J, Zhou L, Liu Y, Xu H, Chen E, Zhang H, Liang M, Liu P, Pan X, Lu Y. Wemics: A Single-Base Resolution Methylation Quantification Method for Enhanced Prediction of Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308884. [PMID: 38544480 PMCID: PMC11151077 DOI: 10.1002/advs.202308884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation, an epigenetic mechanism that alters gene expression without changing DNA sequence, is essential for organism development and key biological processes like genomic imprinting and X-chromosome inactivation. Despite tremendous efforts in DNA methylation research, accurate quantification of cytosine methylation remains a challenge. Here, a single-base methylation quantification approach is introduced by weighting methylation of consecutive CpG sites (Wemics) in genomic regions. Wemics quantification of DNA methylation better predicts its regulatory impact on gene transcription and identifies differentially methylated regions (DMRs) with more biological relevance. Most Wemics-quantified DMRs in lung cancer are epigenetically conserved and recurrently occurred in other primary cancers from The Cancer Genome Atlas (TCGA), and their aberrant alterations can serve as promising pan-cancer diagnostic markers. It is further revealed that these detected DMRs are enriched in transcription factor (TF) binding motifs, and methylation of these TF binding motifs and TF expression synergistically regulate target gene expression. Using Wemics on epigenomic-transcriptomic data from the large lung cancer cohort, a dozen novel genes with oncogenic potential are discovered that are upregulated by hypomethylation but overlooked by other quantification methods. These findings increase the understanding of the epigenetic mechanism by which DNA methylation regulates gene expression.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Jiani Yi
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Pin Wu
- Department of Thoracic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhou310009China
| | - Jun Zhang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Xufan Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Jia Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Liyuan Zhou
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Yong Liu
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
| | - Haiming Xu
- Institute of BioinformaticsZhejiang UniversityHangzhou310058China
| | - Enguo Chen
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Honghe Zhang
- Department of PathologyResearch Unit of Intelligence Classification of Tumor Pathology and Precision TherapyChinese Academy of Medical SciencesZhejiang University School of MedicineHangzhou310058China
| | - Mingyu Liang
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
| | - Pengyuan Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang ProvinceDepartment of Respiratory Medicine, Department of Clinical LaboratorySir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310016China
- Department of PhysiologyThe University of ArizonaTucsonAZ85721USA
- Cancer centerZhejiang UniversityHangzhou310058China
| | - Xiaoqing Pan
- Department of MathematicsShanghai Normal UniversityShanghai200233China
| | - Yan Lu
- Cancer centerZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological DiseasesDepartment of Gynecologic OncologyWomen's Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang310029China
| |
Collapse
|
7
|
Chen J, Zeng Q, Wang X, Xu R, Wang W, Huang Y, Sun Q, Yuan W, Wang P, Chen D, Tong P, Jin H. Aberrant methylation and expression of TNXB promote chondrocyte apoptosis and extracullar matrix degradation in hemophilic arthropathy via AKT signaling. eLife 2024; 13:RP93087. [PMID: 38819423 PMCID: PMC11142640 DOI: 10.7554/elife.93087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Recurrent joint bleeding in hemophilia patients frequently causes hemophilic arthropathy (HA). Drastic degradation of cartilage is a major characteristic of HA, but its pathological mechanisms has not yet been clarified. In HA cartilages, we found server matrix degradation and increased expression of DNA methyltransferase proteins. We thus performed genome-wide DNA methylation analysis on human HA (N=5) and osteoarthritis (OA) (N=5) articular cartilages, and identified 1228 differentially methylated regions (DMRs) associated with HA. Functional enrichment analyses revealed the association between DMR genes (DMGs) and extracellular matrix (ECM) organization. Among these DMGs, Tenascin XB (TNXB) expression was down-regulated in human and mouse HA cartilages. The loss of Tnxb in F8-/- mouse cartilage provided a disease-promoting role in HA by augmenting cartilage degeneration and subchondral bone loss. Tnxb knockdown also promoted chondrocyte apoptosis and inhibited phosphorylation of AKT. Importantly, AKT agonist showed chondroprotective effects following Tnxb knockdown. Together, our findings indicate that exposure of cartilage to blood leads to alterations in DNA methylation, which is functionally related to ECM homeostasis, and further demonstrate a critical role of TNXB in HA cartilage degeneration by activating AKT signaling. These mechanistic insights allow development of potentially new strategies for HA cartilage protection.
Collapse
Affiliation(s)
- Jiali Chen
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qinghe Zeng
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xu Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Rui Xu
- Department of Orthopaedics, Affiliated Hospital of Jiangxi University of Traditional Chinese MedicineNanchangChina
| | - Weidong Wang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yuliang Huang
- Department of Osteology, The Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qi Sun
- Department of Orthopaedic Surgery, Fuyang Orthopaedics and Traumatology Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenhua Yuan
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Peijian Tong
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| |
Collapse
|
8
|
Luan Y, Li X, Luan Y, Luo J, Dong Q, Ye S, Li Y, Li Y, Jia L, Yang J, Yang DH. Therapeutic challenges in peripheral T-cell lymphoma. Mol Cancer 2024; 23:2. [PMID: 38178117 PMCID: PMC10765866 DOI: 10.1186/s12943-023-01904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the development of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mechanisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor microenvironment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.
Collapse
Affiliation(s)
- Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Yunqi Luan
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation On Chinese Medicine, Beijing Institute for Drug Control, Beijing, 102206, China
| | - Junyu Luo
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Qinzuo Dong
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Shili Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yuejin Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yanmei Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jun Yang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, 200 Old Country Rd, Suite 500, Mineola, NY, 11501, USA.
| |
Collapse
|
9
|
Lim S, Lee KW, Kim JY, Kim KD. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. Int J Mol Sci 2023; 25:331. [PMID: 38203502 PMCID: PMC10779157 DOI: 10.3390/ijms25010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.
Collapse
Affiliation(s)
- Seyeon Lim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Ki Won Lee
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
10
|
Lewis NE, Zhou T, Dogan A. Biology and genetics of extranodal mature T-cell and NKcell lymphomas and lymphoproliferative disorders. Haematologica 2023; 108:3261-3277. [PMID: 38037802 PMCID: PMC10690927 DOI: 10.3324/haematol.2023.282718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023] Open
Abstract
The extranodal mature T-cell and NK-cell lymphomas and lymphoproliferative disorders represent a unique group of rare neoplasms with both overlapping and distinct clinicopathological, biological, and genomic features. Their predilection for specific sites, such as the gastrointestinal tract, aerodigestive tract, liver, spleen, and skin/soft tissues, underlies their classification. Recent genomic advances have furthered our understanding of the biology and pathogenesis of these diseases, which is critical for accurate diagnosis, prognostic assessment, and therapeutic decision-making. Here we review clinical, pathological, genomic, and biological features of the following extranodal mature T-cell and NK-cell lymphomas and lymphoproliferative disorders: primary intestinal T-cell and NK-cell neoplasms, hepatosplenic T-cell lymphoma, extranodal NK/T-cell lymphoma, nasal type, and subcutaneous panniculitis-like T-cell lymphoma.
Collapse
Affiliation(s)
- Natasha E. Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ting Zhou
- Molecular Diagnostic Laboratory, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
11
|
Shareena G, Kumar D. Epigenetics of Epstein Barr virus - A review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166838. [PMID: 37544529 DOI: 10.1016/j.bbadis.2023.166838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Epstein Barr is the first-in-human oncogenic virus, closely related to numerous lymphoproliferative and malignant diseases, including HL, BL, NPC, and GC. EBV establishes life-long persistence infection portraying a biphasic viral life cycle: latent period and lytic replication. B-cells serve as critical regions for EBV latent genes, wherein viral gene expression is suppressed, promoting viral genome maintenance and immune recognition evasion. Upon its lytic reactivation, viral gene expression induces its replication, progeny production, and transmission. Dysregulations of epigenetic regulation in expressions of TSGs lead to carcinogenesis. Several studies reveal that EBV is associated with aberrant viral DNA and host genome methylation patterns, promoting immune monitoring, recognition evasiveness and host cell persistence. Among other epigenetic modifications, DNA methylation suppresses the majority of viral latent gene promoters, sparing a few, and acts as a prerequisite for activating EBV's lytic cycle, giving rise to viral progeny. It affects the host's epigenome via reprogramming cells to oncogenic, long-lasting phenotypes, as evident in several malignancies. At each phase of its life cycle, EBV exploits cellular mechanisms of epigenetic regulation, implying its unique host-pathogen relationship. This review summarized the DNA methylation's regulatory roles on several EBV-related promoter regions, along with the host genome in pathological conditions, highlights viral genes involved in a latent, lytic and latent-lytic phase of EBV infection. Moreover, it provides diagrammatic insights into methylation-based pathways in EBV.
Collapse
Affiliation(s)
- Gadde Shareena
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India; UC Davis Comprehensive Cancer Center, Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Barros MHM, Alves PDS. Contribution of the Epstein-Barr virus to the oncogenesis of mature T-cell lymphoproliferative neoplasms. Front Oncol 2023; 13:1240359. [PMID: 37781191 PMCID: PMC10538126 DOI: 10.3389/fonc.2023.1240359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
EBV is a lymphotropic virus, member of the Herpesviridae family that asymptomatically infects more than 90% of the human population, establishing a latent infection in memory B cells. EBV exhibits complex survival and persistence dynamics, replicating its genome through the proliferation of infected B cells or production of the lytic virions. Many studies have documented the infection of T/NK cells by EBV in healthy individuals during and after primary infection. This feature has been confirmed in humanized mouse models. Together these results have challenged the hypothesis that the infection of T/NK cells per se by EBV could be a triggering event for lymphomagenesis. Extranodal NK/T-cell lymphoma (ENKTCL) and Epstein-Barr virus (EBV)-positive nodal T- and NK-cell lymphoma (NKTCL) are two EBV-associated lymphomas of T/NK cells. These two lymphomas display different clinical, histological and molecular features. However, they share two intriguing characteristics: the association with EBV and a geographical prevalence in East Asia and Latin America. In this review we will discuss the genetic characteristics of EBV in order to understand the possible role of this virus in the oncogenesis of ENKTCL and NKTCL. In addition, the main immunohistological, molecular, cytogenetic and epigenetic differences between ENKTCL and NKTCL will be discussed, as well as EBV differences in latency patterns and other viral molecular characteristics.
Collapse
Affiliation(s)
| | - Paula Daniela S. Alves
- Oncovirology Laboratory, Bone Marrow Transplantation Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Tian XP, Cao Y, Cai J, Zhang YC, Zou QH, Wang JN, Fang Y, Wang JH, Guo SB, Cai QQ. Novel target and treatment agents for natural killer/T-cell lymphoma. J Hematol Oncol 2023; 16:78. [PMID: 37480137 PMCID: PMC10362755 DOI: 10.1186/s13045-023-01483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
The rapidly increasing use of high-throughput screening had produced a plethora of expanding knowledge on the molecular basis of natural killer/T-cell lymphoma (NKTCL), which in turn has revolutionized the treatment. Specifically, the use of asparaginase-containing regimens has led to substantial improvement in survival outcomes in NKTCL patients. Novel treatment strategies that are currently under development include cell-surface-targeted antibodies, immune checkpoint inhibitors, Epstein-Barr virus targeted cytotoxic T lymphocyte, immunomodulatory agents, chimeric antigen receptor T cells, signaling pathway inhibitors and epigenetic targeted agents. In almost all cases, initial clinical studies of newly developed treatment are conducted in patients relapsed, and refractory NKTCL due to very limited treatment options. This review summarizes the results of these novel treatments for NKTCL and discusses their potential for likely use in NKTCL in a wider setting in the future.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yi Cao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jun Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu-Chen Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qi-Hua Zou
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jin-Ni Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Hui Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Song-Bin Guo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qing-Qing Cai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.
| |
Collapse
|
14
|
Shen Y, Li X, Xie R, Chen Y, Hu X, Liu Y, Ma H. Expression Levels of MicroRNA-300/BCL2L11 in Papillary Thyroid Cancer and Their Clinical Diagnostic Values. Eur Surg Res 2023; 64:342-351. [PMID: 37231813 DOI: 10.1159/000530682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION This research aims to explore the expression levels of microRNA (miRNA)-300/BCL-2-like protein 11 (BCL2L11) and their values in the clinical diagnosis of papillary thyroid cancer (PTC). METHODS Pathological tissues that were surgically removed for thyroid disease were selected. miR-300 and BCL2L11 expression levels in the samples were measured. Receiver operating characteristic (ROC) curves were plotted to analyze miR-300 and BCL2L11 predictive values for PTC. Upon silencing miR-300 and silencing BCL2L11 in PTC cells, the corresponding miR-300 and BCL2L11 expression levels were tested, followed by examining PTC cell activities. The targeting relationship of miR-300 and BCL2L11 was detected by the bioinformatics website and luciferase activity assay. RESULTS miR-300 expression levels were elevated and BCL2L11 expression levels were reduced in PTC tissues. miR-300 and BCL2L11 expression levels in PTC tissues had a correlation with TNM stage and lymph node metastasis. The results of ROC curve revealed that both miR-300 and BCL2L11 had clinical predictive values for PTC. Mechanistically, miR-300 negatively regulated BCL2L11. The functional assays unveiled that silencing miR-300 impeded PTC cell activities, and silencing BCL2L11 induced PTC cell activities. In the rescue experiment, silencing BCL2L11 reversed the impacts of silencing miR-300 on PTC cell development. CONCLUSION This study underlines that miR-300 expression is increased and BCL2L11 expression is declined in PTC. miR-300 and BCL2L11 both have clinical predictive values for diagnosing PTC.
Collapse
Affiliation(s)
- Yi Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoen Li
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yupan Chen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xun Hu
- Department of Oral and Maxillofacial Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaping Liu
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - He Ma
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhou J, Toh SHM, Tan TK, Balan K, Lim JQ, Tan TZ, Xiong S, Jia Y, Ng SB, Peng Y, Jeyasekharan AD, Fan S, Lim ST, Ong CAJ, Ong CK, Sanda T, Chng WJ. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol Cancer 2023; 22:69. [PMID: 37032358 PMCID: PMC10084643 DOI: 10.1186/s12943-023-01767-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jing Quan Lim
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tuan Zea Tan
- Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Jia
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Soon Thye Lim
- Director's office, National Cancer Centre, Singapore, 168583, Singapore
- Office of Education, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore, 168583, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, 168583, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
16
|
Major A, Porcu P, Haverkos BM. Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma. Cancers (Basel) 2023; 15:cancers15051366. [PMID: 36900160 PMCID: PMC10000128 DOI: 10.3390/cancers15051366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Extranodal NK/T-cell lymphoma (ENKTL) is an aggressive extranodal non-Hodgkin lymphoma (NHL) with poor outcomes, particularly in advanced-stage and relapsed/refractory disease. Emerging research on molecular drivers of ENKTL lymphomagenesis by next-generation and whole genome sequencing has revealed diverse genomic mutations in multiple signaling pathways, with the identification of multiple putative targets for novel therapeutic agents. In this review, we summarize the biological underpinnings of newly-understood therapeutic targets in ENKTL with a focus on translational implications, including epigenetic and histone regulatory aberrations, activation of cell proliferation signaling pathways, suppression of apoptosis and tumor suppressor genes, changes in the tumor microenvironment, and EBV-mediated oncogenesis. In addition, we highlight prognostic and predictive biomarkers which may enable a personalized medicine approach toward ENKTL therapy.
Collapse
Affiliation(s)
- Ajay Major
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Pierluigi Porcu
- Division of Medical Oncology and Hematopoietic Stem Cell Transplantation, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bradley M. Haverkos
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-720-848-0414
| |
Collapse
|
17
|
Lewis NE, Sardana R, Dogan A. Mature T-cell and NK-cell lymphomas: updates on molecular genetic features. Int J Hematol 2023; 117:475-491. [PMID: 36637656 DOI: 10.1007/s12185-023-03537-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023]
Abstract
Mature T-cell and NK-cell lymphomas are a heterogeneous group of rare and typically aggressive neoplasms. Diagnosis and subclassification have historically relied primarily on the integration of clinical, histologic, and immunophenotypic features, which often overlap. The widespread application of a variety of genomic techniques in recent years has provided extensive insight into the pathobiology of these diseases, allowing for more precise diagnostic classification, improved prognostication, and development of novel therapies. In this review, we summarize the genomic features of the most common types of mature T-cell and NK-cell lymphomas with a particular focus on the contribution of genomics to biologic insight, classification, risk stratification, and select therapies in the context of the recently published International Consensus and updated World Health Organization classification systems.
Collapse
Affiliation(s)
- Natasha E Lewis
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Rohan Sardana
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Dogan
- Hematopathology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
18
|
Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol 2022; 11:101. [PMID: 36384676 PMCID: PMC9667634 DOI: 10.1186/s40164-022-00356-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Programmed cell death protein 1(PD-1) is a type of immune-inhibitory checkpoint protein, which delivers inhibitory signals to cytotoxic T cells by binding to the programmed death ligand-1 (PD-L1) displayed on the surface of cancer cells. Antibodies blocking PD-1/PD-L1 interaction have been extensively used in treatment of human malignancies and have achieved promising outcomes in recent years. However, gradual development of resistance to PD-1/PD-L1 blockade has decreased the effectiveness of this immunotherapy in cancer patients. The underlying epigenetic mechanisms need to be elucidated for application of novel strategies overcoming this immunotherapy resistance. Epigenetic aberrations contribute to cancerogenesis by promoting different hallmarks of cancer. Moreover, these alterations may lead to therapy resistance, thereby leading to poor prognosis. Recently, the epigenetic regulatory drugs have been shown to decrease the resistance to PD-1/PD-L1 inhibitors in certain cancer patients. Inhibitors of the non-coding RNAs, DNA methyltransferases, and histone deacetylases combined with PD-1/PD-L1 inhibitors have shown considerable therapeutic efficacy against carcinomas as well as blood cancers. Importantly, DNA methylation-mediated epigenetic silencing can inhibit antigen processing and presentation, which promotes cancerogenesis and aggravates resistance to PD-1/PD-L1 blockade immunotherapy. These observations altogether suggest that the combination of the epigenetic regulatory drugs with PD-1/PD-L1 inhibitors may present potential solution to the resistance caused by monotherapy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Mengyuan Dai
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medical, Foshan University, Foshan, China
| | - Can Küçük
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Türkiye
- Basic and Translational Research Program, İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Hua You
- Laboratory for Excellence in Systems Biomedicine of Pediatric Oncology, Department of Hematology and Oncology, Pediatric Research Institute, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation base of Child development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Second Rd., Yuzhong District, 401122, Chongqing, China.
| |
Collapse
|
19
|
Tse E, Fox CP, Glover A, Yoon SE, Kim WS, Kwong YL. Extranodal natural killer/T-cell lymphoma: An overview on pathology and clinical management. Semin Hematol 2022; 59:198-209. [PMID: 36805888 DOI: 10.1053/j.seminhematol.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Natural killer (NK)/T-cell lymphomas arise mainly from NK-cells and occasionally T-cells, and are universally infected with Epstein Barr virus (EBV). They are uncommon lymphomas more prevalent in Asian and Central/South American populations. NK/T-cell lymphomas are clinically aggressive and predominantly extranodal. The most commonly involved sites are the nasal cavity, followed by non-nasal sites including the skin, gastrointestinal tract and testis. The diagnosis of extranodal NK/T-cell lymphoma is established with histological and immunohistochemical examination, together with the demonstration of EBV in the tumour cells. Staging by positron emission tomography computed tomography is essential to inform the optimal management. Plasma EBV DNA quantification should be performed as it serves as a marker for prognostication and treatment response. Survival outcomes of patients with early-stage disease are good following treatment with nonanthracycline based chemotherapy, together with sequential/concurrent radiotherapy. For advanced-stage disease, asparaginase-containing regimens are mostly used and allogeneic haematopoietic stem cell transplantation should be considered for those at high risk of relapse. Salvage chemotherapy is largely ineffective for relapsed/refractory disease, which has a grave prognosis. Novel therapeutic approaches including immune check-point blockade, EBV-specific cytotoxic T-cells, and monoclonal antibodies are being investigated to improve outcomes for those with high risk and relapsed/refractory disease.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | - Alexander Glover
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Li S, Liu T, Liu H, Zhai X, Cao T, Yu H, Hong W, Lin X, Li M, Huang Y, Xiao J. Integrated driver mutations profile of chinese gastrointestinal-natural killer/T-cell lymphoma. Front Oncol 2022; 12:976762. [PMID: 36059700 PMCID: PMC9434212 DOI: 10.3389/fonc.2022.976762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background One of the most common nasal external sites in extranodal Natural Killer/T-cell lymphoma (NKTCL) is in the gastrointestinal (GI) system. Despite this, reports on gastrointestinal-Natural Killer/T-cell lymphoma (GI-NKTCL) are very few. To obtain a better understanding of this manifestation of NKTCL, we conducted a retrospective study on GI-NKTCL to analyze its clinical features, genomic changes and immune infiltration. Methods We retrospectively collected patients diagnosed with GI-NKTCL in the Sixth Affiliated Hospital of Sun Yat-sen University from 2010 to 2020. From this cohort we obtained mutation data via whole exome sequencing. Results Genomic analysis from 15 patients with GI-NKTCL showed that the most common driving mutations were ARID1B(14%, 2/15), ERBB3(14%, 2/15), POT1(14%, 2/15), and TP53(14%, 2/15). In addition, we found the most common gene mutation in patients with GI-NKTCL to be RETSAT(29%, 4/15) and SNRNP70(21%, 3/15), and the most common hallmark pathway mutations to be G2M checkpoint pathway (10/15, 66.7%), E2F targets (8/15, 53.3%), estrogen response late (7/15, 46.7%), estrogen response early (7/15, 46.7%), apoptosis (7/15, 46.7%) and TNFA signaling via NFKB (7/15, 46.7%). In the ICIs-Miao cohort, SNRNP7-wild-type (WT) melanoma patients had significantly prolonged overall survival (OS) time compared with SNRNP7 mutant type (MT) melanoma patients. In the TCGA-UCEC cohort, the patients with RETSAT-MT or SNRNP7-MT had significantly increased expression of immune checkpoint molecules and upregulation of inflammatory immune cells. Conclusions In this study, we explored GI-NKTCL by means of genomic analysis, and identified the most common mutant genes (RETSAT and SNRNP70), pathway mutations (G2M checkpoint and E2F targets) in GI-NKTCL patients. Also, we explored the association between the common mutant genes and immune infiltration. Our aim is that our exploration of these genomic changes will aid in the discovery of new biomarkers and therapeutic targets for those with GI-NKTCL, and finally provide a theoretical basis for improving the treatment and prognosis of patients with GI-NKTCL.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingzhi Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medical Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hailing Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
| | - Xiaohui Zhai
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Taiyuan Cao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongen Yu
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanjia Hong
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoru Lin
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- *Correspondence: Yan Huang, ; Jian Xiao,
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yan Huang, ; Jian Xiao,
| |
Collapse
|
21
|
Dong G, Liu X, Wang L, Yin W, Bouska A, Gong Q, Shetty K, Chen L, Sharma S, Zhang J, Lome-Maldonado C, Quintanilla-Martinez L, Li Y, Song JY, Zhang W, Shi Y, Wang J, Kong L, Wu X, Wang J, Liu HG, Kong L, Sun W, Liu W, Wang L, McKeithan TW, Iqbal J, Chan WC. Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia 2022; 36:2064-2075. [PMID: 35697790 PMCID: PMC10499270 DOI: 10.1038/s41375-022-01623-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023]
Abstract
Extra-nodal NK/T-cell lymphoma, nasal type (ENKTCL) is a highly aggressive Epstein-Barr virus associated lymphoma, typically presenting in the nasal and paranasal areas. We assembled a large series of ENKTCL (n = 209) for comprehensive genomic analysis and correlative clinical study. The International Lymphoma Prognostic Index (IPI), site of disease, stage, lymphadenopathy, and hepatomegaly were associated with overall survival. Genetic analysis revealed frequent oncogenic activation of the JAK/STAT3 pathway and alterations in tumor suppressor genes (TSGs) and genes associated with epigenomic regulation. Integrated genomic analysis including recurrent mutations and genomic copy number alterations using consensus clustering identified seven distinct genetic clusters that were associated with different clinical outcomes, thus constituting previously unrecognized risk groups. The genetic profiles of ENTKCLs from Asian and Hispanic ethnic groups showed striking similarity, indicating shared pathogenetic mechanism and tumor evolution. Interestingly, we discovered a novel functional cooperation between activating STAT3 mutations and loss of the TSG, PRDM1, in promoting NK-cell growth and survival. This study provides a genetic roadmap for further analysis and facilitates investigation of actionable therapeutic opportunities in this aggressive lymphoma.
Collapse
Affiliation(s)
- Gehong Dong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lifu Wang
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Wenjuan Yin
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Qiang Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Kunal Shetty
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lu Chen
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, CA, 91010, USA
| | - Sunandini Sharma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jibin Zhang
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Carmen Lome-Maldonado
- Departamento de Patologia, Instituto Nacional de Cancerologia, 14080, Ciudad de México, Mexico
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Chengdu, 610041, China
| | - Yunfei Shi
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Pathology, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 100142, Beijing, China
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope, Duarte, CA, 91010, USA
| | - Lingbo Kong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope, Duarte, CA, 91010, USA
| | - Jingwen Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Hong-Gang Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China
| | - Wenyong Sun
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Chengdu, 610041, China
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
22
|
Abstract
Natural killer (NK)/T-cell lymphomas are aggressive malignancies with a predilection for Asian and South American populations. Epstein-Barr virus (EBV) infection in lymphoma cells is universal. Predominantly extranodal, NK/T-cell lymphomas are divided clinically into nasal (involving the nose and upper aerodigestive tract), non-nasal (involving the skin, gastrointestinal tract, testes, and other organs), and aggressive leukaemia/lymphoma (involving the marrow and multiple organs) subtypes. Initial assessment should include imaging with positron emission tomography computed tomography (PET/CT), quantification of plasma EBV DNA as a surrogate marker of lymphoma load, and bone marrow examination with in situ hybridization for EBV-encoded small RNA. Prognostication can be based on presentation parameters (age, stage, lymph node involvement, clinical subtypes, and EBV DNA), which represent patient factors and lymphoma load; and dynamic parameters during treatment (serial plasma EBV DNA and interim/end-of-treatment PET/CT), which reflect response to therapy. Therapeutic goals are to achieve undetectable plasma EBV DNA and normal PET/CT (Deauville score ≤ 3). NK/T-cell lymphomas express the multidrug resistance phenotype, rendering anthracycline-containing regimens ineffective. Stage I/II nasal cases are treated with non-anthracycline asparaginase-based regimens plus sequential/concurrent radiotherapy. Stage III/IV nasal, and non-nasal and aggressive leukaemia/lymphoma cases are treated with asparaginase-containing regimens and consolidated by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable patients. Autologous HSCT does not improve outcome. In relapsed/refractory cases, novel approaches comprise immune checkpoint blockade of PD1/PD-L1, EBV-specific cytotoxic T-cells, monoclonal antibodies, and histone deacetylase inhibitors. Future strategies may include inhibition of signalling pathways and driver mutations, and immunotherapy targeting the lymphoma and its microenvironment.
Collapse
Affiliation(s)
- Eric Tse
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yok-Lam Kwong
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
23
|
Sun KH(M, Wong YT(H, Cheung KM(C, Yuen C(M, Chan YT(T, Lai WY(J, Chao C(D, Fan WS(K, Chow YK(K, Law MF, Tam HC(T. Update on Molecular Diagnosis in Extranodal NK/T-Cell Lymphoma and Its Role in the Era of Personalized Medicine. Diagnostics (Basel) 2022; 12:diagnostics12020409. [PMID: 35204500 PMCID: PMC8871212 DOI: 10.3390/diagnostics12020409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK)/T-cell lymphoma (NKTCL) is an aggressive malignancy with unique epidemiological, histological, molecular, and clinical characteristics. It occurs in two pathological forms, namely, extranodal NKTCL (ENKTCL) and aggressive NK leukemia, according to the latest World Health Organization (WHO) classification. Epstein–Barr virus (EBV) infection has long been proposed as the major etiology of lymphomagenesis. The adoption of high-throughput sequencing has allowed us to gain more insight into the molecular mechanisms of ENKTCL, which largely involve chromosome deletion and aberrations in Janus kinase (JAK)-signal transducer and activator of transcription (STAT), programmed cell death protein-1 (PD-1)/PD-ligand 1 (PD-L1) pathways, as well as mutations in tumor suppressor genes. The molecular findings could potentially influence the traditional chemoradiotherapy approach, which is known to be associated with significant toxicity. This article will review the latest molecular findings in NKTCL and recent advances in the field of molecular diagnosis in NKTCL. Issues of quality control and technical difficulties will also be discussed, along with future prospects in the molecular diagnosis and treatment of NKTCL.
Collapse
Affiliation(s)
- Ka-Hei (Murphy) Sun
- Division of Hematopathology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Hong Kong; (K.-H.S.); (C.Y.)
| | | | - Ka-Man (Carmen) Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Carmen (Michelle) Yuen
- Division of Hematopathology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, Hong Kong; (K.-H.S.); (C.Y.)
| | - Yun-Tat (Ted) Chan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Wing-Yan (Jennifer) Lai
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Chun (David) Chao
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Wing-Sum (Katie) Fan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Yuen-Kiu (Karen) Chow
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| | - Man-Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
- Correspondence:
| | - Ho-Chi (Tommy) Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong; (K.-M.C.); (Y.-T.C.); (W.-Y.L.); (C.C.); (W.-S.F.); (Y.-K.C.); (H.-C.T.)
| |
Collapse
|
24
|
Zhi Y, Huang S, Lina Z. Suppressor of Cytokine Signaling 6 in cancer development and therapy: deciphering its emerging and suppressive roles. Cytokine Growth Factor Rev 2022; 64:21-32. [DOI: 10.1016/j.cytogfr.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022]
|
25
|
Mundy-Bosse BL, Weigel C, Wu YZ, Abdelbaky S, Youssef Y, Casas SB, Polley N, Ernst G, Young KA, McConnell KK, Nalin AP, Wu KG, Broughton M, Lordo MR, Altynova E, Hegewisch-Solloa E, Enriquez-Vera DY, Dueñas D, Barrionuevo C, Yu SC, Saleem A, Suarez CJ, Briercheck EL, Molina-Kirsch H, Loughran TP, Weichenhan D, Plass C, Reneau JC, Mace EM, Gamboa FV, Weinstock DM, Natkunam Y, Caligiuri MA, Mishra A, Porcu P, Baiocchi RA, Brammer JE, Freud AG, Oakes CC. Identification and targeting of the developmental blockade in extranodal natural killer/T cell lymphoma. Blood Cancer Discov 2022; 3:154-169. [PMID: 35247900 PMCID: PMC9414823 DOI: 10.1158/2643-3230.bcd-21-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma (ENKTL) is an aggressive, rare lymphoma of natural killer (NK) cell origin with poor clinical outcomes. Here we used phenotypic and molecular profiling, including epigenetic analyses, to investigate how ENKTL ontogeny relates to normal NK-cell development. We demonstrate that neoplastic NK cells are stably, but reversibly, arrested at earlier stages of NK-cell maturation. Genes downregulated in the most epigenetic immature tumors were associated with polycomb silencing along with genomic gain and overexpression of EZH2. ENKTL cells exhibited genome-wide DNA hypermethylation. Tumor-specific DNA methylation gains were associated with polycomb-marked regions, involving extensive gene silencing and loss of transcription factor binding. To investigate therapeutic targeting, we treated novel patient-derived xenograft (PDX) models of ENKTL with the DNA hypomethylating agent, 5-azacytidine. Treatment led to reexpression of NK-cell developmental genes, phenotypic NK-cell differentiation, and prolongation of survival. These studies lay the foundation for epigenetic-directed therapy in ENKTL. SIGNIFICANCE Through epigenetic and transcriptomic analyses of ENKTL, a rare, aggressive malignancy, along with normal NK-cell developmental intermediates, we identified that extreme DNA hypermethylation targets genes required for NK-cell development. Disrupting this epigenetic blockade in novel PDX models led to ENKTL differentiation and improved survival. This article is highlighted in the In This Issue feature, p. 85.
Collapse
Affiliation(s)
- Bethany L. Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Yue-Zhong Wu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Salma Abdelbaky
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Susana Beceiro Casas
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Nicholas Polley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Gabrielle Ernst
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Karen A. Young
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Kathleen K. McConnell
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Ansel P. Nalin
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio
| | - Kevin G. Wu
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Megan Broughton
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Matthew R. Lordo
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio
| | - Ekaterina Altynova
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | | | - Daniela Dueñas
- Instituto Nacional de Enfermedades Neoplasticas, Lima, Peru
| | | | - Shan-Chi Yu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Atif Saleem
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Carlos J. Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Edward L. Briercheck
- Department of Medicine, Division of Hematology and Medical Oncology, Fred Hutchinson Cancer Research Institute and the University of Washington, Seattle, Washington
| | | | - Thomas P. Loughran
- Division of Hematology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Dieter Weichenhan
- Division of Epigenomics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John C. Reneau
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Fabiola Valvert Gamboa
- Department of Medical Oncology, Liga Nacional Contra el Cáncer, Guatemala City, Guatemala
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Anjali Mishra
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Jonathan E. Brammer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - Aharon G. Freud
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Department of Pathology, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| | - Christopher C. Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
- Corresponding Authors: Bethany L. Mundy-Bosse, The Ohio State University James Comprehensive Cancer Center, 882 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-688-6564; E-mail: ; Aharon G. Freud, The Ohio State University James Comprehensive Cancer Center, 892 Biomedical Research Tower, 460 West 12th Avenue, Columbus, OH 43210. Phone: 614-293-7904; E-mail: ; and Christopher C. Oakes, The Ohio State University James Comprehensive Cancer Center, 455 OSU CCC/Wiseman Hall, 410 West 12th Avenue, Columbus, OH 43210. Phone: 614-685-9284; E-mail:
| |
Collapse
|
26
|
Tse E, Kwong YL. Recent Advances in the Diagnosis and Treatment of Natural Killer Cell Malignancies. Cancers (Basel) 2022; 14:cancers14030597. [PMID: 35158865 PMCID: PMC8833626 DOI: 10.3390/cancers14030597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Natural killer (NK)/T-cell lymphomas are aggressive extranodal Epstein–Barr virus (EBV)-positive malignancies. They can be divided into three subtypes: nasal (involving the nose and upper aerodigestive tract), non-nasal (involving skin, gastrointestinal tract, testis and other organs) and disseminated (involving multiple organs). Lymphoma cells are positive for CD3ε, CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asians. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial at diagnosis and follow-up. Stage I/II patients receive non-athracycline asparaginse-containing regimens, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients receive asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT). Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches include PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial. Abstract Natural killer (NK)/T-cell lymphomas are aggressive malignancies. Epstein–Barr virus (EBV) infection in lymphoma cells is invariable. NK/T-cell lymphomas are divided into nasal, non-nasal, and disseminated subtypes. Nasal NK/T-cell lymphomas involve the nasal cavity and the upper aerodigestive tract. Non-nasal NK/T-cell lymphomas involve the skin, gastrointestinal tract, testis and other extranodal sites. Disseminated NK/T-cell lymphoma involves multiple organs, rarely presenting with a leukaemic phase. Lymphoma cells are positive for CD3ε (not surface CD3), CD56, cytotoxic molecules and EBV-encoded small RNA. There is a predilection for Asian and Central/South American populations. Genome-wide association studies have identified lymphoma susceptibility loci in Asian patients. Positron emission tomography computed tomography and plasma EBV DNA quantification are crucial evaluations at diagnosis and follow-up. Stage I/II patients typically receive non-athracycline regimens containing asparaginse, together with sequential/concurrent radiotherapy. Anthracycline-containing regimens are ineffective. Stage III/IV patients are treated with asparaginase-containing regimens, followed by allogeneic haematopoietic stem cell transplantation (HSCT) in suitable cases. Autologous HSCT does not improve outcome. In relapsed/refractory patients, novel approaches are needed, involving PD1/PD-L1 targeting, EBV-specific cytotoxic T-cells, and monoclonal antibodies. Small molecules including histone deacetylase inhibitors may be beneficial in selected patients. Future strategies may include targeting of signalling pathways and driver mutations.
Collapse
|
27
|
The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life (Basel) 2022; 12:life12010073. [PMID: 35054466 PMCID: PMC8781285 DOI: 10.3390/life12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Extranodal NK/T-cell lymphoma is a neoplasm of NK cells or cytotoxic T cells presenting in extranodal sites, most often in the nasal cavity. The typical immunophenotypes are cCD3+, sCD3-, CD4-, CD5-, CD8-, CD16-, and CD56+ with the expression of cytotoxic molecules. Tumor subsets express NK cell receptors, CD95/CD95L, CD30, MYC, and PDL1. Virtually all the tumor cells harbor the EBV genome, which plays a key role in lymphomagenesis as an epigenetic driver. EBV-encoded oncoproteins modulate the host-cell epigenetic machinery, reprogramming the viral and host epigenomes using host epigenetic modifiers. NGS analysis revealed the mutational landscape of ENKTL, predominantly involving the JAK-STAT pathway, epigenetic modifications, the RNA helicase family, the RAS/MAP kinase pathway, and tumor suppressors, which indicate an important role of these pathways and this group of genes in the lymphomagenesis of ENKTL. Recently, three molecular subtypes were proposed, the tumor-suppressor/immune-modulator (TSIM), MGA-BRDT (MB), and HDAC9-EP300-ARID1A (HEA) subtypes, and they are well-correlated with the cell of origin, EBV pattern, genomic alterations, and clinical outcomes. A future investigation into the function and interaction of discovered genes would be very helpful for better understanding the molecular pathogenesis of ENKTL and establishing better treatment strategies.
Collapse
|
28
|
Bigas A, Rodriguez-Sevilla JJ, Espinosa L, Gallardo F. Recent advances in T-cell lymphoid neoplasms. Exp Hematol 2021; 106:3-18. [PMID: 34879258 DOI: 10.1016/j.exphem.2021.12.191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
T Cells comprise many subtypes of specified lymphocytes, and their differentiation and function take place in different tissues. This cellular diversity is also observed in the multiple ways T-cell transformation gives rise to a variety of T-cell neoplasms. This review covers the main types of T-cell malignancies and their specific characteristics, emphasizing recent advances at the cellular and molecular levels as well as differences and commonalities among them.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain; Institut Josep Carreras contra la Leucemia, Barcelona, Spain.
| | | | - Lluis Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain
| | - Fernando Gallardo
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
29
|
Frazzi R, Cusenza VY, Pistoni M, Canovi L, Cascione L, Bertoni F, Merli F. KLF4, DAPK1 and SPG20 promoter methylation is not affected by DNMT1 silencing and hypomethylating drugs in lymphoma cells. Oncol Rep 2021; 47:10. [PMID: 34751409 PMCID: PMC8600396 DOI: 10.3892/or.2021.8221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2021] [Indexed: 11/05/2022] Open
Abstract
Promoter methylation represents one of the major epigenetic mechanisms responsible for the regulation of gene expression. Hypomethylating drugs are currently approved for the treatment of myelodysplastic syndromes and acute myeloid leukemia, and some studies have recently been carried out on diffuse large B cell lymphoma (DLBCL). DLBCL is a type of Non-Hodgkin lymphoma. The aim of the present study was to assess the role of DNA methyltransferase (DNMT)1 in mediating the epigenetic regulation of some key targets previously emerged as hypermethylated in Non-Hodgkin lymphoma. Reverse transcription-quantitative PCR, genome-wide arrays and methylation-specific PCR were used to determine the level of methylation of specific targets. Gene silencing, gene expression and immunoblotting were used to investigate the role of DNMT1 and DNMT3a in lymphoma cells. The present study showed that lymphoma cell lines displayed a completely different methylation profile on selected targets compared with primary B lymphocytes and peripheral blood mononuclear cells. 5′-aza-cytidine (5AZA) and 5′-aza-2-deoxycitidine (decitabine) exerted their activity through, at least in part, mechanisms independent of DNMT1 downregulation. Despite a global hypomethylating effect of 5AZA and decitabine, DNMT1 was not found to be necessary to maintain the hypermethylation of Krüppel-like factor 4 (KLF4), death associated protein 1 (DAPK1) and spastic paraplegia 20 (SPG20). SPG20 was found to be a completely methylated target in all the tested cell lines, but not in peripheral blood mononuclear cells, suggesting its association with malignancy. The highest methylation was clustered upstream of the transcription starting site in a panel of 28 DLBCL cell lines and the results were unaffected by the silencing of DNMT1 expression. These data demonstrated the epigenetic regulation of SPG20 in lymphoid cells and identified a number of novel markers associated with lymphomas that deserve further investigation.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Vincenza Ylenia Cusenza
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Mariaelena Pistoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Laura Canovi
- Immunohematology and Transfusional Medicine Division, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland, 6501 Bellinzona, Ticino, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, University of Italian Switzerland, 6501 Bellinzona, Ticino, Switzerland
| | - Francesco Merli
- Hematology Division, Azienda Unità Sanitaria Locale ‑ IRCCS di Reggio Emilia, I‑42123 Reggio Emilia, Emilia‑Romagna, Italy
| |
Collapse
|
30
|
He X, Gao Y, Li Z, Huang H. Review on natural killer /T-cell lymphoma. Hematol Oncol 2021; 41:221-229. [PMID: 34731509 DOI: 10.1002/hon.2944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 11/06/2022]
Abstract
Extranodal natural killer (NK)/T-cell lymphoma (ENKTL) is strongly associated with Epstein-Barr virus (EBV) and has a high prevalence in Asian and in Central and South America. About 85% of ENKTLs derive from NK cells and 15% from T-cells. Various factors have been implicated in the development of ENKTL. Molecular pathogenesis of NK/T-cell lymphomas include mutations of genes, involving in the Janus Kinase (JAK)/ signal transducer and activator of transcription (STAT) pathway, RNA helicase family, epigenetic regulation, and tumor suppression. The relationship between ENKTL and human leukocyte antigen (HLA) has been demonstrated. Radiotherapy (RT) plays a key role in the first-line treatment of early-stage. In stage III/IV diseases, non-anthracycline-regimens-containing L-asparaginase are recommended. Although clinical remission after L-asparaginase-based combination therapy has been achieved in the majority of patients with advanced-stage or relapsed/refractory(r/r) ENKL, the long-term overall survival is still poor. Recently, immunotherapy and new therapeutic targets have gained much attention. In this article, we discuss the pathogenesis, diagnosis, prognostic models and management options of ENKTL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaohua He
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yan Gao
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhiming Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Huiqiang Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| |
Collapse
|
31
|
Dong G, Li Y, Lee L, Liu X, Shi Y, Liu X, Bouska A, Gong Q, Kong L, Wang J, Lou CH, McKeithan TW, Iqbal J, Chan WC. Genetic manipulation of primary human natural killer cells to investigate the functional and oncogenic roles of PRDM1. Haematologica 2021; 106:2427-2438. [PMID: 32732362 PMCID: PMC8409030 DOI: 10.3324/haematol.2020.254276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Extra-nodal natural killer (NK)/T-cell lymphoma, nasal type (ENKTCL) is a highly aggressive lymphoma, in which the tumor suppressor gene PRDM1 is frequently lost or inactivated. We employed two different CRISPR/Cas9 approaches to generate PRDM1-/- primary NK cells to study the role of this gene in NK-cell homeostasis. PRDM1-/- NK cells showed a marked increase in cloning efficiency, higher proliferation rate and less apoptosis compared with their wild-type counterparts. Gene expression profiling demonstrated a marked enrichment in pathways associated with proliferation, cell cycle, MYC, MYB and TCR/NK signaling in PRDM1-/- NK cells, but pathways associated with normal cellular functions including cytotoxic functions were downregulated, suggesting that the loss of PRDM1 shifted NK cells toward proliferation and survival rather than the performance of their normal functions. We were also able to further modify a PRDM1-deleted clone to introduce heterozygous deletions of common tumor suppressor genes in ENKTCL such as TP53, DDX3X, and PTPN6. We established an in vitro model to elucidate the major pathways through which PRDM1 mediates its homeostatic control of NK cells. This approach can be applied to the study of other relevant genetic lesions and oncogenic collaborations in lymphoma pathogenesis.
Collapse
Affiliation(s)
- Gehong Dong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yuping Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Logan Lee
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yunfei Shi
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiaoqian Liu
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Alyssa Bouska
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Qiang Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lingbo Kong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jinhui Wang
- Department of Mol and Cell Biol , City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Chih-Hong Lou
- The Gene Editing and Viral Vector Core, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
32
|
Cortés JR, Palomero T. Biology and Molecular Pathogenesis of Mature T-Cell Lymphomas. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a035402. [PMID: 32513675 DOI: 10.1101/cshperspect.a035402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peripheral T-cell lymphomas (PTCLs) constitute a highly heterogeneous group of hematological diseases with complex clinical and molecular features consistent with the diversity of the T-cell type from which they originate. In the past several years, the systematic implementation of high-throughput genomic technologies for the analysis of T-cell malignancies has supported an exponential progress in our understanding of the genetic drivers of oncogenesis and unraveled the molecular complexity of these diseases. Recent findings have helped redefine the classification of T-cell malignancies and provided novel biomarkers to improve diagnosis accuracy and analyze the response to therapy. In addition, multiple novel targeted therapies including small-molecule inhibitors, antibody-based approaches, and immunotherapy have shown promising results in early clinical analysis and have the potential to completely change the way T-cell malignancies have been treated traditionally.
Collapse
Affiliation(s)
| | - Teresa Palomero
- Institute for Cancer Genetics.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
33
|
Lv W, Zhang X, Dong H, Wu Q, Sun B, Zhang Y. Exploring effects of DNA methylation and gene expression on pan-cancer drug response by mathematical models. Exp Biol Med (Maywood) 2021; 246:1626-1642. [PMID: 33910405 DOI: 10.1177/15353702211007766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since genetic alteration only accounts for 20%-30% in the drug effect-related factors, the role of epigenetic regulation mechanisms in drug response is gradually being valued. However, how epigenetic changes and abnormal gene expression affect the chemotherapy response remains unclear. Therefore, we constructed a variety of mathematical models based on the integrated DNA methylation, gene expression, and anticancer drug response data of cancer cell lines from pan-cancer levels to identify genes whose DNA methylation is associated with drug response and then to assess the impact of epigenetic regulation of gene expression on the sensitivity of anticancer drugs. The innovation of the mathematical models lies in: Linear regression model is followed by logistic regression model, which greatly shortens the calculation time and ensures the reliability of results by considering the covariates. Second, reconstruction of prediction models based on multiple dataset partition methods not only evaluates the model stability but also optimizes the drug-gene pairs. For 368,520 drug-gene pairs with P < 0.05 in linear models, 999 candidate pairs with both AUC ≥ 0.8 and P < 0.05 were obtained by logistic regression models between drug response and DNA methylation. Then 931 drug-gene pairs with 45 drugs and 491 genes were optimized by model stability assessment. Integrating both DNA methylation and gene expression markedly increased predictive power for 732 drug-gene pairs where 598 drug-gene pairs including 44 drugs and 359 genes were prioritized. Several drug target genes were enriched in the modules of the drug-gene-weighted interaction network. Besides, for cancer driver genes such as EGFR, MET, and TET2, synergistic effects of DNA methylation and gene expression can predict certain anticancer drugs' responses. In summary, we identified potential drug sensitivity-related markers from pan-cancer levels and concluded that synergistic regulation of DNA methylation and gene expression affect anticancer drug response.
Collapse
Affiliation(s)
- Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Xingda Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Huili Dong
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Baoqing Sun
- Guangzhou Institute of Respiratory health, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 51000, China
| | - Yan Zhang
- Guangzhou Institute of Respiratory health, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 51000, China
| |
Collapse
|
34
|
EBV and the Pathogenesis of NK/T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13061414. [PMID: 33808787 PMCID: PMC8003370 DOI: 10.3390/cancers13061414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma herpes virus with tropism for B cells. EBV is linked to the pathogenesis of B cell, T cell and NK cell lymphoproliferations, with extranodal NK/T cell lymphoma, nasal type (ENKTCL) being the prototype of an EBV-driven lymphoma. ENKTCL is an aggressive neoplasm, particularly widespread in East Asia and the native population of Latin America, which suggests a strong genetic predisposition. The link between ENKTCL and different populations has been partially explored. EBV genome sequencing analysis recognized two types of strains and identified variants of the latent membrane protein 1 (LMP1), which revealed different oncogenic potential. In general, most ENKTCL patients carry EBV type A with LMP1 wild type, although the LMP1 variant with a 30 base pair deletion is also common, especially in the EBV type B, where it is necessary for oncogenic transformation. Contemporary high-throughput mutational analyses have discovered recurrent gene mutations leading to activation of the JAK-STAT pathway, and mutations in other genes such as BCOR, DDX3X and TP53. The genomic landscape in ENKTCL highlights mechanisms of lymphomagenesis, such as immune response evasion, secondary to alterations in signaling pathways or epigenetics that directly or indirectly interfere with oncogenes or tumor suppressor genes. This overview discusses the most important findings of EBV pathogenesis and genetics in ENKTCL.
Collapse
|
35
|
Zhao WL, Cai MC, Zhong HJ. [How I diagnose and treat NK/T cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:446-450. [PMID: 32654455 PMCID: PMC7378291 DOI: 10.3760/cma.j.issn.0253-2727.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- W L Zhao
- Shanghai Rui Jin Hospital, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai 200025, China
| | - M C Cai
- Shanghai Rui Jin Hospital, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai 200025, China
| | - H J Zhong
- Shanghai Rui Jin Hospital, National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai 200025, China
| |
Collapse
|
36
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
37
|
Abstract
Sequence analyses highlight a massive peptide sharing between immunoreactive Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide commonality appears to be the molecular platform capable of linking EBV infection to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this study warns that using entire antigens in anti-EBV immunotherapies can associate with autoimmune manifestations and further supports the concept of peptide uniqueness for designing safe and effective anti-EBV immunotherapies.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
38
|
Küçük C, Wei L, You H. Indolent T-Cell Lymphoproliferative Disease of the GI Tract: Insights for Better Diagnosis, Prognosis, and Appropriate Therapy. Front Oncol 2020; 10:1276. [PMID: 32850389 PMCID: PMC7426393 DOI: 10.3389/fonc.2020.01276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/19/2020] [Indexed: 02/04/2023] Open
Abstract
Indolent T-cell lymphoproliferative disease of the gastrointestinal tract (indolent GI T-LPD) is a benign neoplasm of CD4+ or CD8+ T cells that form primary tumors in the GI tract. Indolent GI T-LPD has recently been provisionally recognized as a distinct entity by the 2016 revision of the WHO classification of lymphoid neoplasms. Appropriate diagnosis of these cases is challenging as they may be misdiagnosed as T cell lymphoma that has an aggressive clinical course. Consequently, aggressive therapeutic approaches were usually chosen to treat these cases with no obvious benefit for most of the patients and potential side effects. Moreover, inflammatory diseases of the GI tract with similar symptoms may lead to misdiagnosis that leads to delays in administration of proper therapeutics against these cases. Therefore, it is of utmost importance to identify prognostic genetic biomarkers at the time of diagnosis for optimal medical care of these patients. TCR clonality analyses may not be useful for distinguishing these benign neoplasms from aggressive gastrointestinal T cell lymphomas; however, molecular genetic tests may prove useful as recurrent STAT3-JAK2 fusions, which may have diagnostic, prognostic or therapeutic value, have recently been identified. However, there is still lack of comprehensive information on the genetic and epigenetic factors associated with pathogenesis of indolent GI T-LPD. In this mini-review, we focus on the so far reported literature on indolent GI T-LPD cases, and discuss future directions for better differential diagnosis, risk stratification, and therapeutic target discovery with a special focus on the genetic and epigenetic alterations.
Collapse
Affiliation(s)
- Can Küçük
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Izmir Biomedicine and Genome Center (IBG), Izmir, Turkey.,Department of Medical Biology, Dokuz Eylül University, İzmir, Turkey.,Department of Pathology, City of Hope Medical Center, Duarte, CA, United States
| | - Li Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Liu Y, Han Y, Zhou L, Pan X, Sun X, Liu Y, Liang M, Qin J, Lu Y, Liu P. A comprehensive evaluation of computational tools to identify differential methylation regions using RRBS data. Genomics 2020; 112:4567-4576. [PMID: 32712292 DOI: 10.1016/j.ygeno.2020.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023]
Abstract
DNA methylation plays a vital role in transcription regulation. Reduced representation bisulfite sequencing (RRBS) is becoming common for analyzing genome-wide methylation profiles at the single nucleotide level. A major goal of RRBS studies is to detect differentially methylated regions (DMRs) between different biological conditions. The previous tools to predict DMRs lack consistency. Here, we simulated RRBS datasets with significant attributes of real sequencing data under a wide range of scenarios, and systematically evaluated seven DMR detection tools in terms of type I error rate, precision/recall (PR), and area under ROC curve (AUC) using different methylation levels, sequencing coverage depth, length of DMRs, read length, and sample sizes. DMRfinder, methylSig, and methylKit were our preferred tools for RRBS data analysis, in terms of their AUC and PR curves. Our comparison highlights the different applicability of DMR detection tools and provides information to guide researchers towards the advancement of sequence-based DMR analysis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yi Han
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Liyuan Zhou
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Xiaoqing Pan
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiwei Sun
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jiale Qin
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.
| | - Yan Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China.
| | - Pengyuan Liu
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
40
|
Wang L, Li LR, Zhang L, Wang JW. The landscape of new drugs in extranodal NK/T-cell lymphoma. Cancer Treat Rev 2020; 89:102065. [PMID: 32653806 DOI: 10.1016/j.ctrv.2020.102065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
To date, much progress has been made in early-stage extranodal NK/T-cell lymphoma (ENKTCL), and risk-adapted therapy with radiotherapy (RT) alone for the low-risk group and RT combined with asparaginase-based chemotherapy (CT) for the high-risk group yields favorable outcomes. However, optimal treatment strategies have not been defined yet for advanced-stage ENKTCL. Historically, ENKTCL responded poorly to conventional anthracycline-based chemotherapy probably because of inherent multidrug resistance (MDR). The fact that ENKTCL cells lack asparagine synthetase (ASNS) activity warranted the use of L-asparaginase or pegaspargase as frontline chemotherapies. Even though, due to high mortality of the disease, approximately 50% patients failing the frontline therapy arrived at dismal clinical outcomes with a median progression-free survival (PFS) less than 8 months. As distinctive molecular and biological subgroups are increasingly discovered within the disease entity of ENKTCL, novel targeted therapies and immunotherapy are of the urgent need for those heterogeneous subgroups. In this review, we sought to summarize the preclinical and clinical results of 6 categories of promising targeted therapy and immunotherapy for the treatment of ENKTCL, including monoclonal antibodies, immune checkpoint inhibitors, small-molecular inhibitors, epigenetic therapy, immunomodulatory drugs, and adoptive T-cell therapy, and these might change the landscape of treatment for ENKTCL in the near future.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China.
| | - Lin-Rong Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing 100730, China
| | - Jing-Wen Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
41
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
42
|
Küçük C, Wang J, Xiang Y, You H. Epigenetic aberrations in natural killer/T-cell lymphoma: diagnostic, prognostic and therapeutic implications. Ther Adv Med Oncol 2020; 12:1758835919900856. [PMID: 32127923 PMCID: PMC7036507 DOI: 10.1177/1758835919900856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is an aggressive malignancy that usually presents in the upper aerodigestive tract. This malignancy shows substantial geographic variability in incidence, and is characterized by Epstein-Barr virus (EBV) infections. Epigenetic aberrations may dysregulate the expression of genes involved in different hallmarks of cancer. A growing body of evidence underscores the importance of epigenetic aberrations in the pathogenesis of NKTCL. Promoter hypermethylation is a common epigenetic mechanism for the inactivation of tumour suppressor genes. Several epigenetically silenced tumour suppressor candidates (e.g. PRDM1, BIM) were identified in this aggressive cancer using locus-specific and genome-wide promoter methylation analyses. Importantly, genes involved in epigenetic modifications were identified to be mutated (e.g. KMT2D) or methylated (e.g. TET2) in NKTCL patients, which may contribute to pathogenesis through global alterations in chromatin states. Cancer-associated microRNAs, some of which are expressed by EBV, and long noncoding RNAs have been observed to be dysregulated in NKTCL. This review focuses on studies investigating epigenetic aberrations in NKTCL to bolster our overall understanding of the role of these abnormalities in disease pathobiology. We also discuss the potential of these epigenetic aberrations to improve diagnosis and prognosis as well as reveal novel targets of therapy for NKTCL.
Collapse
Affiliation(s)
- Can Küçük
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Junli Wang
- Department of Reproduction and Genetics, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ying Xiang
- Division of Hematology and Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou 510095, China
| |
Collapse
|
43
|
Cheng S, Xie W, Miao Y, Guo J, Wang J, Li C, Zhang Y. Identification of key genes in invasive clinically non-functioning pituitary adenoma by integrating analysis of DNA methylation and mRNA expression profiles. J Transl Med 2019; 17:407. [PMID: 31796052 PMCID: PMC6892283 DOI: 10.1186/s12967-019-02148-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tumor surrounding the internal carotid artery or invading to the cavernous sinus is an important characteristic of invasive pituitary adenoma, and a pivotal factor of tumor residue and regrowth. Without specific changes in serum hormone related to the adenohypophyseal cell of origin, clinically non-functioning pituitary adenoma is more likely to be diagnosed at invasive stages compared with functioning pituitary adenoma. The underlying mechanism of tumor invasion remains unknown. In this study, we aimed to identify key genes in tumor invasion by integrating analyses of DNA methylation and gene expression profiles. METHOD Genome-wide DNA methylation and mRNA microarray analysis were performed for tumor samples from 68 patients at the Beijing Tiantan Hospital. Differentially expressed genes and methylated probes were identified based on an invasive vs non-invasive grouping. Differentially methylated probes in the promoter region of targeted genes were assessed. Pearson correlation analysis was used to identify genes with a strong association between DNA methylation status and expression levels. Pyrosequencing and RT-PCR were used to validate the methylation status and expression levels of candidate genes, respectively. RESULTS A total of 8842 differentially methylated probes, located on 4582 genes, and 661 differentially expressed genes were identified. Both promoter methylation and expression alterations were observed for 115 genes with 58 genes showing a negative correlation between DNA methylation status and expression level. Nineteen genes that exhibited notably negative correlations between DNA methylation and gene expression levels, are involved in various gene ontologies and pathways, or played an important role in different diseases, were regarded as candidate genes. We found an increased methylation with a decreased expression of PHYHD1, LTBR, C22orf42, PRR5, ANKDD1A, RAB13, CAMKV, KIFC3, WNT4 and STAT6, and a decreased methylation with an increased expression of MYBPHL. The methylation status and expression levels of these genes were validated by pyrosequencing and RT-PCR. CONCLUSIONS The DNA methylation and expression levels of PHYHD1, LTBR, MYBPHL, C22orf42, PRR5, ANKDD1A, RAB13, CAMKV, KIFC3, WNT4 and STAT6 are associated with tumor invasion, and these genes may become the potential genes for targeted therapy.
Collapse
Affiliation(s)
- Sen Cheng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Weiyan Xie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Yazhou Miao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Jing Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Jichao Wang
- People’s Hospital of Xin Jiang Uygur Autonomous Region, Urumqi, 830001 China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing, 100070 China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological Diseases, Key Laboratory of Central Nervous System Injury Research, Beijing, 100070 China
| |
Collapse
|
44
|
Gotthardt D, Trifinopoulos J, Sexl V, Putz EM. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front Immunol 2019; 10:2590. [PMID: 31781102 PMCID: PMC6861185 DOI: 10.3389/fimmu.2019.02590] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system and play a critical role in anti-viral and anti-tumor responses. NK cells develop in the bone marrow from hematopoietic stem cells (HSCs) that differentiate through common lymphoid progenitors (CLPs) to NK lineage-restricted progenitors (NKPs). The orchestrated action of multiple cytokines is crucial for NK cell development and maturation. Many of these cytokines such as IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and interferons (IFNs) signal via the Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT) pathway. We here review the current knowledge about these cytokines and the downstream signaling involved in the development and maturation of conventional NK cells and their close relatives, innate lymphoid cells type 1 (ILC1). We further discuss the role of suppressor of cytokine signaling (SOCS) proteins in NK cells and highlight their potential for therapeutic application.
Collapse
Affiliation(s)
- Dagmar Gotthardt
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Trifinopoulos
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Department for Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva Maria Putz
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
45
|
Go H, Jang JY, Kim CW, Huh J, Kim PJ, Jeon YK. Identification of microRNAs modulated by DNA hypomethylating drugs in extranodal NK/T-cell lymphoma. Leuk Lymphoma 2019; 61:66-74. [PMID: 31441360 DOI: 10.1080/10428194.2019.1654096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To identify epigenetically silenced miRNAs and to investigate their influences on predictive target oncogenes in extranodal natural killer/T-cell lymphoma (NKTCL). Decitabine treatment was performed to evaluate methylated miRNAs in NKTCL cells. The relationship between a given miRNA and its target mRNA was validated using 24 tumor tissues. miR-379, miR-134, miR-20b, miR-376a, miR-654-3p, miR-143, miR-181c, miR-1225-5p, miR-1246, and miR-1275 were epigenetically silenced in SNK6 cells. miR-134, miR-376a, miR-143 and miR-181c significantly affected cellular viability. PDGFRα was regulated by miR-34a and miR-181c. miR-143, miR-20b and miR34a regulated STAT3 expression. miR-20b and miR-143 expression showed inverse correlations with STAT3 mRNA expression in NKTCL tissues. K-RAS was regulated by miR-181c. Downregulation of cell viability by salirasib treatment was identified. miRNAs were downregulated by DNA methylation, and several microRNAs affected the viability of NKTCL cells. miR-34a and miR-181c may be involved in the oncogenic progression of NKTCL through the regulation of PDGFRα, STAT3, and K-RAS.
Collapse
Affiliation(s)
- Heounjeong Go
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Young Jang
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Bioinfra Life Science Inc, Seoul, Republic of Korea
| | - Chul-Woo Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.,Bioinfra Life Science Inc, Seoul, Republic of Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Pil-Jong Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University College of Dental Medicine, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Xiong J, Zhao W. What we should know about natural killer/T-cell lymphomas. Hematol Oncol 2019; 37 Suppl 1:75-81. [PMID: 31187536 DOI: 10.1002/hon.2588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural-killer/T cell lymphoma (NKTCL) is the most common extranodal lymphoma with highly aggressive clinical outcome. System biology techniques provide novel insights into the pathogenesis, risk stratification, and clinical management in NKTCL. Comparative genomic hybridization analysis reveal most frequent deletion of chromosome 6q21. Whole-exome sequencing studies identify recurrent somatic gene mutations, involving RNA helicases, tumor suppressors, JAK-STAT pathway molecules, and epigenetic modifiers. Genome-wide association study reports strongest association of HLA-DPB1 rs9277378 with lymphomagenesis. Alterations of oncogenic signaling pathways as well as epigenetic dysregulation of microRNA and long non-coding RNAs are also observed in NKTCL. Epstein-Barr virus (EBV) is the major etiology of NKTCL and the pathogenic mechanism remains unclear. Different risk stratification models are proposed based on clinical parameters (IPI, PINK, and PINK-E, etc.) or biomarkers (Ki67, C-reactive protein level, and EBV DNA, etc.). Therapeutic strategies vary according to disease stage, including radiotherapy, asparaginase-based chemotherapy, hematopoietic stem-cell transplantation, targeted therapy (immune checkpoints inhibitors, and histone deacetylation inhibitors, etc.). Future investigations will be emphasized on EBV-related pathogenesis of NKTCL, prognostic and therapeutic biomarkers, as well as multi-center clinical trials, so as to optimize personalized treatment of NKTCL in the era of precision medicine.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai, China.,Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai, China.,Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| |
Collapse
|
47
|
Cai Q, Cai J, Fang Y, Young KH. Epstein-Barr Virus-Positive Natural Killer/T-Cell Lymphoma. Front Oncol 2019; 9:386. [PMID: 31139570 PMCID: PMC6527808 DOI: 10.3389/fonc.2019.00386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
Extranodal natural killer/T-cell lymphoma, nasal type (ENKL), is a rare malignancy of Non-Hodgkin lymphoma characterized by an aggressive clinical course and poor prognosis. It shows strong association with Epstein-Barr virus infection and occurs more commonly in Asia and Latin America. Various genetic alterations have been identified in ENKL by gene expression profiling and sequencing techniques. The frequent deletion of chromosome 6q21 was reported to lead to the silence of several tumor suppressor genes. Also, there have been novel genetic mutations that were recently uncovered and were found to frequently activate several oncogenic pathways, including the JAK/STAT, NF-κB, and MAPK pathways. Besides, we believe that deregulated single genes and epigenetic dysregulation might be relevant to the mechanism of this disease and thus, may have the potential to shed lights on the development of new therapeutic strategies. The consensus on the standard treatment for ENKL has not yet been currently established. For localized ENKL patients, radiotherapy with concurrent chemotherapy and sequential patterns of chemotherapy and radiotherapy are recommended as first-line therapy. As for advanced or relapsed/refractory ENKL patients, the application of non-anthracycline-containing regimens have significantly improved the clinical outcome, contributing to higher response rate, longer overall survival and progression-free survival. Hematopoietic stem cell transplantation is widely recommended for consolidation after a complete remission or partial remission has been achieved. The anti-programmed death 1 antibody, an immune checkpoint inhibitor, has demonstrated favorable results in treating relapsed or refractory ENKL. Of the current ENKL treatment, researchers are still striving to validate how radiotherapy and chemotherapy should be optimally combined and which of the non-anthracycline-containing regimens is superior. In this review, we summarize the main genetic alterations frequently found in ENKL and their role in providing new insights into the therapeutic targets of this disease, and highlight the recent findings regarding new biologic markers, novel therapeutic strategies applied to this intriguing neoplasm.
Collapse
Affiliation(s)
- Qingqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
48
|
de Mel S, Hue SSS, Jeyasekharan AD, Chng WJ, Ng SB. Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J Hematol Oncol 2019; 12:33. [PMID: 30935402 PMCID: PMC6444858 DOI: 10.1186/s13045-019-0716-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Extranodal NK/T cell lymphoma, nasal type (ENKTL) is an aggressive malignancy with a dismal prognosis. Although L-asparaginase-based chemotherapy has resulted in improved response rates, relapse occurs in up to 50% of patients with disseminated disease. There is hence an urgent need for effective targeted therapy, especially for patients with relapsed or refractory disease. Novel insights gleaned from high-throughput molecular and genomic profiling studies in recent years have contributed significantly to the understanding of the molecular biology of ENKTL, which exemplifies many of the hallmarks of cancer. Deregulated pro-proliferative signaling pathways, such as the Janus-associated kinase/signal transducer and activator of transcription (JAK/STAT), platelet-derived growth factor (PDGF), Aurora kinase, MYC, and NF-κB, have been identified as potential therapeutic targets. The discovery of the non-canonical function of EZH2 as a pro-proliferative transcriptional co-activator has shed further light on the pathogenesis of ENKTL. Loss of key tumor suppressor genes located on chromosome 6q21 also plays an important role. The best-studied examples include PR domain zinc finger protein 1(PRDM1), protein tyrosine phosphatase kappa (PTPRK), and FOXO3. Promoter hypermethylation has been shown to result in the downregulation of other tumor suppressor genes in ENKTL, which may be potentially targeted through hypomethylating agents. Deregulation of apoptosis through p53 mutations and upregulation of the anti-apoptotic protein, survivin, may provide a further growth advantage to this tumor. A deranged DNA damage response as a result of the aberration of ataxia telangiectasia-related (ATR) kinases can lead to significant genomic instability and may contribute to chemoresistance of ENKTL. Recently, immune evasion has emerged as a critical pathway for survival in ENKTL and may be a consequence of HLA dysregulation or STAT3-driven upregulation of programmed cell death ligand 1 (PD-L1). Immunotherapy via inhibition of programmed cell death 1 (PD-1)/PD-L1 checkpoint signaling holds great promise as a novel therapeutic option. In this review, we present an overview of the key molecular and pathogenic pathways in ENKTL, organized using the framework of the "hallmarks of cancer" as described by Hanahan and Weinberg, with a focus on those with the greatest translational potential.
Collapse
Affiliation(s)
- Sanjay de Mel
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, National University Health System, Singapore, Singapore.,Agency for Science Technology and Research Singapore, Institute of Molecular and Cellular Biology, Singapore, Singapore
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, 1E Kent Ridge Rd, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| | - Siok-Bian Ng
- Department of Pathology, National University Health System, Singapore, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| |
Collapse
|
49
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
50
|
Liu J, Liang L, Huang S, Nong L, Li D, Zhang B, Li T. Aberrant differential expression of EZH2 and H3K27me3 in extranodal NK/T-cell lymphoma, nasal type, is associated with disease progression and prognosis. Hum Pathol 2019; 83:166-176. [DOI: 10.1016/j.humpath.2018.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
|