1
|
Mao C, Chen Y, Xing D, Zhang T, Lin Y, Long C, Yu J, Luo Y, Ming T, Xie W, Han Z, Mei D, Xiang D, Lu M, Shen X, Xue X. Resting natural killer cells promote the progress of colon cancer liver metastasis by elevating tumor-derived stem cell factor. eLife 2024; 13:RP97201. [PMID: 39387546 PMCID: PMC11466454 DOI: 10.7554/elife.97201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024] Open
Abstract
The abundance and biological contribution of natural killer (NK) cells in cancer are controversial. Here, we aim to uncover clinical relevance and cellular roles of NK cells in colon cancer liver metastasis (CCLM). Here, we integrated single-cell RNA-sequencing, spatial transcriptomics (ST), and bulk RNA-sequencing datasets to investigate NK cells' biological properties and functions in the microenvironment of primary and liver metastatic tumors. Results were validated through an in vitro co-culture experiment based on bioinformatics analysis. Useing single-cell RNA-sequencing and ST, we mapped the immune cellular landscape of colon cancer and well-matched liver metastatic cancer. We discovered that GZMK+ resting NK cells increased significantly in tumor tissues and were enriched in the tumor regions of both diseases. After combining bulk RNA and clinical data, we observed that these NK cell subsets contributed to a worse prognosis. Meanwhile, KIR2DL4+ activated NK cells exhibited the opposite position and relevance. Pseudotime cell trajectory analysis revealed the evolution of activated to resting NK cells. In vitro experiments further confirmed that tumor-cell-co-cultured NK cells exhibited a decidual-like status, as evidenced by remarkable increasing CD9 expression. Functional experiments finally revealed that NK cells exhibited tumor-activating characteristics by promoting the dissociation of SCF (stem cell factor) on the tumor cells membrane depending on cell-to-cell interaction, as the supernatant of the co-culture system enhanced tumor progression. In summary, our findings revealed resting NK cells exhibited a clinical relevance with CCLM, which may be exploited for novel strategies to improve therapeutic outcomes for patients with CCLM.
Collapse
Affiliation(s)
- Chenchen Mao
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yanyu Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
- Department of Pediatric Thoracic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dong Xing
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Teming Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yangxuan Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cong Long
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Jiaye Yu
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Yunhui Luo
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Tao Ming
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Wangkai Xie
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Zheng Han
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Dianfeng Mei
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Dan Xiang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiangyang Xue
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
2
|
Amarilla-Irusta A, Zenarruzabeitia O, Sevilla A, Sandá V, Lopez-Pardo A, Astarloa-Pando G, Pérez-Garay R, Pérez-Fernández S, Meijide S, Imaz-Ayo N, Arana-Arri E, Amo L, Borrego F. CD151 identifies an NK cell subset that is enriched in COVID-19 patients and correlates with disease severity. J Infect 2024; 89:106304. [PMID: 39374860 DOI: 10.1016/j.jinf.2024.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Severe coronavirus disease 2019 (COVID-19) often leads to acute respiratory distress syndrome and multi-organ dysfunction, driven by a dysregulated immune response, including a cytokine storm with elevated proinflammatory cytokine levels. Natural killer (NK) cells are part of the innate immune system with a fundamental role in the defense against viral infections. However, during COVID-19 acute infection, they exhibit an altered phenotype and impaired functionality contributing to the immunopathogenesis of the disease. In this work, we have studied a cohort of patients with COVID-19 (ranging from mild to severe) by analyzing IL-15, TGF-β, PlGF and GDF-15 plasma levels and performing multiparametric flow cytometry studies. Our results revealed that severe COVID-19 patients exhibited high levels of IL-15, PlGF and GDF-15, along with an enrichment of an NK cell subset expressing the CD151 tetraspanin, which correlated with IL-15 plasma levels and disease severity. In patients, these CD151+ NK cells displayed a more activated phenotype characterized by an increased expression of HLA-DR, CD38 and granzyme B, a distinct receptor repertoire, with lower levels of CD160 and CD31 and higher levels of CD55 and, remarkably, a higher expression of tissue-resident markers CD103 and the NK cell decidual marker CD9. Last of all, in individuals with severe disease, we identified an expansion of a CD151brightCD9+ NK cell subset, suggesting that these cells play a specific role in COVID-19. Altogether, our findings suggest that CD151+ NK cells may have a relevant role in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Arrate Sevilla
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Víctor Sandá
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Ainara Lopez-Pardo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | | | - Raquel Pérez-Garay
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Clinical Analysis Service, Cruces University Hospital, OSI Ezkerraldea-Enkarterri-Cruces, Barakaldo, Spain
| | - Silvia Pérez-Fernández
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Susana Meijide
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Natale Imaz-Ayo
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Eunate Arana-Arri
- Scientific Coordination Facility, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Zang X, Gu S, Wang W, Shi J, Gan J, Hu Q, Zhou C, Ding Y, He Y, Jiang L, Gu T, Xu Z, Huang S, Yang H, Meng F, Li Z, Cai G, Hong L, Wu Z. Dynamic intrauterine crosstalk promotes porcine embryo implantation during early pregnancy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1676-1696. [PMID: 38748354 DOI: 10.1007/s11427-023-2557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/21/2024] [Indexed: 08/09/2024]
Abstract
Dynamic crosstalk between the embryo and mother is crucial during implantation. Here, we comprehensively profile the single-cell transcriptome of pig peri-implantation embryos and corresponding maternal endometrium, identifying 4 different lineages in embryos and 13 cell types in the endometrium. Cell-specific gene expression characterizes 4 distinct trophectoderm subpopulations, showing development from undifferentiated trophectoderm to polar and mural trophectoderm. Dynamic expression of genes in different types of endometrial cells illustrates their molecular response to embryos during implantation. Then, we developed a novel tool, ExtraCellTalk, generating an overall dynamic map of maternal-foetal crosstalk using uterine luminal proteins as bridges. Through cross-species comparisons, we identified a conserved RBP4/STRA6 pathway in which embryonic-derived RBP4 could target the STRA6 receptor on stromal cells to regulate the interaction with other endometrial cells. These results provide insight into the maternal-foetal crosstalk during embryo implantation and represent a valuable resource for further studies to improve embryo implantation.
Collapse
Affiliation(s)
- Xupeng Zang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Shengchen Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Junsong Shi
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Jianyu Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yanjuan He
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Huaqiang Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China
| | - Linjun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China.
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
- Key Laboratory of South China Modern Biological Seed Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510520, China.
| |
Collapse
|
4
|
Albini A, Noonan DM, Corradino P, Magnoni F, Corso G. The Past and Future of Angiogenesis as a Target for Cancer Therapy and Prevention. Cancer Prev Res (Phila) 2024; 17:289-303. [PMID: 38714356 DOI: 10.1158/1940-6207.capr-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Cancer growth is dependent on angiogenesis, the formation of new blood vessels, which represents a hallmark of cancer. After this concept was established in the 1970s, inhibition of tumor development and metastases by blocking the neoangiogenic process has been an important approach to the treatment of tumors. However, antiangiogenic therapies are often administered when cancer has already progressed. The key to reducing the cancer burden is prevention. We noticed 20 years ago that a series of possible cancer chemopreventive agents showed antiangiogenic properties when tested in experimental models. This article reviews the relevant advances in the understanding of the rationale for targeting angiogenesis for cancer therapy, prevention, and interception and recently investigated substances with antiangiogenic activity that may be suitable for such strategies. Many compounds, either dietary derivatives or repurposed drugs, with antiangiogenic activity are possible tools for cancer angioprevention. Such molecules have a favorable safety profile and are likely to allow the prolonged duration necessary for an efficient preventive strategy. Recent evidence on mechanisms and possible use is described here for food derivatives, including flavonoids, retinoids, triterpenoids, omega fatty acids, and carotenoids from marine microorganisms. As examples, a number of compounds, including epigallocatechin, resveratrol, xanthohumol, hydroxytyrosol, curcumin, fenretinide, lycopene, fucoxanthin, and repurposed drugs, such as aspirin, β blockers, renin-angiotensin-aldosterone inhibitors, carnitines, and biguanides, are reviewed.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| | - Paola Corradino
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Francesca Magnoni
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Xu Y, Miller CP, Tykodi SS, Akilesh S, Warren EH. Signaling crosstalk between tumor endothelial cells and immune cells in the microenvironment of solid tumors. Front Cell Dev Biol 2024; 12:1387198. [PMID: 38726320 PMCID: PMC11079179 DOI: 10.3389/fcell.2024.1387198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Tumor-associated endothelial cells (TECs) are crucial mediators of immune surveillance and immune escape in the tumor microenvironment (TME). TECs driven by angiogenic growth factors form an abnormal vasculature which deploys molecular machinery to selectively promote the function and recruitment of immunosuppressive cells while simultaneously blocking the entry and function of anti-tumor immune cells. TECs also utilize a similar set of signaling regulators to promote the metastasis of tumor cells. Meanwhile, the tumor-infiltrating immune cells further induce the TEC anergy by secreting pro-angiogenic factors and prevents further immune cell penetration into the TME. Understanding the complex interactions between TECs and immune cells will be needed to successfully treat cancer patients with combined therapy to achieve vasculature normalization while augmenting antitumor immunity. In this review, we will discuss what is known about the signaling crosstalk between TECs and tumor-infiltrating immune cells to reveal insights and strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Yuexin Xu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Chris P. Miller
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Scott S. Tykodi
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Kidney Research Institute, University of Washington, Seattle, WA, United States
| | - Edus H. Warren
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Shiravani Z, Mirshekari K, Larki MH, Shafiee N, Haghshenas MR, Ghaderi A, Fattahi MJ. Evaluation of the genetic diversity of KIR genes in patients with endometrial cancer. J Reprod Immunol 2024; 162:104217. [PMID: 38387251 DOI: 10.1016/j.jri.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/01/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Endometrial cancer (EC) constitutes more than half of all genital cancers in women, with an increasing incidence in different countries. Natural killer cells (NK cells) are kinds of innate immune cells that are controlled by sets of receptors, such as killer cell Ig-like receptors (KIRs), which can inhibit or activate NK cells. In this study, we evaluated the diversity and genetic association of KIRs in confirmed cases of endometrial cancer compared to healthy controls. A total of 151 women with EC and 167 age/race-matched healthy controls were analyzed for KIR genes. Demographic and histopathologic data were gathered in questionnaires, and 16 KIR genes along with two variants of KIR2DS4 (KIR2DS4fl and KIR2DS4del), were genotyped by usingsequence specific primers-polymerase chain reaction (SSP-PCR) method. A comparison between cases and controls revealed that although there were not any significant differences in A haplotype associated genes and also the variants of KIR2DS4 (p >0.05), B haplotype associated genes such as KIR2DS2 and KIR2DL2 decreased significantly in EC patients in comparison with healthy controls (p=0.03 and p=0.01, respectively). Furthermore, we found that EC mostly developed in cases with the AA genotype; however, the carriers of Bx and C4T4 genotypes were less frequent in patients with EC. Our results revealed that KIR2DS2 and KIR2DL2, along with Bx and C4T4 genotypes, have a protective impact against developing endometrial cancer in Iranians.
Collapse
Affiliation(s)
- Zahra Shiravani
- Gynecology Oncology Division, Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Mirshekari
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Hematian Larki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nargess Shafiee
- Gynecology Oncology Division, Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Haghshenas
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Fattahi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Albini A, Albini F, Corradino P, Dugo L, Calabrone L, Noonan DM. From antiquity to contemporary times: how olive oil by-products and waste water can contribute to health. Front Nutr 2023; 10:1254947. [PMID: 37908306 PMCID: PMC10615083 DOI: 10.3389/fnut.2023.1254947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Since antiquity, numerous advantages of olive oil and its by-products have been recognized in various domains, including cooking, skincare, and healthcare. Extra virgin olive oil is a crucial component of the Mediterranean diet; several of its compounds exert antioxidant, anti-proliferative, anti-angiogenic and pro-apoptotic effects against a variety of cancers, and also affect cellular metabolism, targeting cancer cells through their metabolic derangements. Numerous olive tree parts, including leaves, can contribute metabolites useful to human health. Olive mill waste water (OMWW), a dark and pungent liquid residue produced in vast amounts during olive oil extraction, contains high organic matter concentrations that may seriously contaminate the soil and surrounding waters if not managed properly. However, OMWW is a rich source of phytochemicals with various health benefits. In ancient Rome, the farmers would employ what was known as amurca, a mulch-like by-product of olive oil production, for many purposes and applications. Several studies have investigated anti-angiogenic and chemopreventive activities of OMWW extracts. The most prevalent polyphenol in OMWW extracts is hydroxytyrosol (HT). Verbascoside and oleuperin are also abundant. We assessed the impact of one such extract, A009, on endothelial cells (HUVEC) and cancer cells. A009 was anti-angiogenic in several in vitro assays (growth, migration, adhesion) and inhibited angiogenesis in vivo, outperforming HT alone. A009 inhibited cells from several tumors in vitro and in vivo and showed potential cardioprotective effects mitigating cardiotoxicity induced by chemotherapy drugs, commonly used in cancer treatment, and reducing up-regulation of pro-inflammatory markers in cardiomyocytes. Extracts from OMWW and other olive by-products have been evaluated for biological activities by various international research teams. The results obtained make them promising candidates for further development as nutraceutical and cosmeceutical agents or dietary supplement, especially in cancer prevention or even in co-treatments with anti-cancer drugs. Furthermore, their potential to offer cardioprotective benefits opens up avenues for application in the field of cardio-oncology.
Collapse
Affiliation(s)
- Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Francesca Albini
- Royal Society for the Encouragement of Arts, Manufactures and Commerce, London, United Kingdom
| | - Paola Corradino
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), European Institute of Oncology IEO, Milan, Italy
| | - Laura Dugo
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, Roma, Italy
| | | | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
8
|
Tang Z, Liu X, Li Z, Zhang T, Yang B, Su J, Song Q. SpaRx: elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. Brief Bioinform 2023; 24:bbad338. [PMID: 37798249 PMCID: PMC10555713 DOI: 10.1093/bib/bbad338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
Spatial cellular authors heterogeneity contributes to differential drug responses in a tumor lesion and potential therapeutic resistance. Recent emerging spatial technologies such as CosMx, MERSCOPE and Xenium delineate the spatial gene expression patterns at the single cell resolution. This provides unprecedented opportunities to identify spatially localized cellular resistance and to optimize the treatment for individual patients. In this work, we present a graph-based domain adaptation model, SpaRx, to reveal the heterogeneity of spatial cellular response to drugs. SpaRx transfers the knowledge from pharmacogenomics profiles to single-cell spatial transcriptomics data, through hybrid learning with dynamic adversarial adaption. Comprehensive benchmarking demonstrates the superior and robust performance of SpaRx at different dropout rates, noise levels and transcriptomics coverage. Further application of SpaRx to the state-of-the-art single-cell spatial transcriptomics data reveals that tumor cells in different locations of a tumor lesion present heterogenous sensitivity or resistance to drugs. Moreover, resistant tumor cells interact with themselves or the surrounding constituents to form an ecosystem for drug resistance. Collectively, SpaRx characterizes the spatial therapeutic variability, unveils the molecular mechanisms underpinning drug resistance and identifies personalized drug targets and effective drug combinations.
Collapse
Affiliation(s)
- Ziyang Tang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Xiang Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Zuotian Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
- Department of Computer Graphics Technology, Purdue University, Indiana, USA
| | - Tonglin Zhang
- Department of Statistics, Purdue University, Indiana, USA
| | - Baijian Yang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest University School of Medicine, North Carolina, USA
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Florida, USA
| |
Collapse
|
9
|
Tang Z, Liu X, Li Z, Zhang T, Yang B, Su J, Song Q. SpaRx: Elucidate single-cell spatial heterogeneity of drug responses for personalized treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551911. [PMID: 37577665 PMCID: PMC10418183 DOI: 10.1101/2023.08.03.551911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Spatial cellular heterogeneity contributes to differential drug responses in a tumor lesion and potential therapeutic resistance. Recent emerging spatial technologies such as CosMx SMI, MERSCOPE, and Xenium delineate the spatial gene expression patterns at the single cell resolution. This provides unprecedented opportunities to identify spatially localized cellular resistance and to optimize the treatment for individual patients. In this work, we present a graph-based domain adaptation model, SpaRx, to reveal the heterogeneity of spatial cellular response to drugs. SpaRx transfers the knowledge from pharmacogenomics profiles to single-cell spatial transcriptomics data, through hybrid learning with dynamic adversarial adaption. Comprehensive benchmarking demonstrates the superior and robust performance of SpaRx at different dropout rates, noise levels, and transcriptomics coverage. Further application of SpaRx to the state-of-art single-cell spatial transcriptomics data reveals that tumor cells in different locations of a tumor lesion present heterogenous sensitivity or resistance to drugs. Moreover, resistant tumor cells interact with themselves or the surrounding constituents to form an ecosystem for drug resistance. Collectively, SpaRx characterizes the spatial therapeutic variability, unveils the molecular mechanisms underpinning drug resistance, and identifies personalized drug targets and effective drug combinations. Key Points We have developed a novel graph-based domain adaption model named SpaRx, to reveal the heterogeneity of spatial cellular response to different types of drugs, which bridges the gap between pharmacogenomics knowledgebase and single-cell spatial transcriptomics data.SpaRx is developed tailored for single-cell spatial transcriptomics data and is provided available as a ready-to-use open-source software, which demonstrates high accuracy and robust performance.SpaRx uncovers that tumor cells located in different areas within tumor lesion exhibit varying levels of sensitivity or resistance to drugs. Moreover, SpaRx reveals that tumor cells interact with themselves and the surrounding microenvironment to form an ecosystem capable of drug resistance.
Collapse
Affiliation(s)
- Ziyang Tang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Xiang Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Zuotian Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
- Department of Computer Graphics Technology, Purdue University, Indiana, USA
| | - Tonglin Zhang
- Department of Statistics, Purdue University, Indiana, USA
| | - Baijian Yang
- Department of Computer and Information Technology, Purdue University, Indiana, USA
| | - Jing Su
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana, USA
| | - Qianqian Song
- Center for Cancer Genomics and Precision Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, North Carolina, USA
- Department of Cancer Biology, Wake Forest University School of Medicine, North Carolina, USA
| |
Collapse
|
10
|
Cifaldi L, Melaiu O, Giovannoni R, Benvenuto M, Focaccetti C, Nardozi D, Barillari G, Bei R. DNAM-1 chimeric receptor-engineered NK cells: a new frontier for CAR-NK cell-based immunotherapy. Front Immunol 2023; 14:1197053. [PMID: 37359555 PMCID: PMC10285446 DOI: 10.3389/fimmu.2023.1197053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
DNAM-1 is a major NK cell activating receptor and, together with NKG2D and NCRs, by binding specific ligands, strongly contributes to mediating the killing of tumor or virus-infected cells. DNAM-1 specifically recognizes PVR and Nectin-2 ligands that are expressed on some virus-infected cells and on a broad spectrum of tumor cells of both hematological and solid malignancies. So far, while NK cells engineered for different antigen chimeric receptors (CARs) or chimeric NKG2D receptor have been extensively tested in preclinical and clinical studies, the use of DNAM-1 chimeric receptor-engineered NK cells has been proposed only in our recent proof-of-concept study and deserves further development. The aim of this perspective study is to describe the rationale for using this novel tool as a new anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Departmental Faculty of Medicine, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
11
|
Multiparameter single-cell proteomic technologies give new insights into the biology of ovarian tumors. Semin Immunopathol 2023; 45:43-59. [PMID: 36635516 PMCID: PMC9974728 DOI: 10.1007/s00281-022-00979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/11/2022] [Indexed: 01/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. Its diagnosis at advanced stage compounded with its excessive genomic and cellular heterogeneity make curative treatment challenging. Two critical therapeutic challenges to overcome are carboplatin resistance and lack of response to immunotherapy. Carboplatin resistance results from diverse cell autonomous mechanisms which operate in different combinations within and across tumors. The lack of response to immunotherapy is highly likely to be related to an immunosuppressive HGSOC tumor microenvironment which overrides any clinical benefit. Results from a number of studies, mainly using transcriptomics, indicate that the immune tumor microenvironment (iTME) plays a role in carboplatin response. However, in patients receiving treatment, the exact mechanistic details are unclear. During the past decade, multiplex single-cell proteomic technologies have come to the forefront of biomedical research. Mass cytometry or cytometry by time-of-flight, measures up to 60 parameters in single cells that are in suspension. Multiplex cellular imaging technologies allow simultaneous measurement of up to 60 proteins in single cells with spatial resolution and interrogation of cell-cell interactions. This review suggests that functional interplay between cell autonomous responses to carboplatin and the HGSOC immune tumor microenvironment could be clarified through the application of multiplex single-cell proteomic technologies. We conclude that for better clinical care, multiplex single-cell proteomic technologies could be an integral component of multimodal biomarker development that also includes genomics and radiomics. Collection of matched samples from patients before and on treatment will be critical to the success of these efforts.
Collapse
|
12
|
Wang X, Zhang Y, Wang S, Ni H, Zhao P, Chen G, Xu B, Yuan L. The role of CXCR3 and its ligands in cancer. Front Oncol 2022; 12:1022688. [PMID: 36479091 PMCID: PMC9720144 DOI: 10.3389/fonc.2022.1022688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a class of small cytokines or signaling proteins that are secreted by cells. Owing to their ability to induce directional chemotaxis of nearby responding cells, they are called chemotactic cytokines. Chemokines and chemokine receptors have now been shown to influence many cellular functions, including survival, adhesion, invasion, and proliferation, and regulate chemokine levels. Most malignant tumors express one or more chemokine receptors. The CXC subgroup of chemokine receptors, CXCR3, is mainly expressed on the surface of activated T cells, B cells, and natural killer cells, and plays an essential role in infection, autoimmune diseases, and tumor immunity by binding to specific receptors on target cell membranes to induce targeted migration and immune responses. It is vital to treat infections, autoimmune diseases, and tumors. CXCR3 and its ligands, CXCL9, CXCL10, and CXCL11, are closely associated with the development and progression of many tumors. With the elucidation of its mechanism of action, CXCR3 is expected to become a new indicator for evaluating the prognosis of patients with tumors and a new target for clinical tumor immunotherapy. This article reviews the significance and mechanism of action of the chemokine receptor CXCR3 and its specific ligands in tumor development.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yangyang Zhang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Sen Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hongyan Ni
- Department of Surgery, Henan No.3 Provincial People’s Hospital, Zhengzhou, China
| | - Peng Zhao
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guangyu Chen
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Long Yuan
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Pirini F, Vergara D, Parrella P. Editorial: Tumor microenvironment signaling networks in pathophysiology and therapeutics. Front Oncol 2022; 12:1009187. [PMID: 36158695 PMCID: PMC9494029 DOI: 10.3389/fonc.2022.1009187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento (DiSTeBA), Lecce, Italy
- *Correspondence: Daniele Vergara, daniele.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS ’Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
| |
Collapse
|
14
|
Gemelli M, Noonan DM, Carlini V, Pelosi G, Barberis M, Ricotta R, Albini A. Overcoming Resistance to Checkpoint Inhibitors: Natural Killer Cells in Non-Small Cell Lung Cancer. Front Oncol 2022; 12:886440. [PMID: 35712510 PMCID: PMC9194506 DOI: 10.3389/fonc.2022.886440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatments over the last 10 years, with even increasing indications in many neoplasms. Non-small cell lung cancer (NSCLC) is considered highly immunogenic, and ICIs have found a wide set of applications in this area, in both early and advanced lines of treatment, significantly changing the prognosis of these patients. Unfortunately, not all patients can benefit from the treatment, and resistance to ICIs can develop at any time. In addition to T lymphocytes, which are the major target, a variety of other cells present in the tumor microenvironment (TME) act in a complex cross-talk between tumor, stromal, and immune cells. An imbalance between activating and inhibitory signals can shift TME from an “anti-” to a “pro-tumorigenic” phenotype and vice versa. Natural killer cells (NKs) are able to recognize cancer cells, based on MHC I (self and non-self) and independently from antigen presentation. They represent an important link between innate and adaptive immune responses. Little data are available about the role of pro-inflammatory NKs in NSCLC and how they can influence the response to ICIs. NKs express several ligands of the checkpoint family, such as PD-1, TIGIT, TIM-3, LAG3, CD96, IL1R8, and NKG2A. We and others have shown that TME can also shape NKs, converting them into a pro-tumoral, pro-angiogenic “nurturing” phenotype through “decidualization.” The features of these NKs include expression of CD56, CD9, CD49a, and CXCR3; low CD16; and poor cytotoxicity. During ICI therapy, tumor-infiltrating or associated NKs can respond to the inhibitors or counteract the effect by acting as pro-inflammatory. There is a growing interest in NKs as a promising therapeutic target, as a basis for adoptive therapy and chimeric antigen receptor (CAR)-NK technology. In this review, we analyzed current evidence on NK function in NSCLC, focusing on their possible influence in response to ICI treatment and resistance development, addressing their prognostic and predictive roles and the rationale for exploiting NKs as a tool to overcome resistance in NSCLC, and envisaging a way to repolarize decidual NK (dNK)-like cells in lung cancer.
Collapse
Affiliation(s)
- Maria Gemelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
| | - Giuseppe Pelosi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica Science and Technology Park, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Massimo Barberis
- Department of Pathology, European Institute of Oncology (IEO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Riccardo Ricotta
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- *Correspondence: Adriana Albini, ; Riccardo Ricotta,
| | - Adriana Albini
- European Institute of Oncology (IEO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- *Correspondence: Adriana Albini, ; Riccardo Ricotta,
| |
Collapse
|
15
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
16
|
Yan S, Dong J, Qian C, Chen S, Xu Q, Lei H, Wang X. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Function in Early Pregnancy. Front Immunol 2022; 13:771732. [PMID: 35359988 PMCID: PMC8960317 DOI: 10.3389/fimmu.2022.771732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cellular metabolism plays an important role in regulating both human and murine NK cell functions. However, it remains unclear whether cellular metabolic process impacts on the function of decidual NK cells (dNK), essential tissue-resident immune cells maintaining the homeostasis of maternal-fetal interface. Remarkably, we found that glycolysis blockage enhances dNK VEGF-A production but restrains its proliferation. Furthermore, levels of IFN-γ and TNF-α secreted by dNK get decreased when glycolysis or oxidative phosphorylation (OXPHOS) is inhibited. Additionally, glycolysis, OXPHOS, and fatty acid oxidation disruption has little effects on the secretion and the CD107a-dependent degranulation of dNK. Mechanistically, we discovered that the mammalian target of rapamycin complex 1 (mTORC1) signaling inhibition leads to decreased glycolysis and OXPHOS in dNK. These limited metabolic processes are associated with attenuated dNK functions, which include restricted production of cytokines including IFN-γ and TNF-α, diminished CD107a-dependent degranulation, and restrained dNK proliferation. Finally, we reported that the protein levels of several glycolysis-associated enzymes are altered and the mTORC1 activity is significantly lower in the decidua of women with recurrent pregnancy loss (RPL) compared with normal pregnancy, which might give new insights about the pathogenesis of RPL. Collectively, our data demonstrate that glucose metabolism and mTORC1 signaling support dNK functions in early pregnancy.
Collapse
Affiliation(s)
- Song Yan
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jie Dong
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Chenxi Qian
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Shuqiang Chen
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Qian Xu
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hui Lei
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaohong Wang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
17
|
Peeney D, Liu Y, Lazaroff C, Gurung S, Stetler-Stevenson WG. OUP accepted manuscript. Carcinogenesis 2022; 43:405-418. [PMID: 35436325 PMCID: PMC9167030 DOI: 10.1093/carcin/bgac037] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as endogenous inhibitors of matrixin and adamalysin endopeptidase activity. The matrixins and adamalysins are the major mediators of extracellular matrix (ECM) turnover, thus making TIMPs important regulators of ECM structure and composition. Despite their high sequence identity and relative redundancy in inhibitory profiles, each TIMP possesses unique biological characteristics that are independent of their regulation of metalloproteinase activity. As our understanding of TIMP biology has evolved, distinct roles have been assigned to individual TIMPs in cancer progression. In this respect, data regarding TIMP2's role in cancer have borne conflicting reports of both tumor suppressor and, to a lesser extent, tumor promoter functions. TIMP2 is the most abundant TIMP family member, prevalent in normal and diseased mammalian tissues as a constitutively expressed protein. Despite its apparent stable expression, recent work highlights how TIMP2 is a cell stress-induced gene product and that its biological activity can be dictated by extracellular posttranslational modifications. Hence an understanding of TIMP2 molecular targets, and how its biological functions evolve in the progressing tumor microenvironment may reveal new therapeutic opportunities. In this review, we discuss the continually evolving functions of TIMP proteins, future perspectives in TIMP research, and the therapeutic utility of this family, with a particular focus on TIMP2.
Collapse
Affiliation(s)
- David Peeney
- To whom correspondence should be addressed. Tel: 240-858-3233;
| | - Yueqin Liu
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Carolyn Lazaroff
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Sadeechya Gurung
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
18
|
TIMP1 and TIMP2 Downregulate TGFβ Induced Decidual-like Phenotype in Natural Killer Cells. Cancers (Basel) 2021; 13:cancers13194955. [PMID: 34638439 PMCID: PMC8507839 DOI: 10.3390/cancers13194955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer patients are characterized by NK cells with altered surface markers, such as CD56 brightness, CD9, CD49a (pro-angiogenic) and PD-1, and TIM-3 (exhaustion), that favor immune escape. Transforming growth factor-beta (TGFβ) is a major tumor-derived cytokine that favors cancer growth and supports pro-angiogenic activities in NK cells by inducing pro-angiogenic molecules. TIMP-1 and TIMP-2 play a crucial role in extracellular matrix (ECM) regulation, wound healing, pregnancy and cancer, and there is increasing evidence that they are immune-modulatory. We found that recombinant TIMP-1 and -2 can partially contrast the induction of pro-tumor/pro-angiogenic decidual-like polarization of NK cells by TGFβ. Abstract Natural Killer (NK) cells have been found to be anergic, exhausted and pro-angiogenic in cancers. NK cell from healthy donors, exposed to TGFβ, acquire the CD56brightCD9+CD49a+ decidual-like-phenotype, together with decreased levels of NKG2D activation marker, increased levels of TIM-3 exhaustion marker, similar to cancer-associated NK cells. Tissue inhibitors of metalloproteases (TIMPs) exert dual roles in cancer. The role of TIMPs in modulating immune cells is a very novel concept, and the present is the first report studying their ability to contrast TGFβ action on NK cells. Here, we investigated the effects of TIMP1 and TIMP2 recombinant proteins in hindering decidual-like markers in NK cells, generated by polarizing cytolytic NK cells with TGFβ. The effects of TIMP1 or TIMP2 on NK cell surface antigens were determined by multicolor flow cytometry. We found that TIMP1 and TIMP2 were effective in interfering with TGFβ induced NK cell polarization towards a decidual-like-phenotype. TIMP1 and TIMP2 counteracted the effect of TGFβ in increasing the percentage of CD56bright, CD16−, CD9+ and CD49a+, and restoring normal levels for TIMP 1 and 2 also inhibited decrease levels of the activation marker NKG2D induced by TGFβ and decreased the TGFβ upregulated exhaustion marker TIM-3. NK cell degranulation capabilities against K562 cells were also decreased by TGFβ and not by TIMP1 or TIMP2. TIMP1 treatment could partially restore degranulation marker CD107a expression. Treatment with recombinant TIMP-1 or TIMP-2 showed a trend, although not statistically significant, to decrease CD49a+ and TIM-3+ expression and increase NKG2D in peripheral blood NK cells exposed to conditioned media from colon cancer cell lines. Our results suggest a potential role of TIMPs in controlling the tumor-associated cytokine TGFβ-induced NK cell polarization. Given the heterogeneity of released factors within the TME, it is clear that TGFβ stimulation represents a model to prove TIMP’s new properties, but it cannot be envisaged as a soloist NK cell polarizing agent. Therefore, further studies from the scientific community will help defining TIMPs immunomodulatory activities of NK cells in cancer, and their possible future diagnostic–therapeutic roles.
Collapse
|
19
|
Gonzalez VD, Huang YW, Delgado-Gonzalez A, Chen SY, Donoso K, Sachs K, Gentles AJ, Allard GM, Kolahi KS, Howitt BE, Porpiglia E, Fantl WJ. High-grade serous ovarian tumor cells modulate NK cell function to create an immune-tolerant microenvironment. Cell Rep 2021; 36:109632. [PMID: 34469729 PMCID: PMC8546503 DOI: 10.1016/j.celrep.2021.109632] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 05/12/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
Tubo-ovarian high-grade serous carcinoma (HGSC) is unresponsive to immune checkpoint blockade despite significant frequencies of exhausted T cells. Here we apply mass cytometry and uncover decidual-like natural killer (dl-NK) cell subpopulations (CD56+CD9+CXCR3+KIR+CD3-CD16-) in newly diagnosed HGSC samples that correlate with both tumor and transitioning epithelial-mesenchymal cell abundance. We show different combinatorial expression patterns of ligands for activating and inhibitory NK receptors within three HGSC tumor compartments: epithelial (E), transitioning epithelial-mesenchymal (EV), and mesenchymal (vimentin expressing [V]), with a more inhibitory ligand phenotype in V cells. In cocultures, NK-92 natural killer cells acquire CD9 from HGSC tumor cells by trogocytosis, resulting in reduced anti-tumor cytokine production and cytotoxicity. Cytotoxicity in these cocultures is restored with a CD9-blocking antibody or CD9 CRISPR knockout, thereby identifying mechanisms of immune suppression in HGSC. CD9 is widely expressed in HGSC tumors and so represents an important new therapeutic target with immediate relevance for NK immunotherapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Carboplatin/pharmacology
- Cell Line, Tumor
- Coculture Techniques
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Female
- Humans
- Immune Tolerance/drug effects
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/drug therapy
- Neoplasms, Cystic, Mucinous, and Serous/immunology
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phenotype
- Receptors, Natural Killer Cell/metabolism
- Tetraspanin 29/metabolism
- Trogocytosis
- Tumor Escape/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Veronica D Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying-Wen Huang
- Department of Urology Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Shih-Yu Chen
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kenyi Donoso
- Department of Urology Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karen Sachs
- Next Generation Analytics, Palo Alto, CA 94301, USA
| | - Andrew J Gentles
- Department of Medicine (Quantitative Sciences Unit, Biomedical Informatics) Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grace M Allard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin S Kolahi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brooke E Howitt
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wendy J Fantl
- Department of Urology Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Etxebeste-Mitxeltorena M, Del Rincón-Loza I, Martín-Antonio B. Tumor Secretome to Adoptive Cellular Immunotherapy: Reduce Me Before I Make You My Partner. Front Immunol 2021; 12:717850. [PMID: 34447383 PMCID: PMC8382692 DOI: 10.3389/fimmu.2021.717850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Adoptive cellular immunotherapy using chimeric antigen receptor (CAR)-modified T cells and Natural Killer (NK) cells are common immune cell sources administered to treat cancer patients. In detail, whereas CAR-T cells induce outstanding responses in a subset of hematological malignancies, responses are much more deficient in solid tumors. Moreover, NK cells have not shown remarkable results up to date. In general, immune cells present high plasticity to change their activity and phenotype depending on the stimuli they receive from molecules secreted in the tumor microenvironment (TME). Consequently, immune cells will also secrete molecules that will shape the activities of other neighboring immune and tumor cells. Specifically, NK cells can polarize to activities as diverse as angiogenic ones instead of their killer activity. In addition, tumor cell phagocytosis by macrophages, which is required to remove dying tumor cells after the attack of NK cells or CAR-T cells, can be avoided in the TME. In addition, chemotherapy or radiotherapy treatments can induce senescence in tumor cells modifying their secretome to a known as “senescence-associated secretory phenotype” (SASP) that will also impact the immune response. Whereas the SASP initially attracts immune cells to eliminate senescent tumor cells, at high numbers of senescent cells, the SASP becomes detrimental, impacting negatively in the immune response. Last, CAR-T cells are an attractive option to overcome these events. Here, we review how molecules secreted in the TME by either tumor cells or even by immune cells impact the anti-tumor activity of surrounding immune cells.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Inés Del Rincón-Loza
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, UAM, Madrid, Spain
| |
Collapse
|
21
|
Angiogenic Properties of NK Cells in Cancer and Other Angiogenesis-Dependent Diseases. Cells 2021; 10:cells10071621. [PMID: 34209508 PMCID: PMC8303392 DOI: 10.3390/cells10071621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of many serious diseases, including cancer, is closely related to disturbances in the angiogenesis process. Angiogenesis is essential for the progression of tumor growth and metastasis. The tumor microenvironment (TME) has immunosuppressive properties, which contribute to tumor expansion and angiogenesis. Similarly, the uterine microenvironment (UME) exerts a tolerogenic (immunosuppressive) and proangiogenic effect on its cells, promoting implantation and development of the embryo and placenta. In the TME and UME natural killer (NK) cells, which otherwise are capable of killing target cells autonomously, enter a state of reduced cytotoxicity or anergy. Both TME and UME are rich with factors (e.g., TGF-β, glycodelin, hypoxia), which support a conversion of NK cells to the low/non-cytotoxic, proangiogenic CD56brightCD16low phenotype. It is plausible that the phenomenon of acquiring proangiogenic and low cytotoxic features by NK cells is not only limited to cancer but is a common feature of different angiogenesis-dependent diseases (ADDs). In this review, we will discuss the role of NK cells in angiogenesis disturbances associated with cancer and other selected ADDs. Expanding the knowledge of the mechanisms responsible for angiogenesis and its disorders contributes to a better understanding of ADDs and may have therapeutic implications.
Collapse
|