1
|
Zhao F, Zhang X, Tang Y, Yang H, Pan H, Li B, An R, Geyemuri W, Yang C, Wan F, Wu J. Engineered PD-L1 co-expression in PD-1 knockout and MAGE-C2-targeting TCR-T cells augments the cytotoxic efficacy toward target cancer cells. Sci Rep 2025; 15:11894. [PMID: 40195438 PMCID: PMC11976951 DOI: 10.1038/s41598-025-92209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Expression of the PD-1 protein by tumor cells is relatively common and has been shown to exert proliferation-inhibitory effects across various tumor types, including T-cell malignancies, non-small cell lung cancer, and colon cancer. However, harnessing this tumor suppressor pathway is challenging because PD-1 activation by PD-L1 also suppresses normal T-cell function. We hypothesized that cancer antigen-specific TCR-T cells engineered to express PD-L1 could selectively activate the PD-1 pathway in tumor cells while simultaneously preventing self-inhibition by knocking out intrinsic PD-1 expression in TCR-T cells. To test this hypothesis, we co-expressed a MAGE-C2-specific recombinant TCR and the PD-L1-encoding CD274 gene in normal human T cells in which the PDCD1 gene was knocked out. These engineered TCR-T cells targeted MAGE-C2-expressing malignant cells, activating PD-1 signaling to suppress tumor proliferation while maintaining suppressed PD-1 signaling in the TCR-T cells themselves. To evaluate the tumor-suppressive potential of this approach, we compared the efficacy of PDL1-MC2-TCR-TPD1⁻ cells against subtypes lacking PD-L1 expression, PD-1 knockout, or both. Our findings demonstrated that this TCR-T model exhibited significantly enhanced cytotoxic efficacy compared to other subtypes in vitro, ex vivo, and in vivo. These results suggest that the targeted activation of intrinsic PD-1 signaling in T-cell malignancies inhibits tumor proliferation and, when combined with PD-1 inhibition in TCR-T cells, synergistically enhances their cancer-suppressing efficacy. This study provides a foundation for novel cancer treatment strategies.
Collapse
MESH Headings
- Humans
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/immunology
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Mice
- Neoplasm Proteins/immunology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Proliferation
- Gene Knockout Techniques
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/pathology
- Neoplasms/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Fangxin Zhao
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xuan Zhang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Ying Tang
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Hongxin Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Haiting Pan
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Beibei Li
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Riwen An
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Wu Geyemuri
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Chao Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Fang Wan
- School of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jianqiang Wu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China.
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
2
|
Habibi S, Bahramian S, Jaliseh SZ, Mehri S, Ababzadeh S, Kavianpour M. Novel Strategies in Breast Cancer Management: from Treatment to Long-term Remission. Crit Rev Oncol Hematol 2025:104715. [PMID: 40187709 DOI: 10.1016/j.critrevonc.2025.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related mortality worldwide. Although improvements in early detection and therapy have been made, metastatic breast cancer (mBC) continues to be an incurable disease. Although existing treatments can prolong survival and enhance quality of life, they do not provide a definitive cure. Targeted therapies have significantly improved outcomes, particularly for subtypes such as human epidermal growth factor receptor 2 (HER2)-positive and hormone receptor (HR)-positive (HR+) BC. Key innovations include antibodydrug conjugates (ADCs) and next-generation endocrine therapies. ADCs combine monoclonal antibodies with cytotoxic agents, allowing targeted delivery to tumor cells while minimizing systemic toxicity. Immunotherapy is emerging as a promising approach for aggressive subtypes, such as triple-negative breast cancer (TNBC). Strategies under investigation include chimeric antigen receptor T-cell (CAR-T) therapy, tumor-infiltrating lymphocyte (TIL) therapies, and natural killer (NK) cell treatments, all aimed at enhancing the ability of the immune system to target and eliminate resistant tumor cells. Tissue engineering, particularly hydrogel-based delivery systems, offers the potential for localized treatment. These systems enable the controlled release of therapeutic agents or immune cells directly to the tumor site, supporting tissue regeneration and enhancing immune surveillance to reduce recurrence. Despite these advancements, challenges remain, including treatment resistance, the immunosuppressive tumor microenvironment, and high costs. Overcoming these barriers requires further innovation in drug delivery systems and a deeper understanding of tumor biology.
Collapse
Affiliation(s)
- Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabbou Bahramian
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Saeedeh Zare Jaliseh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Guilan, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
3
|
Somes LK, Lei JT, Yi X, Chamorro DF, Shafer P, Gad AZ, Dobrolecki LE, Madaras E, Ahmed N, Lewis MT, Zhang B, Hoyos V. ZP4: A novel target for CAR-T cell therapy in triple negative breast cancer. Mol Ther 2025; 33:1621-1641. [PMID: 39980195 PMCID: PMC11997509 DOI: 10.1016/j.ymthe.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Triple-negative breast cancer (TNBC) remains one of the most challenging subtypes of breast cancer to treat due to a lack of effective targeted therapies. Chimeric antigen receptor (CAR)-T cells hold promise, but their efficacy in solid tumors is often limited by on-target/off-tumor toxicities. Through comprehensive bioinformatic analysis of public RNA and proteomic data, we identified zona pellucida glycoprotein 4 (ZP4) as a novel target for TNBC. ZP4 RNA and protein were detected in a subset of TNBC patient samples and patient-derived xenograft (PDX) models, with expression otherwise restricted to oocytes. We generated 89 ZP4-specific novel monoclonal antibodies and used the single-chain variable fragment (scFv) antigen binding domains from the top three candidates to engineer CAR constructs. ZP4 CAR-T cells demonstrated efficacy against ZP4-expressing TNBC cells and PDX models. Additionally, we found that variations in the scFv antigen binding domain significantly influence CAR-T cell function.
Collapse
Affiliation(s)
- Lauren K Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diego F Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Z Gad
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Emily Madaras
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Leleux J, Rosenberg J, Sonzogni O, Walker RL, Venkitaraman A, Garrison SM, Jin N, Gregory PD, Jarjour J. RESET: A TCR-coupled antigen receptor with superior targeting sensitivity and reversible drug-regulated anti-tumor activity. Mol Ther 2025; 33:1608-1620. [PMID: 39980194 PMCID: PMC11997482 DOI: 10.1016/j.ymthe.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cells are effective cancer therapies, particularly in indications with high, stable, and tumor-specific antigen expression. Other settings may require improved targeting sensitivity, controllable targeting selectivity, and/or additional potency enhancements to achieve robust efficacy. Here, we describe a novel receptor architecture called RESET (rapamycin-enabled, switchable endogenous T cell receptor) that combines (1) cell surface antigen targeting, (2) small-molecule regulation, and (3) the signaling proficiency and inherent sensitivity of native T cell receptors. RESET-T cells outperformed both constitutive and drug-regulated CAR-T cells and show hallmarks of TCR activation that suggest improved fidelity to native T cell responses. Pharmacological control then increases safety through toggling T cell activation between active and resting states and may mitigate T cell exhaustion caused by continuous antigen exposure. This convergence of drug-regulated targeting and natural immune receptor signal transduction may better replicate the kinetics and physiology of a classical T cell response and potentiate more successful and safer immunotherapies.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Animals
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/drug effects
- Mice
- Signal Transduction
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nan Jin
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | |
Collapse
|
5
|
Martínez-Jiménez F, Chowell D. Genetic immune escape in cancer: timing and implications for treatment. Trends Cancer 2025; 11:286-294. [PMID: 39632211 PMCID: PMC11981860 DOI: 10.1016/j.trecan.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Genetic immune escape (GIE) alterations pose a significant challenge in cancer by enabling tumors to evade immune detection. These alterations, which can vary significantly across cancer types, may often arise early in clonal evolution and contribute to malignant transformation. As tumors evolve, GIE alterations are positively selected, allowing immune-resistant clones to proliferate. In addition to genetic changes, the tumor microenvironment (TME) and non-genetic factors such as inflammation, smoking, and environmental exposures play crucial roles in promoting immune evasion. Understanding the timing and mechanisms of GIE, alongside microenvironmental influences, is crucial for improving early detection and developing more effective therapeutic interventions. This review highlights the implications of GIE in cancer development and immunotherapy resistance, and emphasizes the need for integrative approaches.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Systems Oncology Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Hartwig Medical Foundation, Amsterdam, The Netherlands.
| | - Diego Chowell
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Lowery FJ, Goff SL, Gasmi B, Parkhurst MR, Ratnam NM, Halas HK, Shelton TE, Langhan MM, Bhasin A, Dinerman AJ, Dulemba V, Goldlust IS, Gustafson AM, Hakim AA, Hitscherich KJ, Kenney LM, Levy L, Rault-Wang JG, Bera A, Ray S, Seavey CD, Hoang CD, Hernandez JM, Gartner JJ, Sindiri S, Prickett TD, McIntyre LS, Krishna S, Robbins PF, Klemen ND, Kwong MLM, Yang JC, Rosenberg SA. Neoantigen-specific tumor-infiltrating lymphocytes in gastrointestinal cancers: a phase 2 trial. Nat Med 2025:10.1038/s41591-025-03627-5. [PMID: 40169866 DOI: 10.1038/s41591-025-03627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
Adoptive transfer of unselected autologous tumor-infiltrating lymphocytes (TILs) has mediated meaningful clinical responses in patients with metastatic melanoma but not in cancers of gastrointestinal epithelial origin. In an evolving single-arm phase 2 trial design, TILs were derived from and administered to 91 patients with treatment-refractory mismatch repair proficient metastatic gastrointestinal cancers in a schema with lymphodepleting chemotherapy and high-dose interleukin-2 (three cohorts of an ongoing trial). The primary endpoint of this study was the objective response rate as measured using Response Evaluation Criteria in Solid Tumors 1.0; safety was a descriptive secondary endpoint. In the pilot phase, no clinical responses were observed in 18 patients to bulk, unselected TILs; however, when TILs were screened and selected for neoantigen recognition (SEL-TIL), three responses were seen in 39 patients (7.7% (95% confidence interval (CI): 2.7-20.3)). Based on the high levels of programmed cell death protein 1 in the infused TILs, pembrolizumab was added to the regimen (SEL-TIL + P), and eight objective responses were seen in 34 patients (23.5% (95% CI: 12.4-40.0)). All patients experienced transient severe hematologic toxicities from chemotherapy. Seven (10%) patients required critical care support. Exploratory analyses for laboratory and clinical correlates of response were performed for the SEL-TIL and SEL-TIL + P treatment arms. Response was associated with recognition of an increased number of targeted neoantigens and an increased number of administered CD4+ neoantigen-reactive TILs. The current strategy (SEL-TIL + P) exceeded the parameters of the trial design for patients with colorectal cancer, and an expansion phase is accruing. These results could potentially provide a cell-based treatment in a population not traditionally expected to respond to immunotherapy. ClinicalTrials.gov identifier: NCT01174121 .
Collapse
Affiliation(s)
- Frank J Lowery
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Stephanie L Goff
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA.
| | - Billel Gasmi
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Maria R Parkhurst
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Nivedita M Ratnam
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Hyunmi K Halas
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Thomas E Shelton
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Michelle M Langhan
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Aarushi Bhasin
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Aaron J Dinerman
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Victoria Dulemba
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Ian S Goldlust
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Alexandra M Gustafson
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Abraham A Hakim
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Kyle J Hitscherich
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Lisa M Kenney
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Lior Levy
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Juliette G Rault-Wang
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Alakesh Bera
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Satyajit Ray
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Courtney D Seavey
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Chuong D Hoang
- National Cancer Institute, Center for Cancer Research, Thoracic Surgery Branch, Bethesda, MD, USA
| | - Jonathan M Hernandez
- National Cancer Institute, Center for Cancer Research, Surgical Oncology Program, Bethesda, MD, USA
| | - Jared J Gartner
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Sivasish Sindiri
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Todd D Prickett
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Lori S McIntyre
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Sri Krishna
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Paul F Robbins
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Nicholas D Klemen
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Mei Li M Kwong
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - James C Yang
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA
| | - Steven A Rosenberg
- National Cancer Institute, Center for Cancer Research, Surgery Branch, Bethesda, MD, USA.
| |
Collapse
|
7
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
8
|
Lennerz V, Doppler C, Fatho M, Dröge A, Schaper S, Gennermann K, Genzel N, Plassmann S, Weismann D, Lukowski SW, Bents D, Beushausen C, Kriese K, Herbst H, Seitz V, Hammer R, Adam PJ, Eggeling S, Wölfel C, Wölfel T, Hennig S. T-cell receptors identified by a personalized antigen-agnostic screening approach target shared neoantigen KRAS Q61H. Front Immunol 2025; 16:1509855. [PMID: 40165973 PMCID: PMC11955635 DOI: 10.3389/fimmu.2025.1509855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Adoptive cell therapy (ACT) with TCR-engineered T-cells represents a promising alternative to TIL- or CAR-T therapies for patients with advanced solid cancers. Currently, selection of therapeutic TCRs critically depends on knowing the target antigens, a condition excluding most patients from treatment. Direct antigen-agnostic identification of tumor-specific T-cell clonotypes and TCR-T manufacturing using their TCRs can advance ACT for patients with aggressive solid cancers. We present a method to identify tumor-specific clonotypes from surgical specimens by comparing TCRβ-chain repertoires of TILs and adjacent tissue-resident lymphocytes. In six out of seven NSCLC-patients analyzed, our selection of tumor-specific clonotypes based on TIL-abundance and high tumor-to-nontumor frequency ratios was confirmed by gene expression signatures determined by scRNA-Seq. In three patients, we demonstrated that predicted tumor-specific clonotypes reacted against autologous tumors. For one of these patients, we engineered TCR-T cells with four candidate tumor-specific TCRs that showed reactivity against the patient's tumor and HLA-matched NSCLC cell lines. The TCR-T cells were then used to screen for candidate neoantigens and aberrantly expressed antigens. Three TCRs recognized recurrent driver-mutation KRAS Q61H-peptide ILDTAGHEEY presented by HLA-A*01:01. The TCRs were also dominant in a tumor relapse, one was found in cell free DNA. The finding of homologous TCRs in independent KRAS Q61H-positive cancers suggests a therapeutic opportunity for HLA-matched patients with KRAS Q61H-expressing tumors.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/immunology
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lung Neoplasms/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Immunotherapy, Adoptive/methods
- Precision Medicine/methods
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Female
- Male
- Cell Line, Tumor
- Aged
- Mutation
Collapse
Affiliation(s)
- Volker Lennerz
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
- HSDiagnomics GmbH, Berlin, Germany
- TheryCell GmbH, Berlin, Germany
| | - Christoph Doppler
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martina Fatho
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | - David Weismann
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Samuel W. Lukowski
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | | | | | - Karen Kriese
- Vivantes Pathology, Vivantes Clinic Neukölln, Berlin, Germany
| | - Hermann Herbst
- Vivantes Pathology, Vivantes Clinic Neukölln, Berlin, Germany
| | | | - Rudolf Hammer
- HSDiagnomics GmbH, Berlin, Germany
- TheryCell GmbH, Berlin, Germany
| | - Paul J. Adam
- Boehringer Ingelheim RCV, GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Stephan Eggeling
- Vivantes Clinic Neukölln, Vivantes Thoracic Surgery, Berlin, Germany
| | - Catherine Wölfel
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Wölfel
- Internal Medicine III, University Medical Center (UMC) of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Steffen Hennig
- HSDiagnomics GmbH, Berlin, Germany
- TheryCell GmbH, Berlin, Germany
| |
Collapse
|
9
|
Felsheim BM, Fernandez-Martinez A, Fan C, Pfefferle AD, Hayward MC, Hoadley KA, Rashid NU, Tolaney SM, Somlo G, Carey LA, Sikov WM, Perou CM. Prognostic and molecular multi-platform analysis of CALGB 40603 (Alliance) and public triple-negative breast cancer datasets. NPJ Breast Cancer 2025; 11:24. [PMID: 40057511 PMCID: PMC11890565 DOI: 10.1038/s41523-025-00740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous disease that remains challenging to target with traditional therapies and to predict risk. We provide a comprehensive characterization of 238 stage II-III TNBC tumors with paired RNA and DNA sequencing data from the CALGB 40603 (Alliance) clinical trial, along with 448 stage II-III TNBC tumors with paired RNA and DNA data from three additional datasets. We identify DNA mutations associated with RNA-based subtypes, specific TP53 missense mutations compatible with potential neoantigen activity, and a consistently highly altered copy number landscape. We train exploratory multi-modal elastic net models of TNBC patient overall survival to determine the added impact of DNA-based features to RNA and clinical features. We find that mutations and copy number show little to no prognostic value, while RNA expression features, including signatures of T cell and B cell activity, along with stage, improve stratification of TNBC survival risk.
Collapse
Affiliation(s)
- Brooke M Felsheim
- Bioinformatics and Computational Biology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam D Pfefferle
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Michele C Hayward
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Naim U Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | | | - George Somlo
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - William M Sikov
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Ruan L, Wang L. Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions. Front Oncol 2025; 15:1530541. [PMID: 40094019 PMCID: PMC11906336 DOI: 10.3389/fonc.2025.1530541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors employ a range of strategies to evade detection and eradication by the host's immune system. These include downregulating antigen expression, altering antigen presentation processes, and inhibiting immune checkpoint pathways. etc. Adoptive Cell Therapy (ACT) represents a strategy that boosts anti-tumor immunity. This is achieved by amplifying or genetically engineering immune cells, which are either sourced from the patient or a donor, in a laboratory setting. Subsequently, these cells are reintroduced into the patient to bolster their immune response against cancer. ACT has successfully restored anti-tumor immune responses by amplifying the activity of T cells from patients or donors. This review focuses on the mechanisms underlying tumor escape, including alterations in tumor cell antigens, the immunosuppressive tumor microenvironment (TME), and modulation of immune checkpoint pathways. It further explores how ACT can avddress these factors to enhance therapeutic efficacy. Additionally, the review discusses the application of gene-editing technologies (such as CRISPR) in ACT, highlighting their potential to strengthen the anti-tumor capabilities of T cells. Looking forward, the personalized design of ACT, combined with immune checkpoint inhibitors and targeted therapies, is expected to significantly improve treatment outcomes, positioning this approach as a key strategy in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Liqin Ruan
- Department of Hepatobiliary Surgery, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| | - Lu Wang
- Department of Oncology, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
11
|
Parums DV. A Review of CAR T Cells and Adoptive T-Cell Therapies in Lymphoid and Solid Organ Malignancies. Med Sci Monit 2025; 31:e948125. [PMID: 39893510 PMCID: PMC11800685 DOI: 10.12659/msm.948125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cells are genetically engineered T lymphocytes that express a synthetic receptor that recognizes a tumor cell surface antigen, which causes the T lymphocyte to kill the tumor cell. As of December 2024, the US Food and Drug Administration (FDA) approved six CAR T-cell therapies, with ten CAR T-cell therapies commercially available globally, which target the CD19 and B-cell maturation antigen (BCMA) molecules and with approved indications that include B-cell acute lymphoblastic leukemia (ALL), large B-cell lymphoma (LBCL), follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia (CLL), and multiple myeloma. Pharmaceutical and economic forecasts have shown that the global CAR T-cell therapy market was worth USD 4.6 billion in 2024, with a projected USD 25 billion by 2035. However, there are several challenges in treating hematologic malignancies with CAR T-cell therapy, which include reduced treatment efficacy and durability in some patients, acute and long-term adverse effects, lack of effective salvage treatments, limited access to CAR T-cell therapies due to cost and availability, and the rare association with developing myeloid malignancies. A tumor-infiltrating lymphocyte (TIL) therapy, lifileucel, is FDA-approved for advanced melanoma. The T-cell receptor (TCR) therapy, afamitresgene autoleucel, is FDA-approved for advanced synovial sarcoma. The results from ongoing studies and clinical trials are awaited in solid tumors (melanoma, sarcomas, and carcinomas). This article reviews recent developments and ongoing challenges in adoptive T-cell therapies, including CAR T-cell therapies, in lymphoid and solid organ malignancies.
Collapse
|
12
|
Xu X, Guo S, Gu H, Cha Z, Shi X, Yin X, Wang H, Gao S, Li B, Zhu L, Jing W, Zheng K, Shao Z, Cheng P, Zheng C, Shih YP, Li Y, Qian B, Gao D, Tran E, Jin G. Identification and validation of a T cell receptor targeting KRAS G12V in HLA-A*11:01 pancreatic cancer patients. JCI Insight 2025; 10:e181873. [PMID: 39846249 PMCID: PMC11790028 DOI: 10.1172/jci.insight.181873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
T cells targeting a KRAS mutation can induce durable tumor regression in some patients with metastatic epithelial cancer. It is unknown whether T cells targeting mutant KRAS that are capable of killing tumor cells can be identified from peripheral blood of patients with pancreatic cancer. We developed an in vitro stimulation approach and identified HLA-A*11:01-restricted KRAS G12V-reactive CD8+ T cells and HLA-DRB1*15:01-restricted KRAS G12V-reactive CD4+ T cells from peripheral blood of 2 out of 6 HLA-A*11:01-positive patients with pancreatic cancer whose tumors expressed KRAS G12V. The HLA-A*11:01-restricted KRAS G12V-reactive T cell receptor (TCR) was isolated and validated to specifically recognize the KRAS G12V8-16 neoepitope. While T cells engineered to express this TCR specifically recognized all 5 tested human HLA-A*11:01+ and KRAS G12V+ pancreatic cancer organoids, the recognition was often modest, and tumor cell killing was observed in only 2 out of 5 organoids. IFN-γ priming of the organoids enhanced the recognition and killing by the TCR-engineered T cells. The TCR-engineered T cells could significantly slow the growth of an established organoid-derived xenograft in immunodeficient mice. Our data suggest that this TCR has potential for use in TCR-gene therapy, but additional strategies that enhance tumor recognition by the TCR-engineered T cells likely will be required to increase clinical activity.
Collapse
Affiliation(s)
- Xiongfei Xu
- Department of Hepatobiliary Pancreatic Surgery
- Shanghai Institute of Pancreatic Diseases, and
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery
- Shanghai Institute of Pancreatic Diseases, and
| | - Haihui Gu
- Department of Transfusion Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhanshan Cha
- Department of Transfusion Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery
| | - Xiaoyi Yin
- Department of Hepatobiliary Pancreatic Surgery
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery
| | - Bo Li
- Department of Hepatobiliary Pancreatic Surgery
| | - Lingyu Zhu
- Department of Hepatobiliary Pancreatic Surgery
| | - Wei Jing
- Department of Hepatobiliary Pancreatic Surgery
| | | | - Zhuo Shao
- Department of Hepatobiliary Pancreatic Surgery
| | - Peng Cheng
- Department of Hepatobiliary Pancreatic Surgery
| | - Chunhong Zheng
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
- International Cancer Institute, Peking University, Beijing, China
| | - Yi-Ping Shih
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Baohua Qian
- Department of Transfusion Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Eric Tran
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery
- Shanghai Institute of Pancreatic Diseases, and
| |
Collapse
|
13
|
Champagne J, Nielsen MM, Feng X, Montenegro Navarro J, Pataskar A, Voogd R, Giebel L, Nagel R, Berenst N, Fumagalli A, Kochavi A, Lovecchio D, Valcanover L, Malka Y, Yang W, Laos M, Li Y, Proost N, van de Ven M, van Tellingen O, Bleijerveld OB, Haanen JBAG, Olweus J, Agami R. Adoptive T cell therapy targeting an inducible and broadly shared product of aberrant mRNA translation. Immunity 2025; 58:247-262.e9. [PMID: 39755122 DOI: 10.1016/j.immuni.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Prolonged exposure to interferon-gamma (IFNγ) and the associated increased expression of the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) create an intracellular shortage of tryptophan in the cancer cells, which stimulates ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments during protein synthesis. Here, we investigated whether such neoepitopes can be useful targets of adoptive T cell therapy. Immunopeptidomic analyses uncovered hundreds of W>F neoepitopes mainly presented by the HLA-A∗24:02 allele. We identified a T cell receptor (TCRTMBIM6W>F.1) possessing high affinity and specificity toward TMBIM6W>F/HLA-A∗24:02, the inducible W>F neoepitope with the broadest expression across cancer cell lines. TCRTMBIM6W>F.1 T cells are activated by tryptophan-depleted cancer cells but not by non-cancer cells. Finally, we provide in vivo proof of concept for clinical application, whereby TCRMART1 T cells promote cancer cell killing by TCRTMBIM6W>F.1 T cells through the generation of W>F neoepitopes. Thus, neoepitopes arising from W>F substitution present shared and highly expressed immunogenic targets with the potential to overcome current limitations in adoptive T cell therapy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- Animals
- Protein Biosynthesis/immunology
- Cell Line, Tumor
- Mice
- HLA-A Antigens/immunology
- HLA-A Antigens/genetics
- HLA-A Antigens/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tryptophan/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Epitopes, T-Lymphocyte/immunology
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Morten M Nielsen
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rhianne Voogd
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lisanne Giebel
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nadine Berenst
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Amos Fumagalli
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Adva Kochavi
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lorenzo Valcanover
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Weiwen Yang
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Yingqian Li
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA), the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics facility, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - John B A G Haanen
- Department of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| | - Reuven Agami
- Division of Oncogenomics, Oncode institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Leko V, Groh E, Levi ST, Copeland AR, White BS, Gasmi B, Li Y, Hill V, Gurusamy D, Levin N, Kim SP, Sindiri S, Gartner JJ, Prickett TD, Parkhust M, Lowery FJ, Goff SL, Rosenberg SA, Robbins P. Utilization of primary tumor samples for cancer neoantigen discovery. J Immunother Cancer 2025; 13:e010993. [PMID: 39800378 PMCID: PMC11748769 DOI: 10.1136/jitc-2024-010993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The use of tumor-infiltrating T lymphocytes (TIL) that recognize cancer neoantigens has led to lasting remissions in metastatic melanoma and certain cases of metastatic epithelial cancer. For the treatment of the latter, selecting cells for therapy typically involves laborious screening of TIL for recognition of autologous tumor-specific mutations, detected through next-generation sequencing of freshly resected metastatic tumors. Our study explored the feasibility of using archived formalin-fixed, paraffin-embedded (FFPE) primary tumor samples for cancer neoantigen discovery, to potentially expedite this process and reduce the need for resections normally required for tumor sequencing. METHOD Whole-exome sequencing was conducted on matched primary and metastatic colorectal cancer samples from 22 patients. The distribution of metastatic tumor mutations that were confirmed as neoantigens through cognate TIL screening was evaluated in the corresponding primary tumors. Mutations unique to primary tumors were screened for recognition by metastasis-derived TIL and circulating T lymphocytes. RESULTS We found that 25 (65.8%) of the 38 validated neoantigens identified in metastatic tumors from 18 patients with colorectal cancer were also present in matched primary tumor samples. This included all 12 neoantigens encoded by putative cancer driver genes, which are generally regarded as superior targets for adoptive cell therapy. The detection rate for other neoantigens, representing mutations without an established role in cancer biology, was 50% (13/26). Gene products encoding neoantigens detected in the primary tumors were not more likely to be clonal or broadly distributed among the analyzed metastatic lesions compared with those undetected in the primary tumors. Additionally, we found that mutations detected only in primary tumor samples did not elicit recognition by metastatic tumor-derived TIL but could elicit specific recognition by the autologous circulating memory T cells. CONCLUSIONS Our findings indicate that primary FFPE tumor-derived screening libraries could be used to discover most neoantigens present in metastatic tumors requiring treatment. Furthermore, this approach can reveal additional neoantigens not present in resected metastatic tumors, prompting further research to understand their clinical relevance as potential therapeutic targets.
Collapse
Affiliation(s)
- Vid Leko
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Eric Groh
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Shoshana T Levi
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Amy R Copeland
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Billel Gasmi
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Yong Li
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Victoria Hill
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Noam Levin
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Sivasish Sindiri
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Maria Parkhust
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Frank J Lowery
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephanie L Goff
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Paul Robbins
- Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Wu B, Luo D, Wang X, Qiao C, Li R, Liu J. The global trends and distribution in tumor-infiltrating lymphocytes over the past 49 years: bibliometric and visualized analysis. Front Immunol 2025; 15:1511866. [PMID: 39835135 PMCID: PMC11743541 DOI: 10.3389/fimmu.2024.1511866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Background The body of research on tumor-infiltrating lymphocytes (TILs) is expanding rapidly; yet, a comprehensive analysis of related publications has been notably absent. Objective This study utilizes bibliometric methodologies to identify emerging research hotspots and to map the distribution of tumor-infiltrating lymphocyte research. Methods Literature from the Web of Science database was analyzed and visualized using VOSviewer, CiteSpace, Scimago Graphica, R-bibliometrix, and R packages. Results Research on tumor-infiltrating lymphocytes began in 1975 and has experienced significant growth, particularly after 2015. Leading contributors include the United States, the National Cancer Institute, the journal Cancer Immunology Immunotherapy, and researcher Steven A. Rosenberg. Other prominent contributors include China, the National Institutes of Health, researcher Roberto Salgado, and the Journal of Immunology. Prominent institutions in the USA and Europe occupy central roles within collaborative networks. Financial support plays a pivotal role in driving research advancements. Keyword clustering analysis reveals four primary knowledge domains: adoptive cell therapy; the prognostic value of TILs; PD-1/PD-L1 and TILs; and prognostic studies of TILs across various cancers. Keyword and reference analyses further indicate that "adoptive cell therapy," "the prognostic value of TILs," and "immune checkpoint inhibitors and TILs" are central themes in current and future research. Combination therapies; tumor neoantigens; gene editing; dominant population selection of TILs therapy; TILs in Tumor microenvironment; emerging predictive biomarkers; TILs in predicting the efficacy of neoadjuvant chemotherapy and immunotherapy; the relationship between TILs and PD-L1; TIL-based patient stratification; tertiary lymphoid structures; and TIL evaluation through digital pathology and artificial intelligence are identified as key areas of interest. Conclusions This analysis highlights the increasing academic focus on tumor-infiltrating lymphocyte research and identifies key recent themes in the field such as prognostic value of TILs, personalized treatments, and combination therapies.
Collapse
Affiliation(s)
- Beibei Wu
- Beijing Traditional Chinese Medicine Office for Cancer Prevention and Control, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Ding Luo
- Beijing Traditional Chinese Medicine Office for Cancer Prevention and Control, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Xuejie Wang
- Beijing Traditional Chinese Medicine Office for Cancer Prevention and Control, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Chen Qiao
- Beijing Traditional Chinese Medicine Office for Cancer Prevention and Control, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Rui Li
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Jian Liu
- Beijing Traditional Chinese Medicine Office for Cancer Prevention and Control, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
- Department of Information, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
16
|
Lin P, Lin Y, Mai Z, Zheng Y, Zheng J, Zhou Z, Zhao X, Cui L. Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies. Theranostics 2025; 15:300-323. [PMID: 39744228 PMCID: PMC11667231 DOI: 10.7150/thno.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
T cell receptor-engineered T (TCR-T) cell therapies are at the forefront of cancer immunotherapy, offering a transformative approach that significantly enhances the ability of T cells to recognize and eliminate cancer cells. This innovative method involves genetically modifying TCRs to increase their affinity for tumor-specific antigens. While these enhancements improve the ability of T cells to recognize and bind to antigens on cancer cells, rigorous assessment of specificity remains crucial to ensure safety and targeted responses. This dual focus on affinity and specificity holds significant promise for the treatment of solid tumors, enabling precise and efficient cancer cell recognition. Despite rapid advancements in TCR engineering and notable progress in TCR screening technologies, as evidenced by the growing number of specific TCRs entering clinical trials, several technical and clinical challenges remain. These challenges primarily pertain to the specificity, affinity, and safety of engineered TCRs. Moreover, the accurate identification and selection of TCRs that are both effective and safe are essential for the success of TCR-T cell therapies in cancer treatment. This review provides a comprehensive examination of the theoretical foundations of TCR therapy, explores strategies for screening specific TCRs and antigens, and highlights the ongoing challenges in this evolving therapeutic landscape.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| |
Collapse
|
17
|
Biernacki MA, Bleakley M. Clinical trials, challenges, and changes in TCR-based therapeutics for hematologic malignancies. Expert Rev Hematol 2025; 18:21-31. [PMID: 39667756 DOI: 10.1080/17474086.2024.2441962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION T cells engineered to express antigen-specific T cell receptors (TCR; TCR-T) are a promising class of immunotherapeutic for patients with hematologic malignancies. Like chimeric antigen receptor-engineered T cells (CAR-T), TCR-T are cell products with defined specificity and composition. Unlike CAR-T, TCR-T can recognize targets arising both from intracellular and cell surface proteins and leverage the sensitivity of natural TCR signaling machinery. A growing number of TCR-T targeting various antigens in different hematologic malignancies are in early-phase clinical trials, and more are in preclinical development. AREAS COVERED This review covers results from early-phase TCR-T clinical trials for hematologic malignancies. Challenges in the field are reviewed, including identifying optimal targets, engaging CD4+ help for CD8+ T cells, and overcoming tumor-induced suppression; recent innovations to overcome these challenges are also highlighted. EXPERT OPINION In the future, TCR-T's promise for hematologic malignancies will be borne out in later-phase clinical trials and approvals for clinical use. Improved antigen discovery methods will help build the toolbox of targets needed for broadly applicable TCR-T. Rationally designed TCR-T modifications including incorporation of accessory receptors and gene editing will enhance TCR-T function. New hybrid receptors combining features of TCR and CAR will enter the clinic.
Collapse
Affiliation(s)
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
19
|
Heater NK, Warrior S, Lu J. Current and future immunotherapy for breast cancer. J Hematol Oncol 2024; 17:131. [PMID: 39722028 DOI: 10.1186/s13045-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Substantial therapeutic advancement has been made in the field of immunotherapy in breast cancer. The immune checkpoint inhibitor pembrolizumab in combination with chemotherapy received FDA approval for both PD-L1 positive metastatic and early-stage triple-negative breast cancer, while ongoing clinical trials seek to expand the current treatment landscape for immune checkpoint inhibitors in hormone receptor positive and HER2 positive breast cancer. Antibody drug conjugates are FDA approved for triple negative and HER2+ disease, and are being studied in combination with immune checkpoint inhibitors. Vaccines and bispecific antibodies are areas of active research. Studies of cellular therapies such as tumor infiltrating lymphocytes, chimeric antigen receptor-T cells and T cell receptor engineered cells are promising and ongoing. This review provides an update of recent major clinical trials of immunotherapy in breast cancer and discusses future directions in the treatment of breast cancer.
Collapse
Affiliation(s)
- Natalie K Heater
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, 60611, USA
| | - Surbhi Warrior
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N St. Clair, Suite 850, Chicago, IL, 60611, USA
| | - Janice Lu
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N St. Clair, Suite 850, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Waaga-Gasser AM, Böldicke T. Genetically Engineered T Cells and Recombinant Antibodies to Target Intracellular Neoantigens: Current Status and Future Directions. Int J Mol Sci 2024; 25:13504. [PMID: 39769267 PMCID: PMC11727813 DOI: 10.3390/ijms252413504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Recombinant antibodies and, more recently, T cell receptor (TCR)-engineered T cell therapies represent two immunological strategies that have come to the forefront of clinical interest for targeting intracellular neoantigens in benign and malignant diseases. T cell-based therapies targeting neoantigens use T cells expressing a recombinant complete TCR (TCR-T cell), a chimeric antigen receptor (CAR) with the variable domains of a neoepitope-reactive TCR as a binding domain (TCR-CAR-T cell) or a TCR-like antibody as a binding domain (TCR-like CAR-T cell). Furthermore, the synthetic T cell receptor and antigen receptor (STAR) and heterodimeric TCR-like CAR (T-CAR) are designed as a double-chain TCRαβ-based receptor with variable regions of immunoglobulin heavy and light chains (VH and VL) fused to TCR-Cα and TCR-Cβ, respectively, resulting in TCR signaling. In contrast to the use of recombinant T cells, anti-neopeptide MHC (pMHC) antibodies and intrabodies neutralizing intracellular neoantigens can be more easily applied to cancer patients. However, different limitations should be considered, such as the loss of neoantigens, the modification of antigen peptide presentation, tumor heterogenicity, and the immunosuppressive activity of the tumor environment. The simultaneous application of immune checkpoint blocking antibodies and of CRISPR/Cas9-based genome editing tools to engineer different recombinant T cells with enhanced therapeutic functions could make T cell therapies more efficient and could pave the way for its routine clinical application.
Collapse
Affiliation(s)
- Ana Maria Waaga-Gasser
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Böldicke
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
21
|
Silva LMSD, Gomes ESDB, Vieira JH, Aguiar MPD, Silva SFMD, Michelin MA. Efficacy of treatment with tumor-infiltrating lymphocytes as adoptive cell therapy: an integrative review. EINSTEIN-SAO PAULO 2024; 22:eRW0935. [PMID: 39699412 DOI: 10.31744/einstein_journal/2024rw0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/06/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE This integrative review article examines the efficacy of adoptive cell therapy using tumor-infiltrating lymphocytes, with a particular focus on the treatment of melanomas and other solid tumors. METHODS The methodology encompasses theme definition, comprehensive database searches, and a critical review of pertinent literature. Of the 1,947 articles initially identified, 15 were meticulously selected based on stringent inclusion and exclusion criteria. RESULTS The findings suggest that tumor-infiltrating lymphocytes-based therapy is particularly effective in treating metastatic melanomas, as noted by its tailored approach and substantial potential. However, the applicability of these findings to other solid tumor types remains limited. CONCLUSION This review indicates that adoptive cell therapy using tumor-infiltrating lymphocytes demonstrates efficacy, especially in the treatment of metastatic melanoma, and shows considerable promise for treating solid tumors.
Collapse
Affiliation(s)
| | | | - Julia Hailer Vieira
- Instituto de Pesquisa em Oncologia, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | | | | | - Marcia Antoniazi Michelin
- Instituto de Pesquisa em Oncologia, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
- Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
22
|
Brudno JN, Maus MV, Hinrichs CS. CAR T Cells and T-Cell Therapies for Cancer: A Translational Science Review. JAMA 2024; 332:1924-1935. [PMID: 39495525 PMCID: PMC11808657 DOI: 10.1001/jama.2024.19462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Importance Chimeric antigen receptor (CAR) T cells are T lymphocytes that are genetically engineered to express a synthetic receptor that recognizes a tumor cell surface antigen and causes the T cell to kill the tumor cell. CAR T treatments improve overall survival for patients with large B-cell lymphoma and progression-free survival for patients with multiple myeloma. Observations Six CAR T-cell products are approved by the US Food and Drug Administration (FDA) for 6 hematologic malignancies: B-cell acute lymphoblastic leukemia, large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia, and multiple myeloma. Compared with standard chemotherapy followed by stem cell transplant, CAR T cells improved 4-year overall survival in patients with large B-cell lymphoma (54.6% vs 46.0%). Patients with pediatric acute lymphoblastic leukemia achieved durable remission after CAR T-cell therapy. At 3-year follow-up, 48% of patients were alive and relapse free. In people with multiple myeloma treated previously with 1 to 4 types of non-CAR T-cell therapy, CAR T-cell therapy prolonged treatment-free remissions compared with standard treatments (in 1 trial, CAR T-cell therapy was associated with progression-free survival of 13.3 months compared with 4.4 months with standard therapy). CAR T-cell therapy is associated with reversible acute toxicities, such as cytokine release syndrome in approximately 40% to 95% of patients, and neurologic disorders in approximately 15% to 65%. New CAR T-cell therapies in development aim to increase efficacy, decrease adverse effects, and treat other types of cancer. No CAR T-cell therapies are FDA approved for solid tumors, but recently, 2 other T lymphocyte-based treatments gained approvals: 1 for melanoma and 1 for synovial cell sarcoma. Additional cellular therapies have attained responses for certain solid tumors, including pediatric neuroblastoma, synovial cell sarcoma, melanoma, and human papillomavirus-associated cancers. A common adverse effect occurring with these T lymphocyte-based therapies is capillary leak syndrome, which is characterized by fluid retention, pulmonary edema, and kidney dysfunction. Conclusions and Relevance CAR T-cell therapy is an FDA-approved therapy that has improved progression-free survival for multiple myeloma, improved overall survival for large B-cell lymphoma, and attained high rates of cancer remission for other hematologic malignancies such as acute lymphoblastic leukemia, follicular lymphoma, and mantle cell lymphoma. Recently approved T lymphocyte-based therapies demonstrated the potential for improved outcomes in solid tumor malignancies.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Chimeric Antigen/therapeutic use
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/mortality
- Hematologic Neoplasms/therapy
Collapse
Affiliation(s)
- Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcela V Maus
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston
| | - Christian S Hinrichs
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick
| |
Collapse
|
23
|
Kishton RJ, Restifo NP. T cells lead the charge against solid tumors. NATURE CANCER 2024; 5:1762-1764. [PMID: 39690223 DOI: 10.1038/s43018-024-00860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Affiliation(s)
- Rigel J Kishton
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
| | - Nicholas P Restifo
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA.
- Medici Therapeutics, Boston, MA, USA.
| |
Collapse
|
24
|
Hu W, Bian Y, Ji H. TIL Therapy in Lung Cancer: Current Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409356. [PMID: 39422665 PMCID: PMC11633538 DOI: 10.1002/advs.202409356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Lung cancer remains the most prevalent malignant tumor worldwide and is the leading cause of cancer-related mortality. Although immune checkpoint blockade has revolutionized the treatment of advanced lung cancer, many patients still do not respond well, often due to the lack of functional T cell infiltration. Adoptive cell therapy (ACT) using expanded immune cells has emerged as an important therapeutic modality. Tumor-infiltrating lymphocytes (TIL) therapy is one form of ACT involving the administration of expanded and activated autologous T cells derived from surgically resected cancer tissues and reinfusion into patients and holds great therapeutic potential for lung cancer. In this review, TIL therapy is introduced and its suitability for lung cancer is discussed. Then its historical and clinical developments are summarized, and the methods developed up-to-date to identify tumor-recognizing TILs and optimize TIL composition. Some perspectives toward future TIL therapy for lung cancer are also provided.
Collapse
Affiliation(s)
- Weilei Hu
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yifei Bian
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongbin Ji
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Multi‐Cell SystemsShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai200120China
| |
Collapse
|
25
|
Olivera I, Etxeberria I, Luri-Rey C, Molero-Glez P, Melero I. Regional and intratumoral adoptive T-cell therapy. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100715. [PMID: 39055165 PMCID: PMC11269935 DOI: 10.1016/j.iotech.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Adoptive T-cell therapies (ACTs) including tumor-infiltrating lymphocytes and engineered T cells (transgenic T-cell receptor and chimeric antigen receptor T cells), have made an important impact in the field of cancer treatment over the past years. Most of these therapies are typically administered systemically in approaches that facilitate the elimination of hematologic malignancies. Therapeutical efficacy against solid tumors, however, with the exception of tumor-infiltrating lymphocytes against melanoma, remains limited due to several barriers preventing lymphocyte access to the tumor bed. Building upon the experience of regional administration in other immunotherapies, the regional administration of adoptive cell therapies is being assessed to overcome this challenge, granting a first round of access of the transferred T cells to the tumor niche and thereby ensuring their activation and expansion. Intralesional and intracavitary routes of delivery have been tested with promising antitumor objective responses in preclinical and clinical studies. Additionally, several strategies are being developed to further improve T-cell activity after reinfusing them back to the patient such as combinations with other immunotherapy agents or direct engineering of the transferred T cells, achieving long-term immune memory. Clinical trials testing different regional adoptive T-cell therapies are ongoing but some issues related to methodology of administration and correct selection of the target antigen to avoid on-target/off-tumor side-effects need to be further evaluated and improved. Herein, we discuss the current preclinical and clinical landscape of intratumoral and locoregional delivery of adoptive T-cell therapies.
Collapse
Affiliation(s)
- I. Olivera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - I. Etxeberria
- Human Oncology and Pathogenesis Program (HOPP), Immuno-Oncology Service, Memorial Sloan Kettering Cancer Center, New York
- Parker Institute for Cancer Immunotherapy, New York, USA
| | - C. Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - P. Molero-Glez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - I. Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona
- Department of Oncology, Clínica Universidad de Navarra, Madrid
- Centro del Cancer de la Universidad de Navarra (CCUN), Pamplona, Spain
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Plaugher DR, Childress AR, Gosser CM, Esoe DP, Naughton KJ, Hao Z, Brainson CF. Therapeutic potential of tumor-infiltrating lymphocytes in non-small cell lung cancer. Cancer Lett 2024; 605:217281. [PMID: 39369769 PMCID: PMC11560632 DOI: 10.1016/j.canlet.2024.217281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited. However, there is growing excitement around harnessing the power of tumor-infiltrating lymphocytes (TILs) through the use of adoptive cell transfer (ACT) therapy. These TILs are naturally occurring, may already recognize tumor-specific antigens, and can have direct anti-cancer effect. In this review, we highlight comparisons of various ACTs, including a brief TIL history, show current advances and successes of TIL therapy in NSCLC, discuss the potential roles for epigenetics in T cell expansion, and highlight challenges and future directions of the field to combat NSCLC in a personalized manner.
Collapse
Affiliation(s)
- Daniel R Plaugher
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Avery R Childress
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Christian M Gosser
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Zhonglin Hao
- Department of Internal Medicine - Medical Oncology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
27
|
Wu D, Yin R, Chen G, Ribeiro-Filho HV, Cheung M, Robbins PF, Mariuzza RA, Pierce BG. Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens. SCIENCE ADVANCES 2024; 10:eadq6150. [PMID: 39576860 PMCID: PMC11584006 DOI: 10.1126/sciadv.adq6150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
T cell receptors (TCRs) that recognize cancer neoantigens are important for anticancer immune responses and immunotherapy. Understanding the structural basis of TCR recognition of neoantigens provides insights into their exquisite specificity and can enable design of optimized TCRs. We determined crystal structures of a human TCR in complex with NRAS Q61K and Q61R neoantigen peptides and HLA-A1 major histocompatibility complex (MHC), revealing the molecular underpinnings for dual recognition and specificity versus wild-type NRAS peptide. We then used multiple versions of AlphaFold to model the corresponding complex structures, given the challenge of immune recognition for such methods. One implementation of AlphaFold2 (TCRmodel2) with additional sampling was able to generate accurate models of the complexes, while AlphaFold3 also showed strong performance, although success was lower for other complexes. This study provides insights into TCR recognition of a shared cancer neoantigen as well as the utility and practical considerations for using AlphaFold to model TCR-peptide-MHC complexes.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Models, Molecular
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/immunology
- Protein Binding
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Crystallography, X-Ray
- Protein Conformation
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
Collapse
Affiliation(s)
- Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - Rui Yin
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Helder V. Ribeiro-Filho
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas 13083-100, Brazil
| | - Melyssa Cheung
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Paul F. Robbins
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roy A. Mariuzza
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brian G. Pierce
- W. M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
28
|
Zhang L, Norberg SM, Karimipour F, Davies JS, Kuznetsov A, Lassoued W, Burnett D, Homan P, Cam M, Sinkoe A, Xue P, Gulley JL, Hinrichs CS. Adoptive transfer of membrane-restricted IL-12-TCR T cells promotes antigen spreading and elimination of antigen-negative tumor variants. J Immunother Cancer 2024; 12:e009868. [PMID: 39557544 PMCID: PMC11574437 DOI: 10.1136/jitc-2024-009868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Adoptive T-cell therapy has demonstrated clinical activity in B-cell malignancies, offering hope for its application to a broad spectrum of cancers. However, a significant portion of patients with solid tumors experience primary or secondary resistance to this treatment modality. Target antigen loss resulting either from non-uniform antigen expression or defects in antigen processing and presentation machinery is one well-characterized resistance mechanism. Constitutively expressed membrane-anchored interleukin-12 (caIL-12) has demonstrated enhanced antitumor activity and low systemic exposure in multiple preclinical adoptive T-cell treatment models with homogeneous tumor antigen expression. In this study, we assess the therapeutic impact of caIL-12 on target antigen-negative variants in syngeneic mouse models. METHODS Target antigen-positive tumors were generated by transducing B16F10 melanoma cells (B16) or Lewis Lung Carcinoma cells (LLC) with a construct expressing the OVA antigen, SIINFEKL, tagged to ubiquitin (B16-U-OVA, LLC-U-OVA), while B16 or LLC tumors served as antigen-negative variants. C57BL/6J mice were subcutaneously injected with heterogeneous tumors composed of 80% B16-U-OVA and 20% B16. Bilateral tumors were established by injecting the left flank with B16-U-OVA or LLC-U-OVA tumors and the right flank injected with B16 or LLC tumors. The tumor-bearing mice then underwent 5.5 Gy total body irradiation, followed by adoptive transfer of OT-I TCR-T cells engineered with or without caIL-12. RESULTS TCR-T cells (OT-I) delivered caIL-12 to the B16-U-OVA tumor sites and induced robust tumor control and survival benefits in mice bearing a heterogeneous tumor with OVA-negative variants. caIL-12 exerted its effect on OVA-negative B16 variants primarily by priming and activating endogenous antitumor CD8 T cells via antigen spreading. In addition, antigen spreading induced by OT-I-caIL-12 resulted in controlling OVA-negative tumors implanted at distant sites. This therapeutic effect required antigen-specific TCR-T cells and caIL-12 to colocalize at the tumor site, along with endogenous CD8 T cells capable of recognizing shared tumor antigens. CONCLUSION Expression of caIL-12 by tumor-targeting T cells demonstrated therapeutic effect against target-antigen-negative tumor variants, primarily through the induction of antigen spreading. These findings highlight the potential of caIL-12 to address challenges of antigen escape and tumor heterogeneity that may limit the efficacy of T-cell therapy against solid tumors.
Collapse
MESH Headings
- Animals
- Mice
- Interleukin-12/metabolism
- Antigens, Neoplasm/immunology
- Immunotherapy, Adoptive/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Mice, Inbred C57BL
- Cell Line, Tumor
- Humans
- Adoptive Transfer/methods
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/therapy
Collapse
Affiliation(s)
- Ling Zhang
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott M Norberg
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Farrah Karimipour
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John S Davies
- Department of Safety Assessment, Genentech Inc, South San Francisco, California, USA
| | - Alex Kuznetsov
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wiem Lassoued
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Burnett
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip Homan
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret Cam
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew Sinkoe
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Xue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian S Hinrichs
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
29
|
Moretti M, Farina A, Angeloni A, Anastasi E. Emerging horizons on molecular and circulating biomarkers in pancreatic adenocarcinoma. Front Oncol 2024; 14:1483306. [PMID: 39575418 PMCID: PMC11578827 DOI: 10.3389/fonc.2024.1483306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer and is expected to soon become the second leading cause of cancer-associated death. The high mortality rate is due to the clinical features that allow asymptomatic progression to advanced stages, a period when current therapeutic treatments have limited efficacy. To address these challenges, researchers are focused on identifying new molecular and circulating markers for early PDAC detection and precision medicine. In this mini-review, we report the most well-known and recently identified molecular and circulating biomarkers. This study aimed to emphasize the need for continued innovative research to develop diagnostic algorithms and therapies to improve the management of patients with PDAC.
Collapse
Affiliation(s)
| | | | | | - Emanuela Anastasi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
30
|
Tran E. More T cell receptors to the RAScue in cancer? J Clin Invest 2024; 134:e184782. [PMID: 39484723 PMCID: PMC11527437 DOI: 10.1172/jci184782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Treatment with T cells genetically engineered to express tumor-reactive T cell receptors (TCRs), known as TCR-gene therapy (TCR-T), is a promising immunotherapeutic approach for patients with cancer. The identification of optimal TCRs to use and tumor antigens to target are key considerations for TCR-T. In this issue of the JCI, Bear and colleagues report on their use of in vitro assays to characterize four HLA-A*03:01- or HLA-A*11:01-restricted TCRs targeting the oncogenic KRAS G12V mutation. The TCRs were derived from healthy donors or patients with pancreatic cancer who had received a vaccine against mutant KRAS. The most promising TCRs warrant testing in patients with KRAS G12V-positive cancers.
Collapse
|
31
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
32
|
Wolf SP, Leisegang M, Steiner M, Wallace V, Kiyotani K, Hu Y, Rosenberger L, Huang J, Schreiber K, Nakamura Y, Schietinger A, Schreiber H. CD4 + T cells with convergent TCR recombination reprogram stroma and halt tumor progression in adoptive therapy. Sci Immunol 2024; 9:eadp6529. [PMID: 39270007 PMCID: PMC11560124 DOI: 10.1126/sciimmunol.adp6529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cancers eventually kill hosts even when infiltrated by cancer-specific T cells. We examined whether cancer-specific T cell receptors of CD4+ T cells (CD4TCRs) from tumor-bearing hosts can be exploited for adoptive TCR therapy. We focused on CD4TCRs targeting an autochthonous mutant neoantigen that is only presented by stroma surrounding the MHC class II-negative cancer cells. The 11 most common tetramer-sorted CD4TCRs were tested using TCR-engineered CD4+ T cells. Three TCRs were characterized by convergent recombination for which multiple T cell clonotypes differed in their nucleotide sequences but encoded identical TCR α and β chains. These preferentially selected TCRs destroyed tumors equally well and halted progression through reprogramming of the tumor stroma. TCRs represented by single T cell clonotypes were similarly effective only if they shared CDR elements with preferentially selected TCRs in both α and β chains. Selecting candidate TCRs on the basis of these characteristics can help identify TCRs that are potentially therapeutically effective.
Collapse
Affiliation(s)
- Steven P. Wolf
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Madeline Steiner
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Veronika Wallace
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Pritzker School of Medicine, University of Chicago; Chicago, USA
| | - Leonie Rosenberger
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| | - Karin Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | - Hans Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| |
Collapse
|
33
|
Liu J, Zhu J. Progresses of T-cell-engaging bispecific antibodies in treatment of solid tumors. Int Immunopharmacol 2024; 138:112609. [PMID: 38971103 DOI: 10.1016/j.intimp.2024.112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
T-cell-engaging bispecific antibody (TCB) therapies have emerged as a promising immunotherapeutic approach, effectively redirecting effector T cells to selectively eliminate tumor cells. The therapeutic potential of TCBs has been well recognized, particularly with the approval of multiple TCBs in recent years for the treatment of hematologic malignancies as well as some solid tumors. However, TCBs encounter multiple challenges in treating solid tumors, such as on-target off-tumor toxicity, cytokine release syndrome (CRS), and T cell dysfunction within the immunosuppressive tumor microenvironment, all of which may impact their therapeutic efficacy. In this review, we summarize clinical data on TCBs for solid tumor treatment, highlight the challenges faced, and discuss potential solutions based on emerging strategies from current clinical and preclinical research. These solutions include TCB structural optimization, target selection, and combination strategies. This comprehensive analysis aims to guide the development of TCBs from design to clinical application, addressing the evolving landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Junjun Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Laboratories, Inc., Frederick, MD 21704, USA.
| |
Collapse
|
34
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
35
|
Wang C, Tan JYM, Chitkara N, Bhatt S. TP53 Mutation-Mediated Immune Evasion in Cancer: Mechanisms and Therapeutic Implications. Cancers (Basel) 2024; 16:3069. [PMID: 39272927 PMCID: PMC11393945 DOI: 10.3390/cancers16173069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Mutation in p53 is the most frequent event in cancer development and a leading cause of cancer therapy resistance due to evasion of the apoptosis cascade. Beyond chemotherapies and radiation therapies, growing evidence indicates that p53-mutant tumors are resistant to a broad range of immune-based therapies, such as immune checkpoint inhibitors, chimeric antigen receptor (CAR) T, and hematopoietic stem cell transplantation (HSCT). This highlights the role of p53 mutations in driving immune evasion of tumor cells. In this review, we first summarize recent studies revealing mechanisms by which p53-mutant tumors evade immune surveillance from T cells, natural killer (NK) cells, and macrophages. We then review how these mutant tumor cells reshape the tumor microenvironment (TME), modulating bystander cells such as macrophages, neutrophils, and regulatory T (Treg) cells to foster immunosuppression. Additionally, we review clinical observations indicative of immune evasion associated with p53 loss or mutations. Finally, we discuss therapeutic strategies to enhance immune response in p53 wild-type (WT) or mutant tumors.
Collapse
Affiliation(s)
- Chuqi Wang
- Department of Pharmacy & Pharmaceutical Sciences, National University of Singapore, Singapore 117559, Singapore
| | - Jordan Yong Ming Tan
- Department of Pharmacy & Pharmaceutical Sciences, National University of Singapore, Singapore 117559, Singapore
| | | | - Shruti Bhatt
- Department of Pharmacy & Pharmaceutical Sciences, National University of Singapore, Singapore 117559, Singapore
| |
Collapse
|
36
|
Ma P, Jiang Y, Zhao G, Wang W, Xing S, Tang Q, Miao H, Fang H, Sun C, Fang Y, Jiang N, Huang H, Wang S, Xie X, Li N. Toward a comprehensive solution for treating solid tumors using T-cell receptor therapy: A review. Eur J Cancer 2024; 209:114224. [PMID: 39067370 DOI: 10.1016/j.ejca.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
T-cell receptor therapy (TCR-T) has demonstrated efficacy, durability, and safety advantages in certain solid tumors (such as human papillomavirus-related tumors, synovial sarcoma, and melanoma). This study aimed to provide careful considerations for developing TCR-T for solid tumors. Therefore, in this review, we have summarized the current clinical application, advantage of TCR-T modalities and explored efficacy/safety-related parameters, particularly avidity, pharmacokinetics/pharmacodynamics, and indications, for solid tumors. Furthermore, we have investigated critical factors related to avidity, including antigen selection, T-cell receptor acquisition, optimization, and co-receptor engagement. Moreover, we have re-examined the expression of tumor antigens for a potentially higher coverage rate of solid tumors based on the current RNA-seq datasets. Finally, we have discussed the current limitations and future directions of TCR-Ts.
Collapse
Affiliation(s)
- Peiwen Ma
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shujun Xing
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hong Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chao Sun
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huiyao Huang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Xingwang Xie
- Building 1, Bohui innovation building, yard 9, Sheng Life Garden Road, Changping District, Beijing, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
37
|
Huang Y, Watkins R, Patel S, Pierce M, Franco Nitta C, Qazi H, Rice WL, Lin B, Lowe C, le Sage C, Chan LLY. Practical Characterization Strategies for Comparison, Qualification, and Selection of Cell Viability Detection Methods for Cellular Therapeutic Product Development and Manufacturing. J Fluoresc 2024; 34:2263-2278. [PMID: 37736833 DOI: 10.1007/s10895-023-03382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/06/2023] [Indexed: 09/23/2023]
Abstract
Cellular therapy development and manufacturing has focused on providing novel therapeutic cell-based products for various diseases. The International Organization for Standardization (ISO) has provided guidance on critical quality attributes (CQAs) that shall be considered when testing and releasing cellular therapeutic products. Cell count and viability measurements are two of the CQAs that are determined during development, manufacturing, testing, and product release. The ISO Cell Counting Standard Part 1 and 2 addressed the needs for improving the quality of cell counting results. However, there is currently no guidance on the qualification and selection of a fit-for-purpose cell viability detection method. In this work, we present strategies for the characterization and comparison of AO/PI and AO/DAPI staining methods using the heat-killed (HK) and low temperature/nutrient-deprived (LT/ND) cell death models to evaluate the comparability of cell viability measurements and identify potential causes of differences. We compared the AO/PI and AO/DAPI staining methods using HK and LT/ND-generated dead cells, investigated the staining time effects on cell viability measurements, and determined their viability linearity with different mixtures of live and dead cells. Furthermore, we validated AO/PI and AO/DAPI cell viability measurement with a long-term cell proliferation assay. Finally, we demonstrate a practical example of cell viability measurement comparison using AO/PI and AO/DAPI on antibiotic-selected transduced Jurkat and THP-1 cells to select a fit-for-purpose method for functional genomics screening. The proposed strategies may potentially enable scientists to properly characterize, compare, and select cell viability detection methods that are critical for cellular therapeutic product development and manufacturing.
Collapse
Affiliation(s)
- Yongyang Huang
- Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA.
| | | | - Samir Patel
- Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Mackenzie Pierce
- Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Carolina Franco Nitta
- Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Henry Qazi
- Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - William L Rice
- Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Bo Lin
- Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| | - Chris Lowe
- Horizon Discovery Ltd., Cambridge, CB25 9TL, UK
| | | | - Leo Li-Ying Chan
- Revvity Health Sciences, Inc., 360 Merrimack St., Suite 200, Lawrence, MA, 01843, USA
| |
Collapse
|
38
|
Parkhurst M, Goff SL, Lowery FJ, Beyer RK, Halas H, Robbins PF, Prickett TD, Gartner JJ, Sindiri S, Krishna S, Zacharakis N, Ngo L, Ray S, Bera A, Shepherd R, Levin N, Kim SP, Copeland A, Nah S, Levi S, Parikh N, Kwong MLM, Klemen ND, Yang JC, Rosenberg SA. Adoptive transfer of personalized neoantigen-reactive TCR-transduced T cells in metastatic colorectal cancer: phase 2 trial interim results. Nat Med 2024; 30:2586-2595. [PMID: 38992129 DOI: 10.1038/s41591-024-03109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Adoptive cell transfer (ACT) with neoantigen-reactive T lymphocytes can mediate cancer regression. Here we isolated unique, personalized, neoantigen-reactive T cell receptors (TCRs) from tumor-infiltrating lymphocytes of patients with metastatic gastrointestinal cancers and incorporated the TCR α and β chains into gamma retroviral vectors. We transduced autologous peripheral blood lymphocytes and adoptively transferred these cells into patients after lymphodepleting chemotherapy. In a phase 2 single-arm study, we treated seven patients with metastatic, mismatch repair-proficient colorectal cancers who had progressive disease following multiple previous therapies. The primary end point of the study was the objective response rate as measured using RECIST 1.1, and the secondary end points were safety and tolerability. There was no prespecified interim analysis defined in this study. Three patients had objective clinical responses by RECIST criteria including regressions of metastases to the liver, lungs and lymph nodes lasting 4 to 7 months. All patients received T cell populations containing ≥50% TCR-transduced cells, and all T cell populations were polyfunctional in that they secreted IFNγ, GM-CSF, IL-2 and granzyme B specifically in response to mutant peptides compared with wild-type counterparts. TCR-transduced cells were detected in the peripheral blood of five patients, including the three responders, at levels ≥10% of CD3+ cells 1 month post-ACT. In one patient who responded to therapy, ~20% of CD3+ peripheral blood lymphocytes expressed transduced TCRs more than 2 years after treatment. This study provides early results suggesting that ACT with T cells genetically modified to express personalized neoantigen-reactive TCRs can be tolerated and can mediate tumor regression in patients with metastatic colorectal cancers. ClinicalTrials.gov registration: NCT03412877 .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lien Ngo
- Surgery Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | - Noam Levin
- Surgery Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Savage SR, Yi X, Lei JT, Wen B, Zhao H, Liao Y, Jaehnig EJ, Somes LK, Shafer PW, Lee TD, Fu Z, Dou Y, Shi Z, Gao D, Hoyos V, Gao Q, Zhang B. Pan-cancer proteogenomics expands the landscape of therapeutic targets. Cell 2024; 187:4389-4407.e15. [PMID: 38917788 DOI: 10.1016/j.cell.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.
Collapse
Affiliation(s)
- Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongwei Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren K Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul W Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tobie D Lee
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zile Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daming Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Valentina Hoyos
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital and Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of China, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Huang KCY, Ke TW, Lai CY, Hong WZ, Chang HY, Lee CY, Wu CH, Chiang SF, Liang JA, Chen JY, Yang PC, Chen WTL, Chuang EY, Chao KSC. Inhibition of DNMTs increases neoantigen-reactive T-cell toxicity against microsatellite-stable colorectal cancer in combination with radiotherapy. Biomed Pharmacother 2024; 177:116958. [PMID: 38917760 DOI: 10.1016/j.biopha.2024.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
The therapeutic efficacy of immunotherapy is limited in the majority of colorectal cancer patients due to the low mutational and neoantigen burdens in this immunogenically "cold" microsatellite stability-colorectal cancer (MSS-CRC) cohort. Here, we showed that DNA methyltransferase (DNMT) inhibition upregulated neoantigen-bearing gene expression in MSS-CRC, resulting in increased neoantigen presentation by MHC class I in tumor cells and leading to increased neoantigen-specific T-cell activation in combination with radiotherapy. The cytotoxicity of neoantigen-reactive T cells (NRTs) to DNMTi-treated cancer cells was highly cytotoxic, and these cells secreted high IFNγ levels targeting MSS-CRC cells after ex vivo expansion of NRTs with DNMTi-treated tumor antigens. Moreover, the therapeutic efficacy of NRTs further increased when NRTs were combined with radiotherapy in vivo. Administration of DNMTi-augmented NRTs and radiotherapy achieved an ∼50 % complete response and extended survival time in an immunocompetent MSS-CRC animal model. Moreover, remarkably, splenocytes from these mice exhibited neoantigen-specific T-cell responses, indicating that radiotherapy in combination with DNMTi-augmented NRTs prolonged and increased neoantigen-specific T-cell toxicity in MSS-CRC patients. In addition, these DNMTi-augmented NRTs markedly increase the therapeutic efficacy of cancer vaccines and immune checkpoint inhibitors (ICIs). These data suggest that a combination of radiotherapy and epi-immunotherapeutic agents improves the function of ex vivo-expanded neoantigen-reactive T cells and increases the tumor-specific cytotoxic effector population to enhance therapeutic efficacy in MSS-CRC.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taiwan; Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 40402, Taiwan.
| | - Tao-Wei Ke
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chia-Ying Lai
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Center of Proton therapy and Science, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Wei-Ze Hong
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Center of Proton therapy and Science, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Hsin-Yu Chang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Center of Proton therapy and Science, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yueh Lee
- Innovation Frontier Institute of Research for Science and Technology, National Taipei University of Technology, Taipei 106344, Taiwan; Department of Electrical Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Chia-Hsin Wu
- Center of Proton therapy and Science, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Taichung 42055, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, School of Medicine, China Medical University, Taichung 40402, Taiwan; Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jhen-Yu Chen
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taiwan; Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Pei-Chen Yang
- Center of Proton therapy and Science, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Surgery, School of Medicine, China Medical University, Taichung 40402, Taiwan; Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, Hsinchu 302, Taiwan
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - K S Clifford Chao
- Center of Proton therapy and Science, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Radiation Oncology, School of Medicine, China Medical University, Taichung 40402, Taiwan; Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Leong SP. Immune responses and immunotherapeutic approaches in the treatment against cancer. Clin Exp Metastasis 2024; 41:473-493. [PMID: 39155358 PMCID: PMC11374840 DOI: 10.1007/s10585-024-10300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/15/2024] [Indexed: 08/20/2024]
Abstract
Cancer cells within a population are heterogeneous due to genomic mutations or epigenetic changes. The immune response to cancer especially the T cell repertoire within the cancer microenvionment is important to the control and growth of cancer cells. When a cancer clone breaks through the surveillance of the immune system, it wins the battle to overcome the host's immune system. In this review, the complicated profile of the cancer microenvironment is emphasized. The molecular evidence of immune responses to cancer has been recently established. Based on these molecular mechanisms of immune interactions with cancer, clinical trials based on checkpoint inhibition therapy against CTLA-4 and/or PD-1 versus PD-L1 have been successful in the treatment of melanoma, lung cancer and other types of cancer. The diversity of the T cell repertoire is described and the tumor infiltrating lymphocytes within the cancer may be expanded ex vivo and infused back to the patient as a treatment modality for adoptive immunotherapy.
Collapse
Affiliation(s)
- Stanley P Leong
- California Pacific Medical Center and Research Institute, University of California School of Medicine, San Francisco, USA.
| |
Collapse
|
42
|
Wermke M, Holderried TAW, Luke JJ, Morris VK, Alsdorf WH, Wetzko K, Andersson BS, Wistuba II, Parra ER, Hossain MB, Grund-Gröschke S, Aslan K, Satelli A, Marisetty A, Satam S, Kalra M, Hukelmann J, Kursunel MA, Pozo K, Acs A, Backert L, Baumeister M, Bunk S, Wagner C, Schoor O, Mohamed AS, Mayer-Mokler A, Hilf N, Krishna D, Walter S, Tsimberidou AM, Britten CM. First-in-human dose escalation trial to evaluate the clinical safety and efficacy of an anti-MAGEA1 autologous TCR-transgenic T cell therapy in relapsed and refractory solid tumors. J Immunother Cancer 2024; 12:e008668. [PMID: 39038917 PMCID: PMC11268062 DOI: 10.1136/jitc-2023-008668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
RATIONALE OF THE TRIAL Although the use of engineered T cells in cancer immunotherapy has greatly advanced the treatment of hematological malignancies, reaching meaningful clinical responses in the treatment of solid tumors is still challenging. We investigated the safety and tolerability of IMA202 in a first-in-human, dose escalation basket trial in human leucocyte antigen A*02:01 positive patients with melanoma-associated antigen A1 (MAGEA1)-positive advanced solid tumors. TRIAL DESIGN The 2+2 trial design was an algorithmic design based on a maximally acceptable dose-limiting toxicity (DLT) rate of 25% and the sample size was driven by the algorithmic design with a maximum of 16 patients. IMA202 consists of autologous genetically modified cytotoxic CD8+ T cells expressing a T cell receptor (TCR), which is specific for a nine amino acid peptide derived from MAGEA1. Eligible patients underwent leukapheresis, T cells were isolated, transduced with lentiviral vector carrying MAGEA1-specific TCR and following lymphodepletion (fludarabine/cyclophosphamide), infused with a median of 1.4×109 specific T cells (range, 0.086×109-2.57×109) followed by interleukin 2. SAFETY OF IMA202: No DLT was observed. The most common grade 3-4 adverse events were cytopenias, that is, neutropenia (81.3%), lymphopenia (75.0%), anemia (50.0%), thrombocytopenia (50.0%) and leukopenia (25.0%). 13 patients experienced cytokine release syndrome, including one grade 3 event. Immune effector cell-associated neurotoxicity syndrome was observed in two patients and was grade 1 in both. EFFICACY OF IMA202: Of the 16 patients dosed, 11 (68.8%) patients had stable disease (SD) as their best overall response (Response Evaluation Criteria in Solid Tumors V.1.1). Five patients had initial tumor shrinkage in target lesions and one patient with SD experienced continued shrinkage in target lesions for 3 months in total but had to be classified as progressive disease due to progressive non-target lesions. IMA202 T cells were persistent in peripheral blood for several weeks to months and were also detectable in tumor tissue. Peak persistence was higher in patients who received higher doses. CONCLUSION In conclusion, IMA202 had a manageable safety profile, and it was associated with biological and potential clinical activity of MAGEA1-targeting genetically engineered TCR-T cells in a poor prognosis, multi-indication solid tumor cohort. TRIAL REGISTRATION NUMBERS NCT04639245, NCT05430555.
Collapse
Affiliation(s)
- Martin Wermke
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Tobias A W Holderried
- Department of Hematology, Oncology, Immunooncology, Stem Cell Transplantation, and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Jason John Luke
- Cancer Immunotherapeutics Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Winfried H Alsdorf
- Department of Oncology, Hematology, and Bone Marrow Transplantation with Section Pneumology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Wetzko
- Department of Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Borje S Andersson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Katrin Aslan
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | - Swapna Satam
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | - Andreas Acs
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | | | | | | | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
43
|
Tarabini RF, Fioravanti Vieira G, Rigo MM, de Souza APD. Mutations in glioblastoma proteins do not disrupt epitope presentation and recognition, maintaining a specific CD8 T cell immune response potential. Sci Rep 2024; 14:16721. [PMID: 39030304 PMCID: PMC11271619 DOI: 10.1038/s41598-024-67099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Antigen-specific cytotoxic CD8 T cells are extremely effective in controlling tumor growth and have been the focus of immunotherapy approaches. We leverage in silico tools to investigate whether the occurrence of mutations in proteins previously described as immunogenic and highly expressed by glioblastoma multiforme (GBM), such as Epidermal Growth Factor Receptor (EGFR), Isocitrate Dehydrogenase 1 (IDH1), Phosphatase and Tensin homolog (PTEN) and Tumor Protein 53 (TP53), may be contributing to the differential presentation of immunogenic epitopes. We recovered Class I MHC binding information from wild-type and mutated proteins using the Immune Epitope Database (IEDB). After that, we built peptide-MHC (pMHC-I) models in HLA-arena, followed by hierarchical clustering analysis based on electrostatic surface features from each complex. We identified point mutations that are determinants for the presentation of a set of peptides from TP53 protein. We point to structural features in the pMHC-I complexes of wild-type and mutated peptides, which may play a role in the recognition of CD8 T cells. To further explore these features, we performed 100 ns molecular dynamics simulations for the peptide pairs (wt/mut) selected. In pursuit of novel therapeutic targets for GBM treatment, we selected peptides where our predictive results indicated that mutations would not disrupt epitope presentation, thereby maintaining a specific CD8 T cell immune response. These peptides hold potential for future GBM interventions, including peptide-based or mRNA vaccine development applications.
Collapse
Affiliation(s)
- Renata Fioravanti Tarabini
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gustavo Fioravanti Vieira
- Post-Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduation Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Maurício Menegatti Rigo
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
44
|
Mog BJ, Marcou N, DiNapoli SR, Pearlman AH, Nichakawade TD, Hwang MS, Douglass J, Hsiue EHC, Glavaris S, Wright KM, Konig MF, Paul S, Wyhs N, Ge J, Miller MS, Azurmendi P, Watson E, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Preclinical studies show that Co-STARs combine the advantages of chimeric antigen and T cell receptors for the treatment of tumors with low antigen densities. Sci Transl Med 2024; 16:eadg7123. [PMID: 38985855 DOI: 10.1126/scitranslmed.adg7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.
Collapse
Affiliation(s)
- Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikita Marcou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tushar D Nichakawade
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephanie Glavaris
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicolas Wyhs
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiaxin Ge
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
45
|
Efe G, Rustgi AK, Prives C. p53 at the crossroads of tumor immunity. NATURE CANCER 2024; 5:983-995. [PMID: 39009816 DOI: 10.1038/s43018-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024]
Abstract
The p53 tumor suppressor protein has a plethora of cell-intrinsic functions and consequences that impact diverse cell types and tissues. Recent studies are beginning to unravel how wild-type and mutant p53 work in distinct ways to modulate tumor immunity. This sets up a disequilibrium between tumor immunosurveillance and escape therefrom. The ability to exploit this emerging knowledge for translational approaches may shape immunotherapy and targeted therapeutics in the future, especially in combinatorial settings.
Collapse
Affiliation(s)
- Gizem Efe
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Carol Prives
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
46
|
Sun H, Han X, Du Z, Chen G, Guo T, Xie F, Gu W, Shi Z. Machine learning for the identification of neoantigen-reactive CD8 + T cells in gastrointestinal cancer using single-cell sequencing. Br J Cancer 2024; 131:387-402. [PMID: 38849478 PMCID: PMC11263575 DOI: 10.1038/s41416-024-02737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND It appears that tumour-infiltrating neoantigen-reactive CD8 + T (Neo T) cells are the primary driver of immune responses to gastrointestinal cancer in patients. However, the conventional method is very time-consuming and complex for identifying Neo T cells and their corresponding T cell receptors (TCRs). METHODS By mapping neoantigen-reactive T cells from the single-cell transcriptomes of thousands of tumour-infiltrating lymphocytes, we developed a 26-gene machine learning model for the identification of neoantigen-reactive T cells. RESULTS In both training and validation sets, the model performed admirably. We discovered that the majority of Neo T cells exhibited notable differences in the biological processes of amide-related signal pathways. The analysis of potential cell-to-cell interactions, in conjunction with spatial transcriptomic and multiplex immunohistochemistry data, has revealed that Neo T cells possess potent signalling molecules, including LTA, which can potentially engage with tumour cells within the tumour microenvironment, thereby exerting anti-tumour effects. By sequencing CD8 + T cells in tumour samples of patients undergoing neoadjuvant immunotherapy, we determined that the fraction of Neo T cells was significantly and positively linked with the clinical benefit and overall survival rate of patients. CONCLUSION This method expedites the identification of neoantigen-reactive TCRs and the engineering of neoantigen-reactive T cells for therapy.
Collapse
Affiliation(s)
- Hongwei Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Han
- KangChen Bio-tech., Ltd, ShangHai, China
| | - Zhengliang Du
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Geer Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tonglei Guo
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, China
| | - Fei Xie
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, China
| | - Weiyue Gu
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, China
- Chineo Medical Technology Co., Ltd, Beijing, 100101, China
| | - Zhiwen Shi
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Data and Analysis Center for Genetic Diseases, Beijing Chigene Translational Medicine Research Center Co, Ltd, Tongzhou District, Beijing, China.
- Chineo Medical Technology Co., Ltd, Beijing, 100101, China.
| |
Collapse
|
47
|
Sueangoen N, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Public neoantigens in breast cancer immunotherapy (Review). Int J Mol Med 2024; 54:65. [PMID: 38904202 PMCID: PMC11188978 DOI: 10.3892/ijmm.2024.5388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Among women globally, breast cancer is the most prevalent cancer and the leading cause of cancer‑related death. Interestingly, though genetic mutations contribute to the disease, <15% of women diagnosed with breast cancer have a family history of the disease, suggesting a prevalence of sporadic genetic mutations in breast cancer development. In the rapidly rising field of cancer genomics, neoantigen‑based immunotherapy has come to the fore. The investigation of novel proteins arising from unique somatic mutations or neoantigens have opened a new pathway for both individualized and public cancer treatments. Because they are shared among individuals with similar genetic changes, public neoantigens provide an opportunity for 'off‑the‑shelf' anticancer therapies, potentially extending the benefits to a wider patient group. The present review aimed to highlight the role of shared or public neoantigens as therapeutic targets for patients with breast cancer, emphasizing common hotspot mutations of certain genes identified in breast cancer. The clinical utilization of public neoantigen‑based therapies for breast cancer treatment were also discussed.
Collapse
Affiliation(s)
- Natthaporn Sueangoen
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
48
|
Hao Q, Long Y, Yang Y, Deng Y, Ding Z, Yang L, Shu Y, Xu H. Development and Clinical Applications of Therapeutic Cancer Vaccines with Individualized and Shared Neoantigens. Vaccines (Basel) 2024; 12:717. [PMID: 39066355 PMCID: PMC11281709 DOI: 10.3390/vaccines12070717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Neoantigens, presented as peptides on the surfaces of cancer cells, have recently been proposed as optimal targets for immunotherapy in clinical practice. The promising outcomes of neoantigen-based cancer vaccines have inspired enthusiasm for their broader clinical applications. However, the individualized tumor-specific antigens (TSA) entail considerable costs and time due to the variable immunogenicity and response rates of these neoantigens-based vaccines, influenced by factors such as neoantigen response, vaccine types, and combination therapy. Given the crucial role of neoantigen efficacy, a number of bioinformatics algorithms and pipelines have been developed to improve the accuracy rate of prediction through considering a series of factors involving in HLA-peptide-TCR complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. On the other hand, shared neoantigens, originating from driver mutations at hot mutation spots (e.g., KRASG12D), offer a promising and ideal target for the development of therapeutic cancer vaccines. A series of clinical practices have established the efficacy of these vaccines in patients with distinct HLA haplotypes. Moreover, increasing evidence demonstrated that a combination of tumor associated antigens (TAAs) and neoantigens can also improve the prognosis, thus expand the repertoire of shared neoantigens for cancer vaccines. In this review, we provide an overview of the complex process involved in identifying personalized neoantigens, their clinical applications, advances in vaccine technology, and explore the therapeutic potential of shared neoantigen strategies.
Collapse
Affiliation(s)
- Qing Hao
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yuhang Long
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yi Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yiqi Deng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenyu Ding
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (Q.H.); (Y.L.); (Y.Y.); (Y.D.); (Z.D.); (L.Y.)
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Center of Clinical Laboratory Medicine, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
He S, Gubin MM, Rafei H, Basar R, Dede M, Jiang X, Liang Q, Tan Y, Kim K, Gillison ML, Rezvani K, Peng W, Haymaker C, Hernandez S, Solis LM, Mohanty V, Chen K. Elucidating immune-related gene transcriptional programs via factorization of large-scale RNA-profiles. iScience 2024; 27:110096. [PMID: 38957791 PMCID: PMC11217617 DOI: 10.1016/j.isci.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024] Open
Abstract
Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy (ACT), have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA sequencing (RNA-seq) datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.
Collapse
Affiliation(s)
- Shan He
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew M. Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xianli Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qingnan Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kunhee Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maura L. Gillison
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, The University of Houston, Houston, TX, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharia Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
50
|
Liu Y, Su Z, Tavana O, Gu W. Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell 2024; 42:946-967. [PMID: 38729160 PMCID: PMC11190820 DOI: 10.1016/j.ccell.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhenyi Su
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Omid Tavana
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|