1
|
Żołnierkiewicz O, Rogacka D. Hyperglycemia - A culprit of podocyte pathology in the context of glycogen metabolism. Arch Biochem Biophys 2024; 753:109927. [PMID: 38350532 DOI: 10.1016/j.abb.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Prolonged disruption in the balance of glucose can result in metabolic disorders. The kidneys play a significant role in regulating blood glucose levels. However, when exposed to chronic hyperglycemia, the kidneys' ability to handle glucose metabolism may be impaired, leading to an accumulation of glycogen. Earlier studies have shown that there can be a significant increase in glucose storage in the form of glycogen in the kidneys in diabetes. Podocytes play a crucial role in maintaining the integrity of filtration barrier. In diabetes, exposure to elevated glucose levels can lead to significant metabolic and structural changes in podocytes, contributing to kidney damage and the development of diabetic kidney disease. The accumulation of glycogen in podocytes is not a well-established phenomenon. However, a recent study has demonstrated the presence of glycogen granules in podocytes. This review delves into the intricate connections between hyperglycemia and glycogen metabolism within the context of the kidney, with special emphasis on podocytes. The aberrant storage of glycogen has the potential to detrimentally impact podocyte functionality and perturb their structural integrity. This review provides a comprehensive analysis of the alterations in cellular signaling pathways that may potentially lead to glycogen overproduction in podocytes.
Collapse
Affiliation(s)
- Olga Żołnierkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
2
|
Bizerra PFV, Gilglioni EH, Li HL, Go S, Oude Elferink RPJ, Verhoeven AJ, Chang JC. Opposite regulation of glycogen metabolism by cAMP produced in the cytosol and at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119585. [PMID: 37714306 DOI: 10.1016/j.bbamcr.2023.119585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Cyclic AMP is produced in cells by two different types of adenylyl cyclases: at the plasma membrane by the transmembrane adenylyl cyclases (tmACs, ADCY1~ADCY9) and in the cytosol by the evolutionarily more conserved soluble adenylyl cyclase (sAC, ADCY10). By employing high-resolution extracellular flux analysis in HepG2 cells to study glycogen breakdown in real time, we showed that cAMP regulates glycogen metabolism in opposite directions depending on its location of synthesis within cells and the downstream cAMP effectors. While the canonical tmAC-cAMP-PKA signaling promotes glycogenolysis, we demonstrate here that the non-canonical sAC-cAMP-Epac1 signaling suppresses glycogenolysis. Mechanistically, suppression of sAC-cAMP-Epac1 leads to Ser-15 phosphorylation and thereby activation of the liver-form glycogen phosphorylase to promote glycogenolysis. Our findings highlight the importance of cAMP microdomain organization for distinct metabolic regulation and establish sAC as a novel regulator of glycogen metabolism.
Collapse
Affiliation(s)
- Paulo F V Bizerra
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; State University of Maringá, Paraná, Brazil
| | - Eduardo H Gilglioni
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Signal Transduction and Metabolism Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Hang Lam Li
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arthur J Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jung-Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Mancini MC, Noland RC, Collier JJ, Burke SJ, Stadler K, Heden TD. Lysosomal glucose sensing and glycophagy in metabolism. Trends Endocrinol Metab 2023; 34:764-777. [PMID: 37633800 PMCID: PMC10592240 DOI: 10.1016/j.tem.2023.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023]
Abstract
Lysosomes are cellular organelles that function to catabolize both extra- and intracellular cargo, act as a platform for nutrient sensing, and represent a core signaling node integrating bioenergetic cues to changes in cellular metabolism. Although lysosomal amino acid and lipid sensing in metabolism has been well characterized, lysosomal glucose sensing and the role of lysosomes in glucose metabolism is unrefined. This review will highlight the role of the lysosome in glucose metabolism with a focus on lysosomal glucose and glycogen sensing, glycophagy, and lysosomal glucose transport and how these processes impact autophagy and energy metabolism. Additionally, the role of lysosomal glucose metabolism in genetic and metabolic diseases will be briefly discussed.
Collapse
Affiliation(s)
- Melina C Mancini
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Robert C Noland
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - J Jason Collier
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Susan J Burke
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | - Timothy D Heden
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| |
Collapse
|
4
|
Trepiccione F, Iervolino A, D'Acierno M, Siccardi S, Costanzo V, Sardella D, De La Motte LR, D'Apolito L, Miele A, Perna AF, Capolongo G, Zacchia M, Frische S, Nielsen R, Staiano L, Sambri I, De Cegli R, Unwin R, Eladari D, Capasso G. The SGLT2 inhibitor dapagliflozin improves kidney function in glycogen storage disease XI. Sci Transl Med 2023; 15:eabn4214. [PMID: 37910600 DOI: 10.1126/scitranslmed.abn4214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Glycogen storage disease XI, also known as Fanconi-Bickel syndrome (FBS), is a rare autosomal recessive disorder caused by mutations in the SLC2A2 gene that encodes the glucose-facilitated transporter type 2 (GLUT2). Patients develop a life-threatening renal proximal tubule dysfunction for which no treatment is available apart from electrolyte replacement. To investigate the renal pathogenesis of FBS, SLC2A2 expression was ablated in mouse kidney and HK-2 proximal tubule cells. GLUT2Pax8Cre+ mice developed time-dependent glycogen accumulation in proximal tubule cells and recapitulated the renal Fanconi phenotype seen in patients. In vitro suppression of GLUT2 impaired lysosomal autophagy as shown by transcriptomic and biochemical analysis. However, this effect was reversed by exposure to a low glucose concentration, suggesting that GLUT2 facilitates the homeostasis of key cellular pathways in proximal tubule cells by preventing glucose toxicity. To investigate whether targeting proximal tubule glucose influx can limit glycogen accumulation and correct symptoms in vivo, we treated mice with the selective SGLT2 inhibitor dapagliflozin. Dapagliflozin reduced glycogen accumulation and improved metabolic acidosis and phosphaturia in the animals by normalizing the expression of Napi2a and NHE3 transporters. In addition, in a patient with FBS, dapagliflozin was safe, improved serum potassium and phosphate concentrations, and reduced glycogen content in urinary shed cells. Overall, this study provides proof of concept for dapagliflozin as a potentially suitable therapy for FBS.
Collapse
Affiliation(s)
- Francesco Trepiccione
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Anna Iervolino
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | | | - Sabrina Siccardi
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Donato Sardella
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Luigi R De La Motte
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Luciano D'Apolito
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Antonio Miele
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Alessandra F Perna
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
| | - Giovanna Capolongo
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
| | - Miriam Zacchia
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
| | | | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 20089 Milan, Italy
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Department of Medical and Translational Science, Federico II University, 80131 Naples, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Robert Unwin
- UCL Department of Renal Medicine, Royal Free Hospital, London NW3 2PF, UK
| | - Dominique Eladari
- Service de Médecine de Précision des maladies Métaboliques et Rénales, CHU Amiens-Picardie, Université de Picardie Jules Verne, 80054 Amiens, France
- FCRIN-INI-CRCT, 54500 Vandœuvre-lès-Nancy, France
- Paris Cardiovascular Research Center (PARCC), INSERM U970, F-75015, Paris, France
| | - Giovambattista Capasso
- Department of Medical Translational Sciences, University of Campania "Luigi Vanvitelli," 80131 Naples, Italy
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| |
Collapse
|
5
|
Gad EM, Abdel-rahman HG, Abd-el-fattah ME, Kamal MM, Eltahan AS, Dessouki AA. Renoprotective impact of Dapagliflozin and Mulberry extracts toward Fr-STZ induced diabetic nephropathy in rats: Biochemical and Molecular aspects.. [DOI: 10.21203/rs.3.rs-3186379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Among the most typical reasons of end-stage renal disease (ESRD) is diabetic nephropathy (DN), which is also rated as a major microvascular complication of diabetes mellitus. The existent study looked at the impact of dapagliflozin, mulberry fruit and leaves extracts and their combination on the kidney of diabetic rats. To induce diabetic nephropathy, experimental rats were supplied with 10% fructose (Fr) in drinking water for the first two weeks. Each Fr-fed animal received an intraperitoneal injection of a low single dose of STZ (40 mg/kg) after being fasted for the whole night. Sixty albino rats were separated into six equivalent groups. Group I control rats, group II untreated diabetic rats, group III–VI are diabetic groups; received dapagliflozin for 4 weeks, mulberry fruit extract, mulberry leaves extract and combination of DAPA, MFE and MLE, respectively for 6 weeks. Untreated diabetic rats exhibited considerable rise in serum glucose, urea, creatinine, KIM-1, β2-MG, TNF-α, and TGβ1 levels compared to control rats, while treated diabetic ones manifested significant decrease in these measures in contrast to the untreated diabetic rats. Also, renal tissue IL-6, NF-κB and NADPH oxidase manifested significant increase in untreated diabetic rats, while treated groups revealed significant decline in comparison to the untreated one. DAPA and mulberry fruit and leaves extracts optimized IL-10 and renin expression in renal tissue. Histopathological picture of kidney, revealed significant improvement in rats received DAPA and mulberry extracts compared to untreated diabetic rats. It could be concluded that, DAPA, mulberry fruits and leaves extracts alleviated diabetic nephropathy complications. Therefore, combining these ingredients in a supplement may be promising for modulating diabetic nephropathy.
Collapse
|
6
|
Taurine Ameliorates Streptozotocin-Induced Diabetes by Modulating Hepatic Glucose Metabolism and Oxidative Stress in Mice. Metabolites 2022; 12:metabo12060524. [PMID: 35736457 PMCID: PMC9228042 DOI: 10.3390/metabo12060524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
Taurine is a sulfated amino acid derivative that plays an important role in maintaining the cell function of the living body. Although taurine has been shown to ameliorate diabetes, its mechanism of action has not yet been fully elucidated. The present study investigated the effects of taurine on diabetes focusing on glucose metabolism and oxidative stress. Type 1 diabetes was induced by the administration of streptozotocin (STZ) to male C57BL/6J mice. Taurine was dissolved in drinking water at 3% (w/v) and allowed to be freely ingested by diabetic mice. The weight and blood glucose levels were measured weekly. After nine weeks, mice were sacrificed and their serum, liver, and kidney were removed and used for biochemical and histological analyses. A microarray analysis was also performed in normal mice. Taurine alleviated STZ-induced hyperglycemia and hyperketonemia, accompanied by the suppression of the decrease in hepatic glycogen and upregulation of the mRNA expression of hepatic glucose transporter GLUT-2. Furthermore, STZ-induced elevation of oxidative stress in the liver and kidney was suppressed by taurine treatment. These results showed that taurine ameliorated diabetes and diabetic complications by improving hepatic glucose metabolism and reducing oxidative stress.
Collapse
|
7
|
Rabbani N, Xue M, Thornalley PJ. Hexokinase-2-Linked Glycolytic Overload and Unscheduled Glycolysis-Driver of Insulin Resistance and Development of Vascular Complications of Diabetes. Int J Mol Sci 2022; 23:ijms23042165. [PMID: 35216280 PMCID: PMC8877341 DOI: 10.3390/ijms23042165] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
The recent discovery of the glucose-induced stabilization of hexokinase-2 (HK2) to proteolysis in cell dysfunction in model hyperglycemia has revealed a likely key initiating factor contributing to the development of insulin resistance and vascular complications in diabetes. Consequently, the increased flux of glucose metabolism without a change in the expression and activity of glycolytic enzymes produces a wave of increased glycolytic intermediates driving mitochondrial dysfunction and increased reactive oxygen species (ROS) formation, the activation of hexosamine and protein kinase C pathways, the increased formation of methylglyoxal-producing dicarbonyl stress, and the activation of the unfolded protein response. This is called HK2-linked glycolytic overload and unscheduled glycolysis. The conditions required to sustain this are GLUT1 and/or GLUT3 glucose uptake and the expression of HK2. A metabolic biomarker of its occurrence is the abnormally increased deposition of glycogen, which is produced by metabolic channeling when HK2 becomes detached from mitochondria. These conditions and metabolic consequences are found in the vasculature, kidneys, retina, peripheral nerves, and early-stage embryo development in diabetes and likely sustain the development of diabetic vascular complications and embryopathy. In insulin resistance, HK2-linked unscheduled glycolysis may also be established in skeletal muscle and adipose tissue. This may explain the increased glucose disposal by skeletal uptake in the fasting phase in patients with type 2 diabetes mellitus, compared to healthy controls, and the presence of insulin resistance in patients with type 1 diabetes mellitus. Importantly, glyoxalase 1 inducer—trans-resveratrol and hesperetin in combination (tRES-HESP)—corrected HK2-linked glycolytic overload and unscheduled glycolysis and reversed insulin resistance and improved vascular inflammation in overweight and obese subjects in clinical trial. Further studies are now required to evaluate tRES-HESP for the prevention and reversal of early-stage type 2 diabetes and for the treatment of the vascular complications of diabetes.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
8
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
9
|
Olaniyi KS, Sabinari IW, Olatunji LA. Oral ethinylestradiol–levonorgestrel therapy counteracts fructose-induced renal metabolic impairment in female rats. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Olaniyi KS, Amusa OA, Akinnagbe NT, Ajadi IO, Ajadi MB, Agunbiade TB, Michael OS. Acetate ameliorates nephrotoxicity in streptozotocin-nicotinamide-induced diabetic rats: Involvement of xanthine oxidase activity. Cytokine 2021; 142:155501. [PMID: 33775493 DOI: 10.1016/j.cyto.2021.155501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022]
Abstract
Impaired renal function is a common complication of diabetes mellitus (DM) that often degenerates to cardiovascular disease, contributing to high morbidity and reduced survival worldwide. Short chain fatty acids (SCFAs), including acetate has shown potential benefits in glycemic or metabolic regulation but its effect on diabetes-associated renal toxicity/impairment is not clear. Herein, we investigated the hypothesis that acetate would ameliorate renal toxicity, accompanying DM, possibly by suppression of xanthine oxidase (XO) activity. Adult male Wistar rats (230-260 g) were allotted into groups (n = 6/group) namely: control (vehicle; po), sodium acetate (NaAc)-treated (200 mg/kg), diabetic with or without NaAc groups. DM was induced by intraperitoneal injection of streptozotocin 65 mg/kg after a dose of nicotinamide (110 mg/kg). Diabetic animals showed increased fasting glucose and insulin, renal triglyceride, total cholesterol, atherogenic lipid, malondialdehyde, XO, tissue necrosis factor-α, uric acid, interleukin-6, aspartate transaminase/alanine aminotransferase ratio, gamma-glutamyl transferase and decreased glutathione and nitric oxide concentration. The renal tissue was characterized with disrupted tissue architecture, enlarged Bowman's space, congested glomeruli and adherence of abnormal segments of tuft to Bowman's capsule with consequent elevated serum creatinine and urea concentration. However, these alterations were attenuated by NaAc. The study demonstrates that acetate ameliorates diabetes-induced nephrotoxicity, which is associated with suppressed XO and its accompanied pro-inflammatory mediators. Therefore, SCFAs, acetate would be a promising dietary-derived therapeutic agent for the prevention and management of diabetes-associated renal disturbances.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria; School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa.
| | - Oluwatobi A Amusa
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Nifesimi T Akinnagbe
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Isaac O Ajadi
- School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa
| | - Mary B Ajadi
- Department of Chemical Pathology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Department of Medical Biochemistry, School of Laboratory Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa
| | - Toluwani B Agunbiade
- Department of Medical Microbiology and Parasitology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Olugbenga S Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| |
Collapse
|
11
|
Akhtar S, Culver SA, Siragy HM. Novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway. Sci Rep 2021; 11:11367. [PMID: 34059756 PMCID: PMC8167177 DOI: 10.1038/s41598-021-90952-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Recent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.
Collapse
Affiliation(s)
- Safia Akhtar
- Department of Medicine, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA, 22903, USA
| | - Silas A Culver
- Department of Medicine, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA, 22903, USA
| | - Helmy M Siragy
- Department of Medicine, University of Virginia Health System, P.O. Box 801409, Charlottesville, VA, 22903, USA.
| |
Collapse
|
12
|
Abouzed TK, Sadek KM, Ghazy EW, Abdo W, Kassab MA, Hago S, Abdel-Wahab S, Mahrous EA, Abdel-Sattar E, Assar DH. Black mulberry fruit extract alleviates streptozotocin-induced diabetic nephropathy in rats: targeting TNF-α inflammatory pathway. J Pharm Pharmacol 2020; 72:1615-1628. [PMID: 32754951 DOI: 10.1111/jphp.13338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study was designed to investigate the effect of Morus nigra fruit extract in retarding the progression of diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. METHODS Diabetic male Wistar rats were injected with black mulberry fruit extract (BMFE) at doses of 150 and 300 mg/kg body weight. After 4 weeks, microalbuminuria was estimated in addition to serum concentrations of glucose, insulin, creatinine and albumin. KEY FINDINGS The study revealed a significant amelioration of all the measured parameters in diabetic animals. In addition, MDA, lipid peroxide levels and catalase activity were also improved. The histopathological examination of kidney tissues revealed significant improvement of the pathological changes and glomerular sclerosis in diabetic rats treated with BMFE. Treated rats showed downregulation of TNF-α, vascular cell adhesion molecule-1 (VCAM-1) and fibronectin mRNA expression. CONCLUSION The ameliorative effect of BMFE on diabetic nephropathy is not only through its potent antioxidant and hypoglycaemic effects but also through its downregulation of TNF-α, VCAM-1 and fibronectin mRNA expression in renal tissues of diabetic-treated rats. Therefore, BMFE as dietary supplement could be a promising agent in improving diabetic nephropathy.
Collapse
Affiliation(s)
- Tarek Kamal Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Emad Waded Ghazy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Mohmed Atef Kassab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Salma Hago
- Department of Pharmacognosy, Faculty of Pharmacy, Gezira University, Wad Medani City, Sudan
| | - Samia Abdel-Wahab
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Engy A Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Doaa H Assar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| |
Collapse
|
13
|
Swanson RA. A thermodynamic function of glycogen in brain and muscle. Prog Neurobiol 2020; 189:101787. [PMID: 32151532 PMCID: PMC11156230 DOI: 10.1016/j.pneurobio.2020.101787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/20/2022]
Abstract
Brain and muscle glycogen are generally thought to function as local glucose reserves, for use during transient mismatches between glucose supply and demand. However, quantitative measures show that glucose supply is likely never rate-limiting for energy metabolism in either brain or muscle under physiological conditions. These tissues nevertheless do utilize glycogen during increased energy demand, despite the availability of free glucose, and despite the ATP cost of cycling glucose through glycogen polymer. This seemingly wasteful process can be explained by considering the effect of glycogenolysis on the amount of energy obtained from ATP (ΔG'ATP). The amount of energy obtained from ATP is reduced by elevations in inorganic phosphate (Pi). Glycogen utilization sequesters Pi in the glycogen phosphorylase reaction and in downstream phosphorylated glycolytic intermediates, thereby buffering Pi elevations and maximizing energy yield at sites of rapid ATP consumption. This thermodynamic effect of glycogen may be particularly important in the narrow, spatially constrained astrocyte processes that ensheath neuronal synapses and in cells such as astrocytes and myocytes that release Pi from phosphocreatine during energy demand. The thermodynamic effect may also explain glycolytic super-compensation in brain when glycogen is not available, and aspects of exercise physiology in muscle glycogen phosphorylase deficiency (McArdle disease).
Collapse
Affiliation(s)
- Raymond A Swanson
- Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121, USA; Dept. of Neurology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Some molecular structural features of glycogen in the kidneys of diabetic rats. Carbohydr Polym 2019; 229:115526. [PMID: 31826402 DOI: 10.1016/j.carbpol.2019.115526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/27/2022]
Abstract
Glycogen, a highly-branched glucose polymer, functions as a sugar reservoir in many organs and tissues. Liver glycogen comprises small β particles which can bind to form into large agglomerates (α particles) which readily degrade to β particles in diabetic livers. Muscle glycogen has only β particles, optimal for quick energy release. Healthy kidney contains negligible glycogen, but there is an abnormally high accumulation in diabetic kidneys. We here compare the molecular structure of glycogen in diabetic kidneys with that in liver and muscle, using a diabetic rat model. This involved exploring extraction techniques to minimize glycogen degradation. Using size exclusion chromatography and transmission electron microscopy, it was found that there were only β particles in diabetic kidneys. These are postulated to form during periods of abnormally high blood sugar, the driving force being the need to reduce blood sugar under such circumstances.
Collapse
|
15
|
Sullivan MA, Forbes JM. Glucose and glycogen in the diabetic kidney: Heroes or villains? EBioMedicine 2019; 47:590-597. [PMID: 31405756 PMCID: PMC6796499 DOI: 10.1016/j.ebiom.2019.07.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
Glucose metabolism in the kidney is currently foremost in the minds of nephrologists, diabetologists and researchers globally, as a result of the outstanding success of SGLT2 inhibitors in reducing renal and cardiovascular disease in individuals with diabetes. However, these exciting data have come with the puzzling but fascinating paradigm that many of the beneficial effects on the kidney and cardiovascular system seem to be independent of the systemic glucose lowering actions of these agents. This manuscript places into context an area of research highly relevant to renal glucose metabolism, that of glycogen accumulation and metabolism in the diabetic kidney. Whether the glycogen that abnormally accumulates is pathological (the villain), is somehow protective (the hero) or is inconsequential (the bystander) is a research question that may provide insight into the link between diabetes and diabetic kidney disease.
Collapse
Affiliation(s)
- Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Mater Clinical School, School of Medicine, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
16
|
Sertorio MN, Souza ACF, Bastos DSS, Santos FC, Ervilha LOG, Fernandes KM, de Oliveira LL, Machado-Neves M. Arsenic exposure intensifies glycogen nephrosis in diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12459-12469. [PMID: 30847815 DOI: 10.1007/s11356-019-04597-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
It is known that either arsenic exposure or diabetes can impact renal function. However, it is unclear how these combined factors may influence kidney functions. Therefore, we evaluated morphological, functional, and oxidative parameters in the kidney of diabetic rats exposed to arsenic. Healthy male Wistar rats and streptozotocin-induced diabetic rats were exposed to 0 and 10 mg/L arsenate through drinking water for 40 days. Renal tissue was assessed using morphometry, mitosis and apoptosis markers, mineral proportion, oxidative stress markers, as well as the activity of antioxidant enzymes and membrane-bound adenosine triphosphatases. Arsenate intake altered glucose levels in healthy animals, but it did not reach hyperglycemic conditions. In diabetic animals, arsenate led to a remarkable increase of glycogen nephrosis in distal tubules. In these animals, additionally, the activity of catalase and glutathione S-transferase, besides the proportion of Fe, Cu, and K in renal tissue, was altered. Nevertheless, arsenate did not accumulate in the kidney and did not impact on other parameters previously altered by diabetes, including levels of malondialdehyde, Na, urea, creatinine, and apoptosis and mitosis markers. In conclusion, besides the intensification of glycogen nephrosis, the kidney was able to handle arsenate toxicity at this point, preventing arsenic deposition in the exposed groups and the impairment of renal function.
Collapse
Affiliation(s)
- Marcela Nascimento Sertorio
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Ana Cláudia Ferreira Souza
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Vicosa, Minas Gerais, 36570-900, Brazil
- Department of Animal Science, Federal University of Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Daniel Silva Sena Bastos
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Felipe Couto Santos
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Luiz Otávio Guimarães Ervilha
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Kenner Morais Fernandes
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Leandro Licursi de Oliveira
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Mariana Machado-Neves
- Department of General Biology, Federal University of Viçosa, Av. P.H. Rolfs, s/n, Campus Universitário, Vicosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
17
|
Wu L, Wong CP, Swanson RA. Methodological considerations for studies of brain glycogen. J Neurosci Res 2019; 97:914-922. [PMID: 30892752 DOI: 10.1002/jnr.24412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/02/2023]
Abstract
Glycogen stores in the brain have been recognized for decades, but the underlying physiological function of this energy reserve remains elusive. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism. These include low glycogen content in the brain, non-homogeneous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here we briefly review the aspects of the glycogen structure and metabolism that bear on these technical challenges and present ways they can be addressed.
Collapse
Affiliation(s)
- Long Wu
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Candance P Wong
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, and San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
18
|
Wu L, Butler NJM, Swanson RA. Technical and Comparative Aspects of Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:169-185. [DOI: 10.1007/978-3-030-27480-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Brereton MF, Rohm M, Shimomura K, Holland C, Tornovsky-Babeay S, Dadon D, Iberl M, Chibalina MV, Lee S, Glaser B, Dor Y, Rorsman P, Clark A, Ashcroft FM. Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic β-cells. Nat Commun 2016; 7:13496. [PMID: 27882918 PMCID: PMC5123088 DOI: 10.1038/ncomms13496] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/07/2016] [Indexed: 12/25/2022] Open
Abstract
Insulin secretion from pancreatic β-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including β-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in β-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores β-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered β-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced β-cell mass in diabetes.
Collapse
Affiliation(s)
- Melissa F. Brereton
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Maria Rohm
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Kenju Shimomura
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Christian Holland
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Sharona Tornovsky-Babeay
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Daniela Dadon
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Michaela Iberl
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Margarita V. Chibalina
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Sheena Lee
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy and Genetics and OXION, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
20
|
Optimization of total RNA isolation from human urinary sediment. Clin Chim Acta 2016; 462:158-161. [PMID: 27666760 DOI: 10.1016/j.cca.2016.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022]
Abstract
Extracting RNA from human urinary sediment is notoriously challenging because of cell paucity and hostile environment and column-based commercial kits using silica technology are commonly used. Nonetheless, in our experience, this methodology yields low amounts of total RNA and has low rates of success. We replaced the column-based commercial kit by a protocol using guanidine isothiocyanate-phenol-chloroform buffer (Trizol reagent) followed by addition of glycogen as a carrier and precipitation with isopropanol plus sodium acetate. This methodology was more affordable and efficient for urinary sediment total RNA isolation than silica technology, resulting in higher concentrations of total RNA of better quality.
Collapse
|
21
|
Mouse Models of Diabetes, Obesity and Related Kidney Disease. PLoS One 2016; 11:e0162131. [PMID: 27579698 PMCID: PMC5006968 DOI: 10.1371/journal.pone.0162131] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
Abstract
Multiple rodent models have been used to study diabetic kidney disease (DKD). The purpose of the present study was to compare models of diabetes and obesity-induced metabolic syndrome and determine differences in renal outcomes. C57BL/6 male mice were fed either normal chow or high fat diet (HFD). At postnatal week 8, chow-fed mice were randomly assigned to low-dose streptozotocin (STZ, 55 mg/kg/day, five consecutive days) or vehicle control, whereas HFD-fed mice were given either one high-dose of STZ (100 mg/kg) or vehicle control. Intraperitoneal glucose tolerance tests were performed at Week 14, 20 and 30. Urinary albumin to creatinine ratio (ACR) and serum creatinine were measured, and renal structure was assessed using Periodic Acid Schiff (PAS) staining at Week 32. Results showed that chow-fed mice exposed to five doses of STZ resembled type 1 diabetes mellitus with a lean phenotype, hyperglycaemia, microalbuminuria and increased serum creatinine levels. Their kidneys demonstrated moderate tubular injury with evidence of tubular dilatation and glycogenated nuclear inclusion bodies. HFD-fed mice resembled metabolic syndrome as they were obese with dyslipidaemia, insulin resistance, and significantly impaired glucose tolerance. One dose STZ, in addition to HFD, did not worsen metabolic features (including fasting glucose, non esterified fatty acid, and triglyceride levels). There were significant increases in urinary ACR and serum creatinine levels, and renal structural changes were predominantly related to interstitial vacuolation and tubular dilatation in HFD-fed mice.
Collapse
|
22
|
Husi H, Human C. Molecular determinants of acute kidney injury. J Inj Violence Res 2016; 7:75-86. [PMID: 26104320 PMCID: PMC4522318 DOI: 10.5249/jivr.v7i2.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022] Open
Abstract
Background: Acute kidney injury (AKI) is a condition that leads to a rapid deterioration of renal function associated with impairment to maintain electrolyte and acid balance, and, if left untreated, ultimately irreversible kidney damage and renal necrosis. There are a number of causes that can trigger AKI, ranging from underlying conditions as well as trauma and surgery. Specifically, the global rise in surgical procedures led to a substantial increase of AKI incidence rates, which in turn impacts on mortality rates, quality of life and economic costs to the healthcare system. However, no effective therapy for AKI exists. Current approaches, such as pharmacological intervention, help in alleviating symptoms in slowing down the progression, but do not prevent or reverse AKI-induced organ damage. Methods: An in-depth understanding of the molecular machinery involved in and modulated by AKI induction and progression is necessary to specifically pharmacologically target key molecules. A major hurdle to devise a successful strategy is the multifactorial and complex nature of the disorder itself, whereby the activation of a number of seemingly independent molecular pathways in the kidney leads to apoptotic and necrotic events. Results: The renin-angiotensin-aldosterone-system (RAAS) axis appears to be a common element, leading to downstream events such as triggers of immune responses via the NFB pathway. Other pathways intricately linked with AKI-induction and progression are the tumor necrosis factor alpha (TNF α) and transforming growth factor beta (TGF β) signaling cascades, as well as a number of other modulators. Surprisingly, it has been shown that the involvement of the glutamatergic axis, believed to be mainly a component of the neurological system, is also a major contributor. Conclusions: Here we address the current understanding of the molecular pathways evoked in AKI, their interplay, and the potential to pharmacologically intervene in the effective prevention and/or progression of AKI.
Collapse
Affiliation(s)
- Holger Husi
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
23
|
Patel SN, Parikh M, Lau-Cam CA. Impact of light ethanol intake and of taurine, separately and together, on pathways of glucose metabolism in the kidney of diabetic rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:279-303. [PMID: 25833505 DOI: 10.1007/978-3-319-15126-7_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sanket N Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, USA
| | | | | |
Collapse
|
24
|
Over-expression of muscle glycogen synthase in human diabetic nephropathy. Histochem Cell Biol 2014; 143:313-24. [PMID: 25371328 DOI: 10.1007/s00418-014-1290-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy (DN) is a major complication of diabetic patients and the leading cause of end-stage renal disease. Glomerular dysfunction plays a critical role in DN, but deterioration of renal function also correlates with tubular alterations. Human DN is characterized by glycogen accumulation in tubules. Although this pathological feature has long been recognized, little information exists about the triggering mechanism. In this study, we detected over-expression of muscle glycogen synthase (MGS) in diabetic human kidney. This enhanced expression suggests the participation of MGS in renal metabolic changes associated with diabetes. HK2 human renal cell line exhibited an intrinsic ability to synthesize glycogen, which was enhanced after over-expression of protein targeting to glycogen. A correlation between increased glycogen amount and cell death was observed. Based on a previous transcriptome study on human diabetic kidney disease, significant differences in the expression of genes involved in glycogen metabolism were analyzed. We propose that glucose, but not insulin, is the main modulator of MGS activity in HK2 cells, suggesting that blood glucose control is the best approach to modulate renal glycogen-induced damage during long-term diabetes.
Collapse
|
25
|
Gatica R, Bertinat R, Silva P, Carpio D, Ramírez MJ, Slebe JC, San Martín R, Nualart F, Campistol JM, Caelles C, Yáñez AJ. Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. J Cell Biochem 2013; 114:639-49. [PMID: 23059533 DOI: 10.1002/jcb.24406] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down-regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3β kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease.
Collapse
Affiliation(s)
- Rodrigo Gatica
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Región de los Ríos, Valdivia, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lau X, Zhang Y, Kelly DJ, Stapleton DI. Attenuation of Armanni-Ebstein lesions in a rat model of diabetes by a new anti-fibrotic, anti-inflammatory agent, FT011. Diabetologia 2013; 56:675-9. [PMID: 23242170 DOI: 10.1007/s00125-012-2805-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/28/2012] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS A key morphological feature of diabetic nephropathy is the accumulation and deposition of glycogen in renal tubular cells, known as Armanni-Ebstein lesions. While this observation has been consistently reported for many years, the molecular basis of these lesions remains unclear. METHODS Using biochemical and histochemical methods, we measured glycogen concentration, glycogen synthase and glycogen phosphorylase enzyme activities, and mRNA expression and protein levels of glycogenin in kidney lysates from control and transgenic (mRen-2)27 rat models of diabetes that had been treated with and without a new anti-fibrotic agent, FT011. RESULTS Diabetic nephropathy was associated with increased glycogen content, increased glycogen synthase activity and decreased glycogen phosphorylase activity. Glycogenin, the key protein responsible for initiating the synthesis of each glycogen particle, had very high levels in the diabetic kidney together with increased mRNA expression compared with control kidneys. Treatment with FT011 did not change glycogen synthase or glycogen phosphorylase enzyme activities but prevented both glycogenin mRNA synthesis and accumulation of Armanni-Ebstein lesions in the diabetic kidney. CONCLUSIONS/INTERPRETATION Armanni-Ebstein lesions found in diabetic nephropathy are due to aberrant glycogenin protein levels and mRNA expression, providing an explanation for the increased glycogen concentration found within the diabetic kidney. FT011 treatment in diabetic rats reduced glycogenin levels and, subsequently, renal glycogen concentration.
Collapse
Affiliation(s)
- X Lau
- Department of Physiology, University of Melbourne, Grattan Street, Parkville, Melbourne, 3010 VIC, Australia
| | | | | | | |
Collapse
|
27
|
Kim JH, Hong CO, Koo YC, Kim SJ, Lee KW. Oral administration of ethyl acetate-soluble portion of Terminalia chebula conferring protection from streptozotocin-induced diabetic mellitus and its complications. Biol Pharm Bull 2012; 34:1702-9. [PMID: 22040883 DOI: 10.1248/bpb.34.1702] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminalia chebula has been widely used in India as a folk medicine. This study investigated the in vivo anti-hyperglycemia and anti-diabetic complication effects of the EtOAc-soluble portion of ethanolic extract of T. chebula fruit (EETC) containing 29.4% chebulic acid. Rats were divided into non-diabetic, untreated diabetic and diabetic groups. Streptozotocin (40 mg/kg body weight (BW))-induced diabetic rats were orally administered the aminoguanidine (100 mg/kg BW), high dose (500 mg/kg BW; HEETC) and low dose (100 mg/kg BW; LEETC) for 13 weeks. HEETC administration reduced the levels of blood glucose and serum lipids, decreased malondialdehyde concentrations of serum and thoracic aorta in diabetic rats, and significantly improved serum biochemical values and the pathomorphological changes of the liver and kidney in diabetic rats. Also, HEETC decreased the advanced glycation end products (AGEs) distribution in testis seminiferous tubules. Therefore, HEETC has a merit to be a potent candidate to control glycemic and diabetic complications.
Collapse
Affiliation(s)
- Ji-hoon Kim
- Division of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
Scherzer P, Katalan S, Got G, Pizov G, Londono I, Gal-Moscovici A, Popovtzer MM, Ziv E, Bendayan M. Psammomys obesus, a particularly important animal model for the study of the human diabetic nephropathy. Anat Cell Biol 2011; 44:176-85. [PMID: 22025969 PMCID: PMC3195821 DOI: 10.5115/acb.2011.44.3.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 01/11/2023] Open
Abstract
The Psammomys obesus lives in natural desert habitat on low energy (LE) diet, however when maintained in laboratory conditions with high energy (HE) diet it exhibits pathological metabolic changes resembling those of type 2 diabetes. We have evaluated and correlated the histopathology, metabolic and functional renal alterations occurring in the diabetic Psammomys. Renal function determined by measuring glomerular filtration rate (GFR), protein excretion, protein/creatinine ratio and morpho-immunocytochemical evaluations were performed on HE diet diabetic animals and compared to LE diet control animals. The diabetic animals present a 54% increase in GFR after one month of hyperglycemic condition and a decrease of 47% from baseline values after 4 months. Protein excretion in diabetic animals was 5 folds increased after 4 months. Light microscopy showed an increase in glomeruli size in the diabetic Psammomys, and electron microscopy and immunocytochemical quantitative evaluations revealed accumulation of basement membrane material as well as frequent splitting of the glomerular basement membrane. In addition, glycogen-filled Armanni-Ebstein clear cells were found in the distal tubules including the thick ascending limbs of the diabetic animals. These renal complications in the Psammomys, including changes in GFR with massive proteinuria sustained by physiological and histopathological changes, are very similar to the diabetic nephropathy in human. The Psamommys obesus represents therefore a reliable animal model of diabetic nephropathy.
Collapse
Affiliation(s)
- Pnina Scherzer
- Nephrology and Hypertension Unit, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Semecarpus anacardium (Bhallataka) Alters the Glucose Metabolism and Energy Production in Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20924498 PMCID: PMC2949585 DOI: 10.1155/2011/142978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/11/2010] [Accepted: 06/27/2010] [Indexed: 01/19/2023]
Abstract
Glucose produced by gluconeogenesis and glycogenolysis plays an important role in aggravating hyperglycemia in diabetes, and altered mitochondrial function is associated with impaired energy production. The present study focuses on the effect of Semecarpus anacardium on carbohydrate metabolism and energy production in diabetic rats. Diabetes was induced by the administration of Streptozotocin at a dose of 50 mg/kg.b.wt. Three days after the induction, Semecarpus anacardium at a dose of 300 mg/kg.b.wt was administered for 21 days. After the experimental duration, the activities of the enzymes involved in Glycolysis, TCA cycle, gluconeogenesis, and glycogen were assayed in the liver and kidney of the experimental animals. In addition, to the complexes the protein expression of AKT and PI3K were assayed. The levels of the enzymes involved in Glycolysis and TCA cycle increased, while that of gluconeogensis decreased. The activities of the mitochondrial complexes were also favorably modulated. The expressions of PI3K and AKT also increased in the skeletal muscle. These effects may be attributed to the hypoglycemic and the antioxidative activity of Semecarpus anacardium. The results of the study revealed that Semecarpus anacardium was able to restore the altered activities of the enzymes involved in carbohydrate metabolism and energy production.
Collapse
|
30
|
Schmid H, Dolderer B, Thiess U, Verleysdonk S, Hamprecht B. Renal expression of the brain and muscle isoforms of glycogen phosphorylase in different cell types. Neurochem Res 2008; 33:2575-82. [PMID: 18338248 DOI: 10.1007/s11064-008-9640-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/20/2008] [Indexed: 11/30/2022]
Abstract
Kidney contains glycogen. Glycogen is degraded by glycogen phosphorylase (GP). This enzyme comes in three isoforms, one of which, the brain isozyme (GP BB), is known to occur in kidney. Its pattern of distribution in rat kidney was studied in comparison to that of the muscle isoform (GP MM) with the aim to see if for GP BB and GP MM there were functional similarities in brain and kidney. In immunoblotting and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) experiments, both isozymes and their respective mRNAs were found in kidney homogenates. GP BB was immunocytochemically detected in collecting ducts which were identified by the marker protein aquaporin-2. GP MM was localized exclusively in interstitial cells of cortex and outer medulla. These cells were identified as fibroblasts by their expression of 5'-ectonucleotidase (cortex) or by their morphology (outer medulla). The physiological role of both isozymes is discussed in respect to local demands of energy and of proteoglycan building blocks.
Collapse
Affiliation(s)
- Heide Schmid
- Interfaculty Institute for Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076, Tuebingen, Germany
| | | | | | | | | |
Collapse
|
31
|
Freitas HS, Schaan BD, Seraphim PM, Nunes MT, Machado UF. Acute and short-term insulin-induced molecular adaptations of GLUT2 gene expression in the renal cortex of diabetic rats. Mol Cell Endocrinol 2005; 237:49-57. [PMID: 15869838 DOI: 10.1016/j.mce.2005.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/18/2005] [Accepted: 03/29/2005] [Indexed: 11/28/2022]
Abstract
Increased GLUT2 gene expression in the renal proximal tubule of diabetic rats is an adaptive condition, which may be important in the diabetic nephropathy development. We investigated the effects of insulin treatment upon the renal GLUT2 overexpression of diabetic rats. Acute treatment, surprisingly, induced a rapid further increase in GLUT2 mRNA content. Twelve hours after insulin injection, GLUT2 mRNA was twice the value of saline-injected rats (P<0.001), when GLUT2 protein remained unchanged. In response to short-term treatment, both GLUT2 mRNA and protein were increased in 1-day treated rats (P<0.05 versus saline-injected), decreasing after that, and reaching, within 6 days, values close to those of non-diabetic rats. Concluding, insulin treatment induced: initially, an additional upregulation of GLUT2 gene expression, involving posttranscriptional modulation; thereafter, downregulation of GLUT2 expression, which returns to non-diabetic levels. The former may be related to increased insulin concentration, the latter may be due to glycemic control.
Collapse
Affiliation(s)
- Helayne Soares Freitas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1524, 05505-900 Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
32
|
Londoño I, Bamri-Ezzine S, Gingras D, Bendayan M. Redistribution of Integrins in Tubular Epithelial Cells during Diabetic Glycogen Nephrosis. ACTA ACUST UNITED AC 2004; 98:e22-30. [PMID: 15361695 DOI: 10.1159/000079929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 04/19/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Even though many aspects of glycogen nephrosis in diabetes have already been studied, adhesion interactions between the glycogen-accumulating clear cells and the tubular basement membranes have not been addressed. As integrins play key roles in cell-to-matrix interactions, we investigated the expression and distribution of alpha3-, alphaV-, beta1- and beta3-integrin subunits in renal tissues from streptozotocin-induced hyperglycemic rats (3 months old) and their age-matched controls as well as from streptozotocin-injected normoglycemic animals. METHODS The levels and distribution of integrins were studied by immunocytochemistry and Western blot analysis. RESULTS Immunoblotting analysis of fractions enriched in glycogen-accumulating clear cells demonstrated enhanced expression of alpha3, alphaV and beta1 subunits while expression of beta3 did not differ from controls. The most striking cytochemical result was the redistribution of the alpha3-, alphaV-, and the beta1-integrin subunits to the apical plasma membrane of these cells. This was found by light and electron microscopy. CONCLUSION Our results suggest that the altered expression and distribution of integrins in clear cells of diabetic animals must have defined roles in the development of the renal tubulopathy.
Collapse
Affiliation(s)
- Irene Londoño
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Que, Canada
| | | | | | | |
Collapse
|
33
|
Bamri-Ezzine S, Ao ZJ, Londoño I, Gingras D, Bendayan M. Apoptosis of tubular epithelial cells in glycogen nephrosis during diabetes. J Transl Med 2003; 83:1069-80. [PMID: 12861046 DOI: 10.1097/01.lab.0000078687.21634.69] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The important problem of the fate of glycogen-accumulating clear cells in glycogen nephrosis is still unsettled. In this study, we examine whether apoptosis plays a relevant role in the development of diabetic glycogen nephrosis and explore the involvement of the Fas/Fas-L system and the activation of the caspase cascade. Diabetes was induced in rats by streptozotocin injection. Glycogen-accumulating clear cells were identified in renal tissues of hyperglycemic rats. They were found to be concentrated in the thick ascending limbs and distal tubules. Large cellular glycogen accumulations were confirmed by biochemical assays and enzyme-gold cytochemistry. Clear cells displayed apoptotic features such as Annexin V binding, nuclear TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling), and the simultaneous occurrence of Fas, Annexin V, and TUNEL positivity. Western blot analysis demonstrated enhanced expression of Fas receptor/ligand and the activation of the caspase cascade in these cells because cleaved forms of the caspase-3, -8, and -9 were detected. Furthermore, active caspase-3 was located in nuclei by immunoelectron microscopy. Our results indicate that epithelial cells in thick ascending limbs and distal tubules that develop glycogen nephrosis in response to hyperglycemia undergo Fas/Fas-L mediated cell death. Thus, apoptosis could be playing a significant role in renal epithelial cell deletion during diabetes.
Collapse
Affiliation(s)
- Saoussen Bamri-Ezzine
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|