1
|
Wang L, Cao J, Chen H, Ma Y, Zhang Y, Su X, Jing Y, Wang Y. TFEB overexpression through GFAP promoter disrupts neuronal lamination by dysregulating neurogenesis during embryonic development. Dev Neurosci 2024; 47:000538656. [PMID: 38583418 PMCID: PMC11709705 DOI: 10.1159/000538656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
INTRODUCTION Transcription factor EB (TFEB), a key regulator of autophagy and lysosomal biogenesis, has diverse roles in various physiological processes. Enhancing lysosomal function by TFEB activation has recently been implicated in restoring neural stem cells (NSCs) function. Overexpression of TFEB can inhibit the cell cycle of newborn cortical NSCs. It has also been found that TFEB regulates the pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy lysosomal biogenesis. This study aims to explore the effects of TFEB activation on neurogenesis in vivo through transgenic mice. METHODS We developed a GFAP-driven TFEB overexpression mouse model (TFEB GoE) by crossing the floxed TFEB overexpression mice and hGFAP-cre mice. We performed immunohistochemical and fluorescence staining on brain tissue from newborn mice to assess neurogenesis changes, employing markers such as GFAP, Nestin, Ki67, DCX, Tbr1 and Neun to trace different stages of neural development and cell proliferation. RESULTS TFEB GoE mice exhibited premature mortality, dying at 10-20 days after birth. Immunohistochemical analysis revealed significant abnormalities, including disrupted hippocampal structure and cortical layering. Compared to control mice, TFEB GoE mice showed a marked increase in radial glial cells (RGCs) in the hippocampus and cortex, with Ki67 staining indicating these cells were predominantly in a quiescent state. This suggests that TFEB overexpression suppresses RGCs proliferation. Additionally, abnormal distributions of migrating neurons and mature neurons were observed, highlighted by DCX, Tbr1 and Neun staining, indicating a disruption in normal neurogenesis. CONCLUSION This study, using transgenic animals in vivo, revealed that GFAP-driven TFEB overexpression leads to abnormal neural layering in the hippocampus and cortex by dysregulating neurogenesis. Our study is the first to discover the detrimental impact of TFEB overexpression on neurogenesis during embryonic development, which has important reference significance in future TFEB overexpression interventions in NSCs for treatment.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jiaxin Cao
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Haichao Chen
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuezhang Ma
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yishu Zhang
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaomei Su
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuhong Jing
- Institute of Anatomy and Histology and Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Neurology, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Beiriger J, Habib A, Jovanovich N, Kodavali CV, Edwards L, Amankulor N, Zinn PO. The Subventricular Zone in Glioblastoma: Genesis, Maintenance, and Modeling. Front Oncol 2022; 12:790976. [PMID: 35359410 PMCID: PMC8960165 DOI: 10.3389/fonc.2022.790976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with standard care; however, cases of successful treatment offer hope that an enhanced understanding of the pathology will improve the prognosis. The cell of origin in GBM remains controversial. Recent evidence has implicated stem cells as cells of origin in many cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated similar molecular profiles and share several distinctive characteristics to proliferative glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related. Animal models corroborate this connection, demonstrating migratory patterns from the SVZ to the tumor. Along with laboratory and animal research, clinical studies have demonstrated improved progression-free survival in patients with GBM after radiation to the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and determining its role in gliomagenesis in the human context is human brain organoids. Here we comprehensively discuss and review the role of the SVZ in GBM genesis, maintenance, and modeling.
Collapse
Affiliation(s)
- Jamison Beiriger
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nicolina Jovanovich
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Chowdari V. Kodavali
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Lincoln Edwards
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| | - Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh PA, United States
| |
Collapse
|
3
|
Navarrete-Yañez V, Garate-Carrillo A, Ayala M, Rodriguez-Castañeda A, Mendoza-Lorenzo P, Ceballos G, Ordoñez-Razo R, Dugar S, Schreiner G, Villarreal F, Ramirez-Sanchez I. Stimulatory effects of (-)-epicatechin and its enantiomer (+)-epicatechin on mouse frontal cortex neurogenesis markers and short-term memory: proof of concept. Food Funct 2021; 12:3504-3515. [PMID: 33900336 DOI: 10.1039/d0fo03084h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Consumption of (-)-epicatechin (Epi), a cacao flavanol improves cognition. The aim was to compare the effects of (-)-Epi or its stereoisomer (+)-Epi on mouse frontal cortex-dependent short-term working memory and modulators of neurogenesis. Three-month-old male mice (n = 7 per group) were provided by gavage either water (vehicle; Veh), (-)-Epi, at 1 mg kg-1 or (+)-Epi at 0.1 mg per kg of body weight for 15 days. After treatment, spontaneous alternation was evaluated by Y-maze. Brain frontal cortex was isolated for nitrate/nitrite measurements, Western blotting for nerve growth factor (NGF), microtubule associated protein 2 (MAP2), endothelial and neuronal nitric oxide synthase (eNOS and nNOS) and immunohistochemistry for neuronal specific protein (NeuN), doublecortin (DCX), capillary (CD31) and neurofilaments (NF200). Results demonstrate the stimulatory capacity of (-)-Epi and (+)-Epi on markers of neuronal proliferation as per increases in immunoreactive cells for NeuN (74 and 120% respectively), DCX (70 and 124%) as well as in NGF (34.4, 63.6%) and MAP2 (41.8, 63.8%). Capillary density yielded significant increases with (-)-Epi (∼80%) vs. (+)-Epi (∼160%). CD31 protein levels increased with (-)-Epi (∼70%) and (+)-Epi (∼140%). Effects correlated with nitrate/nitrite stimulation by (-)-Epi and (+)-Epi (110.2, 246.5%) and enhanced eNOS phosphorylation (Ser1177) with (-)-Epi and (+)-Epi (21.4, 41.2%) while nNOS phosphorylation only increased with (+)-Epi (18%). Neurofilament staining was increased in (-)-Epi by 135.6 and 84% with (+)-Epi. NF200 increased with (-)-Epi (116%) vs. (+)-Epi (84.5%). Frontal cortex-dependent short-term spatial working improved with (-)-Epi and (+)-Epi (15, 13%). In conclusion, results suggest that both enantiomers, but more effectively (+)-Epi, upregulate neurogenesis markers likely through stimulation of capillary formation and NO triggering, improvements in memory.
Collapse
Affiliation(s)
- Viridiana Navarrete-Yañez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Alejandra Garate-Carrillo
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico. and School of Medicine, University of California, San Diego, California, USA
| | - Marcos Ayala
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Antonio Rodriguez-Castañeda
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Patricia Mendoza-Lorenzo
- Division Academica de Ciencias Basicas, Unidad Chontalpa, Universidad Juarez, Autonoma de Tabasco, Tabasco, Mexico
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| | - Rosa Ordoñez-Razo
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico SXXI, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | | | | | - Francisco Villarreal
- School of Medicine, University of California, San Diego, California, USA and VA San Diego Health Care System, San Diego, California, USA
| | - Israel Ramirez-Sanchez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico D.F., Mexico.
| |
Collapse
|
4
|
Ali MA, Bhuiyan MH. Types of biomaterials useful in brain repair. Neurochem Int 2021; 146:105034. [PMID: 33789130 DOI: 10.1016/j.neuint.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
Biomaterials is an emerging field in the study of brain tissue engineering and repair or neurogenesis. The fabrication of biomaterials that can replicate the mechanical and viscoelastic features required by the brain, including the poroviscoelastic responses, force dissipation, and solute diffusivity are essential to be mapped from the macro to the nanoscale level under physiological conditions in order for us to gain an effective treatment for neurodegenerative diseases. This research topic has identified a critical study gap that must be addressed, and that is to source suitable biomaterials and/or create reliable brain-tissue-like biomaterials. This chapter will define and discuss the various types of biomaterials, their structures, and their function-properties features which would enable the development of next-generation biomaterials useful in brain repair.
Collapse
Affiliation(s)
- M Azam Ali
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| | - Mozammel Haque Bhuiyan
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
The Role of SVZ Stem Cells in Glioblastoma. Cancers (Basel) 2019; 11:cancers11040448. [PMID: 30934929 PMCID: PMC6521108 DOI: 10.3390/cancers11040448] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022] Open
Abstract
As most common primary brain cancer, glioblastoma is also the most aggressive and malignant form of cancer in the adult central nervous system. Glioblastomas are genetic and transcriptional heterogeneous tumors, which in spite of intensive research are poorly understood. Over the years conventional therapies failed to affect a cure, resulting in low survival rates of affected patients. To improve the clinical outcome, an important approach is to identify the cells of origin. One potential source for these are neural stem cells (NSCs) located in the subventricular zone, which is one of two niches in the adult nervous system where NSCs with the capacity of self-renewal and proliferation reside. These cells normally give rise to neuronal as well as glial progenitor cells. This review summarizes current findings about links between NSCs and cancer stem cells in glioblastoma and discusses current therapeutic approaches, which arise as a result of identifying the cell of origin in glioblastoma.
Collapse
|
6
|
Hung C, Nakamoto C, Muschler GF. Factors Affecting Connective Tissue Progenitors and Orthopaedic Implications. Scand J Surg 2016; 95:81-9. [PMID: 16821650 DOI: 10.1177/145749690609500202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- C Hung
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
7
|
Mele L, Vitiello PP, Tirino V, Paino F, De Rosa A, Liccardo D, Papaccio G, Desiderio V. Changing Paradigms in Cranio-Facial Regeneration: Current and New Strategies for the Activation of Endogenous Stem Cells. Front Physiol 2016; 7:62. [PMID: 26941656 PMCID: PMC4764712 DOI: 10.3389/fphys.2016.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Craniofacial area represent a unique district of human body characterized by a very high complexity of tissues, innervation and vascularization, and being deputed to many fundamental function such as eating, speech, expression of emotions, delivery of sensations such as taste, sight, and earing. For this reasons, tissue loss in this area following trauma or for example oncologic resection, have a tremendous impact on patients' quality of life. In the last 20 years regenerative medicine has emerged as one of the most promising approach to solve problem related to trauma, tissue loss, organ failure etc. One of the most powerful tools to be used for tissue regeneration is represented by stem cells, which have been successfully implanted in different tissue/organs with exciting results. Nevertheless, both autologous and allogeneic stem cell transplantation raise many practical and ethical concerns that make this approach very difficult to apply in clinical practice. For this reason different cell free approaches have been developed aiming to the mobilization, recruitment, and activation of endogenous stem cells into the injury site avoiding exogenous cells implant but instead stimulating patients' own stem cells to repair the lesion. To this aim many strategies have been used including functionalized bioscaffold, controlled release of stem cell chemoattractants, growth factors, BMPs, Platelet-Rich-Plasma, and other new strategies such as ultrasound wave and laser are just being proposed. Here we review all the current and new strategies used for activation and mobilization of endogenous stem cells in the regeneration of craniofacial tissue.
Collapse
Affiliation(s)
- Luigi Mele
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Pietro Paolo Vitiello
- Medical Oncology, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Second University of Naples Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Francesca Paino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Alfredo De Rosa
- Department of Odontology and Surgery, Second University of Naples Naples, Italy
| | - Davide Liccardo
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| |
Collapse
|
8
|
Fatt M, Hsu K, He L, Wondisford F, Miller FD, Kaplan DR, Wang J. Metformin Acts on Two Different Molecular Pathways to Enhance Adult Neural Precursor Proliferation/Self-Renewal and Differentiation. Stem Cell Reports 2015; 5:988-995. [PMID: 26677765 PMCID: PMC4682208 DOI: 10.1016/j.stemcr.2015.10.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
The recruitment of endogenous adult neural stem cells for brain repair is a promising regenerative therapeutic strategy. This strategy involves stimulation of multiple stages of adult neural stem cell development, including proliferation, self-renewal, and differentiation. Currently, there is a lack of a single therapeutic approach that can act on these multiple stages of adult neural stem cell development to enhance neural regeneration. Here we show that metformin, an FDA-approved diabetes drug, promotes proliferation, self-renewal, and differentiation of adult neural precursors (NPCs). Specifically, we show that metformin enhances adult NPC proliferation and self-renewal dependent upon the p53 family member and transcription factor TAp73, while it promotes neuronal differentiation of these cells by activating the AMPK-aPKC-CBP pathway. Thus, metformin represents an optimal candidate neuro-regenerative agent that is capable of not only expanding the adult NPC population but also subsequently driving them toward neuronal differentiation by activating two distinct molecular pathways.
Collapse
Affiliation(s)
- Michael Fatt
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Karolynn Hsu
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD 21287, USA
| | - Fredric Wondisford
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
9
|
Verma V, Samanthapudi K, Raviprakash R. Classic Studies on the Potential of Stem Cell Neuroregeneration. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2015; 25:123-141. [PMID: 26308908 DOI: 10.1080/0964704x.2015.1039904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The 1990s and 2000s were the beginning of an exciting time period for developmental neuroscience and neural stem cell research. By better understanding brain plasticity and the birth of new neurons in the adult brain, contrary to established dogma, hope for therapy from devastating neurological diseases was generated. The potential for stem cells to provide functional recovery in humans remains to be further tested and to further move into the clinical trial realm. The future certainly has great promise on stem cells to assist in alleviation of difficult-to-treat neurologic disorders. This article reviews classic studies of the 1990s and 2000s that paved the way for the advances of today, which can in turn lead to tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| | | | - Ratujit Raviprakash
- a Department of Neuroscience , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
10
|
Latchney SE, Masiulis I, Zaccaria KJ, Lagace DC, Powell CM, McCasland JS, Eisch AJ. Developmental and adult GAP-43 deficiency in mice dynamically alters hippocampal neurogenesis and mossy fiber volume. Dev Neurosci 2014; 36:44-63. [PMID: 24576816 DOI: 10.1159/000357840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022] Open
Abstract
Growth-associated protein-43 (GAP-43) is a presynaptic protein that plays key roles in axonal growth and guidance and in modulating synapse formation. Previous work has demonstrated that mice lacking one allele of this gene (GAP-43+/- mice) exhibit hippocampal structural abnormalities, impaired spatial learning and stress-induced behavioral withdrawal and anxiety, behaviors that are dependent on proper hippocampal circuitry and function. Given the correlation between hippocampal function, synaptic connectivity and neurogenesis, we tested if behaviorally naïve GAP-43+/- mice had alterations in either neurogenesis or synaptic connectivity in the hippocampus during early postnatal development and young adulthood, and following behavior testing in older adults. To test our hypothesis, we examined hippocampal cell proliferation (Ki67), number of immature neuroblasts (doublecortin, DCX) and mossy fiber volume (synaptoporin) in behaviorally naïve postnatal day 9 (P9) and P26, and behaviorally experienced 5- to 7-month-old GAP-43+/- and +/+ littermate mice. P9 GAP-43+/- mice had fewer Ki67+ and DCX+ cells compared to +/+ mice, particularly in the posterior dentate gyrus, and smaller mossy fiber volume in the same region. In young adulthood, however, male GAP-43+/- mice had more Ki67+ and DCX+ cells and greater mossy fiber volume in the posterior dentate gyrus relative to male +/+ mice. These increases were not seen in females. In 5- to 7-month-old GAP-43+/- mice (whose behaviors were the focus of our prior publication), there was no global change in the number of proliferating or immature neurons relative to +/+ mice. However, more detailed analysis revealed fewer proliferative DCX+ cells in the anterior dentate gyrus of male GAP-43+/- mice compared to male +/+ mice. This reduction was not observed in females. These results suggest that young GAP-43+/- mice have decreased hippocampal neurogenesis and synaptic connectivity, but slightly older mice have greater hippocampal neurogenesis and synaptic connectivity. In conjunction with our previous study, these findings suggest that GAP-43 is dynamically involved in early postnatal and adult hippocampal neurogenesis and synaptic connectivity, possibly contributing to the GAP-43+/- behavioral phenotype.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Tex., USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A. mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. Cell Rep 2013; 5:433-44. [PMID: 24139800 DOI: 10.1016/j.celrep.2013.09.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/14/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) integrates signals important for cell growth, and its dysregulation in neural stem cells (NSCs) is implicated in several neurological disorders associated with abnormal neurogenesis and brain size. However, the function of mTORC1 on NSC self-renewal and the downstream regulatory mechanisms are ill defined. Here, we found that genetically decreasing mTORC1 activity in neonatal NSCs prevented their differentiation, resulting in reduced lineage expansion and aborted neuron production. Constitutive activation of the translational repressor 4E-BP1, which blocked cap-dependent translation, had similar effects and prevented hyperactive mTORC1 induction of NSC differentiation and promoted self-renewal. Although 4E-BP2 knockdown promoted NSC differentiation, p70 S6 kinase 1 and 2 (S6K1/S6K2) knockdown did not affect NSC differentiation but reduced NSC soma size and prevented hyperactive mTORC1-induced increase in soma size. These data demonstrate a crucial role of mTORC1 and 4E-BP for switching on and off cap-dependent translation in NSC differentiation.
Collapse
Affiliation(s)
- Nathaniel W Hartman
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8082, USA
| | | | | | | | | | | |
Collapse
|
12
|
Perederiy JV, Westbrook GL. Structural plasticity in the dentate gyrus- revisiting a classic injury model. Front Neural Circuits 2013; 7:17. [PMID: 23423628 PMCID: PMC3575076 DOI: 10.3389/fncir.2013.00017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/27/2013] [Indexed: 12/12/2022] Open
Abstract
The adult brain is in a continuous state of remodeling. This is nowhere more true than in the dentate gyrus, where competing forces such as neurodegeneration and neurogenesis dynamically modify neuronal connectivity, and can occur simultaneously. This plasticity of the adult nervous system is particularly important in the context of traumatic brain injury or deafferentation. In this review, we summarize a classic injury model, lesioning of the perforant path, which removes the main extrahippocampal input to the dentate gyrus. Early studies revealed that in response to deafferentation, axons of remaining fiber systems and dendrites of mature granule cells undergo lamina-specific changes, providing one of the first examples of structural plasticity in the adult brain. Given the increasing role of adult-generated new neurons in the function of the dentate gyrus, we also compare the response of newborn and mature granule cells following lesioning of the perforant path. These studies provide insights not only to plasticity in the dentate gyrus, but also to the response of neural circuits to brain injury.
Collapse
Affiliation(s)
- Julia V Perederiy
- Vollum Institute, Oregon Health and Science University Portland, OR, USA
| | | |
Collapse
|
13
|
Feliciano DM, Bordey A. Newborn cortical neurons: only for neonates? Trends Neurosci 2012; 36:51-61. [PMID: 23062965 DOI: 10.1016/j.tins.2012.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/08/2012] [Accepted: 09/18/2012] [Indexed: 01/19/2023]
Abstract
Despite a century of debate over the existence of adult cortical neurogenesis, a consensus has not yet been reached. Here, we review evidence of the existence, origin, migration, and integration of neurons into the adult and neonatal cerebral cortex. We find that the lack of consensus likely stems from the low rate of postnatal cortical neurogenesis that has been observed, the fact that neurogenesis may be limited to subtypes of interneurons, and variability in other conditions, both physiological and environmental. We emphasize that neurogenesis occurs in the neonatal cortex and that neural stem cells are present into adulthood; it is possible that these progenitors are dormant, but they may be reactivated, for example, following injury.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Neurosurgery, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
14
|
Miller FD, Kaplan DR. Mobilizing endogenous stem cells for repair and regeneration: are we there yet? Cell Stem Cell 2012; 10:650-652. [PMID: 22704501 DOI: 10.1016/j.stem.2012.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Harnessing endogenous repair mechanisms to promote tissue regeneration in situations in which it does not normally occur has long been a goal in biomedical science. Recent advances in tissue stem cells indicate that this goal may now be achievable. Here we consider both the promise and the hurdles we still have to overcome.
Collapse
Affiliation(s)
- Freda D Miller
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto M5G 1L7, Canada; McEwen Center for Regenerative Medicine, University of Toronto, Toronto M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto M5G 1X5, Canada.
| | - David R Kaplan
- Cell Biology Program, Hospital for Sick Children, Toronto M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5G 1X5, Canada
| |
Collapse
|
15
|
Abstract
One of the most intriguing questions in stem cell biology is whether pluripotent stem cells exist in adult tissues. Several groups of investigators employing i) various isolation protocols, ii) detection of surface markers, and iii) experimental in vitro and in vivo models, have reported the presence of cells that possess a pluripotent character in adult tissues. Such cells were assigned various operational abbreviations and names in the literature that added confusion to the field and raised the basic question of whether these are truly distinct or overlapping populations of the same primitive stem cells. Unfortunately, these cells were never characterized side-by-side to address this important issue. Nevertheless, taking into consideration their common features described in the literature, it is very likely that various investigators have described overlapping populations of developmentally early stem cells that are closely related. These different populations of stem cells will be reviewed in this paper.
Collapse
|
16
|
Ruff CA, Wilcox JT, Fehlings MG. Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp Neurol 2012; 235:78-90. [DOI: 10.1016/j.expneurol.2011.02.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 12/19/2022]
|
17
|
Hodge RD, Hevner RF. Expression and actions of transcription factors in adult hippocampal neurogenesis. Dev Neurobiol 2011; 71:680-9. [PMID: 21412988 DOI: 10.1002/dneu.20882] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neurogenesis in the adult brain, a process once thought to be essentially absent, has now been demonstrated to occur throughout adult mammalian life within several brain regions. Adult neurogenesis normally occurs only within the subventricular zone (SVZ) bordering the lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). Neurogenic progenitors within these regions produce distinct neuron types, with progenitors in the SGZ giving rise to glutamatergic neurons that populate the DG granule cell layer and those within the SVZ producing neurons destined for the olfactory bulb. In this review, we highlight recent research on transcription factor expression and function during adult hippocampal neurogenesis. In this regard, recent evidence indicates that adult neurogenesis replicates important aspects of progenitor cell development in the embryonic brain. Specifically, work from our laboratory and others indicates that transcription factor cascades active in progenitor cells during neurogenesis in the embryonic cerebral cortex are also activated in adult hippocampal progenitor cells, where they play an important role in determining neuronal fate and regulating progenitor cell proliferation and maintenance. These findings suggest that conserved transcription factor cascades regulate genetic programs that delineate progenitor cell lineages and control progenitor cell proliferation and differentiation.
Collapse
Affiliation(s)
- Rebecca D Hodge
- Department of Neurological Surgery, University of Washington, Seattle, Washington 98101, USA
| | | |
Collapse
|
18
|
Adult neurogenesis occurs in primate sensorimotor cortex following cervical dorsal rhizotomy. J Neurosci 2010; 30:8613-23. [PMID: 20573907 DOI: 10.1523/jneurosci.5272-09.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Adult neurogenesis remains controversial in the cerebral cortex. We have previously shown in monkeys and rats that reactive neurogenesis occurs in the spinal dorsal horn 6-8 weeks after a cervical dorsal rhizotomy. Here, in three monkeys with the same lesion, we asked whether it also occurs coincidentally in the corresponding primary somatosensory and motor cortex, where significant topographic and neuronal reorganization is known to occur. Monkeys (male Macaca fascicularis) were given 5-bromo-2-deoxyuridine (BrdU) injections 2-3 weeks after the rhizotomy, and were perfused 4-6 weeks later. Cells colabeled for BrdU and five different neuronal markers were observed within the primary somatosensory and motor cortex, and their distributions were compared bilaterally. Cells colabeled with BrdU and the astrocytic marker glial fibrillary acidic protein (GFAP) were also quantified for comparison. A significant number of BrdU/NeuN- and BrdU/calbindin-colabeled cells were observed in topographically reorganized cortex. Small numbers of BrdU/GFAP-colabeled cells were also consistently observed bilaterally, but these cells were never colabeled with any of the neuronal markers. Of the cells colabeled with BrdU and a neuronal marker, at least half had an inhibitory phenotype. However, excitatory pyramidal neurons were also identified with classic pyramidal morphology. Cortical neurogenesis was not observed in other cortical regions. It was also not observed in the primary sensorimotor, prefrontal, or posterior parietal cortex in an additional control monkey (male Macaca fascicularis) that had no surgical intervention. Our findings provide evidence for reactive endogenous cortical neurogenesis after a dorsal rhizotomy, which may play a role in functional recovery.
Collapse
|
19
|
Cho S, Wood A, Bowlby MR. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 2010; 5:19-33. [PMID: 18615151 DOI: 10.2174/157015907780077105] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/07/2006] [Accepted: 01/01/2007] [Indexed: 11/22/2022] Open
Abstract
Recent improvements in brain slice technology have made this biological preparation increasingly useful for examining pathophysiology of brain diseases in a tissue context. Brain slices maintain many aspects of in vivo biology, including functional local synaptic circuitry with preserved brain architecture, while allowing good experimental access and precise control of the extracellular environment, making them ideal platforms for dissection of molecular pathways underlying neuronal dysfunction. Importantly, these ex vivo systems permit direct treatment with pharmacological agents modulating these responses and thus provide surrogate therapeutic screening systems without recourse to whole animal studies. Virus or particle mediated transgenic expression can also be accomplished relatively easily to study the function of novel genes in a normal or injured brain tissue context.In this review we will discuss acute brain injury models in organotypic hippocampal and co-culture systems and the effects of pharmacological modulation on neurodegeneration. The review will also cover the evidence of developmental plasticity in these ex vivo models, demonstrating emergence of injury-stimulated neuronal progenitor cells, and neurite sprouting and axonal regeneration following pathway lesioning. Neuro-and axo-genesis are emerging as significant factors contributing to brain repair following many acute and chronic neurodegenerative disorders. Therefore brain slice models may provide a critical contextual experimental system to explore regenerative mechanisms in vitro.
Collapse
Affiliation(s)
- Seongeun Cho
- Discovery Neuroscience, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
20
|
Hu SL, Zhang JQ, Hu X, Hu R, Luo HS, Li F, Xia YZ, Li JT, Lin JK, Zhu G, Feng H. In vitro labeling of human umbilical cord mesenchymal stem cells with superparamagnetic iron oxide nanoparticles. J Cell Biochem 2009; 108:529-35. [PMID: 19623584 DOI: 10.1002/jcb.22283] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) transplantation has been shown to promote regeneration and neuroprotection in central nervous system (CNS) injuries and neurodegenerative diseases. To develop this approach into a clinical setting it is important to be able to follow the fates of transplanted cells by noninvasive imaging. Neural precursor cells and hematopoietic stem cells can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticle. The purpose of our study was to prospectively evaluate the influence of SPIO on hUC-MSCs and the feasibility of tracking for hUC-MSCs by noninvasive imaging. In vitro studies demonstrated that magnetic resonance imaging (MRI) can efficiently detect low numbers of SPIO-labeled hUC-MSCs and that the intensity of the signal was proportional to the number of labeled cells. After transplantation into focal areas in adult rat spinal cord transplanted SPIO-labeled hUC-MSCs produced a hypointense signal using T2-weighted MRI in rats that persisted for up to 2 weeks. This study demonstrated the feasibility of noninvasive imaging of transplanted hUC-MSCs.
Collapse
Affiliation(s)
- Sheng-Li Hu
- Department of Neurosurgery, Southwest Hospital, The Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Keene CD, Chang R, Stephen C, Nivison M, Nutt SE, Look A, Breyer RM, Horner PJ, Hevner R, Montine TJ. Protection of hippocampal neurogenesis from toll-like receptor 4-dependent innate immune activation by ablation of prostaglandin E2 receptor subtype EP1 or EP2. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2300-9. [PMID: 19389932 DOI: 10.2353/ajpath.2009.081153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prostaglandin E2 is one of several eicosanoid products of the cyclooxygenase isozymes and is a key regulator of innate immune responses; it also possesses paracrine effects on mature neurons. The prostaglandin E2 receptor family consists of four subtypes of which EP1 and EP2 are known to be expressed by microglia. Lipopolysaccharide (LPS)-induced innate immune activation leads to the degeneration of intermediate progenitor cells (IPCs) that are destined for neuronal maturation in the hippocampal subgranular zone (SGZ); these cells can be identified by the expression of the transcription factor T-box brain gene 2 (Tbr2). Importantly, depletion of LPS-induced IPCs from the SGZ is suppressed by cyclooxygenase inhibitors. We therefore tested the hypothesis that either EP1 or EP2 is critical to LPS-induced depletion of Tbr2+ IPCs from the SGZ. Expression of either EP1 or EP2 was necessary for Toll-like receptor 4-dependent innate immune-mediated depletion of these Tbr2+ IPCs in mice. Moreover, EP1 activation was directly toxic to murine adult hippocampal progenitor cells; EP2 was not expressed by these cells. Finally, EP1 modulated the response of murine primary microglia cultures to LPS but in a manner distinct from EP2. These results indicate that prostaglandin E2 signaling via either EP1 or EP2 is largely to completely necessary for Toll-like receptor 4-dependent depletion of IPCs from the SGZ and suggest further pharmacological strategies to protect this important neurogenic niche.
Collapse
Affiliation(s)
- C Dirk Keene
- Department of Pathology, University of Washington, Box 359791, Seattle, WA 98104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hillyer JE, Joynes RL. A new measure of hindlimb stepping ability in neonatally spinalized rats. Behav Brain Res 2009; 202:291-302. [PMID: 19376160 DOI: 10.1016/j.bbr.2009.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/28/2009] [Accepted: 04/09/2009] [Indexed: 12/29/2022]
Abstract
One of the most widely used animal models for assessing recovery of locomotor functioning is the spinal rat. Although true differences in locomotor abilities of these animals are exhibited during treadmill testing, current measurement techniques often fail to detect them. The HiJK (Hillyer-Joynes Kinematics) scale was developed in an effort to distinguish more effectively between groups of spinal rats. Scale items were compiled after extensive review of the literature concerning development and analysis of rat locomotion and a thorough examination of the current tools. Treadmill tests for 137 Sprague-Dawley rats were taped and scored. The structure of the scale was tested with principle components and factor analysis, in which six of the eight items accounted for 59% of the variance, while all eight accounted for 78%. Validity tests demonstrate that HiJK is measuring locomotor performance accurately and powerfully. First, the HiJK scale correlates highly (>.8) with the widely used BBB scale and second, as shown with ANOVA, can distinguish between different groups of spinal rats. Reliability of the scale was also analyzed. Cronbach's alpha was shown to be .91, indicating considerable internal consistency. Additionally, inter-rater and intra-rater reliabilities were substantial, with correlations for most items reaching above .80. We believe that the HiJK scale will help researchers verify existing experimental differences, advance the field of spinal cord research, and, hopefully, lead to discovery of methods to enhance recovery of function.
Collapse
Affiliation(s)
- Jessica E Hillyer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada.
| | | |
Collapse
|
23
|
|
24
|
Agasse F, Nicoleau C, Petit J, Jaber M, Roger M, Benzakour O, Coronas V. Evidence for a major role of endogenous fibroblast growth factor-2 in apoptotic cortex-induced subventricular zone cell proliferation. Eur J Neurosci 2007; 26:3036-42. [PMID: 18005068 DOI: 10.1111/j.1460-9568.2007.05915.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the adult mammalian brain, neural stem cells persist in the subventricular zone (SVZ) of lateral ventricles. It is well established that cortical damage leads to SVZ cell proliferation and neuronal differentiation. We have previously demonstrated in rat that, when treated with the apoptosis-inducing agent staurosporine, cortex explants release heat-labile factors that promote SVZ cell culture proliferation. In the present report, we investigated in vitro mechanisms involved in cortex injury-triggered neurogenesis in the rat. We demonstrated, using immunoblotting analysis and fibroblast growth factor (FGF)-2 enzyme-linked sandwich immunosorbent assay, that treatment of cortex explants with apoptosis-inducing agents increases the release of FGF-2. We next determined the effects of apoptotic cortex-released factors in regulating SVZ cell proliferation and neuronal differentiation by using bromodeoxyuridine incorporation and microtubule-associated protein 2 immunostaining assays, respectively. We found that conditioned media derived from staurosporine-treated cortex explants enhanced SVZ cell culture proliferation and differentiation by over 50 and 80%, respectively. Finally, we showed that immunodepletion of FGF-2 or pharmacological blockade of FGF-2 receptor by SU5402 completely abolished staurosporine-treated cortex mitogenic activity on SVZ cultures but did not alter its activity on neuronal cell differentiation. Altogether, the present report establishes that the release of endogenous FGF-2 by apoptotic cortex explants plays a major role in the induction of SVZ cell proliferation but not neuronal differentiation, which probably depends on the release of other as yet unidentified cortical factors.
Collapse
Affiliation(s)
- F Agasse
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, 40 avenue du Recteur Pineau, Poitiers, F-86022, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Neri M, Maderna C, Cavazzin C, Deidda-Vigoriti V, Politi LS, Scotti G, Marzola P, Sbarbati A, Vescovi AL, Gritti A. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells 2007; 26:505-16. [PMID: 17975226 DOI: 10.1634/stemcells.2007-0251] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent studies have raised appealing possibilities of replacing damaged or lost neural cells by transplanting in vitro-expanded neural precursor cells (NPCs) and/or their progeny. Magnetic resonance (MR) tracking of superparamagnetic iron oxide (SPIO)-labeled cells is a noninvasive technique to track transplanted cells in longitudinal studies on living animals. Murine NPCs and human mesenchymal or hematopoietic stem cells can be efficiently labeled by SPIOs. However, the validation of SPIO-based protocols to label human neural precursor cells (hNPCs) has not been extensively addressed. Here, we report the development and validation of optimized protocols using two SPIOs (Sinerem and Endorem) to label human hNPCs that display bona fide stem cell features in vitro. A careful titration of both SPIOs was required to set the conditions resulting in efficient cell labeling without impairment of cell survival, proliferation, self-renewal, and multipotency. In vivo magnetic resonance imaging (MRI) combined with histology and confocal microscopy indicated that low numbers (5 x 10(3) to 1 x 10(4)) of viable SPIO-labeled hNPCs could be efficiently detected in the short term after transplantation in the adult murine brain and could be tracked for at least 1 month in longitudinal studies. By using this approach, we also clarified the impact of donor cell death to the MR signal. This study describes a simple protocol to label NPCs of human origin using SPIOs at optimized low dosages and demonstrates the feasibility of noninvasive imaging of labeled cells after transplantation in the brain; it also evidentiates potential limitations of the technique that have to be considered, particularly in the perspective of neural cell-based clinical applications.
Collapse
Affiliation(s)
- Margherita Neri
- aStem Cell Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Leung CT, Coulombe PA, Reed RR. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 2007; 10:720-6. [PMID: 17468753 DOI: 10.1038/nn1882] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 02/27/2007] [Indexed: 01/09/2023]
Abstract
The olfactory neuroepithelium undergoes continual neurogenesis and, after extensive lesions, fully regenerates to maintain sensory function. The stem cell population underlying this regenerative capacity remains elusive. Here we show that mouse horizontal basal cells (HBCs) function as adult olfactory neuroepithelium neural stem cells and examine their distinct dynamics in olfactory neuroepithelium maintenance and regeneration. Fate-mapping analysis after olfactory neuroepithelium lesioning shows that HBCs are competent to regenerate both neuronal and non-neuronal olfactory neuroepithelium lineages. HBCs serve as a reservoir of long-lived progenitors that remain largely quiescent during normal neuronal turnover or even after acute, selective loss of mature neurons. Under these conditions, previously identified progenitors are largely responsible for tissue maintenance. Yet after extensive injuries that deplete resident neuronal precursors, HBCs transiently proliferate and their progeny fully reconstitute the neuroepithelium. Our data support a new model of adult neurogenesis in which distinct cell populations mediate normal neuronal turnover and neuronal replacement upon traumatic injury.
Collapse
Affiliation(s)
- Cheuk T Leung
- Center for Sensory Biology and the Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, PCTB 801, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
27
|
Cayre M, Scotto-Lomassese S, Malaterre J, Strambi C, Strambi A. Understanding the regulation and function of adult neurogenesis: contribution from an insect model, the house cricket. Chem Senses 2007; 32:385-95. [PMID: 17404150 DOI: 10.1093/chemse/bjm010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Since the discovery of adult neurogenesis, a major issue is the role of newborn neurons and the function-dependent regulation of adult neurogenesis. We decided to use an animal model with a relatively simple brain to address these questions. In the adult cricket brain as in mammals, new neurons are produced throughout life. This neurogenesis occurs in the main integrative centers of the insect brain, the mushroom bodies (MBs), where the neuroblasts responsible for their formation persist after the imaginal molt. The rate of production of new neurons is controlled not only by internal cues such as morphogenetic hormones but also by external environmental cues. Adult crickets reared in an enriched sensory environment experienced an increase in neuroblast proliferation as compared with crickets reared in an impoverished environment. In addition, unilateral sensory deprivation led to reduced neurogenesis in the MB ipsilateral to the lesion. In search of a functional role for the new cells, we specifically ablated MB neuroblasts in young adults using brain-focused gamma ray irradiation. We developed a learning paradigm adapted to the cricket, which we call the "escape paradigm." Using this operant associative learning test, we showed that crickets lacking neurogenesis exhibited delayed learning and reduced memory retention of the task when olfactory cues were used. Our results suggest that environmental cues are able to influence adult neurogenesis and that, in turn, newly generated neurons participate in olfactory integration, optimizing learning abilities of the animal, and thus its adaptation to its environment. Nevertheless, odor learning in adult insects cannot always be attributed to newly born neurons because neurogenesis is completed earlier in development in many insect species. In addition, many of the irradiated crickets performed significantly better than chance on the operant learning task.
Collapse
Affiliation(s)
- Myriam Cayre
- Institut de Biologie du Developpement de Marseille Luminy, CNRS Parc scientifique de Luminy, case 907, 13288 Marseille, cedex 09, France.
| | | | | | | | | |
Collapse
|
28
|
Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 2007; 500:1007-33. [PMID: 17183554 PMCID: PMC2758702 DOI: 10.1002/cne.21229] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We previously demonstrated that chemokine receptors are expressed by neural progenitors grown as cultured neurospheres. To examine the significance of these findings for neural progenitor function in vivo, we investigated whether chemokine receptors were expressed by cells having the characteristics of neural progenitors in neurogenic regions of the postnatal brain. Using in situ hybridization we demonstrated the expression of CCR1, CCR2, CCR5, CXCR3, and CXCR4 chemokine receptors by cells in the dentate gyrus (DG), subventricular zone of the lateral ventricle, and olfactory bulb. The pattern of expression for all of these receptors was similar, including regions where neural progenitors normally reside. In addition, we attempted to colocalize chemokine receptors with markers for neural progenitors. In order to do this we used nestin-EGFP and TLX-LacZ transgenic mice, as well as labeling for Ki67, a marker for dividing cells. In all three areas of the brain we demonstrated colocalization of chemokine receptors with these three markers in populations of cells. Expression of chemokine receptors by neural progenitors was further confirmed using CXCR4-EGFP BAC transgenic mice. Expression of CXCR4 in the DG included cells that expressed nestin and GFAP as well as cells that appeared to be immature granule neurons expressing PSA-NCAM, calretinin, and Prox-1. CXCR4-expressing cells in the DG were found in close proximity to immature granule neurons that expressed the chemokine SDF-1/CXCL12. Cells expressing CXCR4 frequently coexpressed CCR2 receptors. These data support the hypothesis that chemokine receptors are important in regulating the migration of progenitor cells in postnatal brain.
Collapse
Affiliation(s)
- Phuong B. Tran
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Ghazal Banisadr
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Dongjun Ren
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Anjen Chenn
- Department of Pathology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
- Correspondence to: Richard J. Miller, Dept. of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 E Chicago Ave., Chicago IL 60611.
| |
Collapse
|
29
|
Richards GR, Jack AD, Platts A, Simpson PB. Measurement and analysis of calcium signaling in heterogeneous cell cultures. Methods Enzymol 2006; 414:335-47. [PMID: 17110201 DOI: 10.1016/s0076-6879(06)14019-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
High-content imaging platforms capable of studying kinetic responses at a single-cell level have elevated kinetic recording techniques from labor-intensive low-throughput experiments to potential high-throughput screening assays. We have applied this technology to the investigation of heterogeneous cell cultures derived from primary neural tissue. The neuronal cultures mature into a coupled network and display spontaneous oscillations in intracellular calcium, which can be modified by the addition of pharmacological agents. We have developed algorithms to perform Fourier analysis and quantify both the degree of synchronization and the effects of modulators on the oscillations. Functional and phenotypic experiments can be combined using this approach. We have used post-hoc immunolabeling to identify subpopulations of cells in cocultures and to dissect the calcium responses of these cells from the population response. The combination of these techniques represents a powerful tool for drug discovery.
Collapse
Affiliation(s)
- Gillian R Richards
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Essex, United Kingdom
| | | | | | | |
Collapse
|
30
|
Di Giovanni S. Regeneration following spinal cord injury, from experimental models to humans: where are we? Expert Opin Ther Targets 2006; 10:363-76. [PMID: 16706677 DOI: 10.1517/14728222.10.3.363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regeneration in the adult CNS following injury is extremely limited. Traumatic spinal cord injury causes a permanent neurological deficit followed by a very limited recovery due to failed regeneration attempts. In fact, it is now clear that the spinal cord intrinsically has the potential to regenerate, but cellular loss and the presence of an inhibitory environment strongly limit tissue regeneration and functional recovery. The molecular mechanisms responsible for failed regeneration are starting to be unveiled. This gain in knowledge led to the design of therapeutic strategies aimed to limit the tissue scar, to enhance the proregeneration versus the inhibitory environment, and to replace tissue loss, including the use of stem cells. They have been very successful in several animal models, although results are still controversial in humans. Nonetheless, novel experimental approaches hold great promise for use in humans.
Collapse
Affiliation(s)
- Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, University of Tuebingen, Hertie-Institute for Clinical Brain Research, D-72076 Tuebingen, Germany.
| |
Collapse
|
31
|
Abstract
Contrary to the long-held dogma according to which the adult mammalian brain does not produce neurons anymore, neuronal turnover has been reported in two discrete areas of the adult brain: the hippocampus and the olfactory bulb. Adult-generated neurons are produced from neural stem cells located in the hippocampal subgranular zone and the subventricular zone of the lateral ventricles. Recently, number of genetic and epigenetic factors that modulate proliferation of stem cells, migration, differentiation and survival of newborn neurons have been characterized. We know that neurogenesis increases in the diseased brain, after stroke or after traumatic brain injury. Importantly, progenitors from the subventricular zone, but not from the subgranular zone, are incorporated at the sites of injury, where they replace some of the degenerated neurons. Thus, the central nervous system has the capacity to regenerate itself after injury and, today, researchers develop strategies aimed at promoting neurogenesis in diseased areas. This basic research is attracting a lot of attention because of the hope that it will lead to regeneration and reconstruction therapy for the damaged brain. In this review, we discuss major findings concerning the organization of the neurogenic niche located in the subventricular zone and examine both intrinsic and extrinsic factors that regulate adult neurogenesis. Then, we present evidences for the intrinsic capability of the adult brain for cell replacement, and shed light on recent works demonstrating that one can greatly enhance appropriate brain cell replacement by using molecular cues known to endogenously control proliferation, migration, differentiation and/or survival of subventricular zone progenitors. Finally, we review some of the advantages and limits of strategies aimed at using endogenous progenitors and their relevance to human clinics.
Collapse
Affiliation(s)
- Antoine de Chevigny
- Institut Pasteur, Laboratoire Perception et mémoire, CNRS URA 2182, 25, rue du Docteur-Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
32
|
An Y, Tsang KKS, Zhang H. Potential of stem cell based therapy and tissue engineering in the regeneration of the central nervous system. Biomed Mater 2006; 1:R38-44. [PMID: 18460755 DOI: 10.1088/1748-6041/1/2/r02] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The insufficiency of self-repair and regeneration of the central nervous system (CNS) leads to difficulty of rehabilitation of the injured brain. In the past few decades, the significant progress in cell therapy and tissue engineering has contributed to the functional recovery of the CNS to a great extent. The present review focuses on the potential role of stem cell based therapy and tissue engineering in the regeneration of the CNS.
Collapse
Affiliation(s)
- Yihua An
- Department of Neural Stem Cell, Beijing Neurosurgical Institute affiliated to Capital University of Medical Sciences, Beijing 100050, People's Republic of China
| | | | | |
Collapse
|
33
|
Richards GR, Smith AJ, Parry F, Platts A, Chan GKY, Leveridge M, Kerby JE, Simpson PB. A Morphology- and Kinetics-Based Cascade for Human Neural Cell High Content Screening. Assay Drug Dev Technol 2006; 4:143-52. [PMID: 16712418 DOI: 10.1089/adt.2006.4.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The prospect of manipulating endogenous neural stem cells to replace damaged tissue and correct functional deficits represents a novel mechanism for treating a variety of central nervous system disorders. Using human neural precursor cultures and a variety of assays for studying stem cell behavior we have screened two libraries of commercially available compounds using an endpoint high content screening assay. We then performed detailed follow-up mechanistic studies on confirmed hits using endpoint and kinetics assays to characterize and differentiate the mechanisms of action of these compounds. The screening cascade employed successfully identified a number of active compounds with differing mechanisms of action. This approach shows how hits from a phenotypic screen can be prioritized and characterized by high content screening to identify potentially novel mechanisms and druggable targets to take forward into more conventional high-throughput screening approaches.
Collapse
Affiliation(s)
- Gillian R Richards
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Agasse F, Benzakour O, Berjeaud JM, Roger M, Coronas V. Endogenous factors derived from embryonic cortex regulate proliferation and neuronal differentiation of postnatal subventricular zone cell cultures. Eur J Neurosci 2006; 23:1970-6. [PMID: 16630045 DOI: 10.1111/j.1460-9568.2006.04739.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In rodents, the subventricular zone (SVZ) harbours neural stem cells that proliferate and produce neurons throughout life. Previous studies showed that factors released by the developing cortex promote neurogenesis in the embryonic ventricular zone. In the present report, we studied in the rat the possible involvement of endogenous factors derived from the embryonic cortex in the regulation of the development of postnatal SVZ cells. To this end, SVZ neurospheres were maintained with explants or conditioned media (CM) prepared from embryonic day (E) 13, E16 or early postnatal cortex. We demonstrate that early postnatal cortex-derived factors have no significant effect on SVZ cell proliferation or differentiation. In contrast, E13 and E16 cortex release diffusible, heat-labile factors that promote SVZ cell expansion through increased proliferation and reduced cell death. In addition, E16 cortex-derived factors stimulate neuronal differentiation in both early postnatal and adult SVZ cultures. Fibroblast growth factor (FGF)-2- but not epidermal growth factor (EGF)-immunodepletion drastically reduces the mitogenic effect of E16 cortex CM, hence suggesting a major role of endogenous FGF-2 released by E16 cortex in the stimulation of SVZ cell proliferation. The evidence we provide here for the regulation of SVZ cell proliferation and neuronal differentiation by endogenous factors released from embryonic cortex may be of major importance for brain repair research.
Collapse
Affiliation(s)
- Fabienne Agasse
- CNRS, UMR 6187, Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, France
| | | | | | | | | |
Collapse
|
35
|
Richards GR, Smith AJ, Cuddon P, Ma QP, Leveridge M, Kerby J, Roderick HL, Bootman MD, Simpson PB. The JAK3 inhibitor WHI-P154 prevents PDGF-evoked process outgrowth in human neural precursor cells. J Neurochem 2006; 97:201-10. [PMID: 16515549 DOI: 10.1111/j.1471-4159.2006.03723.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prospect of manipulating endogenous neural stem cells to replace damaged tissue and correct functional deficits offers a novel mechanism for treating a variety of CNS disorders. The aim of this study was to investigate pathways controlling neurite outgrowth in human neural precursor cells, in particular in response to platelet-derived growth factor (PDGF). PDGF-AA, -AB and -BB were found to initiate calcium signalling and produce robust increases in neurite outgrowth. PDGF-induced outgrowth of Tuj1-positive precursors was abolished by the addition of EGTA, suggesting that calcium entry is a critical part of the signalling pathway. Wortmannin and PD098059 failed to inhibit PDGF-induced outgrowth. Clostridium Toxin B increased the amount of PDGF-induced neurite branching but had no effect on basal levels. In contrast, WHI-P154, an inhibitor of Janus protein tyrosine kinase (JAK3), Hck and Syk, prevented PDGF-induced neurite outgrowth. PDGF activates multiple signalling pathways with considerable potential for cross-talk. This study has highlighted the complexity of the pathways leading to neurite outgrowth in human neural precursors, and provided initial evidence to suggest that calcium entry is critical in producing the morphological changes observed.
Collapse
Affiliation(s)
- G R Richards
- The Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Nina G Pabello
- Wadsworth Center, Molecular Medicine, Albany, New York 12201, USA
| | | |
Collapse
|