1
|
Xie J, Wang L, Tian S, Li R, Zhang L, Shi H, Liu Z, Ma T, Hu H, She Z, Wang L. The Protective Role of Transcript-Induced in Spermiogenesis 40 in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2024; 49:2519-2534. [PMID: 38884889 DOI: 10.1007/s11064-024-04170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
Prompt reperfusion after cerebral ischemia is important to maintain neuronal survival and reduce permanent disability and death. However, the resupply of blood can induce oxidative stress, inflammatory response and apoptosis, further leading to tissue damage. Here, we report the versatile biological roles of transcript-induced in spermiogenesis 40 (Tisp40) in ischemic stroke. We found that the expression of Tisp40 was upregulated in ischemia/reperfusion-induced brain tissues and oxygen glucose deprivation/returned -stimulated neurons. Tisp40 deficiency increased the infarct size and neurological deficit score, and promoted inflammation and apoptosis. Tisp40 overexpression played the opposite role. In vitro, the oxygen glucose deprivation/returned model was established in Tisp40 knockdown and overexpression primary cultured cortical neurons. Tisp40 knockdown can aggravate the process of inflammation and apoptosis, and Tisp40 overexpression ameliorated the aforementioned processes. Mechanistically, Tisp40 protected against ischemic stroke via activating the AKT signaling pathway. Tisp40 may be a new therapeutic target in brain ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jing Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Ruyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongjie Shi
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
| | - Zhen Liu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Tengfei Ma
- Department of Neurosurgery, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Heng Hu
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
- Institute of Model Animal of Wuhan University, Wuhan, China.
| | - Lang Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Veeravalli KK. Implications of MMP-12 in the pathophysiology of ischaemic stroke. Stroke Vasc Neurol 2024; 9:97-107. [PMID: 37336584 PMCID: PMC11103161 DOI: 10.1136/svn-2023-002363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
This article focuses on the emerging role of matrix metalloproteinase-12 (MMP-12) in ischaemic stroke (IS). MMP-12 expression in the brain increases dramatically in animal models of IS, and its suppression reduces brain damage and promotes neurological, sensorimotor and cognitive functional outcomes. Thus, MMP-12 could represent a potential target for the management of IS. This article provides an overview of MMP-12 upregulation in the brain following IS, its deleterious role in the post-stroke pathogenesis (blood-brain barrier disruption, inflammation, apoptosis and demyelination), possible molecular interactions and mechanistic insights, its involvement in post-ischaemic functional deficits and recovery as well as the limitations, perspectives, challenges and future directions for further research. Prior to testing any MMP-12-targeted therapy in patients with acute IS, additional research is needed to establish the effectiveness of MMP-12 suppression against IS in older animals and in animals with comorbidities. This article also examines the clinical implications of suppressing MMP-12 alone or in combination with MMP-9 for extending the currently limited tissue plasminogen activator therapy time window. Targeting of MMP-12 is expected to have a profound influence on the therapeutic management of IS in the future.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| |
Collapse
|
3
|
Pahk K, Lee SH. Effects of repetitive transcranial magnetic stimulation on improving cerebral blood flow in patients with middle cerebral artery steno-occlusion. Acta Neurol Belg 2024; 124:249-256. [PMID: 37751116 DOI: 10.1007/s13760-023-02383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been reported to induce neurogenesis and angiogenesis. As increased neural activity can induce a hemodynamic response, we investigated the effect of rTMS on perfusion in patients with middle cerebral artery steno-occlusion. METHODS This was a prospective, randomized, open-label, blinded end-point, pilot study. Patients were divided into two groups (rTMS intervention and non-intervention) which were both administered antiplatelet drugs to treat vascular steno-occlusion. In the intervention group, additional rTMS was performed on the area with stenosis and obstruction. Perfusion rates were compared using single-photon emission computed tomography / computed tomography (SPECT/CT). RESULTS From June 2020 to May 2022, 16 patients were subjected to 1:1 randomization. Using the standardized uptake value ratio (SUVr) to quantify perfusion in the affected brain region, the corresponding SPECT/CT values before and after rTMS were obtained. Imaging analysis was compared between eight and seven patients in the rTMS and control groups, respectively. Based on the comparison between the target and ipsilateral cerebellum SUVmeans, four patients had a ≥ 20% increase in SUVr in the rTMS group and none in the control group. Changes in SUVr were significantly different between the initial and follow-up SPECT/CT in the rTMS group (p = 0.033); no significant difference was observed in the control group (p = 0.481). CONCLUSION We observed a significant improvement in perfusion in the stimulation group in a perfusion test performed between 6 and 12 months after rTMS stimulation in stroke patients with steno-occlusion of the middle cerebral artery.
Collapse
Affiliation(s)
- Kisoo Pahk
- Department of Nuclear Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Sang-Hun Lee
- Department of Neurology, Korea University Ansan Hospital, Korea University College of Medicine, Gojan 1-Dong, Danwon-gu, Ansan-si, Gyeonggi-do, 152-703, Republic of Korea.
| |
Collapse
|
4
|
Sarode LP, Ghatage T, Mardhekar V, Verma B, Prakash A, Ugale RR. Cerebrolysin reduces excitotoxicity by modulation of cell-death proteins in delayed hours of ischemic reperfusion injury. Metab Brain Dis 2023; 38:2401-2416. [PMID: 37273080 DOI: 10.1007/s11011-023-01240-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
Recent preclinical and clinical reports suggest that cerebrolysin shows neuroprotective properties similar to endogenous neurotrophic factors in neurodegenerative disorders including ischemic stroke. However, little is known about its underlying antiexcitotoxic action. Adult male Wistar rats were intraperitoneally treated with cerebrolysin (0.15 or 0.30 mg/kg) or vehicle at 3, 6 and 12 h after ischemic reperfusion and were assessed 24 h after reperfusion in ischemic rats. We added cerebrolysin (2.5 or 5 mg/ml) or vehicle in primary cortical culture cells at 3, 6 and 12 h of post-glutamate exposure and performed cell viability assays at 24 h. Our in-vivo and in-vitro findings showed that cerebrolysin substantially reduced neuronal cell death in delayed hours of post ischemic- and glutamate-insult conditions respectively. Further, we have assessed the influence of NR-2 A/-2B receptor antagonism on neuroprotective action of cerebrolysin at 6 h in in-vivo as well as in-vitro conditions. Neuroprotective effect of cerebrolysin at 6 h of reperfusion was enhanced by pretreatment of NR2B antagonist RO25-6981.We found that cerebrolysin restrained upregulation of extrasynaptic NR2B responsible for triggering apoptotic pathways. Cerebrolysin reduced expression of important cell death proteins such as, JNK, PTEN, Calpain and Caspase-3 components. Importantly, we also found that cerebrolysin reduced SREBP1 expression, which gets activated only after 6 h of ischemia. These results demonstrate that cerebrolysin reduces excitotoxicity and protect neuronal cells in delayed hours of ischemic reperfusion injuries by decreasing cell death proteins.
Collapse
Affiliation(s)
- Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Trupti Ghatage
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Vishal Mardhekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Bhavesh Verma
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India
| | - Anand Prakash
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, District- East Champaran, Bihar, 845401, India
| | - Rajesh R Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Amravati Road, Nagpur, Maharashtra, 440033, India.
| |
Collapse
|
5
|
Permissive hypercapnia and hypercapnic hypoxia inhibit signaling pathways of neuronal apoptosis in ischemic/hypoxic rats. Mol Biol Rep 2023; 50:2317-2333. [PMID: 36575322 DOI: 10.1007/s11033-022-08212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In the present study, we aimed to test the hypothesis that hypercapnia, independently and/or in combination with hypoxia, can activate signaling pathways related to the inhibition of proapoptotic (caspase-dependent and caspase-independent) factors and the induction of antiapoptotic factors in facilitating adaptation to hypoxia/ischemia. MATERIALS AND METHODS Following exposure to permissive hypercapnia and/or normobaric hypoxia, the degree of apoptosis was evaluated in experimental ischemia models in vivo and in vitro. The percentages of caspase-3, apoptosis-inducing factor (AIF), Bax, and Bcl-2 in astrocytes and neurons derived from male Wistar rats were also calculated. In vitro, cells were subjected to various types of respiratory exposure (hypoxia and/or hypercapnia for 24 or 12 h) as well as further sublethal chemical hypoxia. The percentages of these molecules in nerve cells in the ischemic penumbra of the brain after photothrombotic injury were also calculated. RESULTS The degree of apoptosis was found to decrease in ischemic penumbra, mostly due to the hypercapnic component. It was also discovered that the levels of caspase-3, AIF, and Bax decreased in this region, whereas the Bcl-2 levels increased following exposure to hypercapnia and hypercapnic hypoxia. CONCLUSIONS This integrative assessment of the rate of apoptosis/necrosis in astrocyte and neuron cultures shows that the combination of hypercapnia and hypoxia resulted in the maximum neuroprotective effect. The levels of apoptosis mediators in astrocyte and neuron cultures were calculated after modeling chemical hypoxia in vitro. These results show that the exposure models where permissive hypercapnia and normobaric hypoxia were combined also had the most pronounced inhibitory effects on apoptotic signaling pathways.
Collapse
|
6
|
The Association between Hypoxia-Induced Low Activity and Apoptosis Strongly Resembles That between TTX-Induced Silencing and Apoptosis. Int J Mol Sci 2022; 23:ijms23052754. [PMID: 35269895 PMCID: PMC8911517 DOI: 10.3390/ijms23052754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
In the penumbra of a brain infarct, neurons initially remain structurally intact, but perfusion is insufficient to maintain neuronal activity at physiological levels. Improving neuronal recovery in the penumbra has large potential to advance recovery of stroke patients, but penumbral pathology is incompletely understood, and treatments are scarce. We hypothesize that low activity in the penumbra is associated with apoptosis and thus contributes to irreversible neuronal damage. We explored the putative relationship between low neuronal activity and apoptosis in cultured neurons exposed to variable durations of hypoxia or TTX. We combined electrophysiology and live apoptosis staining in 42 cultures, and compared effects of hypoxia and TTX silencing in terms of network activity and apoptosis. Hypoxia rapidly reduced network activity, but cultures showed limited apoptosis during the first 12 h. After 24 h, widespread apoptosis had occurred. This was associated with full activity recovery observed upon reoxygenation within 12 h, but not after 24 h. Similarly, TTX exposure strongly reduced activity, with full recovery upon washout within 12 h, but not after 24 h. Mean temporal evolution of apoptosis in TTX-treated cultures was the same as in hypoxic cultures. These results suggest that prolonged low activity may be a common factor in the pathways towards apoptosis.
Collapse
|
7
|
Chen YD, Huang PY, Chiang CS, Huang YS, Tang SC. Generation and Role of Calpain-Cleaved 17-kDa Tau Fragment in Acute Ischemic Stroke. Mol Neurobiol 2021; 58:5814-5825. [PMID: 34414533 DOI: 10.1007/s12035-021-02519-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023]
Abstract
Stroke is the leading cause of permanent disability and death in the world. The therapy for acute stroke is still limited due to the complex mechanisms underlying stroke-induced neuronal death. The generation of a 17-kDa neurotoxic tau fragment was reported in Alzheimer's disease but it has not been well studied in stroke. In this study, we observed the accumulation of 17-kDa tau fragment in cultured primary neurons and media after oxygen-glucose deprivation/reperfusion (OGD/R) treatment that could be diminished by the presence of a calpain inhibitor. This calpain-mediated proteolytic tau fragment was also detected in brain tissues from middle cerebral artery occlusion-injured rats and acute ischemic stroke patients receiving strokectomy, and human plasma samples collected within 48 h after the onset of stroke. The mass spectrometry analysis of this 17-kDa fragment identified 2 peptide sequences containing 195-224 amino acids of tau, which agrees with the previously reported tau45-230 or tau125-230 as the calpain-cleaved tau fragment. Ectopic expression of tau45-230-GFP but not tau125-230-GFP in cultured neurons induced the formation of tortuous processes without evident cell death. In summary, the 17-kDa tau fragment is a novel stroke biomarker and may play a pathophysiological role to affect post-stroke neuronal health.
Collapse
Affiliation(s)
- Ying-Da Chen
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Yuan Huang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Chien-Sung Chiang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan.
| | - Sung-Chun Tang
- Stroke Center and Department of Neurology, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
8
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
9
|
Chen J, Liu P, Dong X, Jin J, Xu Y. The role of lncRNAs in ischemic stroke. Neurochem Int 2021; 147:105019. [PMID: 33905763 DOI: 10.1016/j.neuint.2021.105019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic time window of the only two approved therapies, intravenous thrombolysis and thrombectomy. The pathophysiological processes of ischemic stroke are driven by multiple complex molecular and cellular interactions that ultimately induce brain damage and neurobehavioral impairment. Long non-coding RNAs (LncRNAs) are significantly altered in the blood and brains of ischemic stroke patients and play a critical role in the pathogenesis of stroke, which serve as potential targets for stroke interventions. In this review, we provide an overview of the roles of lncRNAs in the pathophysiology of ischemic stroke and discuss the opportunities and challenges for the clinical application of lncRNAs in the diagnosis and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Xiaohong Dong
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
| |
Collapse
|
10
|
Guo YZ, Ma YM, Zhang XP, Dong LD, Jing L, Zhang JZ. Region-specific changes in aquaporin 4 induced by hyperglycemia underlie the differences in cell swelling in the cortex and striatum after cerebral ischemia-reperfusion. Neurosci Lett 2021; 754:135885. [PMID: 33862142 DOI: 10.1016/j.neulet.2021.135885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/20/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022]
Abstract
Brain edema is a major cause of death in patients who suffer an ischemic stroke. Diabetes has been shown to aggravate brain edema after cerebral ischemia-reperfusion, but few studies have focused on the heterogeneity of this response across different brain regions. Aquaporin 4 plays an important role in the formation and regression of brain edema. Here, we report that hyperglycemia mainly affects the continuity of aquaporin 4 distribution around blood vessels in the cortical penumbra after ischemia-reperfusion; however, in the striatal penumbra, in addition to affecting the continuity of distribution, it also substantially affects the fluorescence intensity and the polarity distribution in astrocytes. Accordingly, hyperglycemia induces a more significant increase in the number of swelling cells in the striatal penumbra than in the cortical penumbra. These results can improve our understanding of the mechanism underlying the effects of diabetes in cerebral ischemic injury and provide a theoretical foundation for identification of appropriate therapeutic modalities.
Collapse
Affiliation(s)
- Yong-Zhen Guo
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia, 750004, China
| | - Yan-Mei Ma
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia, 750004, China
| | - Xiao-Peng Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia, 750004, China
| | - Ling-Di Dong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia, 750004, China
| | - Li Jing
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia, 750004, China.
| | - Jian-Zhong Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
11
|
Jia J, Jin H, Nan D, Yu W, Huang Y. New insights into targeting mitochondria in ischemic injury. Apoptosis 2021; 26:163-183. [PMID: 33751318 DOI: 10.1007/s10495-021-01661-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Stroke is the leading cause of adult disability and death worldwide. Mitochondrial dysfunction has been recognized as a marker of neuronal death during ischemic stroke. Maintaining the function of mitochondria is important for improving the survival of neurons and maintaining neuronal function. Damaged mitochondria induce neuronal cell apoptosis by releasing reactive oxygen species (ROS) and pro-apoptotic factors. Mitochondrial fission and fusion processes and mitophagy are of great importance to mitochondrial quality control. This paper reviews the dynamic changes in mitochondria, the roles of mitochondria in different cell types, and related signaling pathways in ischemic stroke. This review describes in detail the role of mitochondria in the process of neuronal injury and protection in cerebral ischemia, and integrates neuroprotective drugs targeting mitochondria in recent years, which may provide a theoretical basis for the progress of treatment of ischemic stroke. The potential of mitochondrial-targeted therapy is also emphasized, which provides valuable insights for clinical research.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
12
|
Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins. Cell Death Differ 2020; 28:108-122. [PMID: 33162554 PMCID: PMC7852532 DOI: 10.1038/s41418-020-00654-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Axonal degeneration and neuronal cell death are fundamental processes in development and contribute to the pathology of neurological disease in adults. Both processes are regulated by BCL-2 family proteins which orchestrate the permeabilization of the mitochondrial outer membrane (MOM). MOM permeabilization (MOMP) results in the activation of pro-apoptotic molecules that commit neurons to either die or degenerate. With the success of small-molecule inhibitors targeting anti-apoptotic BCL-2 proteins for the treatment of lymphoma, we can now envision the use of inhibitors of apoptosis with exquisite selectivity for BCL-2 family protein regulation of neuronal apoptosis in the treatment of nervous system disease. Critical to this development is deciphering which subset of proteins is required for neuronal apoptosis and axon degeneration, and how these two different outcomes are separately regulated. Moreover, noncanonical BCL-2 family protein functions unrelated to the regulation of MOMP, including impacting necroptosis and other modes of cell death may reveal additional potential targets and/or confounders. This review highlights our current understanding of BCL-2 family mediated neuronal cell death and axon degeneration, while identifying future research questions to be resolved to enable regulating neuronal survival pharmacologically.
Collapse
|
13
|
Zong X, Li Y, Liu C, Qi W, Han D, Tucker L, Dong Y, Hu S, Yan X, Zhang Q. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. Theranostics 2020; 10:12090-12110. [PMID: 33204331 PMCID: PMC7667689 DOI: 10.7150/thno.51573] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/26/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: The integrity and function of the blood-brain barrier (BBB) is compromised after stroke. The current study was performed to examine potential beneficial effects and underlying mechanisms of repetitive transcranial magnetic stimulation (rTMS) on angiogenesis and vascular protection, function, and repair following stroke, which are largely unknown. Methods: Using a rat photothrombotic (PT) stroke model, continuous theta-burst rTMS was administered once daily to the infarcted hemisphere for 5 min, beginning 3 h after PT stroke. This treatment was applied for 6 days. BBB integrity, blood flow, vascular associated proteins, angiogenesis, integrity of neuronal morphology and structure, and behavioral outcome were measured and analyzed at 6 and/or 22 days after PT stroke. Results: We report that rTMS significantly mitigated BBB permeabilization and preserved important BBB components ZO-1, claudin-5, occludin, and caveolin-1 from PT-induced degradation. Damage to vascular structure, morphology, and perfusion was ameliorated by rTMS, resulting in improved local tissue oxygenation. This was accompanied with robust protection of critical vascular components and upregulation of regulatory factors. A complex cytokine response was induced by PT, particularly at the late phase. Application of rTMS modulated this response, ameliorating levels of cytokines related to peripheral immune cell infiltration. Further investigation revealed that rTMS promoted and sustained post-ischemic angiogenesis long-term and reduced apoptosis of newborn and existing vascular endothelial cells. Application of rTMS also inhibited PT-induced excessive astrocyte-vasculature interactions and stimulated an A1 to A2 shift in vessel-associated astrocytes. Mechanistic studies revealed that rTMS dramatically increased levels of PDGFRβ associated with A2 astrocytes and their adjacent vasculature. As well, A2 astrocytes displayed marked amplification of the angiogenesis-related factors VEGF and TGFβ. PT induced a rise in vessel-associated expression of HIF-1α that was starkly intensified by rTMS treatment. Finally, rTMS preserved neuronal morphology, synaptic structure integrity and behavioral outcome. Conclusions: These results indicate that rTMS can exert powerful protective and restorative effects on the peri-infarct microvasculature after PT stroke by, in part, promoting HIF-1α signaling and shifting vessel-associated astrocytic polarization to the A2 phenotype. This study provides further support for the potent protective effects of rTMS in the context of ischemic stroke, and these findings implicate vascular repair and protection as an important underlying phenomenon.
Collapse
|
14
|
Uzdensky AB. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 2020; 24:687-702. [PMID: 31256300 DOI: 10.1007/s10495-019-01556-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ischemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed. Two basic features of cell death regulation in the ischemic penumbra were observed: (1) both apoptotic and anti-apoptotic proteins are simultaneously over-expressed in the penumbra, so that the fate of individual cells is determined by the balance between these opposite tendencies. (2) Similtaneous and concerted up-regulation in the ischemic penumbra of proteins that execute apoptosis (caspases 3, 6, 7; Bcl-10, SMAC/DIABLO, AIF, PSR), signaling proteins that regulate different apoptosis pathways (p38, JNK, DYRK1A, neurotrophin receptor p75); transcription factors that control expression of various apoptosis regulation proteins (E2F1, p53, c-Myc, GADD153); and proteins, which are normally involved in diverse cellular functions, but stimulate apoptosis in specific situations (NMDAR2a, Par4, GAD65/67, caspase 11). Hence, diverse apoptosis initiation and regulation pathways are induced simultaneously in penumbra from very different initial positions. Similarly, various anti-apoptotic proteins (Bcl-x, p21/WAF-1, MDM2, p63, PKBα, ERK1, RAF1, ERK5, MAKAPK2, protein phosphatases 1α and MKP-1, estrogen and EGF receptors, calmodulin, CaMKII, CaMKIV) are upregulated. These data provide an integral view of neurodegeneration and neuroprotection in penumbra. Some discussed proteins may serve as potential targets for anti-stroke therapy.
Collapse
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Prospect, Rostov-on-Don, Russia, 344090.
| |
Collapse
|
15
|
Uzdensky AB. Regulation of apoptosis in the ischemic penumbra in the first day post-stroke. Neural Regen Res 2020; 15:253-254. [PMID: 31552891 PMCID: PMC6905348 DOI: 10.4103/1673-5374.265546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Anatoly B Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
16
|
Bae SH, Yoo MR, Kim YY, Hong IK, Kim MH, Lee SH, Kim DY. Brain-derived neurotrophic factor mediates macrophage migration inhibitory factor to protect neurons against oxygen-glucose deprivation. Neural Regen Res 2020; 15:1483-1489. [PMID: 31997812 PMCID: PMC7059593 DOI: 10.4103/1673-5374.274340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a chemokine that plays an essential role in immune system function. Previous studies suggested that MIF protects neurons in ischemic conditions. However, few studies are reported on the role of MIF in neurological recovery after ischemic stroke. The purpose of this study is to identify the molecular mechanism of neuroprotection mediated by MIF. Human neuroblastoma cells were incubated in Dulbecco’s modified Eagle’s medium under oxygen-glucose deprivation (OGD) for 4 hours and then returned to normal aerobic environment for reperfusion (OGD/R). 30 ng/mL MIF recombinant (30 ng/mL) or ISO-1 (MIF antagonist; 50 μM) was administered to human neuroblastoma cells. Then cell cultures were assigned to one of four groups: control, OGD/R, OGD/R with MIF, OGD/R with ISO-1. Cell viability was analyzed using WST-1 assay. Expression levels of brain-derived neurotrophic factor (BDNF), microtubule-associated protein 2 (MAP2), Caspase-3, Bcl2, and Bax were detected by western blot assay and immunocytochemistry in each group to measure apoptotic activity. WST-1 assay results revealed that compared to the OGD/R group, cell survival rate was significantly higher in the OGD/R with MIF group and lower in the OGD/R with ISO-1 group. Western blot assay and immunocytochemistry results revealed that expression levels of BDNF, Bcl2, and MAP2 were significantly higher, and expression levels of Caspase-3 and Bax were significantly lower in the MIF group than in the OGD/R group. Expression levels of BDNF, Bcl2, and MAP2 were significantly lower, and expression levels of Caspase-3 and Bax were significantly higher in the ISO-1 group than in the OGD/R group. MIF administration promoted neuronal cell survival and induced high expression levels of BDNF, MAP2, and Bcl2 (anti-apoptosis) and low expression levels of Caspase-3 and Bax (pro-apoptosis) in an OGD/R model. These results suggest that MIF administration is effective for inducing expression of BDNF and leads to neuroprotection of neuronal cells against hypoxic injury.
Collapse
Affiliation(s)
- Su Hwan Bae
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Ran Yoo
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ye Yeong Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Kyung Hong
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Hee Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Hak Lee
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dae Yul Kim
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Zong X, Dong Y, Li Y, Yang L, Li Y, Yang B, Tucker L, Zhao N, Brann DW, Yan X, Hu S, Zhang Q. Beneficial Effects of Theta-Burst Transcranial Magnetic Stimulation on Stroke Injury via Improving Neuronal Microenvironment and Mitochondrial Integrity. Transl Stroke Res 2019; 11:450-467. [PMID: 31515743 DOI: 10.1007/s12975-019-00731-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022]
Abstract
Recent work suggests that repetitive transcranial magnetic stimulation (rTMS) may beneficially alter the pathological status of several neurological disorders, although the mechanism remains unclear. The current study was designed to investigate the effects of rTMS on behavioral deficits and potential underlying mechanisms in a rat photothrombotic (PT) stroke model. From day 0 (3 h) to day 5 after the establishment of PT stroke, 5-min daily continuous theta-burst rTMS (3 pulses of 50 Hz repeated every 200 ms, intensity at 200 G) was applied on the infarct hemisphere. We report that rTMS significantly attenuated behavioral deficits and infarct volume after PT stroke. Further investigation demonstrated that rTMS remarkably reduced synaptic loss and neuronal degeneration in the peri-infarct cortical region. Mechanistic studies displayed that beneficial effects of rTMS were associated with robust suppression of reactive micro/astrogliosis and the overproduction of pro-inflammatory cytokines, as well as oxidative stress and oxidative neuronal damage especially at the late stage following PT stroke. Intriguingly, rTMS could effectively induce a shift in microglial M1/M2 phenotype activation and an A1 to A2 switch in astrocytic phenotypes. In addition, the release of anti-inflammatory cytokines and mitochondrial MnSOD in peri-infarct regions were elevated following rTMS treatment. Finally, rTMS treatment efficaciously preserved mitochondrial membrane integrity and suppressed the intrinsic mitochondrial caspase-9/3 apoptotic pathway within the peri-infarct cortex. Our novel findings indicate that rTMS treatment exerted robust neuroprotection when applied at least 3 h after ischemic stroke. The underlying mechanisms are partially associated with improvement of the local neuronal microenvironment by altering inflammatory and oxidative status and preserving mitochondrial integrity in the peri-infarct zone. These findings provide strong support for the promising therapeutic effect of rTMS against ischemic neuronal injury and functional deficits following stroke.
Collapse
Affiliation(s)
- Xuemei Zong
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yuyu Li
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Baocheng Yang
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Ningjun Zhao
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Xianliang Yan
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China
| | - Shuqun Hu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University; the Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu province, China.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
18
|
Zhang X, Liu Z, Shu Q, Yuan S, Xing Z, Song J. LncRNA SNHG6 functions as a ceRNA to regulate neuronal cell apoptosis by modulating miR-181c-5p/BIM signalling in ischaemic stroke. J Cell Mol Med 2019; 23:6120-6130. [PMID: 31334597 PMCID: PMC6714173 DOI: 10.1111/jcmm.14480] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/04/2019] [Accepted: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the pathogenesis of brain and neurodegenerative disorders. As far as we know, the functions and potential mechanisms of small nucleolar RNA host gene 6 (SNHG6) in ischaemic stroke have not been explored. This study aimed to examine the functional role of SNHG6 in the ischaemic stroke. Middle cerebral artery occlusion (MCAO) in mice and the oxygen glucose deprivation (OGD)-induced injury in neuronal cells were applied to mimic ischaemic stroke. TTC staining, quantitative real-time PCR, cell apoptosis assay, caspase-3 activity assay, Western blot, RNA immunoprecipitation and luciferase reporter assay were performed to evaluate the function and possible mechanisms of SNHG6 in the pathogenesis of ischaemic stroke. The results show that SNHG6 expression was significantly increased both OGD-induced neuronal cells and MCAO model mice. In vitro results showed that inhibition of SNHG6 increased cell viability, inhibited cell apoptosis and caspase-3 activity in OGD-induced neuronal cells. Consistently, knockdown of SNHG6 reduced brain infarct size and improved neurological scores in the MCAO mice. Mechanistic study further revealed that SNHG6 functioned as a competing endogenous RNA (ceRNA) for miR-181c-5p, which in turn repressed its downstream target of Bcl-2 interacting mediator of cell death (BIM) and inhibiting cell apoptosis. This study revealed a novel function of SNHG6 in the modulating neuronal apoptosis in the ischaemic stroke model, and the role of SNHG6 in the regulating of neuronal apoptosis was at least partly via targeting miR-181c-5p/BIM signalling pathway.
Collapse
Affiliation(s)
- Xi'an Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of NeurosurgeryThe Ninth Hospital of Xi'anXi'anChina
| | - Zhanhui Liu
- Department of NeurosurgeryThe Ninth Hospital of Xi'anXi'anChina
| | - Qing Shu
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Shanqi Yuan
- Department of NeurosurgeryThe Ninth Hospital of Xi'anXi'anChina
| | - Zhiguo Xing
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jinning Song
- Department of NeurosurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
19
|
Demyanenko S, Uzdensky A. Epigenetic Alterations Induced by Photothrombotic Stroke in the Rat Cerebral Cortex: Deacetylation of Histone h3, Upregulation of Histone Deacetylases and Histone Acetyltransferases. Int J Mol Sci 2019; 20:E2882. [PMID: 31200484 PMCID: PMC6627403 DOI: 10.3390/ijms20122882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
Ischemic penumbra that surrounds a stroke-induced infarction core is potentially salvageable; however, mechanisms of its formation are not well known. Covalent modifications of histones control chromatin conformation, gene expression and protein synthesis. To study epigenetic processes in ischemic penumbra, we used photothrombotic stroke (PTS), a stroke model in which laser irradiation of the rat brain cortex photosensitized by Rose Bengal induces local vessel occlusion. Immunoblotting and immunofluorescence microscopy showed decrease in acetylation of lysine 9 in histone H3 in penumbra at 1, 4 or 24 h after PTS. This was associated with upregulation of histone deacetylases HDAC1 and HDAC2, but not HDAC4, which did not localize in the nuclei. HDAC2 was found in cell nuclei, HDAC4 in the cytoplasm and HDAC1 both in nuclei and cytoplasm. Histone acetyltransferases HAT1 and PCAF (p300/CBP associated factor) that acetylated histone H3 synthesis were also upregulated, but lesser and later. PTS increased localization of HDAC2 and HAT1 in astroglia. Thus, the cell fate in PTS-induced penumbra is determined by the balance between opposite tendencies leading either to histone acetylation and stimulation of gene expression, or to deacetylation and suppression of transcriptional processes and protein biosynthesis. These epigenetic proteins may be the potential targets for anti-stroke therapy.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky ave., Rostov-on-Don 344090, Russia.
| | - Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky ave., Rostov-on-Don 344090, Russia.
| |
Collapse
|
20
|
Tribulusterine Containing Tribulus terrestris Extract Exhibited Neuroprotection Through Attenuating Stress Kinases Mediated Inflammatory Mechanism: In Vitro and In Vivo Studies. Neurochem Res 2019; 44:1228-1242. [DOI: 10.1007/s11064-019-02768-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022]
|
21
|
The Antiapoptosis Effect of Geum japonicum Thunb. var. chinense Extracts on Cerebral Ischemia Reperfusion Injury via PI3K/Akt Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7290170. [PMID: 30538763 PMCID: PMC6261079 DOI: 10.1155/2018/7290170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/14/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Geum japonicum Thunb. var. chinense (GJ) is a type of wild vegetable found in China and other Asian countries; it has been reported that its extracts possess a neuroprotective effect against cerebral ischemia reperfusion (CIR) injury. The aim of this study is to explore the effect GJ extracts on transient focal CIR injury and neurons apoptosis and to clarify its possible underlying mechanisms in vivo. Our results indicated that pretreatment with GJ extracts significantly ameliorated the infarct volume, decreased neurological deficits, lessened neural cells apoptosis, downregulated GFAP activity level, and increased surviving neurons. Moreover, GJ extracts preadministration increased Bcl-2 levels and attenuated the increase in the expressions of Bax and it also lowered the cleaved caspase-3 activity in ischemic cortex tissues which was caused by CIR and increased the expression of PI3K and p-Akt. The above effects of high dose of GJ (GJ-H) group were much better than those of low dose of GJ (GJ-L), which indicated that GJ extracts may be helpful in the suppression of CIR injury with a dose-dependent manner.
Collapse
|
22
|
Subacute Elevation of Plasma Level of Caspase-Cleaved Cytokeratin-18 is Associated with Hemorrhagic Transformation and Functional Outcome in Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 28:719-727. [PMID: 30528602 DOI: 10.1016/j.jstrokecerebrovasdis.2018.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/17/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Caspase-cleaved cytokeratin-18 (CCCK-18) is an apoptosis marker. Here, we analyzed the relationship between plasma level of CCCK-18 in the acute and subacute stage of ischemic stroke and early and late functional outcome. Besides, correlation among CCCK-18 and complications, such as hemorrhagic transformation (HT) were also explored. METHODS Plasma concentration of CCCK-18 was investigated in 54 patients at admission and poststroke 72 hours. HT was evaluated by CT scans on 24 poststroke hours. Outcome measures were assessed by modified Rankin scale at hospital discharge and 6-month later. Receiver operating characteristics (ROC) analysis was used to determine the best cut-off values of CCCK-18 as a predictor of unfavorable functional outcome. RESULTS Significantly elevated CCCK-18 level was observed at 72 hours after onset of stroke, in nonsurviving compared to surviving patients (331 ± 191 ng/L versus 251 ± 164 ng/L, P = .01). Based on ROC analysis, the cut-off value of plasma CCCK-18 levels >223 ng/L at 72 poststroke hours predicted 6-month unfavorable stroke outcome with a sensitivity of 84.4% and a specificity of 77.3% (area under the curve: .851, 95% confidence interval = .745-.955, P < .001). The rate of complications such as HT and in-hospital infection was significantly higher in patients presented with a plasma CCCK-18 level above the cut-off value. CONCLUSIONS The association between high serum CCCK-18 levels and unfavorable early and late stroke outcome in an unselected study population was first described here. Besides, the apoptosis marker CCCK-18 might be a predictor of further complication such as HT and in-hospital infection.
Collapse
|
23
|
Hoorelbeke D, Decrock E, Van Haver V, De Bock M, Leybaert L. Calcium, a pivotal player in photodynamic therapy? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1805-1814. [PMID: 30076858 DOI: 10.1016/j.bbamcr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy combines three non-toxic components: light, oxygen and a photosensitizer to generate singlet oxygen and/or other ROS molecules in order to target destruction of cancer cells. The damage induced in the targeted cells can furthermore propagate to non-exposed bystander cells thereby exacerbating the damage. Ca2+ signaling is strongly intertwined with ROS signaling and both play crucial roles in cell death. In this review we aimed to review current knowledge on the role of Ca2+ and ROS signaling, their effect on cell-cell propagation via connexin-linked mechanisms and the outcome in terms of cell death. In general, photodynamic therapy results in an increased cytosolic Ca2+ concentration originating from Ca2+ entry or Ca2+ release from internal stores. While photodynamic therapy can certainly induce cell death, the outcome depends on the cell type and the photosensitizer used. Connexin channels propagating the Ca2+ signal, and presumably regenerating ROS at distance, may play a role in spreading the effect to neighboring non-exposed bystander cells. Given the various cell types and photosensitizers used, there is currently no unified signaling scheme to explain the role of Ca2+ and connexins in the responses following photodynamic therapy. This article is part of a Special Issue entitled: Calcium signaling in health, disease and therapy edited by Geert Bultynck and Jan Parys.
Collapse
Affiliation(s)
| | - Elke Decrock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Valérie Van Haver
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Marijke De Bock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Luc Leybaert
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium.
| |
Collapse
|
24
|
Tucker D, Lu Y, Zhang Q. From Mitochondrial Function to Neuroprotection-an Emerging Role for Methylene Blue. Mol Neurobiol 2018; 55:5137-5153. [PMID: 28840449 PMCID: PMC5826781 DOI: 10.1007/s12035-017-0712-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022]
Abstract
Methylene blue (MB) is a well-established drug with a long history of use, owing to its diverse range of use and its minimal side effect profile. MB has been used classically for the treatment of malaria, methemoglobinemia, and carbon monoxide poisoning, as well as a histological dye. Its role in the mitochondria, however, has elicited much of its renewed interest in recent years. MB can reroute electrons in the mitochondrial electron transfer chain directly from NADH to cytochrome c, increasing the activity of complex IV and effectively promoting mitochondrial activity while mitigating oxidative stress. In addition to its beneficial effect on mitochondrial protection, MB is also known to have robust effects in mitigating neuroinflammation. Mitochondrial dysfunction has been identified as a seemingly unifying pathological phenomenon across a wide range of neurodegenerative disorders, which thus positions methylene blue as a promising therapeutic. In both in vitro and in vivo studies, MB has shown impressive efficacy in mitigating neurodegeneration and the accompanying behavioral phenotypes in animal models for such conditions as stroke, global cerebral ischemia, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review summarizes recent work establishing MB as a promising candidate for neuroprotection, with particular emphasis on the contribution of mitochondrial function to neural health. Furthermore, this review will briefly examine the link between MB, neurogenesis, and improved cognition in respect to age-related cognitive decline.
Collapse
Affiliation(s)
- Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
25
|
Modulation of Post-Stroke Plasticity and Regeneration by Stem Cell Therapy and Exogenic Factors. CELLULAR AND MOLECULAR APPROACHES TO REGENERATION AND REPAIR 2018. [DOI: 10.1007/978-3-319-66679-2_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Gao GS, Li Y, Zhai H, Bi JW, Zhang FS, Zhang XY, Fan SH. Humanin analogue, S14G-humanin, has neuroprotective effects against oxygen glucose deprivation/reoxygenation by reactivating Jak2/Stat3 signaling through the PI3K/AKT pathway. Exp Ther Med 2017; 14:3926-3934. [PMID: 29043002 PMCID: PMC5639330 DOI: 10.3892/etm.2017.4934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Stroke, characterized by a disruption of blood supply to the brain, is a major cause of morbidity and mortality worldwide. Although humanin, a 24-amino acid polypeptide, has been identified to have multiple neuroprotective functions, the level of humanin in plasma has been demonstrated to decrease with age, which likely limits the effects against stroke injury. A potent humanin analogue, S14G-humanin (HNG), generated by replacement of Ser14 with glycine, has been demonstrated to have 1,000-fold stronger biological activity than humanin. The present study established an in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model using SH-SY5Y neuroblastoma cells to mimic the in vivo ischemia/reperfusion injury in stroke. Adding HNG (0-10 µg/l) to SH-SY5Y cells to different extents blocked OGD/R-induced reduction of cell viability and antioxidative capacity, as well as decreased the elevated apoptosis rate induced by OGD/R, with the most evident effects at 1 µg/l HNG. Janus kinase 2 (Jak2)/signal transducer and activator of transcription 3 (Stat3) signaling was attenuated in OGD/R processes, yet reactivated with HNG treatment. FLLL32 (5 µM), a specific inhibitor of the signal, abolished effects of HNG on anti-apoptosis and antioxidation in OGD/R processes. Co-treatment with HNG and FLLL32 failed to interrupt upregulation of cytochrome c, B-cell lymphoma 2-associated X protein and cleaved caspase-3 provoked by OGD/R. Similar to FLLL32, Jak2/Stat3 signaling activated by HNG was also repressed by inhibitor of phosphoinositide 3-kinase (PI3K; 10 µM LY294002) or protein kinase B (AKT; 5 µM MK-2206 2HCl). These data collectively indicated that HNG has neuroprotective effects against OGD/R by reactivating Jak2/Stat3 signaling through the PI3K/AKT pathway, suggesting that HNG may be a promising agent in the management of stroke.
Collapse
Affiliation(s)
- Guang-Sheng Gao
- Intensive Care Unit, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
- Intensive Care Unit, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yun Li
- Intensive Care Unit, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Heng Zhai
- Department of Emergency, Central Hospital of Zibo, Zibo, Shandong 255036, P.R. China
| | - Jing-Wen Bi
- Department of Internal Neurology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Fu-Sen Zhang
- Intensive Care Unit, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Xiao-Ying Zhang
- Department of Neonatology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Shao-Hua Fan
- Intensive Care Unit, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
27
|
Brzica H, Abdullahi W, Ibbotson K, Ronaldson PT. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke. J Cent Nerv Syst Dis 2017; 9:1179573517693802. [PMID: 28469523 PMCID: PMC5392046 DOI: 10.1177/1179573517693802] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/22/2017] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA). A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity) greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB) provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps) and organic cation transporters (Octs). In addition, multidrug resistance proteins (Mrps) are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Kathryn Ibbotson
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
28
|
Chen S, Wang M, Yang H, Mao L, He Q, Jin H, Ye ZM, Luo XY, Xia YP, Hu B. LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 2017; 485:167-173. [DOI: 10.1016/j.bbrc.2017.02.043] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/11/2022]
|
29
|
Jiang MQ, Zhao YY, Cao W, Wei ZZ, Gu X, Wei L, Yu SP. Long-term survival and regeneration of neuronal and vasculature cells inside the core region after ischemic stroke in adult mice. Brain Pathol 2016; 27:480-498. [PMID: 27514013 DOI: 10.1111/bpa.12425] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
Focal cerebral ischemia results in an ischemic core surrounded by the peri-infarct region (penumbra). Most research attention has been focused on penumbra while the pattern of cell fates inside the ischemic core is poorly defined. In the present investigation, we tested the hypothesis that, inside the ischemic core, some neuronal and vascular cells could survive the initial ischemic insult while regenerative niches might exist many days after stroke in the adult brain. Adult mice were subjected to focal cerebral ischemia induced by permanent occlusion of distal branches of the middle cerebral artery (MCA) plus transient ligations of bilateral common carotid artery (CCA). The ischemic insult uniformly reduced the local cerebral blood flow (LCBF) by 90%. Massive cell death occurred due to multiple mechanisms and a significant infarction was cultivated in the ischemic cortex 24 h later. Nevertheless, normal or even higher levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) persistently remained in the core tissue, some NeuN-positive and Glut-1/College IV-positive cells with intact ultrastructural features resided in the core 7-14 days post stroke. BrdU-positive but TUNEL-negative neuronal and endothelial cells were detected in the core where extensive extracellular matrix infrastructure developed. Meanwhile, GFAP-positive astrocytes accumulated in the penumbra and Iba-1-positive microglial/macrophages invaded the core several days after stroke. The long term survival of neuronal and vascular cells inside the ischemic core was also seen after a severe ischemic stroke induced by permanent embolic occlusion of the MCA. We demonstrate that a therapeutic intervention of pharmacological hypothermia could save neurons/endothelial cells inside the core. These data suggest that the ischemic core is an actively regulated brain region with residual and newly formed viable neuronal and vascular cells acutely and chronically after at least some types of ischemic strokes.
Collapse
Affiliation(s)
- Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA
| | - Ying-Ying Zhao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Department of Neurology, Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenyuan Cao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Department of Neurology, Friendship Hospital, Capital Medical University, Beijing, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA
| |
Collapse
|
30
|
Ahn SM, Kim HN, Kim YR, Choi YW, Kim CM, Shin HK, Choi BT. Emodin from Polygonum multiflorum ameliorates oxidative toxicity in HT22 cells and deficits in photothrombotic ischemia. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:13-20. [PMID: 27151150 DOI: 10.1016/j.jep.2016.04.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/15/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb. has been used widely in East Asia in treatment of diseases associated with aging. Emodin, an active component from Polygonum multiflorum Thunb., provides benefits for brain disturbances induced by severe cerebral injury. AIM OF THE STUDY We investigated the neuroprotective effect of emodin from Polygonum multiflorum Thunb. against glutamate-induced oxidative toxicity and cerebral ischemia. MATERIALS AND METHODS For examination of neuroprotective effects of emodin, cell viability, cytotoxicity, flow cytometry, and Western blot were performed in HT22 cells and infarct volume, behavioral tests and Western blot in a mouse model of photothrombotic ischemic stroke. RESULTS Pretreatment with emodin resulted in significantly reduced glutamate-induced apoptotic cell death in HT22 cells. However, blocking of phosphatidylinositol-3 kinase (PI3K) activity with LY294002 resulted in significantly inhibited cell survival by emodin. Exposure of glutamate-treated cells to emodin induced an increase in the level of Bcl-2 expression, whereas the expression of Bax and active caspase-3 proteins was significantly reduced. In addition, treatment with emodin resulted in increased phosphorylation of Akt and cAMP response element binding protein (CREB), and expression of mature brain-derived neurotrophic factor (BDNF). This expression by emodin was also significantly inhibited by blocking of PI3K activity. In a photothrombotic ischemic stroke model, treatment with emodin resulted in significantly reduced infarct volume and improved motor function. We confirmed the critical role of the expression levels of Bcl-2/Bax, active caspase-3, phosphorylated (p)Akt, p-CREB, and mature BDNF for potent neuroprotective effects of emodin in cerebral ischemia. CONCLUSIONS These results suggest that emodin may afford a significant neuroprotective effect against glutamate-induced apoptosis through activation of the PI3K/Akt signaling pathway, and subsequently enhance behavioral function in cerebral ischemia.
Collapse
Affiliation(s)
- Sung Min Ahn
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ha Neui Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Whan Choi
- Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Cheol Min Kim
- Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Department of Biochemistry, College of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Research Center for Anti-aging Technology Development, Pusan National University, Busan 46241, Republic of Korea; Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Republic of Korea; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
| |
Collapse
|
31
|
Li K, Ding D, Zhang M. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats. Biol Pharm Bull 2016; 39:336-42. [DOI: 10.1248/bpb.b15-00699] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kang Li
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| | - Dun Ding
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| | - Ming Zhang
- Department of Radiology, First Affiliated Hospital of Xi’an Jiaotong University
| |
Collapse
|
32
|
Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, Guo S, Xu J. MicroRNA-9 Mediates the Cell Apoptosis by Targeting Bcl2l11 in Ischemic Stroke. Mol Neurobiol 2015; 53:6809-6817. [PMID: 26660116 DOI: 10.1007/s12035-015-9605-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
Ischemic strokes occur as a result of an obstruction within a blood vessel supplying blood to the brain and accounts for about 87 % of all cases. During the cerebral ischemia, most of the neurons undergo the necrosis and apoptosis upon the exposure to the dramatic blood flow reduction. Although, it is known that both the intrinsic and extrinsic pathways are involved in the neuronal apoptosis of ischemic brain injury. The complex underlying mechanisms remains less known. MicroRNAs are a class of endogenous small non-coding RNAs and the role of miRNAs in the pathophysiology of stroke has been studied. In this study, we found that miR-9 is downregulated in the mice with middle cerebral artery occlusion (MCAO) brain and oxygen-glucose deprivation (OGD) neurons. Application of miR-9 gamer could restore the neurological scores and reduces the infarct volume, brain water content, and the behavioral impairments. Moreover, upregulation of miR-9 suppresses the neuronal apoptosis in MCAO brain and OGD neurons. Furthermore, we identified that Bcl2l11 as the direct target of miR-9 and manipulation of miR-9 induces the corresponding changing of Bcl2l11 protein level. Finally, we found that the protein level of Bcl2l11 is increased in the MCAO brain and OGD neurons. Our study demonstrated the critical role of miR-9 in the neuronal apoptosis of ischemic brain injury.
Collapse
Affiliation(s)
- Na Wei
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Lin Xiao
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Rui Xue
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Jun Zhou
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Huayan Ren
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Si Guo
- Clinical Laboratory, Henan Provincial People's Hospital, 7 Wei Wu Road, Zhengzhou, 450000, China.
| | - Jingjing Xu
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, NO.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
33
|
Palchaudhuri R, Lambrecht MJ, Botham RC, Partlow KC, van Ham TJ, Putt KS, Nguyen LT, Kim SH, Peterson RT, Fan TM, Hergenrother PJ. A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed. Cell Rep 2015; 13:2027-36. [PMID: 26655912 DOI: 10.1016/j.celrep.2015.10.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/08/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022] Open
Abstract
Apoptosis is generally believed to be a process that requires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the critical roles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III, and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility for studying apoptosis in vivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery.
Collapse
Affiliation(s)
- Rahul Palchaudhuri
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J Lambrecht
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel C Botham
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathryn C Partlow
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tjakko J van Ham
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Karson S Putt
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laurie T Nguyen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seok-Ho Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Randall T Peterson
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
34
|
Förster D, Reiser G. Supportive or detrimental roles of P2Y receptors in brain pathology?--The two faces of P2Y receptors in stroke and neurodegeneration detected in neural cell and in animal model studies. Purinergic Signal 2015; 11:441-54. [PMID: 26407872 DOI: 10.1007/s11302-015-9471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 12/28/2022] Open
Abstract
This review describing the role of P2Y receptors in neuropathological conditions focuses on obvious differences between results demonstrating either a role in neuroprotection or in neurodegeneration, depending on in vitro and in vivo models. Such critical juxtaposition puts special emphasis on discussions of beneficial and detrimental effects of P2Y receptor agonists and antagonists in these models. The mechanisms reported to underlie the protection in vitro include increased expression of oxidoreductase genes, like carbonyl reductase and thioredoxin reductase; increased expression of inhibitor of apoptosis protein-2; extracellular signal-regulated kinase- and Akt-mediated antiapoptotic signaling; increased expression of Bcl-2 proteins, neurotrophins, neuropeptides, and growth factors; decreased Bax expression; non-amyloidogenic APP shedding; and increased neurite outgrowth in neuronal cells. Animal studies investigating the influence of P2Y receptors in middle cerebral artery occlusion (MCAO) models for stroke prove beneficial effects of P2Y receptor antagonists. In MCAO mice and rats, the application of broad-range P2 receptor antagonists decreased the infarct volume and improved neurological outcome. Moreover, antagonists of the P2Y1 receptor, one of the most abundant P2Y receptor subtypes in brain tissue, decreased neuronal loss and improved spatial memory in rats after traumatic brain injury (TBI). Currently available data show a discrepancy between in vitro and in vivo models concerning the benefits of P2Y receptor activation in pathological conditions. In vitro models demonstrate protection by P2Y receptor agonists, but in vivo P2Y receptor activation deteriorates the outcome after MCAO and controlled cortical impact brain injury, a TBI model. To broaden the scope of the review, we additionally discuss publications that demonstrate detrimental effects of P2Y receptor agonists in vitro and publications showing protective effects of agonists in vivo. All these studies help to better understand the significant role of P2Y receptors especially in stroke models and to develop pharmacological strategies for the treatment of stroke.
Collapse
Affiliation(s)
- Daniel Förster
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie (Institut für Inflammation und Neurodegeneration), Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Georg Reiser
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie (Institut für Inflammation und Neurodegeneration), Leipziger Straße 44, 39120, Magdeburg, Germany.
| |
Collapse
|
35
|
Neuroprotective effect of phytoceramide against transient focal ischemia-induced brain damage in rats. Arch Pharm Res 2015; 38:2241-50. [DOI: 10.1007/s12272-015-0647-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/08/2015] [Indexed: 12/20/2022]
|
36
|
Wu JY, Li M, Cao LJ, Sun ML, Chen D, Ren HG, Xia Q, Tao ZT, Qin ZH, Hu QS, Wang GH. Protease Omi cleaving Hax-1 protein contributes to OGD/R-induced mitochondrial damage in neuroblastoma N2a cells and cerebral injury in MCAO mice. Acta Pharmacol Sin 2015; 36:1043-52. [PMID: 26299953 DOI: 10.1038/aps.2015.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
AIM In the penumbra after focal cerebral ischemia, an increase of protease Omi is linked to a decrease of Hs1-associated protein X-1 (Hax-1), a protein belonging to the Bcl-2 family. In this study we investigated the mechanisms underlying the regulation of Hax-1 by protease Omi in cerebral ischemia/reperfusion (I/R) injury. METHODS Mouse neuroblastoma N2a cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD/R); cell viability was assessed with MTT assay. Mice underwent 2-h middle cerebral artery occlusion (MCAO) and reperfusion, and the infarct volume was determined with TTC staining. The expression of Omi and Hax-1 was detected using immunoblot and immunofluorescence assays. The mitochondrial membrane potential was measured using TMRM staining. RESULTS In the brains of MCAO mice, the protein level of Omi was significantly increased, while the protein level of Hax-1 was decreased. Similar changes were observed in OGD/R-treated N2a cells, but the mRNA level of Hax-1 was not changed. Furthermore, in OGD/R-treated N2a cells, knockdown of Omi significantly increased Hax-1 protein level. Immunofluorescence assay showed that Omi and Hax-1 were co-localized in mitochondria of N2a cells. OGD/R caused marked mitochondrial damage and apoptosis in N2a cells, while inhibition of Omi protease activity with UCF-101 (10 μmol/L) or overexpression of Hax-1 could restore the mitochondrial membrane potential and attenuate cell apoptosis. Moreover, pretreatment of MCAO mice with UCF-101 (7.15 mg/kg, ip) could restore Hax-1 expression, inhibit caspase activation, and significantly reduce the infarct volume. CONCLUSION Protease Omi impairs mitochondrial function by cleaving Hax-1, which induces apoptosis in OGD/R-treated N2a cells and causes I/R injury in MCAO mice.
Collapse
|
37
|
Punicalagin attenuated cerebral ischemia–reperfusion insult via inhibition of proinflammatory cytokines, up-regulation of Bcl-2, down-regulation of Bax, and caspase-3. Mol Cell Biochem 2015; 402:141-8. [DOI: 10.1007/s11010-014-2321-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022]
|
38
|
Vakili A, Sharifat S, Akhavan MM, Bandegi AR. Effect of lavender oil (Lavandula angustifolia) on cerebral edema and its possible mechanisms in an experimental model of stroke. Brain Res 2013; 1548:56-62. [PMID: 24384140 DOI: 10.1016/j.brainres.2013.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/10/2013] [Accepted: 12/16/2013] [Indexed: 12/17/2022]
Abstract
Lavender belongs to the family Labiatae and has a variety of cosmetic uses as well as therapeutic purposes in herbal medicine. The present study was conducted to evaluate the protective effect of lavender oil against brain edema and its possible mechanisms in an experimental model of stroke. Under Laser-Doppler Flowmetry, focal cerebral ischemia was induced by the transient occlusion of the middle cerebral artery for 1h in rats. Lavender oil (100, 200, and 400 mg/kg ip (and/or vehicle was injected at the onset of ischemia. Infarct size, cerebral edema, functional outcome, and oxidative stress biomarkers were evaluated using standard methods. Western blotting was used to determine the protein expression of VEGF, Bax, and Bcl-2. Treatment with lavender oil at doses of 200 and 400 mg/kg significantly diminished infarct size, brain edema, and improved functional outcome after cerebral ischemia (P<0.001). Lavender oil (200 mg/kg) also reduced the content of malondialdehyde and increased the activities of superoxide dismutase, glutathione peroxidase, and total antioxidant capacity (P<0.001). Although lavender oil enhanced VEGF expression (P=0.026), it could not decrease the Bax-to-Bcl-2 ratio (pro- to anti-apoptotic proteins) in the rat brain (P>0.05). The results indicated that lavender oil has neuroprotective activity against cerebral ischemia and alleviated neurological function in rats, and the mechanism may be related to augmentation in endogenous antioxidant defense, inhibiting oxidative stress, and increasing VEGF expression in the rat brain. However, lavender oil could not suppress the apoptosis pathway.
Collapse
Affiliation(s)
- Abedin Vakili
- Laboratory of Cerebrovascular Research, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Shaghayegh Sharifat
- Laboratory of Cerebrovascular Research, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maziar Mohammad Akhavan
- Skin Research Center-Laboratory of Protein and Enzyme, Shahid Beheshti University (M.C.), Shohada-e Tajrish Hospital, Shahrdari St., 1989934148 Tehran, Iran
| | - Ahmad Reza Bandegi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
39
|
The roles of p38 MAPK/MSK1 signaling pathway in the neuroprotection of hypoxic postconditioning against transient global cerebral ischemia in adult rats. Mol Neurobiol 2013; 49:1338-49. [PMID: 24352802 DOI: 10.1007/s12035-013-8611-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/08/2013] [Indexed: 01/29/2023]
Abstract
Postconditioning has regenerated interest as a mechanical intervention against cerebral ischemia/reperfusion injury, but its molecular mechanisms remain unknown. We previously reported that hypoxic postconditioning (HPC) ameliorated neuronal death induced by transient global cerebral ischemia (tGCI) in hippocampal CA1 subregion of adult rats. This study tested the hypothesis that p38-mitogen-activated protein kinase (p38 MAPK)/mitogen- and stress-response kinase 1 (MSK1) signaling pathway plays a role in the HPC-induced neuroprotection. Male Wistar rats were subjected to 10 min ischemia induced by applying the four-vessel occlusion method. HPC with 120 min was applied at 24 h after reperfusion. Immunohistochemistry and Western blot were used to detect the expression of phosphorylation of p38 MAPK and MSK1, as well as cleaved caspase-3. We found that HPC induced a significant increase of phosphorylated p38 MAPK and MSK1 in neurons of hippocampal CA1 region and a significant decrease in glial cells after tGCI as well. Furthermore, HPC attenuated caspase-3 cleavation triggered by tGCI in CA1 region. Moreover, p38 MAPK inhibition by SB203580 significantly decreased the phosphorylation of MSK1, increased cleaved caspase-3 expression, and abolished the neuroprotection of HPC. These findings suggested that p38 MAPK/MSK1 signaling axis contributed to HPC-mediated neuroprotection against tGCI, at least in part, by regulating the activation of caspase-3.
Collapse
|
40
|
Chelluboina B, Klopfenstein JD, Gujrati M, Rao JS, Veeravalli KK. Temporal regulation of apoptotic and anti-apoptotic molecules after middle cerebral artery occlusion followed by reperfusion. Mol Neurobiol 2013; 49:50-65. [PMID: 23813097 PMCID: PMC3918127 DOI: 10.1007/s12035-013-8486-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/13/2013] [Indexed: 12/29/2022]
Abstract
A tremendous effort has been expended to elucidate the role of apoptotic molecules in ischemia. However, many agents that target apoptosis, despite their proven efficacy in animal models, have failed to translate that efficacy and specificity in clinical settings. Therefore, comprehensive knowledge of apoptotic mechanisms involving key apoptotic regulatory molecules and the temporal expression profiles of various apoptotic molecules after cerebral ischemia may provide insight for the development of better therapeutic strategies aimed at cerebral ischemia. The present study investigates the extent of apoptosis and the regulation of apoptotic molecules both at mRNA and protein levels at various time points after focal cerebral ischemia in a rat model of middle cerebral artery occlusion. In this study, we performed various techniques, such as TTC (2,3,5-triphenyltetrazolium chloride), H&E (hematoxylin and eosin), and TUNEL (terminal deoxy nucleotidyl transferase-mediated nick-end labeling) staining, along with polymerase chain reaction (PCR) microarray, antibody microarray, reverse transcription (RT)-PCR, immunofluorescence, and immunoblot analyses. Our research provided a large list of pro-apoptotic and anti-apoptotic molecules and their temporal expression profiles both at the mRNA and protein levels. This information could be very useful for designing future stroke therapies and aid in targeting the right molecules at critical time to obtain maximum therapeutic benefit.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605 USA
| | - Jeffrey D. Klopfenstein
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605 USA
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605 USA
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605 USA
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605 USA
| | - Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605 USA
| |
Collapse
|
41
|
Zhao L, Liu X, Liang J, Han S, Wang Y, Yin Y, Luo Y, Li J. Phosphorylation of p38 MAPK mediates hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury via mitochondria translocation of Bcl-xL in mice. Brain Res 2013; 1503:78-88. [PMID: 23399686 DOI: 10.1016/j.brainres.2013.01.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/19/2013] [Accepted: 01/28/2013] [Indexed: 11/17/2022]
Abstract
Hypoxic preconditioning (HPC) initiates intracellular signaling pathway to provide protection, but the role of p38 mitogen-activated protein kinase (p38 MAPK) in HPC-induced neuroprotection against cerebral ischemic injuries is a matter of debate. In this study, we found that HPC could reduce 6h middle cerebral artery occlusion (MCAO)-induced infarct volume, edema ratio and cell apoptosis, as well as enhancing the up-regulated p38 MAPK phosphorylation (P-p38 MAPK) levels in the peri-infarct region of mice after 6h MCAO. However, intracerebroventricular injection of p38 MAPK inhibitor SB203580 abolished this HPC-induced neuroprotection. HPC significantly increased the translocation of anti-apoptotic Bcl-2-related protein Bcl-xL from the cytosol to the mitochondria in the peri-infarct region of MCAO mice. Interestingly, the results of reciprocal immunoprecipitation showed that Bcl-xL and P-p38 MAPK were coimmunoprecipitated reciprocally only in the peri-infarct region of HPC and MCAO treated mice, while Bcl-xL and total p38 (T-p38 MAPK), not P-p38 MAPK, could be coimmunoprecipited by each other in the brain of normal control mice. In addition, we found SB203580 significantly decreased P-p38 MAPK levels, and inhibited HPC-induced mitochondria translocation of Bcl-xL in the brain of HPC and MCAO treated mice. Taken together, our findings suggested that P-p38 MAPK mediates HPC-induced neuroprotection against cerebral ischemic injury via mitochondria translocation of Bcl-xL, which might be a key anti-cell apoptotic mechanism of HPC.
Collapse
Affiliation(s)
- Li Zhao
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang EJ, Lim SH, Song KS, Han HS, Lee J. Identification of active compounds from Aurantii Immatri Pericarpium attenuating brain injury in a rat model of ischemia-reperfusion. Food Chem 2012; 138:663-70. [PMID: 23265538 DOI: 10.1016/j.foodchem.2012.09.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/20/2012] [Accepted: 09/26/2012] [Indexed: 12/30/2022]
Abstract
Ischemic stroke is caused by brain injury due to prolonged ischemia by occlusion of cerebral arteries. In this study, we isolated active compounds from an ethanol extract of Aurantii Immatri Pericarpium (HY5356). We first showed by DNA fragmentation assay that HY5356 improved human hepatocellular carcinoma cells (HepG2) under hypoxic conditions by inhibiting apoptosis. When HY5356 was fractionated with dichloromethane (MC), ethyl acetate (EA) and n-butanol (BU), the MC fraction improved cell viability at the lowest concentration (100 μg/ml). Intraperitoneal injection of HY5356 (200 mg/kg) or the MC fraction (200 mg/kg) to rats prior to occlusion attenuated brain injury significantly in a rat model of ischemia-reperfusion. Adopting cell viability under hypoxic conditions as an activity screening system, we isolated nobiletin and tangeretin as active compounds. The results suggest that intake of Aurantii Immatri Pericarpium containing nobiletin and tangeretin as active compounds might be beneficial for preventing ischemic stroke.
Collapse
Affiliation(s)
- Eun-Ju Yang
- BK21 Research Team for Developing Functional Health Food Materials, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Sun H, Xiong W, Arrick DM, Mayhan WG. Low-dose alcohol consumption protects against transient focal cerebral ischemia in mice: possible role of PPARγ. PLoS One 2012; 7:e41716. [PMID: 22848576 PMCID: PMC3407212 DOI: 10.1371/journal.pone.0041716] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/26/2012] [Indexed: 01/22/2023] Open
Abstract
Background We examined the influence of low-dose alcohol consumption on cerebral ischemia/reperfusion (I/R) injury in mice and a potential mechanism underlying the neuroprotective effect of low-dose alcohol consumption. Methodology/Principal Findings C57BL/6 J mice were fed a liquid diet without or with 1% alcohol for 8 weeks, orally treated with rosiglitazone (20 mg/kg/day), a peroxisome proliferator-activated receptor gamma (PPARγ)-selective agonist, or GW9662 (3 mg/kg/day), a selective PPARγantagonist, for 2 weeks. The mice were subjected to unilateral middle cerebral artery occlusion (MCAO) for 90 minutes. Brain injury, DNA fragmentation and nuclear PPARγ protein/activity were evaluated at 24 hours of reperfusion. We found that the brain injury and DNA fragmentation were reduced in 1% alcohol-fed mice compared to nonalcohol-fed mice. Rosiglitazone suppressed the brain injury in nonalcohol-fed mice, but didn't alter the brain injury in alcohol-fed mice. In contrast, GW9662 worsened the brain injury in alcohol-fed mice, but didn't alter the brain injury in nonalcohol-fed mice. Nuclear PPARγ protein/activity at peri-infarct and the contralateral corresponding areas of the parietal cortex was greater in alcohol-fed mice compared to nonalcohol-fed mice. Using differentiated catecholaminergic (CATH.a) neurons, we measured dose-related influences of chronic alcohol exposure on nuclear PPARγ protein/activity and the influence of low-dose alcohol exposure on 2-hour oxygen-glucose deprivation (OGD)/24-hour reoxygenation-induced apoptosis. We found that low-dose alcohol exposure increased nuclear PPARγ protein/activity and protected against the OGD/reoxygenation-induced apoptosis. The beneficial effect of low-dose alcohol exposure on OGD/reoxygenation-induced apoptosis was abolished by GW9662. Conclusions/Significance Our findings suggest that chronic consumption of low-dose alcohol protects the brain against I/R injury. The neuroprotective effect of low-dose alcohol consumption may be related to an upregulated PPARγ.
Collapse
Affiliation(s)
- Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America.
| | | | | | | |
Collapse
|
44
|
The neuroprotective functions of transforming growth factor beta proteins. Int J Mol Sci 2012; 13:8219-8258. [PMID: 22942700 PMCID: PMC3430231 DOI: 10.3390/ijms13078219] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 05/24/2012] [Accepted: 06/19/2012] [Indexed: 12/26/2022] Open
Abstract
Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed.
Collapse
|
45
|
Dohi E, Tanaka S, Seki T, Miyagi T, Hide I, Takahashi T, Matsumoto M, Sakai N. Hypoxic stress activates chaperone-mediated autophagy and modulates neuronal cell survival. Neurochem Int 2012; 60:431-42. [PMID: 22306777 DOI: 10.1016/j.neuint.2012.01.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/23/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022]
Abstract
Autophagy is a conserved mechanism responsible for the continuous clearance of unnecessary organelles or misfolded proteins in lysosomes. Three types of autophagy have been reported in the difference of substrate delivery to lysosome: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Among these types, CMA is a unique autophagy system that selectively degrades substrates detected by heat shock cognate protein 70 (HSC70). Recently, autophagic cell death has been reported to be involved in neuronal death following brain ischemia; however, the contribution of CMA to neuronal death/survival after ischemic stress has not been addressed. In the present study, we determined whether quantitative alterations in LAMP-2A, which is the key molecule in CMA, would modulate neuronal cell survival under hypoxic conditions. Incubation of Neuro2A cells in a hypoxic chamber (1% O(2), 5% CO(2)) increased the level of LAMP-2A and induced accumulation of LAMP-2A-positive lysosomes in the perinuclear area, which is a hallmark of CMA activation. The activation of CMA in response to hypoxia was also confirmed by the GAPDH-HaloTag CMA indicator system at the single cell level. Next, we asked whether CMA was involved in cell survival during hypoxia. Blocking LAMP-2A expression with siRNA increased the level of cleaved caspase-3 and the number of propidium iodide-positive cells after hypoxic stress regardless of whether macroautophagy could occur, whereas the administration of mycophenolic acid, a potent CMA activator, rescued hypoxia-mediated cell death. Finally, we asked whether CMA was activated in the neurons after middle cerebral artery occlusion in vivo. The expression of LAMP-2A was significantly increased in the ischemic hemisphere seven days after brain ischemia. These results indicate that CMA is activated during hypoxia and contributes to the survival of cells under these conditions.
Collapse
Affiliation(s)
- Eisuke Dohi
- Department of Molecular and Pharmacological Neuroscience, Hiroshima University, School of Biomedical Sciences, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kim HS, Park MS, Lee JK, Kim HJ, Park JT, Lee MC. Time point expression of apoptosis regulatory proteins in a photochemically-induced focal cerebral ischemic rat brain. Chonnam Med J 2011; 47:144-9. [PMID: 22247913 PMCID: PMC3252501 DOI: 10.4068/cmj.2011.47.3.144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/04/2011] [Indexed: 01/07/2023] Open
Abstract
Apoptosis after global or focal cerebral ischemia plays a crucial role in mediating cell death. In this study, we observed the time point expression of physiologic events involving apoptosis regulatory proteins after photochemically-induced focal cerebral ischemia in Sprague-Dawley rats. Protein expression was evaluated at days 1, 3, and 7 by Western blot. Bcl-2, Bax, caspase-3, and phosphorylated Akt (pAkt) activity markedly increased in the ischemic hemisphere in a time-dependent manner, not affected. The expression of Bcl-2, Bax, and caspase-3 was dramatically changed around day 3, whereas changes in pAkt expression occurred at day 1. Differential elevation of these apoptosis regulatory proteins at various time points indicates that different modes of cell death occur in photochemically-induced focal cerebral ischemia in a rat brain.
Collapse
Affiliation(s)
- Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Han HS, Lee JW. Attenuation of Brain Injury by Water Extract of Goat's-beard (Aruncus dioicus) and Its Ethyl Acetate Fraction in a Rat Model of Ischemia-Reperfusion. Prev Nutr Food Sci 2011. [DOI: 10.3746/jfn.2011.16.3.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
48
|
Chaung WW, Wu R, Ji Y, Wang Z, Dong W, Cheyuo C, Qi L, Qiang X, Wang H, Wang P. Peripheral administration of human adrenomedullin and its binding protein attenuates stroke-induced apoptosis and brain injury in rats. Mol Med 2011; 17:1075-83. [PMID: 21695352 DOI: 10.2119/molmed.2010.00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 06/16/2011] [Indexed: 11/06/2022] Open
Abstract
Stroke is a leading cause of death and the primary medical cause of acquired adult disability worldwide. The progressive brain injury after acute stroke is partly mediated by ischemia-elicited inflammatory responses. The vasoactive hormone adrenomedullin (AM), upregulated under various inflammatory conditions, counterbalances inflammatory responses. However, regulation of AM activity in ischemic stroke remains largely unknown. Recent studies have demonstrated the presence of a specific AM binding protein (that is, AMBP-1) in mammalian blood. AMBP-1 potentiates AM biological activities. Using a rat model of focal cerebral ischemia induced by permanent middle cerebral artery occlusion (MCAO), we found that plasma levels of AM increased significantly, whereas plasma levels of AMBP-1 decreased significantly after stroke. When given peripherally early after MCAO, exogenous human AM in combination with human AMBP-1 reduced brain infarct volume 24 and 72 h after MCAO, an effect not observed after the treatment by human AM or human AMBP-1 alone. Furthermore, treatment of human AM/AMBP-1 reduced neuron apoptosis and morphological damage, inhibited neutrophil infiltration in the brain and decreased serum levels of S100B and lactate. Thus, human AM/AMBP-1 has the ability to reduce stroke-induced brain injury in rats. AM/AMBP-1 can be developed as a novel therapeutic agent for patients with ischemic stroke.
Collapse
Affiliation(s)
- Wayne W Chaung
- The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Troy CM, Akpan N, Jean YY. Regulation of Caspases in the Nervous System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:265-305. [DOI: 10.1016/b978-0-12-385504-6.00007-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Kim KH, Lee JW. Methanol Extract of Cassia mimosoides var. nomame and Its Ethyl Acetate Fraction Attenuate Brain Damage by Inhibition of Apoptosis in a Rat Model of Ischemia-Reperfusion. Prev Nutr Food Sci 2010. [DOI: 10.3746/jfn.2010.15.4.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|