1
|
Sjakste N, Dinter D, Gajski G. A review of the genotoxic effects of antiparasitic drugs on parasites and their hosts. Regul Toxicol Pharmacol 2025; 158:105797. [PMID: 40024560 DOI: 10.1016/j.yrtph.2025.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Antiparasitic medications are drugs used to treat infections caused by parasites like protozoa, helminths, and ectoparasites by either killing the parasite or inhibiting its growth and reproduction. These medications are crucial for treating parasitic diseases and can vary in dosage and administration depending on the type of infection with proper diagnosis being essential for effective treatment. Nevertheless, such drugs can also cause a range of side effects including genotoxicity, depending on the type of medication and the individual's response. Therefore, here we will summarize data on the genotoxic effects of some antiparasitic drugs since many parasites provoke DNA damage per se, and therapy can enhance such genotoxic effects. The DNA-damaging effects of antiparasitic drugs enable the use of some of them for cancer treatment. Since a parasitic disease comes with severe consequences, the cost-benefit should be considered when taking drugs against such a disease even in terms of their potential genotoxicity. While some antiparasitic drugs have shown genotoxic potential in laboratory studies, most are considered safe for human use at therapeutic doses. Long-term or high-dose exposure may carry more risk; moreover, the genotoxic effects of the drugs can interfere with the genotoxicity of the parasitic infection. More research is needed to fully understand the implications for human health. Nevertheless, the present study has confirmed the need for further cytogenetic research and regular patient monitoring to minimize the risk of an adverse event, especially among frequent travellers visiting parasite-affected areas.
Collapse
Affiliation(s)
- Nikolajs Sjakste
- Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 1, 1004, Riga, Latvia.
| | - Domagoj Dinter
- Pliva Croatia Ltd., Prilaz baruna Filipovića 25, 10000, Zagreb, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| |
Collapse
|
2
|
Islam MA, Pathak K, Saikia R, Pramanik P, Das A, Talukdar P, Shakya A, Ghosh SK, Singh UP, Bhat HR. An in-depth analysis of COVID-19 treatment: Present situation and prospects. Arch Pharm (Weinheim) 2024; 357:e2400307. [PMID: 39106224 DOI: 10.1002/ardp.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024]
Abstract
Coronavirus disease 2019 (COVID-19) the most contagious infection caused by the unique type of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), produced a global pandemic that wreaked havoc on the health-care system, resulting in high morbidity and mortality. Several methods were implemented to tackle the virus, including the repurposing of existing medications and the development of vaccinations. The purpose of this article is to provide a complete summary of the current state and future possibilities for COVID-19 therapies. We describe the many treatment classes, such as antivirals, immunomodulators, and monoclonal antibodies, that have been repurposed or developed to treat COVID-19. We also looked at the clinical evidence for these treatments, including findings from observational studies and randomized-controlled clinical trials, and highlighted the problems and limitations of the available evidence. Furthermore, we reviewed existing clinical trials and prospective COVID-19 therapeutic options, such as novel medication candidates and combination therapies. Finally, we discussed the long-term consequences of COVID-19 and the importance of ongoing research into the development of viable treatments. This review will help physicians, researchers, and policymakers to understand the prevention and mitigation of COVID-19.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pallab Pramanik
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Prasenjit Talukdar
- Department of Petroleum Engineering, DUIET, Dibrugarh, University, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
3
|
Jia Y, Tian W, Li Y, Teng Y, Liu X, Li Z, Zhao M. Chloroquine: Rapidly withdrawing from first-line treatment of COVID-19. Heliyon 2024; 10:e37098. [PMID: 39281655 PMCID: PMC11402237 DOI: 10.1016/j.heliyon.2024.e37098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/18/2024] Open
Abstract
The COVID-19 outbreak has garnered significant global attention due to its impact on human health. Despite its relatively low fatality rate, the virus affects multiple organ systems, resulting in various symptoms such as palpitations, headaches, muscle pain, and hearing loss among COVID-19 patients and those recovering from the disease. These symptoms impose a substantial physical, psychological, and social burden on affected individuals. On February 15, 2020, the Chinese government advised incorporating antimalarial drugs into the guidelines issued by the National Health Commission of China for preventing, diagnosing, and treating COVID-19 pneumonia. We examine the adverse effects of Chloroquine (CQ) in treating COVID-19 complications to understand why it is no longer the primary treatment for the disease.
Collapse
Affiliation(s)
- Yunlong Jia
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Wenjie Tian
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yuyao Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Yuyan Teng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Xiaolin Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Zhengyu Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| |
Collapse
|
4
|
Neog S, Vinjamuri SR, Vijayan K, Kumar S, Trivedi V. NDV targets the invasion pathway in malaria parasite through cell surface sialic acid interaction. FASEB J 2024; 38:e23856. [PMID: 39092913 DOI: 10.1096/fj.202400004rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
5
|
Dong J, Zhang J, Xiang G, Yang L. Combining Mefloquine with an Mcl-1 Inhibitor as a Novel Therapeutic Strategy for the Treatment of Nasopharyngeal Carcinoma. Nutr Cancer 2024; 76:736-744. [PMID: 38795070 DOI: 10.1080/01635581.2024.2358561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/27/2024]
Abstract
Considering the established pharmacokinetics and toxicity profiles, drug repurposing has emerged as an alternative therapeutic approach for treating cancer. Mefloquine has previously demonstrated inhibitory effects on multiple cancer types. This study aims to explore the impact of mefloquine on nasopharyngeal carcinoma (NPC). We found that mefloquine, at pharmacologically achievable concentrations, displayed anti-NPC activity while sparing normal counterparts. Mefloquine inhibits proliferation and induces death by reducing the levels of Cyclin A2, Bcl-2, and Bcl-xL. Intriguingly, we observed an increase in the levels of the anti-apoptotic protein Mcl-1. Mefloquine exerts its effects on NPC cells by inducing lysosomal-mediated ROS production, and the heightened expression of Mcl-1 is a consequence of ROS generation in mefloquine-treated NPC cells. The combination of an Mcl-1 inhibitor with mefloquine synergistically inhibits NPC growth in mice without causing substantial toxicity. These findings demonstrate the effectiveness and limited toxicity of mefloquine as a monotherapy and in combination with an Mcl-1 inhibitor. Our research underscores the promise of the mefloquine and Mcl-1 inhibitor combination as a potential treatment for NPC. Additionally, the elevation of Mcl-1 is a compensatory response in cells exposed to oxidative stress, offering a potential target to overcome resistance induced by pro-oxidant therapies.
Collapse
Affiliation(s)
- Jiaqi Dong
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Jianbin Zhang
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Gaojin Xiang
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| | - Ling Yang
- Department of Otolaryngology & Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, People's Republic of China
| |
Collapse
|
6
|
Vu TD, Luong DT, Ho TT, Nguyen Thi TM, Singh V, Chu DT. Drug repurposing for regenerative medicine and cosmetics: Scientific, technological and economic issues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:337-353. [PMID: 38942543 DOI: 10.1016/bs.pmbts.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Regenerative medicine and cosmetics are currently two outstanding fields for drug discovery. Although many pharmaceutical products for regenerative medicine and cosmetics have received approval by official agencies, several challenges are still needed to overcome, especially financial and time issues. As a result, drug repositioning, which is the usage of previously approved drugs for new treatment, stands out as a promising approach to tackle these problems. Recently, increasing scientific evidence is collected to demonstrate the applicability of this novel method in the field of regenerative medicine and cosmetics. Experts in drug development have also taken advantage of novel technologies to discover new candidates for repositioning purposes following computational approach, one of two main approaches of drug repositioning. Therefore, numerous repurposed candidates have obtained approval to enter the market and have witnessed financial success such as minoxidil and fingolimod. The benefits of drug repositioning are undeniable for regenerative medicine and cosmetics. However, some aspects still need to be carefully considered regarding this method including actual effectiveness during clinical trials, patent regulations, data integration and analysis, publicly unavailable databases as well as environmental concerns and more effort are required to overcome these obstacles.
Collapse
Affiliation(s)
- Thuy-Duong Vu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Duc Tri Luong
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-Tien Ho
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thuy-My Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
7
|
Hanscheid T, Del Portal Luyten CR, Hermans SM, Grobusch MP. Repurposing of anti-malarial drugs for the treatment of tuberculosis: realistic strategy or fanciful dead end? Malar J 2024; 23:132. [PMID: 38702649 PMCID: PMC11067164 DOI: 10.1186/s12936-024-04967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Drug repurposing offers a strategic alternative to the development of novel compounds, leveraging the known safety and pharmacokinetic profiles of medications, such as linezolid and levofloxacin for tuberculosis (TB). Anti-malarial drugs, including quinolones and artemisinins, are already applied to other diseases and infections and could be promising for TB treatment. METHODS This review included studies on the activity of anti-malarial drugs, specifically quinolones and artemisinins, against Mycobacterium tuberculosis complex (MTC), summarizing results from in vitro, in vivo (animal models) studies, and clinical trials. Studies on drugs not primarily developed for TB (doxycycline, sulfonamides) and any novel developed compounds were excluded. Analysis focused on in vitro activity (minimal inhibitory concentrations), synergistic effects, pre-clinical activity, and clinical trials. RESULTS Nineteen studies, including one ongoing Phase 1 clinical trial, were analysed: primarily investigating quinolones like mefloquine and chloroquine, and, to a lesser extent, artemisinins. In vitro findings revealed high MIC values for anti-malarials versus standard TB drugs, suggesting a limited activity. Synergistic effects with anti-TB drugs were modest, with some synergy observed in combinations with isoniazid or pyrazinamide. In vivo animal studies showed limited activity of anti-malarials against MTC, except for one study of the combination of chloroquine with isoniazid. CONCLUSIONS The repurposing of anti-malarials for TB treatment is limited by high MIC values, poor synergy, and minimal in vivo effects. Concerns about potential toxicity at effective dosages and the risk of antimicrobial resistance, especially where TB and malaria overlap, further question their repurposing. These findings suggest that focusing on novel compounds might be both more beneficial and rewarding.
Collapse
Affiliation(s)
- Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Claire Ruiz Del Portal Luyten
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Sabine M Hermans
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
- Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon.
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone.
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Rossi NRDLP, Fialho SN, Gouveia ADJ, Ferreira AS, da Silva MA, Martinez LDN, Paula do Nascimento WDS, Gonzaga A, de Medeiros DSS, de Barros NB, de Cássia Alves R, Gonçalves GM, Teles CGB. Quinine and chloroquine: Potential preclinical candidates for the treatment of tegumentary Leishmaniasis. Acta Trop 2024; 252:107143. [PMID: 38331084 DOI: 10.1016/j.actatropica.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Leishmaniasis is an endemic disease in more than 90 countries, constituting a relevant public health problem. Limited treatment options, increase in resistance, and therapeutic failure are important aspects for the discovery of new treatment options. Drug repurposing may accelerate the discovery of antiLeishmanial drugs. Recent tests indicating the in vitro potential of antimalarials Leishmania resulted in the design of this study. This study aimed at evaluating the susceptibility of Leishmania (L.) amazonensis to chloroquine (CQ) and quinine (QN), alone or in combination with amphotericin B (AFT) and pentamidine (PTN). In the in vitro tests, first, we evaluated the growth inhibition of 50 % of promastigotes (IC50) and cytotoxicity for HepG2 and THP-1 cells (CC50). The IC50 values of AFT and PNT were below 1 µM, while the IC50 values of CQ and QN ranged between 4 and 13 µM. Concerning cytotoxicity, CC50 values ranged between 7 and 30 µM for AFT and PNT, and between 22 and 157 µM for the antimalarials. We also calculated the Selectivity Index (SI), where AFT and PTN obtained the highest values, while the antimalarias obtained values between 5 and 12. Both antimalarials were additive (ƩFIC 1.05-1.8) in combination with AFT and PTN. For anti-amastigote activity, the drugs obtained the following ICA50 values: AFT (0.26 µM), PNT (2.09 µM), CQ (3.77 µM) and QN (24.5 µM). In the in vivo tests, we observed that the effective dose for the death of 50 % of parasites (ED50) of AFT and CQ were 0.63 mg/kg and 27.29 mg/kg, respectively. When combining CQ with AFT, a decrease in parasitemia was observed, being statistically equal to the naive group. For cytokine quantification, it was observed that CQ, despite presenting anti-inflammatory activity was effective at increasing the production of IFN-γ. Overall, our data indicate that chloroquine will probably be a candidate for repurposing and use in drug combination therapy.
Collapse
Affiliation(s)
- Norton Rubens Diunior Lucas Pejara Rossi
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil.
| | - Saara Neri Fialho
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | - Aurileya de Jesus Gouveia
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Amália Santos Ferreira
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | | | - Leandro Do Nascimento Martinez
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Welington da Silva Paula do Nascimento
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil
| | - Arlindo Gonzaga
- Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| | | | | | | | - Giselle Martins Gonçalves
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Carolina Garcia Bioni Teles
- Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP), Fundação Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil; Plataforma de Bioensaios de Malária e Leishmaniose (PBML), Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO, Brazil; São Lucas Educacional-Afya, Porto Velho, RO, Brazil; Instituto Nacional de Epidemiologia da Amazônia Ocidental - EpiAmO, Brazil; Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, RO, Brazil
| |
Collapse
|
9
|
Reeha S, Nikhil MT, Thakur A. A Deep Learning Approach for Prediction of Binding Affinity for Anti Malerial Drugs and Their Target Proteins. 2024 3RD INTERNATIONAL CONFERENCE FOR INNOVATION IN TECHNOLOGY (INOCON) 2024:1-5. [DOI: 10.1109/inocon60754.2024.10512173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Shaik Reeha
- Amrita Vishwa Vidyapeetham,Amrita School of Computing,Dept. of Computer Science & Engineering,Bengaluru
| | - Masabattula Teja Nikhil
- Amrita Vishwa Vidyapeetham,Amrita School of Computing,Dept. of Computer Science & Engineering,Bengaluru
| | - Amrita Thakur
- Amrita Vishwa Vidyapeetham,Amrita School of Engineering,Dept. of Chemistry,Bengaluru,India
| |
Collapse
|
10
|
Audu D, Patel VB, Idowu OA, Mshelbwala FM, Idowu AB. Baseline and recurrent exposure to the standard dose of artemisinin-based combination therapies (ACTs) induces oxidative stress and liver damage in mice (BALB/c). EGYPTIAN LIVER JOURNAL 2023; 13:53. [DOI: 10.1186/s43066-023-00291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 07/18/2024] Open
Abstract
Abstract
Background
In malaria-endemic countries, repeated intake of artemisinin-based combination therapies (ACTs) is rampant and driven by drug resistance, improper usage, and easy accessibility. Stress effects and potential liver toxicity due to the frequent therapeutic use of ACTs have not been extensively studied. Here, we investigated the effects of repeated treatment with standard doses of the commonly used ACTs artemether/lumefantrine (A/L) and artesunate-amodiaquine (A/A) on oxidative stress and liver function markers in male mice (BALB/c).
Methods
Forty Five mice were divided into three groups: control, A/L, and A/A. The drugs were administered three days in a row per week, and the regimen was repeated every two weeks for a total of six cycles. The levels of oxidative stress and liver function markers were measured in both plasma and liver tissue after initial (baseline) and repeated exposures for the second, third, and sixth cycles.
Results
Exposure to A/L or A/A caused a significant (p < 0.001) increase in plasma malondialdehyde (MDA) levels after the first and repeated exposure periods. However, Hepatic MDA levels increased significantly (p < 0.01) only after the sixth exposure to A/A. Following either single or repeated exposure to A/L or A/A, plasma and liver glutathione peroxidase (GPx) and catalase (CAT) activities, plasma aspartate and alanine transaminase, alkaline phosphatase activity, and bilirubin levels increased, whereas total plasma protein levels decreased significantly (p < 0.001). Varying degrees of hepatocyte degeneration and blood vessel congestion were observed in liver tissues after a single or repeated treatment period.
Conclusion
Irrespective of single or repeated exposure to therapeutic doses of A/L or A/A, plasma oxidative stress and liver damage were observed. However, long-term repeated A/A exposure can led to hepatic stress. Compensatory processes involving GPx and CAT activities may help reduce the observed stress.
Collapse
|
11
|
Assis FFVD, Almeida Junior JSD, Moraes TMP, Varotti FDP, Moraes CC, Sartoratto A, Moraes WP, Minervino AHH. Antiplasmodial Activity of Hydroalcoholic Extract from Jucá ( Libidibia ferrea) Pods. Pharmaceutics 2023; 15:pharmaceutics15041162. [PMID: 37111647 PMCID: PMC10145024 DOI: 10.3390/pharmaceutics15041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
Malaria is an infectious and parasitic disease caused by protozoa of the genus Plasmodium, which affects millions of people in tropical and subtropical areas. Recently, there have been multiple reports of drug resistance in Plasmodium populations, leading to the search for potential new active compounds against the parasite. Thus, we aimed to evaluate the in vitro antiplasmodial activity and cytotoxicity of the hydroalcoholic extract of Jucá (Libidibia ferrea) in serial concentrations. Jucá was used in the form of a freeze-dried hydroalcoholic extract. For the cytotoxicity assay, the(3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method with the WI-26VA4 human cell line was used. For the antiplasmodial activity, Plasmodium falciparum synchronized cultures were treated with serial concentrations (0.2 to 50 μg/mL) of the Jucá extract. In terms of the chemical composition of the Jucá extract, gas chromatography coupled to mass spectrometry measurements revealed the main compounds as ellagic acid, valoneic acid dilactone, gallotannin, and gallic acid. The Jucá hydroalcoholic extract did not show cytotoxic activity per MTT, with an IC50 value greater than 100 µg/mL. Regarding the antiplasmodial activity, the Jucá extract presented an IC50 of 11.10 µg/mL with a selective index of nine. Because of its antiplasmodial activity at the tested concentrations and low toxicity, the Jucá extract is presented as a candidate for herbal medicine in the treatment of malaria. To the best of our knowledge, this is the first report of antiplasmodial activity in Jucá.
Collapse
Affiliation(s)
| | - José Sousa de Almeida Junior
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Tânia Mara Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro-Oeste, Av. Sebastião G. Coelho, 400, Chanadour, Divinópolis 35501-296, Brazil
| | - Camila Castilho Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade de Campinas-UNICAMP, Campinas 13148-218, Brazil
| | - Waldiney Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | | |
Collapse
|
12
|
Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö. Human Cytochrome P450 1, 2, 3 Families as Pharmacogenes with Emphases on Their Antimalarial and Antituberculosis Drugs and Prevalent African Alleles. Int J Mol Sci 2023; 24:ijms24043383. [PMID: 36834793 PMCID: PMC9961538 DOI: 10.3390/ijms24043383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Precision medicine gives individuals tailored medical treatment, with the genotype determining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity. Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes. Therefore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden of malaria and tuberculosis, and this review presents current general information on CYP enzymes together with variation data concerning antimalarial and antituberculosis drugs, while focusing on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9, CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine, primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2, and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as bedaquiline and linezolid. Drug-drug interactions, induction/inhibition, and enzyme polymorphisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored. Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of their known effects provided structural insights, as understanding the mechanism of action of these enzymes and how the different alleles influence enzyme function is invaluable to the advancement of precision medicine.
Collapse
Affiliation(s)
- Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Rolland Bantar Tata
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Birgit Schoeberl
- Translational Medicine, Novartis Institutes for BioMedical Research, 220 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
13
|
Günther A, Hose M, Abberger H, Schumacher F, Veith Y, Kleuser B, Matuschewski K, Lang KS, Gulbins E, Buer J, Westendorf A, Hansen W. The acid ceramidase/ceramide axis controls parasitemia in Plasmodium yoelii-infected mice by regulating erythropoiesis. eLife 2022; 11:77975. [PMID: 36094170 PMCID: PMC9499531 DOI: 10.7554/elife.77975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Acid ceramidase (Ac) is part of the sphingolipid metabolism and responsible for the degradation of ceramide. As bioactive molecule, ceramide is involved in the regulation of many cellular processes. However, the impact of cell-intrinsic Ac activity and ceramide on the course of Plasmodium infection remains elusive. Here, we use Ac-deficient mice with ubiquitously increased ceramide levels to elucidate the role of endogenous Ac activity in a murine malaria model. Interestingly, ablation of Ac leads to alleviated parasitemia associated with decreased T cell responses in the early phase of Plasmodium yoelii infection. Mechanistically, we identified dysregulated erythropoiesis with reduced numbers of reticulocytes, the preferred host cells of P. yoelii, in Ac-deficient mice. Furthermore, we demonstrate that administration of the Ac inhibitor carmofur to wildtype mice has similar effects on P. yoelii infection and erythropoiesis. Notably, therapeutic carmofur treatment after manifestation of P. yoelii infection is efficient in reducing parasitemia. Hence, our results provide evidence for the involvement of Ac and ceramide in controlling P. yoelii infection by regulating red blood cell development.
Collapse
Affiliation(s)
- Anne Günther
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Hose
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Hanna Abberger
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | | | - Ylva Veith
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Kai Matuschewski
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Erich Gulbins
- Institute of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Astrid Westendorf
- Institute of Medical Microbiology, University of Duisburg-Essen, Duisburg, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
14
|
Tolerability of Atovaquone—Proguanil Application in Common Buzzard Nestlings. Vet Sci 2022; 9:vetsci9080397. [PMID: 36006311 PMCID: PMC9414624 DOI: 10.3390/vetsci9080397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Many wild animals, and particularly birds, are commonly infected and can suffer health consequences by blood parasites related to Plasmodium, the causative agents of malaria in humans. Atovaquone–proguanil (Malarone®, GlaxoSmithKline) is one of the most popular drugs for the treatment of malaria infections in humans and is commonly used for the treatment of birds in captivity. Our aim was to test the potential effects of Malarone® within one week of treatment on the growth rate, body condition, and blood chemistry of common buzzard nestlings, a widely distributed Eurasian bird of prey. We found no evidence of detrimental effects of a single dose in common buzzard nestlings with an average dosage of 11 mg/kg, compared with the 7 mg/kg recommended daily dosage in humans. Although Malarone® is commonly used in wildlife rehabilitation centres, and our results do not indicate acute toxicity, further studies are needed to determine the half-life and potential long-term effects of Malarone® treatment in birds. Abstract Differences in drug tolerability among vertebrate groups and species can create substantial challenges for wildlife and ex situ conservation programmes. Knowledge of tolerance in the use of new drugs is, therefore, important to avoid severe toxicity in species, which are both commonly admitted in veterinary clinics and are of conservation concern. Antimalarial drugs have been developed for use in human medicine, but treatment with different agents has also long been used in avian medicine, as haemosporidian infections play a major role in many avian species. This study investigates the effects of the application of atovaquone–proguanil (Malarone®, GlaxoSmithKline) in common buzzards (Buteo buteo). The potential effects of treatment on body condition, growth rate, and chemical blood parameters of nestlings were assessed. All individuals survived the treatment, and no effects on body condition, growth rate, and chemical blood parameters were observed. Our results suggest the tolerability of Malarone® in common buzzards at a single dose of on average 11 mg/kg body weight. For its safe use, we recommend further studies to determine pharmacokinetics in different avian species as well as to assess the effects of repeated treatment.
Collapse
|
15
|
Amewu RK, Ade CF, Darko Otchere I, Morgan P, Yeboah-Manu D. Synthesis and Initial Testing of Novel Antimalarial and Antitubercular Isonicotinohydrazides. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
O'Neill EK, Smith R. Visual electrophysiology in the assessment of toxicity and deficiency states affecting the visual system. Eye (Lond) 2021; 35:2344-2353. [PMID: 34290445 PMCID: PMC8377028 DOI: 10.1038/s41433-021-01663-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
Visual disturbance or visual failure due to toxicity of an ingested substance or a severe nutritional deficiency can present significant challenges for diagnosis and management, for instance, where an adverse reaction to a prescribed medicine is suspected. Objective assessment of visual function is important, particularly where structural changes in the retina or optic nerve have not yet occurred, as there may be a window of opportunity to mitigate or reverse visual loss. This paper reviews a number of clinical presentations where visual electrophysiological assessment has an important role in early diagnosis or management alongside clinical assessment and ocular imaging modalities. We highlight the importance of vitamin A deficiency as an easily detected marker for severe combined micronutrient deficiency.
Collapse
Affiliation(s)
- Emily K O'Neill
- Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children, London, UK. Emily.O'
| | - Richard Smith
- Eye Department, Stoke Mandeville Hospital, Aylesbury, Buckinghamshire, UK.
| |
Collapse
|
17
|
Nguyen-Vo TH, Trinh QH, Nguyen L, Do TTT, Chua MCH, Nguyen BP. Predicting Antimalarial Activity in Natural Products Using Pretrained Bidirectional Encoder Representations from Transformers. J Chem Inf Model 2021; 62:5050-5058. [PMID: 36373285 DOI: 10.1021/acs.jcim.1c00584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - Quang H. Trinh
- Computational Biology Center, International University−VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Loc Nguyen
- Computational Biology Center, International University−VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Trang T. T. Do
- School of Business and Information Technology, Wellington Institute of Technology, 21 Kensington Avenue, Lower Hutt 5012, New Zealand
| | - Matthew Chin Heng Chua
- Institute of Systems Science, National University of Singapore, 29 Heng Mui Keng Terrace, Singapore 119620, Singapore
| | - Binh P. Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| |
Collapse
|
18
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
19
|
Rashidzadeh H, Tabatabaei Rezaei SJ, Adyani SM, Abazari M, Rahamooz Haghighi S, Abdollahi H, Ramazani A. Recent advances in targeting malaria with nanotechnology-based drug carriers. Pharm Dev Technol 2021; 26:807-823. [PMID: 34190000 DOI: 10.1080/10837450.2021.1948568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Malaria, as one of the most common human infectious diseases, remains the greatest global health concern, since approximately 3.5 billion people around the world, especially those in subtropical areas, are at the risk of being infected by malaria. Due to the emergence and spread of drug resistance to the current antimalarials, malaria-related mortality and incidence rates have recently increased. To overcome the aforementioned obstacles, nano-vehicles based on biodegradable, natural, and non-toxic polymers have been developed. Accordingly, these systems are considered as a potential drug vehicle, which due to their unique properties such as the excellent safety profile, good biocompatibility, tunable structure, diversity, and the presence of functional groups within the polymer structure, could facilitate covalent attachment of targeting moieties and antimalarials to the polymeric nano-vehicles. In this review, we highlighted some recent developments of liposomes as unique nanoscale drug delivery vehicles and several polymeric nanovehicles, including hydrogels, dendrimers, self-assembled micelles, and polymer-drug conjugates for the effective delivery of antimalarials.
Collapse
Affiliation(s)
- Hamid Rashidzadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Seyed Masih Adyani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Rahamooz Haghighi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Hossien Abdollahi
- Department of Polymer Engineering, Faculty of Engineering, Urmia University, Urmia, Iran
| | - Ali Ramazani
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
20
|
Fonseca AM, Silva LPD, Almeida-Neto FWDQ, Colares RP, Macedo de Oliveira M, Luthierre Gama Cavalcante A, Lemos TLG, Braz-Filho R, de Lima-Neto P, Marinho ES. Synthesis of a new quinine dimer biocatalysed by the coconut water. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1935897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Aluísio M. Fonseca
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis – MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, Brazil
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, Brazil
| | - Leonardo Paes da Silva
- Grupo de Química Teórica, Departamento de Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, Brasil
| | | | - Regilany Paulo Colares
- Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, Brazil
| | - Mauro Macedo de Oliveira
- Mestrado Acadêmico em Sociobiodiversidades e Tecnologias Sustentáveis – MASTS, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Acarape, Brazil
- Departamento de Química, Centro Universitário Paraíso – UNIFAP, Juazeiro do Norte, Brazil
| | | | - Telma L. G. Lemos
- Laboratório de Biocatálise e Produtos Naturais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Raimundo Braz-Filho
- Centro de Ciências e Tecnologias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos Dos Goytacazes, Brazil
| | - Pedro de Lima-Neto
- Grupo de Química Teórica, Departamento de Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, Brasil
| | - Emmanuel Silva Marinho
- Grupo de Química Teórica, Departamento de Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, Brasil
- Faculdade de Filosofia Dom Aureliano Matos - FAFIDAM, Universidade Estadual do Ceará, Centro, Brazil
| |
Collapse
|
21
|
The Experimental Role of Medicinal Plants in Treatment of Toxoplasma gondii Infection: A Systematic Review. Acta Parasitol 2021; 66:303-328. [PMID: 33159263 DOI: 10.1007/s11686-020-00300-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/12/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Toxoplasma gondii is the global protozoa that could cause contamination in warm-blooded animals and is considered among the opportunistic pathogens in immunocompromised patients. Among the people at risk, toxoplasmosis infection can lead to the incidence of severe clinical manifestations, encephalitis, chorioretinitis, and even death. PURPOSE The present research is focused on the new research for the treatment of toxoplasmosis parasitic disease using medicinal herbs. METHODS The search was performed in five English databases, including Scopus, PubMed, Web of Science, EMBASE, and Google Scholar up from 2010 to December 2019. Studies in any language were entered in the searching step if they had an English abstract. The words and terms were used as a syntax with specific tags of each database. RESULTS Out of 1832 studies, 36 were eligible to be reviewed. The findings showed that 17 studies (47%) were performed in vitro, 14 studies (39%) in vivo, and 5 studies (14%) both in vivo and in vitro. CONCLUSION The studies showed that the plant extracts can be a good alternative in reducing the toxoplasmosis effects in the host and the herbal extracts can be used to produce natural product-based drugs affecting toxoplasmosis with fewer side-effects than synthetic drugs.
Collapse
|
22
|
Broyles AD, Banerji A, Barmettler S, Biggs CM, Blumenthal K, Brennan PJ, Breslow RG, Brockow K, Buchheit KM, Cahill KN, Cernadas J, Chiriac AM, Crestani E, Demoly P, Dewachter P, Dilley M, Farmer JR, Foer D, Fried AJ, Garon SL, Giannetti MP, Hepner DL, Hong DI, Hsu JT, Kothari PH, Kyin T, Lax T, Lee MJ, Lee-Sarwar K, Liu A, Logsdon S, Louisias M, MacGinnitie A, Maciag M, Minnicozzi S, Norton AE, Otani IM, Park M, Patil S, Phillips EJ, Picard M, Platt CD, Rachid R, Rodriguez T, Romano A, Stone CA, Torres MJ, Verdú M, Wang AL, Wickner P, Wolfson AR, Wong JT, Yee C, Zhou J, Castells M. Practical Guidance for the Evaluation and Management of Drug Hypersensitivity: Specific Drugs. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 8:S16-S116. [PMID: 33039007 DOI: 10.1016/j.jaip.2020.08.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Ana Dioun Broyles
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Aleena Banerji
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Sara Barmettler
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Kimberly Blumenthal
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Rebecca G Breslow
- Division of Sports Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of Munich, Munich, Germany
| | - Kathleen M Buchheit
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Josefina Cernadas
- Allergology and Immunology Service, Centro Hospitalar Universitário de S.João Hospital, Porto, Portugal
| | - Anca Mirela Chiriac
- Division of Allergy, Department of Pulmonology, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France
| | - Elena Crestani
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Pascal Demoly
- Division of Allergy, Department of Pulmonology, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France
| | - Pascale Dewachter
- Department of Anesthesiology and Intensive Care Medicine, Groupe Hospitalier Paris-Seine-Saint-Denis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Meredith Dilley
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Jocelyn R Farmer
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Dinah Foer
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Ari J Fried
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Sarah L Garon
- Associated Allergists and Asthma Specialists, Chicago, Ill
| | - Matthew P Giannetti
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - David L Hepner
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Mass
| | - David I Hong
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Joyce T Hsu
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Parul H Kothari
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Timothy Kyin
- Division of Asthma, Allergy & Immunology, University of Virginia, Charlottesville, Va
| | - Timothy Lax
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Boston, Mass
| | - Min Jung Lee
- Allergy and Immunology at Hoag Medical Group, Newport Beach, Calif
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass
| | - Anne Liu
- Division of Allergy / Immunology, Stanford University School of Medicine, Palo Alto, Calif
| | - Stephanie Logsdon
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Margee Louisias
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Andrew MacGinnitie
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Michelle Maciag
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Samantha Minnicozzi
- Division of Allergy and Clinical Immunology, Respiratory Medicine, Department of Pediatrics, University of Virginia, Charlottesville, Va
| | - Allison E Norton
- Division of Allergy, Immunology and Pulmonology, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tenn
| | - Iris M Otani
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco Medical Center, San Francisco, Calif
| | - Miguel Park
- Division of Allergic Diseases, Mayo Clinic, Rochester, Minn
| | - Sarita Patil
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Elizabeth J Phillips
- Department of Medicine & Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tenn
| | - Matthieu Picard
- Division of Allergy and Clinical Immunology, Department of Medicine, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Québec, Canada
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Rima Rachid
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Tito Rodriguez
- Drug Allergy Department, Al-Rashed Allergy Center, Sulaibikhat, Al-Kuwait, Kuwait
| | - Antonino Romano
- IRCCS Oasi Maria S.S., Troina, Italy & Fondazione Mediterranea G.B. Morgagni, Catania, Italy
| | - Cosby A Stone
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Maria Jose Torres
- Allergy Unit and Research Group, Hospital Regional Universitario de Málaga, UMA-IBIMA-BIONAND, ARADyAL, Málaga, Spain
| | - Miriam Verdú
- Allergy Unit, Hospital Universitario de Ceuta, Ceuta, Spain
| | - Alberta L Wang
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Paige Wickner
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Anna R Wolfson
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Johnson T Wong
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Mass
| | - Christina Yee
- Division of Immunology, Boston Children's Hospital, Boston, Mass
| | - Joseph Zhou
- Division of Allergy/Immunology, Boston Children's Hospital, Boston, Mass
| | - Mariana Castells
- Drug hypersensitivity and Desensitization Center, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
23
|
K13-Mediated Reduced Susceptibility to Artemisinin in Plasmodium falciparum Is Overlaid on a Trait of Enhanced DNA Damage Repair. Cell Rep 2021; 32:107996. [PMID: 32755588 PMCID: PMC7408483 DOI: 10.1016/j.celrep.2020.107996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
Southeast Asia has been the hotbed for the development of drug-resistant malaria parasites, including those with resistance to artemisinin combination therapy. While mutations in the kelch propeller domain (K13 mutations) are associated with artemisinin resistance, a range of evidence suggests that other factors are critical for the establishment and subsequent transmission of resistance in the field. Here, we perform a quantitative analysis of DNA damage and repair in the malaria parasite Plasmodium falciparum and find a strong link between enhanced DNA damage repair and artemisinin resistance. This experimental observation is further supported when variations in seven known DNA repair genes are found in resistant parasites, with six of these mutations being associated with K13 mutations. Our data provide important insights on confounding factors that are important for the establishment and spread of artemisinin resistance and may explain why resistance has not yet arisen in Africa. High-throughput MalariaCometChip to measure DNA damage level in P. falciparum Subpopulation of Cambodian isolates possess enhanced DNA damage repair Important link between enhanced DNA damage repair and artemisinin resistance
Collapse
|
24
|
Abdulkareem AO, Babamale OA, Aishat LA, Ajayi OC, Gloria SK, Olatunji LA, Ugbomoiko US. Effect of sodium acetate on serum activity of glucose-6-phosphate dehydrogenase in Plasmodium berghei-infected mice. J Parasit Dis 2021; 45:121-127. [PMID: 33746396 DOI: 10.1007/s12639-020-01272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/10/2020] [Indexed: 11/26/2022] Open
Abstract
Malaria is a global health problem with severe morbidity and mortality in Sub-Saharan Africa. Resistance of Plasmodium spp to the current anti-malaria drugs necessitates further search for novel effective drugs. This study, therefore, investigated the effect of sodium acetate on glucose-6-phosphate dehydrogenase in Plasmodium berghei-infected mice. Thirty male Albino mice were randomly distributed into 6 groups, A-F. Animals in Groups B-F were inoculated with P. berghei, intraperitoneally. Subsequently, Group C mice were treated with 20 mg/kg chloroquine, while groups D, E and F received 25, 50 and 100 mg/kg sodium acetate, respectively. All treatments were administered orally for 4 days. At the end of the experiment, animals were sacrificed by cervical dislocation and blood was collected via cardiac puncture for the analyses of serum glucose-6-phosphate dehydrogenase (G6PD), uric acid and lipid profile. Our results showed that Sodium acetate (50 and 100 mg/kg) significantly reduced (p < 0.05) parasitaemia (67.11% and 77.62%, respectively) than chloroquine (61.73%). Besides, body weight and serum G6PD activity in P. berghei infection were improved. Similarly, sodium acetate reduced elevated serum uric acid. Effects of sodium acetate and chloroquine on biochemical parameters were comparable (p > 0.05) but atherogenic lipid ratios were not affected by sodium acetate. These data put together suggested that activity of sodium acetate may be harnessed for development of novel anti-malaria drugs. However, more studies are required to delineate its mechanisms of action.
Collapse
Affiliation(s)
- A O Abdulkareem
- Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
- HOPE Cardiometabolic Research Research Team, University of Ilorin, Ilorin, Nigeria
| | - O A Babamale
- Parasitology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - L A Aishat
- Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - O C Ajayi
- Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - S K Gloria
- Animal Physiology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| | - L A Olatunji
- Cardiovascular Research Unit, Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- HOPE Cardiometabolic Research Research Team, University of Ilorin, Ilorin, Nigeria
| | - U S Ugbomoiko
- Parasitology Unit, Department of Zoology, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
25
|
Batalha PN, Forezi LSM, Lima CGS, Pauli FP, Boechat FCS, de Souza MCBV, Cunha AC, Ferreira VF, da Silva FDC. Drug repurposing for the treatment of COVID-19: Pharmacological aspects and synthetic approaches. Bioorg Chem 2021; 106:104488. [PMID: 33261844 PMCID: PMC7676325 DOI: 10.1016/j.bioorg.2020.104488] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, a new variant of SARS-CoV emerged, the so-called acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes the new coronavirus disease (COVID-19) and has been plaguing the world owing to its unprecedented spread efficiency, which has resulted in a huge death toll. In this sense, the repositioning of approved drugs is the fastest way to an effective response to a pandemic outbreak of this scale. Considering these facts, in this review we provide a comprehensive and critical discussion on the chemical aspects surrounding the drugs currently being studied as candidates for COVID-19 therapy. We intend to provide the general chemical community with an overview on the synthetic/biosynthetic pathways related to such molecules, as well as their mechanisms of action against the evaluated viruses and some insights on the pharmacological interactions involved in each case. Overall, the review aims to present the chemical aspects of the main bioactive molecules being considered to be repositioned for effective treatment of COVID-19 in all phases, from the mildest to the most severe.
Collapse
Affiliation(s)
- Pedro N Batalha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| | - Luana S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Carolina G S Lima
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda C S Boechat
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Anna C Cunha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000 Niterói, RJ, Brazil.
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| |
Collapse
|
26
|
Trendafilova A, Moujir LM, Sousa PMC, Seca AML. Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents. Foods 2020; 10:E65. [PMID: 33396790 PMCID: PMC7823681 DOI: 10.3390/foods10010065] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The genus Artemisia, often known collectively as "wormwood", has aroused great interest in the scientific community, pharmaceutical and food industries, generating many studies on the most varied aspects of these plants. In this review, the most recent evidence on health effects of edible Artemisia species and some of its constituents are presented and discussed, based on studies published until 2020, available in the Scopus, Web of Sciences and PubMed databases, related to food applications, nutritional and sesquiterpene lactones composition, and their therapeutic effects supported by in vivo and clinical studies. The analysis of more than 300 selected articles highlights the beneficial effect on health and the high clinical relevance of several Artemisia species besides some sesquiterpene lactones constituents and their derivatives. From an integrated perspective, as it includes therapeutic and nutritional properties, without ignoring some adverse effects described in the literature, this review shows the great potential of Artemisia plants and some of their constituents as dietary supplements, functional foods and as the source of new, more efficient, and safe medicines. Despite all the benefits demonstrated, some gaps need to be filled, mainly related to the use of raw Artemisia extracts, such as its standardization and clinical trials on adverse effects and its health care efficacy.
Collapse
Affiliation(s)
- Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Laila M. Moujir
- Department of Biochemistry, Microbiology, Genetics and Cell Biology, Facultad de Farmacia, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain;
| | - Pedro M. C. Sousa
- Faculty of Sciences and Technology, University of Azores, 9500-321 Ponta Delgada, Portugal;
| | - Ana M. L. Seca
- cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9500-321 Ponta Delgada, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Lei ZN, Wu ZX, Dong S, Yang DH, Zhang L, Ke Z, Zou C, Chen ZS. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacol Ther 2020; 216:107672. [PMID: 32910933 PMCID: PMC7476892 DOI: 10.1016/j.pharmthera.2020.107672] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been commonly used for the treatment and prevention of malaria, and the treatment of autoimmune diseases for several decades. As their new mechanisms of actions are identified in recent years, CQ and HCQ have wider therapeutic applications, one of which is to treat viral infectious diseases. Since the pandemic of the coronavirus disease 2019 (COVID-19), CQ and HCQ have been subjected to a number of in vitro and in vivo tests, and their therapeutic prospects for COVID-19 have been proposed. In this article, the applications and mechanisms of action of CQ and HCQ in their conventional fields of anti-malaria and anti-rheumatism, as well as their repurposing prospects in anti-virus are reviewed. The current trials and future potential of CQ and HCQ in combating COVID-19 are discussed.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Shaowei Dong
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.
| | - Chang Zou
- Key Laboratory of medical electrophysiology of education ministry, School of Pharmacy, Southwest Medical University, China; Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
28
|
Olanlokun JO, Babarinde CO, Olorunsogo OO. Antimalarial properties and preventive effects on mitochondrial dysfunction by extract and fractions of Phyllanthus amarus (Schum. and Thonn) in Plasmodium berghei-infected mice. J Basic Clin Physiol Pharmacol 2020; 32:255-266. [PMID: 33161386 DOI: 10.1515/jbcpp-2020-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Broad spectrum antimalarial drugs without deleterious effects on mitochondria are scarce. It is in this regard that we investigated the potency of methanol extract and solvent fractions of Phyllanthus amarus on chloroquine-susceptible and resistant strains of Plasmodium berghei, toxicity and its consequential effects on mitochondrial permeability transition (mPT) pore opening. METHODS Malaria was induced in male Swiss mice with susceptible (NK 65) strain, divided into groups (n=5) and treated with 100, 200 and 400 mg/kg of methanol extract, n-hexane, dichloromethane, ethylacetate and methanol fractions daily for seven days. Percentage parasitemia and parasite clearance were determined microscopically. The two most potent fractions were tested on resistant (ANKA) strains. Heme and hemozoin contents were determined spectrophotometrically. The mPT, mitochondrial ATPase (mATPase) and lipid peroxidation (mLPO) were determined spectrophotometrically. Similar groups of animals were used for toxicity studies. RESULTS Dichloromethane fraction (400 mg/kg) had the highest antimalarial curative effect via least parasitemia (0.49) and high clearance (96.63) compared with the negative control (10.08, 0.00, respectively), had the highest heme and least hemozoin contents (16.23; 0.03) compared with the negative control (8.2, 0.126, respectively). Malaria infection opened the mPT, caused significant increase in mLPO and enhanced mATPase; while dichloromethane fraction reversed these conditions. Serum ALT, AST, ALP, GGT, urea and creatinine of dichloromethane fraction-treated mice decreased relative to control. No significant lesion was noticed in liver and kidney tissue sections. CONCLUSIONS Dichloromethane fraction of Phyllanthus amarus had the highest antimalarial activity with the highest mito-protective effect and it was well tolerated without toxic effects.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Cecilia Opeyemi Babarinde
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
29
|
Belete TM. Recent Progress in the Development of New Antimalarial Drugs with Novel Targets. Drug Des Devel Ther 2020; 14:3875-3889. [PMID: 33061294 PMCID: PMC7519860 DOI: 10.2147/dddt.s265602] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Malaria is a major global health problem that causes significant mortality and morbidity annually. The therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains, which causes a major obstacle to malaria control. To prevent a potential public health emergency, there is an urgent need for new antimalarial drugs, with single-dose cures, broad therapeutic potential, and novel mechanism of action. Antimalarial drug development can follow several approaches ranging from modifications of existing agents to the design of novel agents that act against novel targets. Modern advancement in the biology of the parasite and the availability of the different genomic techniques provide a wide range of novel targets in the development of new therapy. Several promising targets for drug intervention have been revealed in recent years. Therefore, this review focuses on the progress made on the latest scientific and technological advances in the discovery and development of novel antimalarial agents. Among the most interesting antimalarial target proteins currently studied are proteases, protein kinases, Plasmodium sugar transporter inhibitor, aquaporin-3 inhibitor, choline transport inhibitor, dihydroorotate dehydrogenase inhibitor, isoprenoid biosynthesis inhibitor, farnesyltransferase inhibitor and enzymes are involved in lipid metabolism and DNA replication. This review summarizes the novel molecular targets and their inhibitors for antimalarial drug development approaches.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
30
|
Gendrot M, Andreani J, Boxberger M, Jardot P, Fonta I, Le Bideau M, Duflot I, Mosnier J, Rolland C, Bogreau H, Hutter S, La Scola B, Pradines B. Antimalarial drugs inhibit the replication of SARS-CoV-2: An in vitro evaluation. Travel Med Infect Dis 2020; 37:101873. [PMID: 32916297 PMCID: PMC7477610 DOI: 10.1016/j.tmaid.2020.101873] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
In December 2019, a new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China. African countries see slower dynamic of COVID-19 cases and deaths. One of the assumptions that may explain this later emergence in Africa, and more particularly in malaria endemic areas, would be the use of antimalarial drugs. We investigated the in vitro antiviral activity against SARS-CoV-2 of several antimalarial drugs. Chloroquine (EC50 = 2.1 μM and EC90 = 3.8 μM), hydroxychloroquine (EC50 = 1.5 μM and EC90 = 3.0 μM), ferroquine (EC50 = 1.5 μM and EC90 = 2.4 μM), desethylamodiaquine (EC50 = 0.52 μM and EC90 = 1.9 μM), mefloquine (EC50 = 1.8 μM and EC90 = 8.1 μM), pyronaridine (EC50 = 0.72 μM and EC90 = 0.75 μM) and quinine (EC50 = 10.7 μM and EC90 = 38.8 μM) showed in vitro antiviral effective activity with IC50 and IC90 compatible with drug oral uptake at doses commonly administered in malaria treatment. The ratio Clung/EC90 ranged from 5 to 59. Lumefantrine, piperaquine and dihydroartemisinin had IC50 and IC90 too high to be compatible with expected plasma concentrations (ratio Cmax/EC90 < 0.05). Based on our results, we would expect that countries which commonly use artesunate-amodiaquine or artesunate-mefloquine report fewer cases and deaths than those using artemether-lumefantrine or dihydroartemisinin-piperaquine. It could be necessary now to compare the antimalarial use and the dynamics of COVID-19 country by country to confirm this hypothesis.
Collapse
Affiliation(s)
- Mathieu Gendrot
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Julien Andreani
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Manon Boxberger
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Priscilla Jardot
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence Du Paludisme, Marseille, France
| | - Marion Le Bideau
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Isabelle Duflot
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence Du Paludisme, Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Hervé Bogreau
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence Du Paludisme, Marseille, France
| | - Sébastien Hutter
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU Méditerranée Infection, Marseille, France; Centre National de Référence Du Paludisme, Marseille, France.
| |
Collapse
|
31
|
Sato K, Mano T, Iwata A, Toda T. Neuropsychiatric adverse events of chloroquine: a real-world pharmacovigilance study using the FDA Adverse Event Reporting System (FAERS) database. Biosci Trends 2020; 14:139-143. [DOI: 10.5582/bst.2020.03082] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kenichiro Sato
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Kalange M, Nansunga M, Kasozi KI, Kasolo J, Namulema J, Atusiimirwe JK, Ayikobua ET, Ssempijja F, Munanura EI, Matama K, Semuyaba I, Zirintunda G, Okpanachi AO. Antimalarial combination therapies increase gastric ulcers through an imbalance of basic antioxidative-oxidative enzymes in male Wistar rats. BMC Res Notes 2020; 13:230. [PMID: 32326975 PMCID: PMC7178572 DOI: 10.1186/s13104-020-05073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/16/2020] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Antimalarials are globally used against plasmodium infections, however, information on the safety of new antimalarial combination therapies on the gastric mucosa is scarce. The aim of this study was to investigate the effects of Artesunate-Amodiaquine and Artemether-Lumefantrine on ulcer induction. Malondialdehyde (MDA), reduced glutathione (GSH) and major histological changes in male Wistar rats following ulcer induction using Indomethacin were investigated. Gastric ulcers were in four groups; Group I was administered Artesunate, group II received Artesunate-Amodiaquine, group III received Artemether-Lumefantrine, and group IV was a positive control (normal saline). Group V was the negative control consisting of healthy rats. RESULTS Antimalarial combination therapies were associated with a high gastric ulcer index than a single antimalarial agent, Artesunate. In addition, levels of MDA were significantly higher in the combination of therapies while levels of GSH were lower in comparison to Artesunate and the negative control. Microscopically, antimalarial combination therapies were associated with severe inflammation and tissue damage than Artesunate in the gastric mucosa showing that antimalarial combination therapies exert their toxic effects through oxidative stress mechanisms, and this leads to cellular damage. Findings in this study demonstrate a need to revisit information on the pharmacodynamics of major circulating antimalarial agents in developing countries.
Collapse
Affiliation(s)
- Muhamudu Kalange
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda.
| | - Miriam Nansunga
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Keneth Iceland Kasozi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda.
| | - Josephine Kasolo
- Department of Physiology, College of Health Sciences, Makerere University, Box 7062, Kampala, Uganda
| | - Jackline Namulema
- Department of Physiology, Faculty of Medicine, Uzima University College CUEA, Box 2502, Kisumu, Kenya
| | - Jovile Kasande Atusiimirwe
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Emmanuel Tiyo Ayikobua
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda.,Department of Physiology, Faculty of Biomedical Sciences, School of Medicine, Soroti University, Soroti, Uganda.,Department of Physiology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Fred Ssempijja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Edson Ireeta Munanura
- Department of Pharmacy, College of Health Sciences, Makerere University, Box 7062, Kampala, Uganda.,Department of Therapeutics and Toxicology, School of Pharmacy, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Kevin Matama
- Department of Therapeutics and Toxicology, School of Pharmacy, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Ibrahim Semuyaba
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| | - Gerald Zirintunda
- Department of Animal Production, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Box 203, Soroti, Uganda
| | - Alfred Omachonu Okpanachi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Box 71, Bushenyi, Uganda
| |
Collapse
|
33
|
Álvarez-Bardón M, Pérez-Pertejo Y, Ordóñez C, Sepúlveda-Crespo D, Carballeira NM, Tekwani BL, Murugesan S, Martinez-Valladares M, García-Estrada C, Reguera RM, Balaña-Fouce R. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar Drugs 2020; 18:E187. [PMID: 32244488 PMCID: PMC7230869 DOI: 10.3390/md18040187] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.
Collapse
Affiliation(s)
- María Álvarez-Bardón
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - César Ordóñez
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Daniel Sepúlveda-Crespo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Nestor M. Carballeira
- Department of Chemistry, University of Puerto Rico, Río Piedras 00925-2537, San Juan, Puerto Rico;
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, Birmingham, AL 35205, USA;
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani 333031, India;
| | - Maria Martinez-Valladares
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346 León, Spain;
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1-Parque Científico de León, 24006 León, Spain;
| | - Rosa M. Reguera
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| |
Collapse
|
34
|
Enechi OC, Amah CC, Okagu IU, Ononiwu CP, Azidiegwu VC, Ugwuoke EO, Onoh AP, Ndukwe EE. Methanol extracts of Fagara zanthoxyloides leaves possess antimalarial effects and normalizes haematological and biochemical status of Plasmodium berghei-passaged mice. PHARMACEUTICAL BIOLOGY 2019. [PMID: 31500475 PMCID: PMC6746293 DOI: 10.1080/13880209.2019.1656753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Context: The resistance of Plasmodium species to many available antimalarials calls for a continuous search for newer antimalarial agents. One possible source of new antimalarials is from natural sources such as Fagara zanthoxyloides Lam (Rutaceae), a medicinal plant used traditionally for treating malaria in South-Eastern Nigeria, Uganda and Asia. Objectives: To investigate the application of methanol extracts of F. zanthoxyloides in combating malaria infection and its associated disorders. Materials and methods: Methanol extracts of F. zanthoxyloides leaves (MEFZ) were evaluated for in vivo antimalarial activity. MEFZ at doses of 200, 400, and 600 mg/kg/d were administered orally for 4 consecutive days (days 0-4) to P. berghei-infected mice. The possible ameliorative effects of MEFZ on malaria-associated organ malfunctions were also assessed. Results: At 200, 400 and 600 mg/kg b.w., respectively, MEFZ produced 82.37% and 68.39%, 84.84%, and 90.75%, 95.95% and 92.67% chemosuppression and inhibition of P. berghei, respectively, comparable to 98.67% and 97.29% by combisunate, a standard antimalarial. The IC50 of MEFZ was estimated to be 235.23 mg/kg b.w. Similarly, treatment of parasitized mice with MEFZ significantly restored the malaria-modified haematological and biochemical status of the parasitized-MEFZ-treated mice compared with parasitized-untreated mice. MEFZ was tolerable up to 5000 mg/kg b.w dose; hence, the LD50 is above 5000 mg/kg b.w. Discussion and conclusions: The results of this curative assay demonstrated that MEFZ has antimalarial effects and normalized haematological and biochemical aberrations generated by malaria. The isolation of the antimalarial principles in MEFZ is warranted; they could be lead molecules for the development of new antimalarials.
Collapse
Affiliation(s)
| | | | - Innocent Uzochukwu Okagu
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
- CONTACT Innocent Uzochukwu Okagu Medical Parasitology, Toxicology and Drug Discovery Unit, Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | | | | | | | | |
Collapse
|
35
|
Engwerda AHJ, Maassen R, Tinnemans P, Meekes H, Rutjes FPJT, Vlieg E. Attrition-Enhanced Deracemization of the Antimalaria Drug Mefloquine. Angew Chem Int Ed Engl 2018; 58:1670-1673. [PMID: 30508314 DOI: 10.1002/anie.201811289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 11/10/2022]
Abstract
Mefloquine is an important drug for prevention and treatment of malaria. It is commercially available as a racemic mixture, wherein only one enantiomer is active against malaria, while the other one causes severe psychotropic effects. By converting the drug into a compound that crystallizes as a racemizable racemic conglomerate, the deracemization of mefloquine into the desired enantiomer was achieved.
Collapse
Affiliation(s)
- Anthonius H J Engwerda
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Rick Maassen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Paul Tinnemans
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Hugo Meekes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Elias Vlieg
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
36
|
|
37
|
Moore BR, Davis TME. Pharmacotherapy for the prevention of malaria in pregnant women: currently available drugs and challenges. Expert Opin Pharmacother 2018; 19:1779-1796. [PMID: 30289730 DOI: 10.1080/14656566.2018.1526923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Malaria in pregnancy continues to be a significant public health burden globally, with over 100 million women at risk each year. Sulfadoxine-pyrimethamine (SP) is the only antimalarial recommended for intermittent preventive therapy in pregnancy (IPTp) but increasing parasite resistance threatens its viability. There are few other available antimalarial therapies that currently have sufficient evidence of tolerability, safety, and efficacy to replace SP. AREAS COVERED Novel antimalarial combinations are under investigation for potential use as chemoprophylaxis and in IPTp regimens. The present review summarizes currently available therapies, emerging candidate combination therapies, and the potential challenges to integrating these into mainstream policy. EXPERT OPINION Alternative drugs or combination therapies to SP for IPTp are desperately required. Dihydroartemisinin-piperaquine and azithromycin-based combinations are showing great promise as potential candidates for IPTp but pharmacokinetic data suggest that dose modification may be required to ensure adequate prophylactic efficacy. If a suitable candidate regimen is not identified in the near future, the success of chemopreventive strategies such as IPTp may be in jeopardy.
Collapse
Affiliation(s)
- Brioni R Moore
- a School of Pharmacy and Biomedical Sciences , Curtin University , Bentley , Western Australia , Australia.,b Medical School , University of Western Australia , Crawley , Western Australia , Australia
| | - Timothy M E Davis
- b Medical School , University of Western Australia , Crawley , Western Australia , Australia
| |
Collapse
|
38
|
Izadi M, Pourazizi M, Babaei M, Saffaei A, Alemzadeh-Ansari MH. Ocular Parasitosis Caused by Protozoan Infection during Travel: Focus on Prevention and Treatment. Int J Prev Med 2018; 9:79. [PMID: 30283611 PMCID: PMC6151969 DOI: 10.4103/ijpvm.ijpvm_161_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022] Open
Abstract
International travel is rising quickly worldwide. Many people travel to tropical and subtropical areas, where there has been increasing exposure of travelers to infectious pathogens. Ocular parasitic infections are more prevalent in these geographical areas and they can lead to morbidity and mortality, often due to late or misdiagnosis due to the unfamiliarity of health staff with these diseases. This is an up-to-date comprehensive review article that familiarizes physicians with ocular signs and symptoms, treatment, prevention, and geographic distribution of some parasites associated with travel.
Collapse
Affiliation(s)
- Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Pourazizi
- Department of Ophthalmology, Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Babaei
- Department of Ophthalmology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Saffaei
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran and Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
39
|
Calvo D, Filgueiras-Rama D, Jalife J. Mechanisms and Drug Development in Atrial Fibrillation. Pharmacol Rev 2018; 70:505-525. [PMID: 29921647 PMCID: PMC6010660 DOI: 10.1124/pr.117.014183] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation is a highly prevalent cardiac arrhythmia and the most important cause of embolic stroke. Although genetic studies have identified an increasing assembly of AF-related genes, the impact of these genetic discoveries is yet to be realized. In addition, despite more than a century of research and speculation, the molecular and cellular mechanisms underlying AF have not been established, and therapy for AF, particularly persistent AF, remains suboptimal. Current antiarrhythmic drugs are associated with a significant rate of adverse events, particularly proarrhythmia, which may explain why many highly symptomatic AF patients are not receiving any rhythm control therapy. This review focuses on recent advances in AF research, including its epidemiology, genetics, and pathophysiological mechanisms. We then discuss the status of antiarrhythmic drug therapy for AF today, reviewing molecular mechanisms, and the possible clinical use of some of the new atrial-selective antifibrillatory agents, as well as drugs that target atrial remodeling, inflammation and fibrosis, which are being tested as upstream therapies to prevent AF perpetuation. Altogether, the objective is to highlight the magnitude and endemic dimension of AF, which requires a significant effort to develop new and effective antiarrhythmic drugs, but also improve AF prevention and treatment of risk factors that are associated with AF complications.
Collapse
Affiliation(s)
- David Calvo
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| | - David Filgueiras-Rama
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| | - José Jalife
- Department of Cardiology, Arrhythmia Unit, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain (D.C.); Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (D.F.-R., J.J.); Department of Cardiology, Arrhythmia Unit, Hospital Clínico Universitario San Carlos, Madrid, Spain (D.F.-R.); Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (D.F.-R., J.J.); and Center for Arrhythmia Research, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan (J.J.)
| |
Collapse
|
40
|
Schneiderman AI, Cypel YS, Dursa EK, Bossarte RM. Associations between Use of Antimalarial Medications and Health among U.S. Veterans of the Wars in Iraq and Afghanistan. Am J Trop Med Hyg 2018; 99:638-648. [PMID: 29943726 DOI: 10.4269/ajtmh.18-0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mefloquine (Lariam®; Roche Holding AG, Basel, Switzerland) has been linked to acute neuropsychiatric side effects. This is a concern for U.S. veterans who may have used mefloquine during recent Southwest Asia deployments. Using data from the National Health Study for a New Generation of U.S. Veterans, a population-based study of U.S. veterans who served between 2001 and 2008, we investigated associations between self-reported use of antimalarial medications and overall physical and mental health (MH) using the twelve-item short form, and with other MH outcomes using the post-traumatic stress disorder Checklist-17 and the Patient Health Questionnaire (anxiety, major depression, and self-harm). Multivariable logistic regression was performed to examine associations between health measures and seven antimalarial drug categories: any antimalarial, mefloquine, chloroquine, doxycycline, primaquine, mefloquine plus any other antimalarial, and any other antimalarial or antimalarial combination while adjusting for the effects of deployment and combat exposure. Data from 19,487 veterans showed that although antimalarial use was generally associated with higher odds of negative health outcomes, once deployment and combat exposure were added to the multivariable models, the associations with each of the MH outcomes became attenuated. A positive trend was observed between combat exposure intensity and prevalence of the five MH outcomes. No significant associations were found between mefloquine and MH measures. These data suggest that the poor physical and MH outcomes reported in this study population are largely because of combat deployment exposure.
Collapse
Affiliation(s)
- Aaron I Schneiderman
- Department of Veterans Affairs, Epidemiology Program, Post Deployment Health Services (10P4Q), Office of Patient Care Services, Veterans Health Administration, Washington, District of Columbia
| | - Yasmin S Cypel
- Department of Veterans Affairs, Epidemiology Program, Post Deployment Health Services (10P4Q), Office of Patient Care Services, Veterans Health Administration, Washington, District of Columbia
| | - Erin K Dursa
- Department of Veterans Affairs, Epidemiology Program, Post Deployment Health Services (10P4Q), Office of Patient Care Services, Veterans Health Administration, Washington, District of Columbia
| | - Robert M Bossarte
- Department of Behavioral Medicine and Psychiatry, West Virginia University Injury Control Research Center, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
41
|
Essousi H, Barhoumi H. Electroanalytical application of molecular imprinted polyaniline matrix for dapsone determination in real pharmaceutical samples. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Safety Experience During Real-World Use of Injectable Artesunate in Public Health Facilities in Ghana and Uganda: Outcomes of a Modified Cohort Event Monitoring Study (CEMISA). Drug Saf 2018; 41:871-880. [PMID: 29696507 PMCID: PMC6061362 DOI: 10.1007/s40264-018-0667-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction Injectable artesunate (Inj AS) is the World Health Organization (WHO)-recommended product for treating severe malaria. However, despite widespread usage, there are few published safety studies involving large populations in real-world settings. In this study, we sought to assess the incidence of common adverse events (AEs) following the intake of Inj AS in real-life settings. Methods This is a modified cohort event monitoring study involving patients who were administered with Inj AS at eight sites (four each in Ghana and Uganda) between May and December 2016. Patients were eligible for inclusion if they had severe/complicated malaria and were able and willing to participate in the study. Eligible patients were followed up by telephone or hospital or home visit on Days 7, 14, 21 and 28 after drug administration to document AEs and serious AEs (SAEs). Patients were also encouraged to report all AEs at any time during the study period. The Kaplan–Meier method was used to estimate the proportion of patients with any AEs by end of Day 28. Causality assessment was made on all AEs/SAEs using the WHO/UMC (Uppsala Monitoring Centre) causality method. Results A total of 1103 eligible patients were administered Inj AS, of which 360 patients were in Ghana and 743 in Uganda. The incidence of any AE by the end of follow-up among patients treated with AS was estimated to be 17.9% (197/1103) (95% confidence interval [CI] 15.8–20.3). The median time-to-onset of any AEs was 9 days (interquartile range (IQR) = 4, 14). The top five AEs recorded among patients treated with AS were pyrexia (3.5%), abdominal pain (2.5%), diarrhoea (1.7%), cough (1.5%) and asthenia (1.5%). Most of these top five AEs occurred in the first 14 days following treatment. Regarding the relatedness of these AEs to Inj AS, 78.9% of pyrexia (30/38), 63.0% of pain (17/27), 68.4% of diarrhoea (13/19), 85.5% of cough (14/16) and 75.0% of asthenia (12/16) were assessed as ‘possibly’ related. There were 17 SAEs including 13 deaths. Two of the deaths are ‘possibly’ related to Inj AS, as were three non-fatal SAEs: severe abdominal pain, failure of therapy and severe anaemia. Conclusion The incidence of common AEs among patients treated with Inj AS in real-world settings was found to be relatively low. Future studies should consider larger cohorts to document rare AEs as well. ClinicalTrials.gov Identifier NCT02817919.
Collapse
|
43
|
Tickell-Painter M, Saunders R, Maayan N, Lutje V, Mateo-Urdiales A, Garner P. Deaths and parasuicides associated with mefloquine chemoprophylaxis: A systematic review. Travel Med Infect Dis 2017; 20:5-14. [DOI: 10.1016/j.tmaid.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022]
|
44
|
Qu C, Ma J, Liu X, Xue Y, Zheng J, Liu L, Liu J, Li Z, Zhang L, Liu Y. Dihydroartemisinin Exerts Anti-Tumor Activity by Inducing Mitochondrion and Endoplasmic Reticulum Apoptosis and Autophagic Cell Death in Human Glioblastoma Cells. Front Cell Neurosci 2017; 11:310. [PMID: 29033794 PMCID: PMC5626852 DOI: 10.3389/fncel.2017.00310] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/19/2017] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) is the most advanced and aggressive form of gliomas. Dihydroartemisinin (DHA) has been shown to exhibit anti-tumor activity in various cancer cells. However, the effect and molecular mechanisms underlying its anti-tumor activity in human GBM cells remain to be elucidated. Our results proved that DHA treatment significantly reduced cell viability in a dose- and time-dependent manner by CCK-8 assay. Further investigation identified that the cell viability was rescued by pretreatment either with Z-VAD-FMK, 3-methyladenine (3-MA) or in combination. Moreover, DHA induced apoptosis of GBM cells through mitochondrial membrane depolarization, release of cytochrome c and activation of caspases-9. Enhanced expression of GRP78, CHOP and eIF2α and activation of caspase 12 were additionally confirmed that endoplasmic reticulum (ER) stress pathway of apoptosis was involved in the cytotoxicity of DHA. DHA-treated GBM cells exhibited the morphological and biochemical changes typical of autophagy. Co-treatment with chloroquine (CQ) significantly induced the above effects. Furthermore, ER stress and mitochondrial dysfunction were involved in the DHA-induced autophagy. Further study revealed that accumulation of reactive oxygen species (ROS) was attributed to the DHA induction of apoptosis and autophagy. The illustration of these molecular mechanisms will present a novel insight for the treatment of human GBM.
Collapse
Affiliation(s)
- Chengbin Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Lei Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Liaoning Key Laboratory of Neuro-Oncology, Shenyang, China
| |
Collapse
|
45
|
Niknahad H, Heidari R, Firuzi R, Abazari F, Ramezani M, Azarpira N, Hosseinzadeh M, Najibi A, Saeedi A. Concurrent Inflammation Augments Antimalarial Drugs-Induced Liver Injury in Rats. Adv Pharm Bull 2016; 6:617-625. [PMID: 28101469 DOI: 10.15171/apb.2016.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
Purpose: Accumulating evidence suggests that drug exposure during a modest inflammation induced by bacterial lipopolysaccharide (LPS) might increase the risk of drug-induced liver injury. The current investigation was designed to test if antimalarial drugs hepatotoxicity is augmented in LPS‑treated animals. Methods: Rats were pre-treated with LPS (100 µg/kg, i.p). Afterward, non-hepatotoxic doses of amodiaquine (25, 50 and 100 mg/kg, oral) and chloroquine (25, 50 and 100 mg/kg, oral) were administered. Results: Interestingly, liver injury was evident only in animals treated with both drug and LPS as estimated by pathological changes in serum biochemistry (ALT, AST, LDH, and TNF-α), and liver tissue (severe hepatitis, endotheliitis, and sinusoidal congestion). An increase in liver myeloperoxidase enzyme activity, lipid peroxidation, and protein carbonylation, along with tissue glutathione depletion were also detected in LPS and drug co-treated animals. Conclusion: Antimalarial drugs rendered hepatotoxic in animals undergoing a modest inflammation. These results indicate a synergistic liver injury from co-exposure to antimalarial drugs and inflammation.
Collapse
Affiliation(s)
- Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.; Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Firuzi
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Abazari
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Ramezani
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massood Hosseinzadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arastoo Saeedi
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Magro-Checa C, Zirkzee EJ, Huizinga TW, Steup-Beekman GM. Management of Neuropsychiatric Systemic Lupus Erythematosus: Current Approaches and Future Perspectives. Drugs 2016; 76:459-83. [PMID: 26809245 PMCID: PMC4791452 DOI: 10.1007/s40265-015-0534-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is a generic definition referring to a series of neurological and psychiatric symptoms directly related to systemic lupus erythematosus (SLE). NPSLE includes heterogeneous and rare neuropsychiatric (NP) manifestations involving both the central and peripheral nervous system. Due to the lack of a gold standard, the attribution of NP symptoms to SLE represents a clinical challenge that obligates the strict exclusion of any other potential cause. In the acute setting, management of these patients does not differ from other non-SLE subjects presenting with the same NP manifestation. Afterwards, an individualized therapeutic strategy, depending on the presenting manifestation and severity of symptoms, must be started. Clinical trials in NPSLE are scarce and most of the data are extracted from case series and case reports. High-dose glucocorticoids and intravenous cyclophosphamide remain the cornerstone for patients with severe symptoms that are thought to reflect inflammation or an underlying autoimmune process. Rituximab, intravenous immunoglobulins, or plasmapheresis may be used if response is not achieved. When patients present with mild to moderate NP manifestations, or when maintenance therapy is warranted, azathioprine and mycophenolate may be considered. When symptoms are thought to reflect a thrombotic underlying process, anticoagulation and antiplatelet agents are the mainstay of therapy, especially if antiphospholipid antibodies or antiphospholipid syndrome are present. Recent trials on SLE using new biologicals, based on newly understood SLE mechanisms, have shown promising results. Based on what we currently know about its pathogenesis, it is tempting to speculate how these new therapies may affect the management of NPSLE patients. This article provides a comprehensive and critical review of the literature on the epidemiology, pathophysiology, diagnosis, and management of NPSLE. We describe the most common pharmacological treatments used in NPSLE, based on both a literature search and our expert opinion. The extent to which new drugs in the advanced development of SLE, or the blockade of new targets, may impact future treatment of NPSLE will also be discussed.
Collapse
Affiliation(s)
- César Magro-Checa
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Elisabeth J Zirkzee
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Department of Rheumatology, Maasstad Hospital, Rotterdam, The Netherlands
| | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Gerda M Steup-Beekman
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
47
|
Rastelli EJ, Coltart DM. Asymmetric Synthesis of (+)-anti- and (-)-syn-Mefloquine Hydrochloride. J Org Chem 2016; 81:9567-9575. [PMID: 27657347 DOI: 10.1021/acs.joc.6b01476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric (er > 99:1) total synthesis of (+)-anti- and (-)-syn-mefloquine hydrochloride from a common intermediate is described. The Sharpless asymmetric dihydroxylation is the key asymmetric transformation used in the synthesis of this intermediate. It is carried out on an olefin that is accessed in three steps from commercially available materials, making the overall synthetic sequence very concise. The common diol intermediate derived from the Sharpless asymmetric dihydroxylation is converted into either a trans- or cis-epoxide, and these are subsequently converted to (+)-anti- and (-)-syn-mefloquine, respectively. X-ray crystallographic analysis of derivatives of (+)-anti- and (-)-syn-mefloquine is used to lay to rest a 40 year argument regarding the absolute stereochemistry of the mefloquines. A formal asymmetric (er > 99:1) synthesis of (+)-anti-mefloquine hydrochloride is also presented that uses a Sharpless asymmetric epoxidation as a key step.
Collapse
Affiliation(s)
- Ettore J Rastelli
- Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| | - Don M Coltart
- Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| |
Collapse
|
48
|
Jamshidzadeh A, Heidari R, Abazari F, Ramezani M, Khodaei F, Ommati MM, Ayarzadeh M, Firuzi R, Saeedi A, Azarpira N, Najibi A. Antimalarial Drugs-Induced Hepatic Injury in Rats and the Protective Role of Carnosine. PHARMACEUTICAL SCIENCES 2016. [DOI: 10.15171/ps.2016.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
49
|
de Sena Pereira VS, Silva de Oliveira CB, Fumagalli F, da Silva Emery F, da Silva NB, de Andrade-Neto VF. Cytotoxicity, hemolysis and in vivo acute toxicity of 2-hydroxy-3-anilino-1,4-naphthoquinone derivatives. Toxicol Rep 2016; 3:756-762. [PMID: 28959602 PMCID: PMC5617738 DOI: 10.1016/j.toxrep.2016.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023] Open
Abstract
The 1,4-naphthoquinones, important members of the family of quinones are used as both crude extracts and as compound manipulated by the pharmaceutical industry. They have gained great emphasis by presenting different pharmacological properties as antibacterial, antiviral, antiprotozoal and anthelmintic, and has antitumor activity. Our aim was to evaluate the cytotoxicity, hemolytic activity and in vivo acute toxicity of three derivatives of 2-hydroxy-1,4-naphthoquinones. The cell viability in vitro against RAW Cell Line displayed IC50 ranging of 483.5–2044.8 μM, whereas in primary culture tests using murine macrophages, IC50 were 315.8–1408.0 μM for naphthoquinones derivatives 4a and 4c respectively, besides no hemolysis was observed at the dose tested. The in vivo acute toxicity assays exhibited a significant safety margin indicated by a lack of systemic and behavioral toxicity up to 300 mg/kg, and at a dose of 1000 mg/kg the derivatives not triggering signs of toxicity although the compound 4a have promoted hepatic steatosis and hyperemia in kidney tissue. Thereby, these modifications decrease the toxicity of the tested derivatives naphthoquinones, providing a high potential for the development of news drugs.
Collapse
Affiliation(s)
- Valeska Santana de Sena Pereira
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cláudio Bruno Silva de Oliveira
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Fernando Fumagalli
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávio da Silva Emery
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Naisandra Bezerra da Silva
- Laboratory of Histotecnology, Department of Morfology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Valter F de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
50
|
Gomes C, Boareto AC, Dalsenter PR. Clinical and non-clinical safety of artemisinin derivatives in pregnancy. Reprod Toxicol 2016; 65:194-203. [PMID: 27506918 DOI: 10.1016/j.reprotox.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Malaria in pregnancy is a clinically wasting infectious disease, where drug therapy has to be promptly initiated. Currently, the treatment of this infection depends on the use of artemisinin derivatives. The World Health Organization does not recommend the use of these drugs in the first trimester of pregnancy due to non-clinical findings that have shown embryolethality and teratogenic effects. Nevertheless, until now, this toxicity has not been proved in humans. Artemisinin derivatives mechanisms of embryotoxicity are related to depletion of circulating embryonic primitive erythroblasts. Species differences in this sensitive period for toxicity and the presence of malaria infection, which could reduce drug distribution to the fetus, are significant to the risk assessment of artemisinin derivatives treatment to pregnant women. In this review we aimed to assess the results of non-clinical and clinical studies with artemisinin derivatives, their mechanisms of embryotoxicity and discuss the safety of their use during pregnancy.
Collapse
Affiliation(s)
- Caroline Gomes
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Ana Cláudia Boareto
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | | |
Collapse
|