1
|
Svenskaya YI, Verkhovskii RA, Zaytsev SM, Lademann J, Genina EA. Current issues in optical monitoring of drug delivery via hair follicles. Adv Drug Deliv Rev 2025; 217:115477. [PMID: 39615632 DOI: 10.1016/j.addr.2024.115477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Drug delivery via hair follicles has attracted much research attention due to its potential to serve for both local and systemic therapeutic purposes. Recent studies on topical application of various particulate formulations have demonstrated a great role of this delivery route for targeting numerous cell populations located in skin and transporting the encapsulated drug molecules to the bloodstream. Despite a great promise of follicle-targeting carriers, their clinical implementation is very rare, mostly because of their poorer characterization compared to conventional topical dosage forms, such as ointments and creams, which have a history spanning over a century. Gathering as complete information as possible on the intrafollicular penetration depth, storage, degradation/metabolization profiles of such carriers and the release kinetics of drugs they contain, as well as their impact on skin health would significantly contribute to understanding the pros and cons of each carrier type and facilitate the selection of the most suitable candidates for clinical trials. Optical imaging and spectroscopic techniques are extensively applied to study dermal penetration of drugs. Current paper provides the state-of-the-art overview of techniques, which are used in optical monitoring of follicular drug delivery, with a special focus on non-invasive in vivo methods. It discusses key features, advantages and limitations of their use, as well as provide expert perspectives on future directions in this field.
Collapse
Affiliation(s)
| | | | - Sergey M Zaytsev
- CRAN UMR 7039, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Juergen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elina A Genina
- Department of Optics and Biophotonics, Saratov State University, Saratov, Russia
| |
Collapse
|
2
|
Demirel Bayik G, Baykal B. Impact of Plant Species on the Synthesis and Characterization of Biogenic Silver Nanoparticles: A Comparative Study of Brassica oleracea, Corylus avellana, and Camellia sinensis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1954. [PMID: 39683344 DOI: 10.3390/nano14231954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
The choice of plant species is crucial, as different plants provide unique biomolecules that influence nanoparticle characteristics. Biomolecules in plant extracts, such as proteins, amino acids, enzymes, polysaccharides, alkaloids, tannins, phenolics, saponins, terpenoids, and vitamins, act as stabilizing and reducing agents. This study explores the synthesis of silver nanoparticles (AgNPs) using leaf extracts from collard greens (Brassica oleracea var. acephala), hazelnut (Corylus avellana var. avellana), and green tea (Camellia sinensis). NPs were synthesized using silver nitrate (AgNO3) solution at two different molarities (1 mM and 5 mM) and characterized by UV-Vis spectroscopy, XRD, TEM, and FTIR. The Surface Plasmon Resonance (SPR) peaks appeared rapidly for hazelnut and green tea extracts, within 30 and 15 min, respectively, while collard greens extract failed to produce a distinct SPR peak. X-Ray Diffraction confirmed the formation of face-centered cubic silver. TEM analysis revealed high polydispersity and agglomeration in all samples, with particle size generally decreasing at higher AgNO3 concentrations. However, hazelnut extract showed a slight increase in size at higher molarity. Among all samples, green tea-derived AgNPs synthesized with 5 mM AgNO3 were the smallest and least polydisperse, highlighting the significant role of plant type in optimizing nanoparticle synthesis.
Collapse
Affiliation(s)
- Gülçin Demirel Bayik
- Department of Environmental Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak 67000, Turkey
| | - Busenur Baykal
- Department of Environmental Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak 67000, Turkey
| |
Collapse
|
3
|
You M, Huang Y, Chen Y, Li D, Tang Y, Du YK, Yang H, Liang A, Hu G, Chen Y. ZnO nanoparticles induce melanoma-like lesions via recruiting dermal dendritic cells in barrier-damaged skin in mice. Food Chem Toxicol 2024; 193:114948. [PMID: 39197528 DOI: 10.1016/j.fct.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
ZnO nanoparticles (NPs) are used in skin treatments and cosmetics, the toxicity of long-term and continuous exposure to ZnO NPs is unknown. Mice with epidermal barrier dysfunction revealed melanoma-like lesions after continuous exposure to ZnO NPs. However, the effects of metallic NPs on the skin microenvironment and immune system remain poorly understood. Mice with epidermal barrier failure were given continuous exposure to ZnO NPs for 7 weeks. The malignant transformation of melanocytes was induced with ZnO NPs 2.5 μg/ml for 72 h exposure. The supernatant of the culture medium from dendritic cells after being exposed to 10 μg/ml ZnO NPs for 24 h was applied to melanocytes to explore the effect of recruitment of DCs. The expressure of ZnO NPs resulted in a tendency of malignant transformation of melanocytes, the recruitment of DCs induces this process by produce inflammatory factors such as TNF-α. These DC-produced inflammatory factors, which were induced by ZnO NP exposure, increased the production of matrix metalloproteinases in melanocytes and expedited the malignant transformation process. Our findings revealed that the disrupted cutaneous microenvironment by ZnO NPs penetrated directly promoted the malignant transformation of melanocytes, which process also indirectly enhanced by the TNF-αsecreted from the recruited DCs.
Collapse
Affiliation(s)
- Menghan You
- Dongguan People's Hospital Biobank, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Guangzhou, Guangdong, 510515, China
| | - Yingying Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Yeda Chen
- Dongguan People's Hospital Biobank, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Dan Li
- Department of Dermatology, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China; Dongguan Key Laboratory of Translational Medicine in Skin and Immune Diseases, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Yaping Tang
- Department of Dermatology, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China; Dongguan Key Laboratory of Translational Medicine in Skin and Immune Diseases, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Yi Kuan Du
- Dongguan People's Hospital Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Hong Yang
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Anfa Liang
- Dongguan People's Hospital Biobank, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Guodong Hu
- Department of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China.
| | - Yinghua Chen
- Dongguan People's Hospital Biobank, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Guangzhou, Guangdong, 510515, China; Dongguan Key Laboratory of Translational Medicine in Skin and Immune Diseases, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China.
| |
Collapse
|
4
|
Sabry NM, Badry R, Abdel-Gawad FK, Elhaes H, Ibrahim MA. Electronic structure, global reactivity descriptors and nonlinear optical properties of glycine interacted with ZnO, MgO and CaO for bacterial detection. Sci Rep 2024; 14:22801. [PMID: 39353963 PMCID: PMC11445471 DOI: 10.1038/s41598-024-72846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
Modern laboratory medicine relies on analytical instruments for bacterial detection, focusing on biosensors and optical sensors for early disease diagnosis and treatment. Thus, Density Functional Theory (DFT) was utilized to study the reactivity of glycine interacted with metal oxides (ZnO, MgO, and CaO) for bacterial detection. Total dipole moment (TDM), frontier molecular orbitals (FMOs), FTIR spectroscopic data, electronic transition states, chemical reactivity descriptors, nonlinear optical (NLO) characteristics, and molecular electrostatic potential (MESP) were all investigated at the B3LYP/6-31G(d, p) level using DFT and Time-Dependent DFT (TD-DFT). The Coulomb-attenuating approach (CAM-B3LYP) was utilized to obtain theoretical electronic absorption spectra with the 6-31G(d, p) basis set to be more accurate than alternative quantum chemical calculation approaches, showing good agreement with the experimental data. The TDM and FMO investigation showed that glycine/CaO model has the highest TDM (10.129Debye) and lowest band gap (1.643 eV). The DFT computed IR and the experimental FTIR are consistent. The calculated UV-vis spectra showed a red shift with an increase in polarity following an increase in the absorption wavelength due to the interaction with ZnO, MgO, and CaO. Among the five solvents of water, methanol, ethanol, DMSO and acetone, the water and DMSO enhances the UV-Vis absorption. Glycine/CaO model showed high linear polarizability (14.629 × 10-24esu) and first hyperpolarizability (23.117 × 10-30esu), indicating its potential for nonlinear optical applications. The results showed that all model molecules, particularly glycine/CaO, contribute significantly to the development of materials with potential NLO features for sensor and optoelectronic applications. Additionally, MESP confirmed the increased electronegativity of the studied structures. Additionally, glycine/ZnO nanocomposite was synthesized and characterized using IR and UV-visible spectroscopy to determine their structural and spectroscopic features. It was discovered that there was good agreement between the DFT computed findings and the related experimental data. The antibacterial activity of glycine/ZnO nanocomposites against Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa were studied in terms of concentration and time. The results showed that increasing the concentration of glycine/ZnO nanocomposite significantly enhanced its antibacterial efficacy by lowering optical density. Notably, Pseudomonas aeruginosa exhibited lower susceptibility to the nanocomposite compared to S. aureus, requiring higher concentrations for effective bactericidal action. In summary, this study contributes novel insights into the dual functionality of glycine-metal oxide complexes, with significant implications as optical biosensor for microbial detection.
Collapse
Affiliation(s)
- Noha M Sabry
- Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
- Center of Excellence for Research and Applied Studies on Climate Change and Sustainable Development, National Research Centre (NRC), 33 El Bohouth St. Dokki, Giza, 12622, Egypt
| | - Rania Badry
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757, Cairo, Egypt
| | - Fagr Kh Abdel-Gawad
- Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
- Center of Excellence for Research and Applied Studies on Climate Change and Sustainable Development, National Research Centre (NRC), 33 El Bohouth St. Dokki, Giza, 12622, Egypt
| | - Hanan Elhaes
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, 11757, Cairo, Egypt
| | - Medhat A Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., 12622, Dokki, Giza, Egypt.
- Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., 12622, Dokki, Giza, Egypt.
| |
Collapse
|
5
|
Nimrawi S, Gannett P, Kwon YM. Inorganic nanoparticles incorporated with transdermal drug delivery systems. Expert Opin Drug Deliv 2024; 21:1349-1362. [PMID: 39215444 DOI: 10.1080/17425247.2024.2399710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Transdermal drug delivery (TDD) is becoming more recognized as a noninvasive method particularly suitable for vulnerable populations. TDD offers an alternative to oral drug delivery, bypassing issues related to poor absorption and metabolism. However, the application of TDD is limited to a few drugs due to the skin's barrier. Various techniques, including passive methods like nanoparticles (NPs), are being explored to enhance drug permeability through the skin. AREAS COVERED This review shows the benefit of incorporating inorganic NPs with TDD in improving drug delivery through the skin. Despite the potential of these techniques, there are currently only a few research studies that utilize them. This review addresses the scarcity of research incorporating inorganic NPs with TDD. It also aims to summarize both inorganic NPs and TDD in the pharmaceutical industry, highlighting the advantages of incorporating these novel drug delivery systems with each other. EXPERT OPINION Given the potential benefits of incorporating inorganic NPs into TDD systems, there is a need for increased research and attention in this area. The review encourages scientists to address the existing research gap and explore the advantages of combining these innovative drug delivery systems to advance the field.
Collapse
Affiliation(s)
- Sukaina Nimrawi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Peter Gannett
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Young M Kwon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
6
|
Bodnár K, Fehér P, Ujhelyi Z, Bácskay I, Józsa L. Recent Approaches for the Topical Treatment of Psoriasis Using Nanoparticles. Pharmaceutics 2024; 16:449. [PMID: 38675110 PMCID: PMC11054466 DOI: 10.3390/pharmaceutics16040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Psoriasis (PSO) is a chronic autoimmune skin condition characterized by the rapid and excessive growth of skin cells, which leads to the formation of thick, red, and scaly patches on the surface of the skin. These patches can be itchy and painful, and they may cause discomfort for patients affected by this condition. Therapies for psoriasis aim to alleviate symptoms, reduce inflammation, and slow down the excessive skin cell growth. Conventional topical treatment options are non-specific, have low efficacy and are associated with adverse effects, which is why researchers are investigating different delivery mechanisms. A novel approach to drug delivery using nanoparticles (NPs) shows promise in reducing toxicity and improving therapeutic efficacy. The unique properties of NPs, such as their small size and large surface area, make them attractive for targeted drug delivery, enhanced drug stability, and controlled release. In the context of PSO, NPs can be designed to deliver active ingredients with anti-inflammatory effect, immunosuppressants, or other therapeutic compounds directly to affected skin areas. These novel formulations offer improved access to the epidermis and facilitate better absorption, thus enhancing the therapeutic efficacy of conventional anti-psoriatic drugs. NPs increase the surface-to-volume ratio, resulting in enhanced penetration through the skin, including intracellular, intercellular, and trans-appendage routes. The present review aims to discuss the latest approaches for the topical therapy of PSO using NPs. It is intended to summarize the results of the in vitro and in vivo examinations carried out in the last few years regarding the effectiveness and safety of nanoparticles.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Ostovich E, Klaper R. Using a Novel Multiplexed Algal Cytological Imaging (MACI) Assay and Machine Learning as a Way to Characterize Complex Phenotypes in Plant-Type Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4894-4903. [PMID: 38446593 DOI: 10.1021/acs.est.3c07733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
High-throughput phenotypic profiling assays, popular for their ability to characterize alternations in single-cell morphological feature data, have been useful in recent years for predicting cellular targets and mechanisms of action (MoAs) for different chemicals and novel drugs. However, this approach has not been extensively used in environmental toxicology due to the lack of studies and established methods for performing this kind of assay in environmentally relevant species. Here, we developed a multiplexed algal cytological imaging (MACI) assay, based on the subcellular structures of the unicellular microalgae, Raphidocelis subcapitata, a toxicology and ecological model species. Several different herbicides and antibiotics with unique MoAs were exposed to R. subcapitata cells, and MACI was used to characterize cellular impacts by measuring subtle changes in their morphological features, including metrics of area, shape, quantity, fluorescence intensity, and granularity of individual subcellular components. This study demonstrates that MACI offers a quick and effective framework for characterizing complex phenotypic responses to environmental chemicals that can be used for determining their MoAs and identifying their cellular targets in plant-type organisms.
Collapse
Affiliation(s)
- Eric Ostovich
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| | - Rebecca Klaper
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
8
|
Pandey AS, Bawiskar D, Wagh V. Nanocosmetics and Skin Health: A Comprehensive Review of Nanomaterials in Cosmetic Formulations. Cureus 2024; 16:e52754. [PMID: 38389646 PMCID: PMC10882253 DOI: 10.7759/cureus.52754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The development of nanocosmetics nanotechnology has ushered in a new age in cosmetic research, completely changing the skincare scene. This abstract investigates the relationship between skincare and nanotechnology, particularly emphasizing the effects of nanocosmetics on skin health. Cosmetics, known as "nanocosmetics," use materials at the nanoscale, typically between 1 and 100 nanometers, to improve the effectiveness and delivery of active chemicals. Nanotechnology in cosmetics allows for the development of sophisticated delivery methods that provide enhanced stability and tailored distribution, including nanoemulsions and nanocapsules. This breakthrough overcomes the constraints of conventional formulations by enabling the entry of active ingredients into the skin's deeper layers. Studies investigating nanocosmetics and skin health were included. This encompassed in vitro studies, animal models, and clinical studies of various designs. Exclusion criteria included studies focusing solely on nanotechnology unrelated to skin health or nanocosmetics and review articles editorials, commentaries, and conference abstracts. Nanocosmetics is a groundbreaking development in skincare that provides creative answers to a range of skin issues. As the area develops, realizing the full potential of nanotechnology in fostering ideal skin health will need sustained research and adherence to safety regulations.
Collapse
Affiliation(s)
- Anjali S Pandey
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dushyant Bawiskar
- Sports Medicine, Abhinav Bindra Sports Medicine and Research Institute, Bhubaneswar, IND
| | - Vasant Wagh
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Lima AKM, Carvalho AVF, de Paiva Pinheiro SK, Torres Y, Miguel TBAR, Pireda SF, Fechine PBA, Fregolente LG, de Castro Miguel E. Effect of TiO 2 Microparticles in Lettuce (Lactuca sativa L.) Seeds and Seedlings. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:116. [PMID: 37318661 DOI: 10.1007/s00128-023-03752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
The particle size reduction technology is used in several segments, including sunscreens and new techniques and product improvement. One of the main particles used in the sunscreens formulation is titanium dioxide (TiO2). This formulation allows for better characteristics of these products. Perspectives like incorporation of the particles by other biological systems beyond humans and their effects should be observed. This work aimed to evaluate the titanium dioxide microparticles phytotoxicity on Lactuca sativa L. plants through tests of germination, growth, and weight analysis using microscopy techniques: optical microscopy (OM) and scanning electron microscopy (SEM). Some of the results showed cellular and morphological damage, mainly in the roots and 50 mg L-1 TiO2 concentration, confirmed by SEM. Additionally, anatomical damages like vascular bundle disruption and irregularity in the cortex cells were confirmed by SEM. Additionally, anatomical damages were observed on the three main organs (root, hypocotyl, and leaves) evidenced by the OM. Perspectives to confirm new hypotheses of the interaction of nanomaterials with biological systems are necessary.
Collapse
Affiliation(s)
- Ana Kamila Medeiros Lima
- Biomaterials Laboratory, Department of Metallurgical Engineering and Materials and Postgraduate Program in Systematics, Use and Conservation of Biodiversity (PPGSis), Federal University of Ceará, Pici Campus, Fortaleza, CE, 60455-900, Brazil
| | - Alexya Vitória Felix Carvalho
- Biomaterials Laboratory, Department of Metallurgical Engineering and Materials and Postgraduate Program in Systematics, Use and Conservation of Biodiversity (PPGSis), Federal University of Ceará, Pici Campus, Fortaleza, CE, 60455-900, Brazil
| | - Sergimar Kennedy de Paiva Pinheiro
- Biomaterials Laboratory, Department of Metallurgical Engineering and Materials and Postgraduate Program in Systematics, Use and Conservation of Biodiversity (PPGSis), Federal University of Ceará, Pici Campus, Fortaleza, CE, 60455-900, Brazil
| | - Yan Torres
- Marine Vertebrate Evolution and Conservation Lab, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thaiz Batista Azevedo Rangel Miguel
- Biotechnology Laboratory, Food Engineering Department and Biomaterial Laboratory, Department of Metallurgical Engineering and Materials, Federal University of Ceará, Pici Campus, Fortaleza, CE, Brazil
| | - Saulo Fernandes Pireda
- Cell and Tissue Biology Laboratory, North Fluminense State University - UENF, Rio de Janeiro, RJ, Brazil
| | - Pierre Basílio Almeida Fechine
- Group of Chemistry of Advanced Materials, Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Laís Gomes Fregolente
- Advanced Functional Materials Laboratory (LaMFA), Physics Department, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Emilio de Castro Miguel
- Biomaterials Laboratory, Department of Metallurgical Engineering and Materials and Postgraduate Program in Systematics, Use and Conservation of Biodiversity (PPGSis), Federal University of Ceará, Pici Campus, Fortaleza, CE, 60455-900, Brazil.
| |
Collapse
|
10
|
Liu Y, Zhao J, Chen J, Miao X. Nanocrystals in cosmetics and cosmeceuticals by topical delivery. Colloids Surf B Biointerfaces 2023; 227:113385. [PMID: 37270904 DOI: 10.1016/j.colsurfb.2023.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The main issues with local delivery of cosmetics are their high sensitivity and limited drug loading of active pharmaceutical ingredient. Nanocrystal technology offers consumers cutting-edge and effective products and exhibits enormous development potential in the beauty business as a new delivery method to address the issue of low solubility and low permeability of sensitive chemicals. In this review, we described the processes for making NCs, along with the impacts of loading and the uses of different carriers. Among them, nanocrystalline loaded gel and emulsion are widely used and may further improve the stability of the system. Then, we introduced the beauty efficacy of drug NCs from five aspects: anti-inflammation and acne, anti-bacterial, lightening and freckle removal, anti-aging as well as UV protection. Following that, we presented the current scenario about stability and safety. Finally, the challenges and vacancy were discussed along with the potential uses of NCs in the cosmetics industry. This review serves as a resource for the advancement of nanocrystal technology in the cosmetics sector.
Collapse
Affiliation(s)
- Yi Liu
- Marine College, Shandong University, Weihai 264209, China; SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Jingru Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Jing Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
11
|
Gackowski M, Osmałek T, Froelich A, Otto F, Schneider R, Lulek J. Phototoxic or Photoprotective?-Advances and Limitations of Titanium (IV) Oxide in Dermal Formulations-A Review. Int J Mol Sci 2023; 24:ijms24098159. [PMID: 37175865 PMCID: PMC10179435 DOI: 10.3390/ijms24098159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The widespread role of titanium (IV) oxide (TiO2) in many industries makes this substance of broad scientific interest. TiO2 can act as both a photoprotector and photocatalyst, and the potential for its role in both applications increases when present in nanometer-sized crystals. Its sunlight-scattering properties are used extensively in sunscreens. Furthermore, attempts have been made to incorporate TiO2 into dermal formulations of photolabile drugs. However, the propensity to generate reactive oxygen species (ROS) rendering this material potentially cytotoxic limits its role. Therefore, modifications of TiO2 nanoparticles (e.g., its polymorphic form, size, shape, and surface modifications) are used in an effort to reduce its photocatalytic effects. This review provides an overview of the potential risks arising from and opportunities presented by the use of TiO2 in skin care formulations.
Collapse
Affiliation(s)
- Michał Gackowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Filip Otto
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | | | - Janina Lulek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
12
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
13
|
Fahad ND, Radhi NS, Al-Khafaji ZS, Diwan AA. Surface modification of hybrid composite multilayers spin cold spraying for biomedical duplex stainless steel. Heliyon 2023; 9:e14103. [PMID: 36938400 PMCID: PMC10015213 DOI: 10.1016/j.heliyon.2023.e14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The performance of biomaterials in biological systems is of critical significance for advancing biomedical implants. Duplex Stainless Steel alloys are the major biomaterials due to their significant characteristics. Many functional coatings are deposited on DSS alloy surfaces utilizing numerous surface coating techniques to improve their bioactivity and protect them from corrosion degradations. Coatings of titanium dioxide (TiO2), Hydroxyapatite (HA), and zinc oxide (ZnO) have received considerable attention in the field of surface bioactive modification of DSS alloy implants. The coating techniques play a key role in increasing the required biological characteristics of DSS alloys, such as biocompatibility, mechanical properties, and corrosion resistance. In this regard, HA-ZnO, HA-TiO2, and TiO2-ZnO from each coating group are divided into single, double, and triple layers. These coatings were prepared by cold spray and deposited on the surface of the DSS alloy, followed by a heat treatment at 250 °C. The surface morphology of coated surfaces was analyzed utilizing field emission scanning electron microscopy (FESEM), atomic force microscopic (AFM), microhardness test, corrosion test in Ringer solution, and antibacterial test. The coatings showed nano-scale surface morphology with advanced crystallization and homogeneous structures; in the corrosion characteristics utilizing potentiodynamic polarization, triple layers of HA-ZnO coatings displayed advanced nanostructures with higher hardness values (514.75HV). The antibacterial test showed the triple layers of HA-TiO2 and two layers of TiO2-ZnO sensitivity to positive bacteria.
Collapse
Affiliation(s)
| | | | - Zainab S. Al-Khafaji
- Building and Construction Techniques Engineering Department, AL-Mustaqbal University College, Hillah 51001, Iraq
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Corresponding author. Building and Construction Techniques Engineering Department, AL-Mustaqbal University College, Hillah 51001, Iraq.
| | - Abass Ali Diwan
- Nanotechnology and Advanced Materials Research Unit, Faculty of Engineering, University of Kufa. Iraq
| |
Collapse
|
14
|
Chen M, Jiang Y, Ding Y. Recent progress in unraveling the biosynthesis of natural sunscreens mycosporine-like amino acids. J Ind Microbiol Biotechnol 2023; 50:kuad038. [PMID: 37950572 PMCID: PMC10666671 DOI: 10.1093/jimb/kuad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Exposure to ultraviolet (UV) rays is a known risk factor for skin cancer, which can be notably mitigated through the application of sun care products. However, escalating concerns regarding the adverse health and environmental impacts of synthetic anti-UV chemicals underscore a pressing need for the development of biodegradable and eco-friendly sunscreen ingredients. Mycosporine-like amino acids (MAAs) represent a family of water-soluble anti-UV natural products synthesized by various organisms. These compounds can provide a two-pronged strategy for sun protection as they not only exhibit a superior UV absorption profile but also possess the potential to alleviate UV-induced oxidative stresses. Nevertheless, the widespread incorporation of MAAs in sun protection products is hindered by supply constraints. Delving into the biosynthetic pathways of MAAs can offer innovative strategies to overcome this limitation. Here, we review recent progress in MAA biosynthesis, with an emphasis on key biosynthetic enzymes, including the dehydroquinate synthase homolog MysA, the adenosine triphosphate (ATP)-grasp ligases MysC and MysD, and the nonribosomal peptide synthetase (NRPS)-like enzyme MysE. Additionally, we discuss recently discovered MAA tailoring enzymes. The enhanced understanding of the MAA biosynthesis paves the way for not only facilitating the supply of MAA analogs but also for exploring the evolution of this unique family of natural sunscreens. ONE-SENTENCE SUMMARY This review discusses the role of mycosporine-like amino acids (MAAs) as potent natural sunscreens and delves into recent progress in their biosynthesis.
Collapse
Affiliation(s)
- Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| | - Yujia Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610USA
| |
Collapse
|
15
|
Sreedharan S, Zouganelis G, Drake SJ, Tripathi G, Kermanizadeh A. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:1-27. [PMID: 36474307 DOI: 10.1080/10937404.2022.2153456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The integration of nanomaterials (NMs) into an ever-expanding number of daily used products has proven to be highly desirable in numerous industries and applications. Unfortunately, the same "nano" specific physicochemical properties, which make these materials attractive, may also contribute to hazards for individuals exposed to these materials. In 2021, it was estimated that 7 out of 10 deaths globally were accredited to chronic diseases, such as chronic liver disease, asthma, and cardiovascular-related illnesses. Crucially, it is also understood that a significant proportion of global populace numbering in the billions are currently living with a range of chronic undiagnosed health conditions. Due to the significant number of individuals affected, it is important that people suffering from chronic disease also be considered and incorporated in NM hazard assessment strategies. This review examined and analyzed the literature that focused on NM-induced adverse health effects in models which are representative of individuals exhibiting pre-existing medical conditions with focus on the pulmonary, cardiovascular, hepatic, gastrointestinal, and central nervous systems. The overall objective of this review was to outline available data, highlighting the important role of pre-existing disease in NM-induced toxicity with the aim of establishing a weight of evidence approach to inform the public on the potential hazards posed by NMs in both healthy and compromised persons in general population.
Collapse
|
16
|
Szentmihályi K, Klébert S, May Z, Bódis E, Mohai M, Trif L, Feczkó T, Károly Z. Immobilization of Metronidazole on Mesoporous Silica Materials. Pharmaceutics 2022; 14:2332. [PMID: 36365150 PMCID: PMC9699156 DOI: 10.3390/pharmaceutics14112332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2024] Open
Abstract
Metronidazole (MTZ) is a widely used drug, but due to its many side effects, there is a growing trend today to use a minimum dose while maintaining high efficacy. One way to meet this demand is to reduce the size of the drug particles. A relatively new method of size reduction is attaching the drug molecules to a mesoporous carrier. In this paper, we studied the fixation of MTZ molecules on mesoporous silica carriers. The drug was immobilized on two mesoporous silica materials (Syloid, SBA-15) with the use of a variety of immersion techniques and solvents. The immobilized drug was subjected to physicochemical examinations (e.g., SEM, XPS, XRD, nitrogen uptake, DSC) and dissolution studies. A significantly higher immobilization was attained on SBA-15 than on a Syloid carrier. Among the processing parameters, the type of MTZ solvent had the highest influence on immobilization. Ultrasonic agitation had a lower but still significant impact, while the concentration of MTZ in the solution made no difference. Under optimal conditions, with the application of an ethyl acetate solution, the surface coverage on SBA-15 reached as much as 91%. The immobilized MTZ exhibited a ca. 10% faster dissolution rate as compared to the pure micron-sized drug particles.
Collapse
Affiliation(s)
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
17
|
Szentmihályi K, Móricz K, Gigler G, May Z, Bódis E, Tóth J, Bakonyi M, Klébert S, Feczkó T, Károly Z. Ointment containing spray freeze-dried metronidazole effective against rosacea. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
The influence of fucoidan on stability, adsorption and electrokinetic properties of ZnO and TiO2 suspensions. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractStabilization of nano-oxide suspensions is a very important process. Nowadays, synthetic polymers are used to increase stability of the colloidal systems. However, this solution is not ecological and incompatible with the principles of green chemistry. Instead of synthetic polymers, their natural counterparts can be used. Herein, we present the use of natural bioactive polysaccharide—fucoidan as a stabilizer of nano-zinc(II) and nano-titanium(IV) oxide suspensions. These two oxides are commercially available and are widely used in the cosmetic and pharmaceutical industries. The turbidimetric studies (Turbiscan Lab) showed that the addition of fucoidan leads to the increase of stability and that the effect depends on the polymer concentration. To fully describe the systems’ stability, the adsorption (UV–Vis and FT-IR/PAS) and the electrokinetic properties (zeta potential and surface charge density) were studied. The obtained results indicate that fucoidan adsorbs by the electrostatic and non-electrostatic interactions on the used oxides forming the tight adsorption layer. The following paper thoroughly explains the stabilization mechanism of fucoidan toward the nano-oxide suspensions. Moreover, the presented results could be useful in the preparation of new cosmetic and pharmaceutical products containing nano-oxides.
Collapse
|
19
|
Wang P, Hu G, Zhao W, Du J, You M, Xv M, Yang H, Zhang M, Yan F, Huang M, Wang X, Zhang L, Chen Y. Continuous ZnO nanoparticle exposure induces melanoma-like skin lesions in epidermal barrier dysfunction model mice through anti-apoptotic effects mediated by the oxidative stress–activated NF-κB pathway. J Nanobiotechnology 2022; 20:111. [PMID: 35248056 PMCID: PMC8898538 DOI: 10.1186/s12951-022-01308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Increasing interest in the hazardous properties of zinc oxide nanoparticles (ZnO NPs), commonly used as ultraviolet filters in sunscreen, has driven efforts to study the percutaneous application of ZnO NPs to diseased skin; however, in-depth studies of toxic effects on melanocytes under conditions of epidermal barrier dysfunction remain lacking. Methods Epidermal barrier dysfunction model mice were continuously exposed to a ZnO NP-containing suspension for 14 and 49 consecutive days in vivo. Melanoma-like change and molecular mechanisms were also verified in human epidermal melanocytes treated with 5.0 µg/ml ZnO NPs for 72 h in vitro. Results ZnO NP application for 14 and 49 consecutive days induced melanoma-like skin lesions, supported by pigmented appearance, markedly increased number of melanocytes in the epidermis and dermis, increased cells with irregular nuclei in the epidermis, recruited dendritic cells in the dermis and dysregulated expression of melanoma-associated gene Fkbp51, Trim63 and Tsp 1. ZnO NPs increased oxidative injury, inhibited apoptosis, and increased nuclear factor kappa B (NF-κB) p65 and Bcl-2 expression in melanocytes of skin with epidermal barrier dysfunction after continuously treated for 14 and 49 days. Exposure to 5.0 µg/ml ZnO NPs for 72 h increased cell viability, decreased apoptosis, and increased Fkbp51 expression in melanocytes, consistent with histological observations in vivo. The oxidative stress–mediated mechanism underlying the induction of anti-apoptotic effects was verified using the reactive oxygen species scavenger N-acetylcysteine. Conclusions The entry of ZnO NPs into the stratum basale of skin with epidermal barrier dysfunction resulted in melanoma-like skin lesions and an anti-apoptotic effect induced by oxidative stress, activating the NF-κB pathway in melanocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01308-w.
Collapse
|
20
|
Sahmel J, Arnold S, Ramachandran G. Influence of repeated contacts on the transfer of elemental metallic lead between compartments in an integrated conceptual model for dermal exposure assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:89-109. [PMID: 34569450 DOI: 10.1080/15287394.2021.1979435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transfer of contaminants to and from the skin surface has been postulated to occur through a number of different pathways and compartments including: object(s)-to-skin, skin-to-skin, skin-to-clothing, skin-to-gloves, air-to-skin, skin-to-lips, and skin-to-saliva. However, many identified transfer pathways have been only minimally examined to determine the potential for measurable transfer. The purpose of this study was to quantitatively evaluate repeated transfer between different compartments using elemental metallic lead (Pb) in the solid form using a series of systematic measurements in human subjects. The results demonstrated that some transfer pathways and compartments are significantly more important than others. Transfer of Pb could not be measured from skin to cotton clothing or skin to laminate countertop surfaces. However, transfer was consistently measured for skin-to-skin and between the skin and the surface of nitrile gloves, suggesting the potential for significant transfer to or from these compartments in real-world exposure scenarios, and the importance of these pathways. With repeated contacts, transfer increased non-linearly between 1 and 5 contacts, but appeared to approach a steady state distribution among the compartments within 10 contacts. Consistent with other studies, relative to 100% transfer for a single contact, the quantitative transfer efficiency decreased with repeated contacts to 29% after 5 contacts and 11-12% after 10 contacts; for skin-to-skin transfer measurements, transfer efficiency after either 5 or 10 contacts was approximately 50% of the single contact transfer. These data are likely to be useful for refining current approaches to modeling of repeated contacts for dermal exposure and risk assessment.
Collapse
Affiliation(s)
- J Sahmel
- Insight Exposure and Risk Sciences, Boulder, Colorado, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - S Arnold
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - G Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Sun L, Xiang H, Ge C, Chen X, Zhang Q, Zhang Y, Miao X. A Nanocrystals-Based Topical Drug Delivery System with Improved Dermal Penetration and Enhanced Treatment of Skin Diseases. J Biomed Nanotechnol 2021; 17:2319-2337. [PMID: 34974856 DOI: 10.1166/jbn.2021.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Topical drug delivery methods are important in the treatment of skin diseases. Drug nanocrystals, which are nanometersized particles of active pharmaceutical ingredients, offer efficient topical delivery with high stability, high drug loading capacity, steady dissolution, and sustained drug release profiles. The use of nanocrystals for the topical delivery of skin disease therapies is currently being evaluated; this review focuses on how nanocrystals facilitate active pharmaceutical ingredient transport across skin barriers, exploring the underlying transportation mechanisms of the nanocrystals and active pharmaceutical ingredient molecules to the dermal and epidermal skin cells. In topical delivery, previous skin treatments, choice of excipients and vehicles, and penetration enhancement strategies critically influence the topical delivery of drug nanocrystals. Various research and applications of drug nanocrystals in skin disease therapy are highlighted in this review, and intellectual property protection for drug nanocrystal formulations, clinical trial data, and products with commercial potential are also discussed.
Collapse
Affiliation(s)
- Lin Sun
- Marine College, Shandong University, Weihai, Shandong, 264209, China.,Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, 519041, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Canfeng Ge
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xingxu Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Qian Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanzhuo Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Zhejiang, 221004, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| |
Collapse
|
22
|
Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Choi E, Maeng SJ, Yun S, Yu H, Shin JS, Yun JY. The degeneration of skin cosmetics and the structural changes of the chemical components as an indicator of product shelf life. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Raja IS, Lee JH, Hong SW, Shin DM, Lee JH, Han DW. A critical review on genotoxicity potential of low dimensional nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124915. [PMID: 33422758 DOI: 10.1016/j.jhazmat.2020.124915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Low dimensional nanomaterials (LDNMs) have earned attention among researchers as they exhibit a larger surface area to volume and quantum confinement effect compared to high dimensional nanomaterials. LDNMs, including 0-D and 1-D, possess several beneficial biomedical properties such as bioimaging, sensor, cosmetic, drug delivery, and cancer tumors ablation. However, they threaten human beings with the adverse effects of cytotoxicity, carcinogenicity, and genotoxicity when exposed for a prolonged time in industry or laboratory. Among different toxicities, genotoxicity must be taken into consideration with utmost importance as they inherit DNA related disorders causing congenital disabilities and malignancy to human beings. Many researchers have performed NMs' genotoxicity using various cell lines and animal models and reported the effect on various physicochemical and biological factors. In the present work, we have compiled a comparative study on the genotoxicity of the same or different kinds of NMs. Notwithstanding, we have included the classification of genotoxicity, mechanism, assessment, and affecting factors. Further, we have highlighted the importance of studying the genotoxicity of LDNMs and signified the perceptions, future challenges, and possible directives in the field.
Collapse
Affiliation(s)
| | - Jong Ho Lee
- Daan Korea Corporation, Seoul 06252, South Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Dong-Myeong Shin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, South Korea.
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, South Korea; Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
25
|
Jummaat F, Yahya EB, Khalil H.P.S. A, Adnan AS, Alqadhi AM, Abdullah CK, A.K. AS, Olaiya NG, Abdat M. The Role of Biopolymer-Based Materials in Obstetrics and Gynecology Applications: A Review. Polymers (Basel) 2021; 13:633. [PMID: 33672526 PMCID: PMC7923797 DOI: 10.3390/polym13040633] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Biopolymers have gained tremendous attention in many daily life applications, including medical applications, in the past few years. Obstetrics and gynecology are two fields dealing with sensitive parts of the woman's body and her newborn baby, which are normally associated with many issues such as toxicity, infections, and even gene alterations. Medical professions that use screening, examination, pre, and post-operation materials should benefit from a better understanding of each type of material's characteristics, health, and even environmental effects. The underlying principles of biopolymer-based materials for different obstetric and gynecologic applications may discover various advantages and benefits of using such materials. This review presents the health impact of conventional polymer-based materials on pregnant women's health and highlights the potential use of biopolymers as a safer option. The recent works on utilizing different biopolymer-based materials in obstetric and gynecologic are presented in this review, which includes suture materials in obstetric and gynecologic surgeries, cosmetic and personal care products, vaginal health, and drug delivery; as well as a wound dressing and healing materials. This review highlights the main issues and challenges of biopolymers in obstetric and gynecologic applications.
Collapse
Affiliation(s)
- Fauziah Jummaat
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - A. S. Adnan
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | | | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Atty Sofea A.K.
- Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, Permatang Pauh 13700, Malaysia;
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Munifah Abdat
- Department of Preventive and Public Health Dentistry, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|
26
|
Di Giampaolo L, Zaccariello G, Benedetti A, Vecchiotti G, Caposano F, Sabbioni E, Groppi F, Manenti S, Niu Q, Poma AMG, Di Gioacchino M, Petrarca C. Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO 2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC). NANOMATERIALS 2021; 11:nano11020270. [PMID: 33494245 PMCID: PMC7909844 DOI: 10.3390/nano11020270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Background: TiO2 nanoparticles (TiO2 NPs) are the nanomaterial most produced as an ultraviolet (UV) filter. However, TiO2 is a semiconductor and, in nanoparticle size, is a strong photocatalyst, raising concerns about photomutagenesis. Mesoporous silica nanoparticles (MSN) were synthetized incorporating TiO2 NPs (TiO2@MSN) to develop a cosmetic UV filter. The aim of this study was to assess the toxicity of TiO2@MSN, compared with bare MSN and commercial TiO2 NPs, based on several biomarkers. Materials and Methods: Human peripheral blood mononuclear cells (PBMC) were exposed to TiO2@MSN, bare MSN (network) or commercial TiO2 NPs for comparison. Exposed PBMC were characterized for cell viability/apoptosis, reactive oxygen species (ROS), nuclear morphology, and cytokines secretion. Results: All the nanoparticles induced apoptosis, but only TiO2 NPs (alone or assembled into MSN) led to ROS and micronuclei. However, TiO2@MSN showed lower ROS and cytotoxicity with respect to the P25. Exposure to TiO2@MSN induced Th2-skewed and pro-fibrotic responses. Conclusions: Geno-cytotoxicity data indicate that TiO2@MSN are safer than P25 and MSN. Cytokine responses induced by TiO2@MSN are imputable to both the TiO2 NPs and MSN, and, therefore, considered of low immunotoxicological relevance. This analytical assessment might provide hints for NPs modification and deep purification to reduce the risk of health effects in the settings of their large-scale manufacturing and everyday usage by consumers.
Collapse
Affiliation(s)
- Luca Di Giampaolo
- Specialization School of Occupational Medicine, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Gloria Zaccariello
- Department of Molecular Sciences and Nanosystems and Centro di Microscopia Elettronica “Giovanni Stevanato”, Ca’ Foscari University of Venice, Via Torino 155/b, I-30170 Venezia-Mestre, Italy; (G.Z.); (A.B.)
| | - Alvise Benedetti
- Department of Molecular Sciences and Nanosystems and Centro di Microscopia Elettronica “Giovanni Stevanato”, Ca’ Foscari University of Venice, Via Torino 155/b, I-30170 Venezia-Mestre, Italy; (G.Z.); (A.B.)
| | - Giulia Vecchiotti
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
| | - Francesca Caposano
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
| | - Enrico Sabbioni
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
| | - Flavia Groppi
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
- Laboratorio Acceleratori e Superconduttività Applicata (LASA), Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, I-20090 Segrate, Italy
| | - Simone Manenti
- Department of Physics, Università Degli Studi di Milano, Via Celoria 16, I-20133 Milano, Italy; (F.G.); (S.M.)
- Laboratorio Acceleratori e Superconduttività Applicata (LASA), Department of Physics, Università Degli Studi di Milano and INFN-Milano, Via F.lli Cervi 201, I-20090 Segrate, Italy
| | - Qiao Niu
- Occupational Health Department, Public Health School, Shanxi Medical University, Taiyuan 030000, China;
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (A.M.G.P.); (M.D.G.)
| | - Mario Di Gioacchino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (A.M.G.P.); (M.D.G.)
- Department of Medicine and Science of Ageing (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, 65121 Pescara, Italy
- Rectorate of Leonardo da Vinci Telematic University, Largo San Rocco 11, 66010 Torrevecchia Teatina CH, Italy
| | - Claudia Petrarca
- Center of Advanced Sciences and Technologies (C.A.S.T.), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (G.V.); (F.C.); (E.S.)
- Department of Medicine and Science of Ageing (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Institute of Clinical Immunotherapy and Advanced Biological Treatments, Piazza Pierangeli 1, 65121 Pescara, Italy
- Correspondence: ; Tel.: +39-087-154-1290
| |
Collapse
|
27
|
Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 2020; 17:31. [PMID: 32653006 PMCID: PMC7353685 DOI: 10.1186/s12989-020-00359-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological and animal studies provide compelling indications that environmental and engineered nanomaterials (NMs) pose a risk for pregnancy, fetal development and offspring health later in life. Understanding the origin and mechanisms underlying NM-induced developmental toxicity will be a cornerstone in the protection of sensitive populations and the design of safe and sustainable nanotechnology applications. MAIN BODY Direct toxicity originating from NMs crossing the placental barrier is frequently assumed to be the key pathway in developmental toxicity. However, placental transfer of particles is often highly limited, and evidence is growing that NMs can also indirectly interfere with fetal development. Here, we outline current knowledge on potential indirect mechanisms in developmental toxicity of NMs. SHORT CONCLUSION Until now, research on developmental toxicity has mainly focused on the biodistribution and placental translocation of NMs to the fetus to delineate underlying processes. Systematic research addressing NM impact on maternal and placental tissues as potential contributors to mechanistic pathways in developmental toxicity is only slowly gathering momentum. So far, maternal and placental oxidative stress and inflammation, activation of placental toll-like receptors (TLRs), impairment of placental growth and secretion of placental hormones, and vascular factors have been suggested to mediate indirect developmental toxicity of NMs. Therefore, NM effects on maternal and placental tissue function ought to be comprehensively evaluated in addition to placental transfer in the design of future studies of developmental toxicity and risk assessment of NM exposure during pregnancy.
Collapse
Affiliation(s)
- Battuja Batbajar Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Signe Schmidt Kjølner Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|
29
|
Efthimiou I, Georgiou Y, Vlastos D, Dailianis S, Deligiannakis Y. Assessing the cyto-genotoxic potential of model zinc oxide nanoparticles in the presence of humic-acid-like-polycondensate (HALP) and the leonardite HA (LHA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137625. [PMID: 32169638 DOI: 10.1016/j.scitotenv.2020.137625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The present study investigates the potential cyto-genotoxic effects of model zinc oxide nanoparticles (ZnO NPs) on human lymphocytes, with and/or without humic acids (HAs). Two types of HAs were studied, a natural well-characterized leonardite HA (LHA) and its synthetic-model, a humic-acid-like-polycondensate (HALP). The Cytokinesis Block Micronucleus (CBMN) assay was applied in cell cultures treated with different concentrations of ZnO NPs (0.5, 5, 10, 20 μg mL-1) and under different concentrations of either HALP or LHA (ZnO NPs-HALP and ZnO NPs-LHA, at concentrations of 0.5-0.8, 5-8, 10-16, 20-32 and 0.5-2, 5-20, 10-40, 20-80 μg mL-1, respectively). According to the results, ZnO NPs lacked genotoxicity but demonstrated cytotoxic potential. Binary mixtures of ZnO NPs-HAs (ZnO NPs-HALP or ZnO NPs-LHA) showed negligible alterations of micronuclei (MN) formation in challenged cells, with cytotoxic effects revealed only in case of cells treated with ZnO NPs-LHA at the concentration 5-20 μg mL-1. Furthermore, no genotoxic phenomena were exerted neither by the ZnO NPs nor from their mixtures with HAs. These findings indicate [i] the cytotoxic activity of used ZnO NPs on human lymphocytes, and [ii] reveal the protective role of HAs against ZnO NPs mediated cytotoxicity.
Collapse
Affiliation(s)
- Ioanna Efthimiou
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece
| | - Yiannis Georgiou
- Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100 Agrinio, Greece.
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Rio, Patra, Greece
| | | |
Collapse
|
30
|
Vimercati L, Cavone D, Caputi A, De Maria L, Tria M, Prato E, Ferri GM. Nanoparticles: An Experimental Study of Zinc Nanoparticles Toxicity on Marine Crustaceans. General Overview on the Health Implications in Humans. Front Public Health 2020; 8:192. [PMID: 32509719 PMCID: PMC7253631 DOI: 10.3389/fpubh.2020.00192] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
The presence of products containing nanoparticles or nanofibers is rapidly growing. Nanotechnology involves a wide spectrum of industrial fields. There is a lack of information regarding the toxicity of these nanoparticles in aqueous media. The potential acute toxicity of ZnO NPs using two marine crustacean species: the copepod Tigriopus fulvus and the amphypod Corophium insidiosum was evaluated. Acute tests were conducted on adults of T. Fulvus nauplii and C. insidiosum. Both test species were exposed for 96 h to 5 increasing concentrations of ZnO NPs and ZnSO4H2O, and the endpoint was mortality. Statistical analysis revealed that the mean LC50 values of both ZnO NPs and ZnSO4H2O (ZnO NPs: F = 59.42; P < 0.0015; ZnSO4H2O: F = 25.57; P < 0.0015) were significantly lower for Tigriopus fulvus than for Corophium insidiosum. This result confirms that the toxic effect could be mainly attributed to the Zn ions, confirming that the dissolution processes play a crucial role in the toxicity of the ZnO NPs.
Collapse
Affiliation(s)
- Luigi Vimercati
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Domenica Cavone
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Antonio Caputi
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Luigi De Maria
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Michele Tria
- Marine Environment and Pollution Prevention, Department of Prevention, ASL TA Health Company, Taranto, Italy
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Giovanni Maria Ferri
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
31
|
Cytotoxicity of NiO and Ni(OH) 2 Nanoparticles Is Mediated by Oxidative Stress-Induced Cell Death and Suppression of Cell Proliferation. Int J Mol Sci 2020; 21:ijms21072355. [PMID: 32231169 PMCID: PMC7178005 DOI: 10.3390/ijms21072355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The use of nanomaterial-based products continues to grow with advancing technology. Understanding the potential toxicity of nanoparticles (NPs) is important to ensure that products containing them do not impose harmful effects to human or environmental health. In this study, we evaluated the comparative cytotoxicity between nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) in human bronchoalveolar carcinoma (A549) and human hepatocellular carcinoma (HepG2) cell lines. Cellular viability studies revealed cell line-specific cytotoxicity in which nickel NPs were toxic to A549 cells but relatively nontoxic to HepG2 cells. Time-, concentration-, and particle-specific cytotoxicity was observed in A549 cells. NP-induced oxidative stress triggered dissipation of mitochondrial membrane potential and induction of caspase-3 enzyme activity. The subsequent apoptotic events led to reduction in cell number. In addition to cell death, suppression of cell proliferation played an essential role in regulating cell number. Collectively, the observed cell viability is a function of cell death and suppression of proliferation. Physical and chemical properties of NPs such as total surface area and metal dissolution are in agreement with the observed differential cytotoxicity. Understanding the properties of NPs is essential in informing the design of safer materials.
Collapse
|
32
|
Egambaram OP, Kesavan Pillai S, Ray SS. Materials Science Challenges in Skin UV Protection: A Review. Photochem Photobiol 2020; 96:779-797. [PMID: 31886889 DOI: 10.1111/php.13208] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022]
Abstract
UV radiation is one of the critical environmental stress factors for human skin, which can trigger various problems such as pruritus, burning, erythema, premature skin aging and skin cancer. Hence, UV protection has become an indispensable daily routine and the use of topical sunscreen products is rapidly increasing. However, there are emerging concerns over the efficiency and safety of existing chemical and physical UV filters used in consumer products. Furthermore, there is no universally approved method for assessing sun protection efficiency regardless of the immediate end user need to develop safer sunscreen products that afford broad-spectrum photoprotection. It is evident that the current organic and inorganic UV filters have significant unfavorable impacts on human, environmental, and marine safety. Therefore, effective alternative UV filters should be established. This article comprehensively reviews the properties, safety, health and ecological concerns of various UV filters including TiO2 and ZnO nanoparticles as well as the limitations of the testing protocols and guidelines provided by major regulatory bodies. The photoreactivity of UV filters used in sunscreen remains a major challenge, and it is crucial to develop new sunscreen ingredients, which not only protect the consumer, but also the environment.
Collapse
Affiliation(s)
- Orielia Pria Egambaram
- Centre for Nanostructures and Advanced Materials, DSI/CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Sreejarani Kesavan Pillai
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI/CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
33
|
Tolliver LM, Holl NJ, Hou FYS, Lee HJ, Cambre MH, Huang YW. Differential Cytotoxicity Induced by Transition Metal Oxide Nanoparticles is a Function of Cell Killing and Suppression of Cell Proliferation. Int J Mol Sci 2020; 21:ijms21051731. [PMID: 32138333 PMCID: PMC7084189 DOI: 10.3390/ijms21051731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
The application of nanoparticles (NPs) in industry is on the rise, along with the potential for human exposure. While the toxicity of microscale equivalents has been studied, nanoscale materials exhibit different properties and bodily uptake, which limits the prediction ability of microscale models. Here, we examine the cytotoxicity of seven transition metal oxide NPs in the fourth period of the periodic table of the chemical elements. We hypothesized that NP-mediated cytotoxicity is a function of cell killing and suppression of cell proliferation. To test our hypothesis, transition metal oxide NPs were tested in a human lung cancer cell model (A549). Cells were exposed to a series of concentrations of TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, or ZnO for either 24 or 48 h. All NPs aside from Cr2O3 and Fe2O3 showed a time- and dose-dependent decrease in viability. All NPs significantly inhibited cellular proliferation. The trend of cytotoxicity was in parallel with that of proliferative inhibition. Toxicity was ranked according to severity of cellular responses, revealing a strong correlation between viability, proliferation, and apoptosis. Cell cycle alteration was observed in the most toxic NPs, which may have contributed to promoting apoptosis and suppressing cell division rate. Collectively, our data support the hypothesis that cell killing and cell proliferative inhibition are essential independent variables in NP-mediated cytotoxicity.
Collapse
Affiliation(s)
- Larry M. Tolliver
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA; (L.M.T.); (N.J.H.); (M.H.C.)
| | - Natalie J. Holl
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA; (L.M.T.); (N.J.H.); (M.H.C.)
| | - Fang Yao Stephen Hou
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA;
| | - Han-Jung Lee
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 97401, Taiwan;
| | - Melissa H. Cambre
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA; (L.M.T.); (N.J.H.); (M.H.C.)
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA; (L.M.T.); (N.J.H.); (M.H.C.)
- Correspondence: ; Tel.: 1-573-341-6589
| |
Collapse
|
34
|
Photocatalytic property and pH-response behavior of modified ZnO electrospun nanofibers grafted with poly(methyl methacrylate). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-1973-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Wu F, Chen Y, Li G, Zhu D, Wang L, Wang J. Zinc oxide nanoparticles synthesized from Allium cepa prevents UVB radiation mediated inflammation in human epidermal keratinocytes (HaCaT cells). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3548-3558. [PMID: 31456420 DOI: 10.1080/21691401.2019.1642905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The extensive relevance of nanoparticles arouses the requirement for manufacturing although the predictable technique are frequently perilous and energy saving. In the current study, zinc oxide nanoparticles manufactured from Allium cepa avert UVB radiation interceded irritation in human epidermal keratinocytes (HaCaT cells). In the current study, the zinc oxide nanoparticles (ZnO-NPs) was synthesized from the extract of A. cepa. The optimized ZnO-NPs hence attained and was enumerated and exemplified by UV visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscope (SEM) and EDAX impending analysis. In addition, amalgamated ZnO-NPs were experienced for cell viability (MTT), formation of reactive oxygen species (ROS), apoptosis, and antioxidant and lipid peroxidation (TBARS) levels. Also, we explored the effect of A. cepa ZnO-NPs in molecular level by evaluating the inflammatory and apoptotic markers, in which ZnO-NPs reinstated the interleukins 6, 10 and related signaling molecules like iNOS, COX-2 levels. Ultimately, ZnO-NPs induce apoptotic markers (Bax, Bcl-2) and also recommended that ZnO-NPs might aggravate cancer cell apoptosis in HaCaT cells.
Collapse
Affiliation(s)
- Fenglian Wu
- Department of Plastic Surgery, The First Hospital of Qin Huangdao Qinhuangdao , Hebei , China
| | - Yanxin Chen
- Department of Pathology, The First Hospital of Qin Huangdao Qinhuangdao , Hebei , China
| | - Guoliang Li
- Ever Care Medical and Beauty Hospital , Harbin , China
| | - Donglai Zhu
- Department of Plastic Surgery, The First Hospital of Qin Huangdao Qinhuangdao , Hebei , China
| | - Lianying Wang
- Department of Plastic Surgery, The First Hospital of Qin Huangdao Qinhuangdao , Hebei , China
| | - Jiaxin Wang
- The First Hospital of Qin Huangdao, Qinhuangdao , Hebei , China
| |
Collapse
|
36
|
Bongao HC, Gabatino RRA, Arias CFH, Magdaluyo ER. Micro/nanocellulose from waste Pili (Canarium ovatum) pulp as a potential anti-ageing ingredient for cosmetic formulations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2019.08.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Rehman S, Jermy BR, Akhtar S, Borgio JF, Abdul Azeez S, Ravinayagam V, Al Jindan R, Alsalem ZH, Buhameid A, Gani A. Isolation and characterization of a novel thermophile; Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2072-2082. [PMID: 31126203 DOI: 10.1080/21691401.2019.1620254] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The establishment of a benign system for the nanoparticle (NPs) synthesis, is a key in nanotechnology for the environmental and health care industries. Therefore, enrichment of novel biological systems for the green synthesis is in significant demand, to lift up these compounds in the biomedical industries. The present work, reports the green synthesis of ZnO NPs, employing a novel thermophile, identified as Bacillus haynesii (GeneBank: MG822851) isolated from the leaf of date palm plant (Phoenix dactylifera), as an eco-friendly nanobiofactory. Physiochemical characterization of ZnO NPs (50 ± 5 nm in size), was achieved by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), diffuse reflectance UV-Visible spectroscopy (DR UV-Vis spectroscopy), Thermogravimetry analysis (TGA), scanning electron microscopy (SEM) and transmissiom electron microscopy (TEM). The morphogenesis and antimicrobial activity of synthesized ZnO NPs, was studied by evaluating the minimum inhibitory/bactericidal concentration (MIC&MBC) against Escherchia coli (8 and 16 mg/mL) and Staphylococcus aureus (4 and 8 mg/mL), respectively. The present study encourages the use of B. haynesii for the green synthesis of ZnO NP. To the best of our knowledge, this is the first report on the study of thermophilic, B. haynesii for green synthesis of NPs in general and ZnO NPs in particular.
Collapse
Affiliation(s)
- Suriya Rehman
- a Department of Epidemic Disease Research, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - B Rabindran Jermy
- b Department of Nano-Medicine Research, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - Sultan Akhtar
- c Department of Biophysics, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - J Francis Borgio
- d Department of Genetics Research, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - Sayed Abdul Azeez
- d Department of Genetics Research, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - Vijaya Ravinayagam
- e Deanship of Scientific Research & Department of Nano-Medicine Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - Reem Al Jindan
- f Department of Microbiology, College, Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - Zainab Hassan Alsalem
- a Department of Epidemic Disease Research, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - Abdullah Buhameid
- a Department of Epidemic Disease Research, Institute for Research & Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University (IAU) , Dammam , Saudi Arabia
| | - Adil Gani
- g Department of Food Science and Technology, University of Kashmir , Srinagar , India
| |
Collapse
|
38
|
Huang X, Nisar MF, Wang M, Wang W, Chen L, Lin M, Xu W, Diao Q, Zhong JL. UV-responsive AKBA@ZnO nanoparticles potential for polymorphous light eruption protection and therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110254. [PMID: 31761216 DOI: 10.1016/j.msec.2019.110254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 08/05/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Polymorphous light eruption (PLE) is one of the acquired idiopathic photodermatosis mainly induced by immoderate UV radiation. In order to realize UV protection and medicine administration simultaneously for polymorphous light eruption protection and therapy, Acetyl-11-keto-β-boswellic acid (AKBA) loaded Zinc Oxide (ZnO) nanoparticles of which drug release behavior is UV-controlled has been successfully synthesized. Such nanoparticles can not only reflect UV but also transfer the energy to release AKBA which presents an excellent antioxidant and anti-inflammatory effects. In addition, they are biocompatible to HaCaT cells. As a result, they have a great potential in combining UV protection and medicine administration simultaneously for PLE protection and therapy.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China; Institute of Nanomedicine and Biomaterials, School of Sports and Health Science, Tongren University, Tongren, 554300, China; Guizhou Provincical College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563003, China.
| | - Muhammad Farrukh Nisar
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Mei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Wenhong Wang
- Institute of Nanomedicine and Biomaterials, School of Sports and Health Science, Tongren University, Tongren, 554300, China; Guizhou Provincical College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563003, China
| | - Long Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Mao Lin
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Wei Xu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Qingchun Diao
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Julia Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China; Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.
| |
Collapse
|
39
|
Dréno B, Alexis A, Chuberre B, Marinovich M. Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol 2019; 33 Suppl 7:34-46. [DOI: 10.1111/jdv.15943] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- B. Dréno
- Onco‐Dermatology Department CHU Nantes CRCINA University Nantes Nantes France
| | - A. Alexis
- Department of Dermatology Icahn School of Medicine at Mount Sinai New York NY USA
| | - B. Chuberre
- L'Oréal Cosmetique Active International Levallois‐Perret France
| | - M. Marinovich
- Department of Pharmacological and Biomolecular Sciences University of Milan Milan Italy
| |
Collapse
|
40
|
Botlhoko OJ, Letwaba L, Bandyopadhyay J, Ray SS. UV‐protection, tribology, and mechanical properties of ZnO‐containing polyamide composites. J Appl Polym Sci 2019. [DOI: 10.1002/app.48418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Orebotse Joseph Botlhoko
- DST‐CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Lesetja Letwaba
- DST‐CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Jayita Bandyopadhyay
- DST‐CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial Research Pretoria 0001 South Africa
| | - Suprakas Sinha Ray
- DST‐CSIR National Centre for Nanostructured MaterialsCouncil for Scientific and Industrial Research Pretoria 0001 South Africa
- Department of Chemical SciencesUniversity of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
41
|
Sharma S, Sharma RK, Gaur K, Cátala Torres JF, Loza-Rosas SA, Torres A, Saxena M, Julin M, Tinoco AD. Fueling a Hot Debate on the Application of TiO 2 Nanoparticles in Sunscreen. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2317. [PMID: 31330764 PMCID: PMC6678326 DOI: 10.3390/ma12142317] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Titanium is one of the most abundant elements in the earth's crust and while there are many examples of its bioactive properties and use by living organisms, there are few studies that have probed its biochemical reactivity in physiological environments. In the cosmetic industry, TiO2 nanoparticles are widely used. They are often incorporated in sunscreens as inorganic physical sun blockers, taking advantage of their semiconducting property, which facilitates absorbing ultraviolet (UV) radiation. Sunscreens are formulated to protect human skin from the redox activity of the TiO2 nanoparticles (NPs) and are mass-marketed as safe for people and the environment. By closely examining the biological use of TiO2 and the influence of biomolecules on its stability and solubility, we reassess the reactivity of the material in the presence and absence of UV energy. We also consider the alarming impact that TiO2 NP seepage into bodies of water can cause to the environment and aquatic life, and the effect that it can have on human skin and health, in general, especially if it penetrates into the human body and the bloodstream.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Rohit K Sharma
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - José F Cátala Torres
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Anamaris Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA
| | - Mara Julin
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, 17 AVE Universidad STE 1701, San Juan, PR 00925-2537, USA.
| |
Collapse
|
42
|
Zinc oxide nanoparticle induced neurotoxic potential upon interaction with primary astrocytes. Neurotoxicology 2019; 73:213-227. [DOI: 10.1016/j.neuro.2019.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
|
43
|
Perioli L, Pagano C, Ceccarini MR. Current Highlights About the Safety of Inorganic Nanomaterials in Healthcare. Curr Med Chem 2019; 26:2147-2165. [DOI: 10.2174/0929867325666180723121804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
Abstract
:
In recent years inorganic materials are largely present in products intended for
health care. Literature gives many examples of inorganic materials used in many healthcare
products, mainly in pharmaceutical field.
:
Silver, zinc oxide, titanium oxide, iron oxide, gold, mesoporous silica, hydrotalcite-like compound
and nanoclays are the most common inorganic materials used in nanosized form for
different applications in the health field. Generally, these materials are employed to realize
formulations for systemic use, often with the aim to perform a specific targeting to the pathological
site. The nanometric dimensions are often preferred to obtain the cellular internalization
when the target is localized in the intracellular space.
:
Some materials are frequently used in topical formulations as rheological agents, adsorbents,
mattifying agents, physical sunscreen (e.g. zinc oxide, titanium dioxide), and others.
:
Recent studies highlighted that the use of nanosized inorganic materials can represent a risk
for health. The very small dimension (nanometric) until a few years ago represented a fundamental
requirement; however, it is currently held responsible for the inorganic material toxicity.
This aspect is very important to be considered as actually numerous inorganic materials
can be found in many products available in the market, often dedicated to infants and children.
These materials are used without taking into account their dimensional properties with
increased risk for the user/patient.
:
This review deals with a deep analysis of current researches documenting the toxicity of
nanometric inorganic materials especially those largely used in products available in the market.
Collapse
Affiliation(s)
- Luana Perioli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Cinzia Pagano
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | |
Collapse
|
44
|
Bioinspired Zinc Oxide Nanoparticles Using Lycopersicon esculentum for Antimicrobial and Anticancer Applications. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01590-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Liu J, Williams PC, Goodson BM, Geisler-Lee J, Fakharifar M, Gemeinhardt ME. TiO 2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thaliana plants, and Eisenia fetida earthworms. ENVIRONMENTAL RESEARCH 2019; 172:202-215. [PMID: 30818230 DOI: 10.1016/j.envres.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 02/07/2019] [Indexed: 05/25/2023]
Abstract
Treated wastewater is reclaimed to irrigate crops in a growing number of arid and semi-arid areas. In order to study the impacts of metallic nanoparticles (NPs) present in treated wastewater on soil ecosystems, a soil micro-ecosystem containing Arabidopsis thaliana plants, soil microorganisms, and Eisenia fetida earthworms was developed. The soil was irrigated with deionized water containing environmentally relevant concentrations of 70 µg/L of TiO2 NPs; or 20 µg/L of an Ag mixture, which included 90% (w/w) Ag2S NPs, 7.5% (w/w) Ag0 NPs, and 2.5% (w/w) Ag+ to represent speciation of aged Ag NPs in treated wastewater; or a combination of the TiO2 NPs and the Ag mixture to reflect the frequent presence of both types of materials in treated wastewater. It was found that TiO2 NPs alone were not toxic to the soil micro-ecosystem. Irrigation water containing 20 µg/L of the Ag mixture significantly reduced the soil microbial biomass, and inhibited the growth of plants and earthworms; however, a combination of 70 µg/L of TiO2 and 20 µg/L of Ag did not show toxic impact on organism growth compared to the Control of deionized water irrigation. Taken together, these results indicate the importance of investigating the effects of different nanomaterials in combination as they are introduced to the environment-with environmentally relevant concentrations and speciation-instead of only selecting a single NP type or residual ion. Moreover, the results of this study support the safe application of reclaimed water from wastewater treatment plants for use in agricultural lands in regard to limited concentrations of aged NPs (i.e., TiO2 and Ag) if present in combination.
Collapse
Affiliation(s)
- Jia Liu
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA; Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA.
| | - Philip C Williams
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA; Materials Technology Center, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA
| | - Jane Geisler-Lee
- Department of Plant Biology, Southern Illinois University, 1125 Lincoln Dr., Carbondale, IL 62901, USA
| | - Masoud Fakharifar
- Department of Civil and Environmental Engineering, Southern Illinois University, 1230 Lincoln Dr., Carbondale, IL 62901, USA
| | - Max E Gemeinhardt
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Dr., Carbondale, IL 62901, USA
| |
Collapse
|
46
|
Singh S. Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol Mech Methods 2019; 29:300-311. [DOI: 10.1080/15376516.2018.1553221] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Science and Education, Raebareli, India
| |
Collapse
|
47
|
Subramaniam VD, Prasad SV, Banerjee A, Gopinath M, Murugesan R, Marotta F, Sun XF, Pathak S. Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products. Drug Chem Toxicol 2019; 42:84-93. [PMID: 30103634 DOI: 10.1080/01480545.2018.1491987] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, nanoparticles are being used extensively in personal healthcare products such as cosmetics, sunscreens, soaps, and shampoos. Particularly, metal oxide nanoparticles are gaining competence as key industrial constituents, progressing toward a remarkable rise in their applications. Zinc oxide and titanium oxide nanoparticles are the most commonly employed metal oxide nanoparticles in sunscreens, ointments, foot care, and over the counter topical products. Dermal exposure to these metal oxides predominantly occurs through explicit use of cosmetic products and airway exposure to nanoparticle dusts is primarily mediated via occupational exposure. There is a compelling need to understand the toxicity effects of nanoparticles which can easily enter the cells and induce oxidative stress. Consequently, these products have become a direct source of pollution in the environment and thereby greatly impact our ecosystem. A complete understanding of the toxicity mechanism of nano-ZnO is intended to resolve whether and to what extent such nanoparticles may pose a threat to the environment and to human beings. In this review article, we have discussed the characteristics of metal oxide nanoparticles and its applications in the cosmetic industry. We have also highlighted about their toxicity effects and their impact on human health.
Collapse
Affiliation(s)
- Vimala Devi Subramaniam
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Suhanya Veronica Prasad
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Antara Banerjee
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Madhumala Gopinath
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Ramachandran Murugesan
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| | - Francesco Marotta
- b ReGentra R&d international for Aging Intervention , Milano-Beijing & VCC, Preventitive Medical Promotion Foundation , Beijing , China
| | - Xiao-Feng Sun
- c Department of Oncology and Department of Clinical and Experimental Medicine , University of Linköping , Linköping , Sweden
| | - Surajit Pathak
- a Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE) , Kelambakkam , Chennai , India
| |
Collapse
|
48
|
Sohail MI, Waris AA, Ayub MA, Usman M, Zia ur Rehman M, Sabir M, Faiz T. Environmental application of nanomaterials: A promise to sustainable future. ENGINEERED NANOMATERIALS AND PHYTONANOTECHNOLOGY: CHALLENGES FOR PLANT SUSTAINABILITY 2019. [DOI: 10.1016/bs.coac.2019.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Sumaira, Siddique Afridi M, Salman Hashmi S, Ali GS, Zia M, Haider Abbasi B. Comparative antileishmanial efficacy of the biosynthesised ZnO NPs from genus Verbena. IET Nanobiotechnol 2018; 12:1067-1073. [PMID: 30964015 PMCID: PMC8676150 DOI: 10.1049/iet-nbt.2018.5076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/27/2018] [Accepted: 05/29/2018] [Indexed: 09/28/2023] Open
Abstract
This study describes ZnO NPs biosynthesis using leaf extracts of Verbena officinalis and Verbena tenuisecta. The extracts serve as natural reducing, capping and stabilization facilitators. Plant extracts phytochemical analysis, revealed that V. officinalis showed higher total phenolic and flavonoid content (22.12 and 6.38 mg g -1 DW) as compared to V. tennuisecta (12.18 and 2.7 mg g -1 DW). ZnO NPs were characterised by ultraviolet-visible spectroscopy, Fourier transform infrared, X-ray diffraction, scanning electron microscope, transmission electron microscopy (TEM) and energy dispersive X-ray. TEM analysis of ZnO NPs reveals rod and flower shapes and were in the range of 65-75 and 14-31 nm, for V. tenuisecta and V. officinalis, respectively. Bio-potential of ZnO NPs was examined through their leishmanicidal potential against Leishmania tropica. ZnO NPs showed potent leishmanicidal activity with 250 µg ml-1 being the most potent concentration. V. officinalis mediated ZnO NPs showed more potent leishmanicidal activity compared to V. tenuisecta mediated ZnO NPs due to their smaller size and increased phenolics doped onto its surface. These results can be a step forward towards the development of novel compounds that can efficiently replace the current medication schemes for leishmaniasis treatment.
Collapse
Affiliation(s)
- Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Syed Salman Hashmi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Gul Shad Ali
- Mid-Florida Research and Education Center and Department of Plant Pathology, University of Florida/Institute of Food and Agricultural Sciences, 2725 Binion Road, Apopka, FL 32703, USA
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
50
|
Sun Q, Li J, Le T. Zinc Oxide Nanoparticle as a Novel Class of Antifungal Agents: Current Advances and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11209-11220. [PMID: 30299956 DOI: 10.1021/acs.jafc.8b03210] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Certain types of nanoparticles, especially zinc oxide nanoparticles (ZnONPs), are widely reported to be capable of the inhibition of harmful bacteria, yeasts, and filamentous fungi. The unique physicochemical and biological properties of ZnONPs also make them attractive to the food industry for use as a promising antifungal agent. This Review thoroughly introduces the preparation methods and antifungal properties of ZnONPs and analyzes their possible antifungal mechanisms. The applicability of ZnONPs in food packaging and nutritional supplements and as an antimicrobial additive is also documented. Moreover, evaluations for biological safety of ZnONPs are objectively reviewed in this paper. The discussions addressed in this Review not only have theoretical significance but also are conducive to the development of food safety, nutrition, and human health. The summarized knowledge and future perspectives outlined here are expected to promote and guide new research toward developing and optimizing the application of ZnONPs as a novel class of antifungal agents to help improve food quality as well as food safety in the near future.
Collapse
Affiliation(s)
- Qi Sun
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| | - Jianmei Li
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| | - Tao Le
- College of Life Sciences , Chongqing Normal University , No. 37 Chengzhong Road , Chongqing 401331 , People's Republic of China
| |
Collapse
|