1
|
Jacob S, Gusmao L, Godboley D, Velusamy SK, George N, Schreiner H, Cugini C, Fine DH. Molecular Analysis of Aggregatibacter actinomycetemcomitans ApiA, a Multi-Functional Protein. Pathogens 2024; 13:1011. [PMID: 39599564 PMCID: PMC11597641 DOI: 10.3390/pathogens13111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Aggregatibacter actinomycetemcomitans ApiA is a trimeric autotransporter outer membrane protein (Omp) that participates in multiple functions, enabling A. actinomycetemcomitans to adapt to a variety of environments. The goal of this study is to identify regions in the apiA gene responsible for three of these functions: auto-aggregation, buccal epithelial cell binding, and complement resistance. Initially, apiA was expressed in Escherichia coli. Finally, wild-type A. actinomycetemcomitans and an apiA-deleted version were tested for their expression in the presence and absence of serum and genes related to stress adaptation, such as oxygen regulation, catalase activity, and Omp proteins. Sequential deletions in specific regions in the apiA gene as expressed in E. coli were examined for membrane proteins, which were confirmed by microscopy. The functional activity of epithelial cell binding, auto-aggregation, and complement resistance were then assessed, and regions in the apiA gene responsible for these functions were identified. A region spanning amino acids 186-217, when deleted, abrogated complement resistance and Factor H (FH) binding, while a region spanning amino acids 28-33 was related to epithelial cell binding. A 13-amino-acid peptide responsible for FH binding was shown to promote serum resistance. An apiA deletion in a clinical isolate (IDH781) was created and tested in the presence and/or absence of active and inactive serum and genes deemed responsible for prominent functional activity related to A. actinomycetemcomitans survival using qRT-PCR. These experiments suggested that apiA expression in IDH781 is involved in global regulatory mechanisms that are serum-dependent and show complement resistance. This is the first study to identify specific apiA regions in A. actinomycetemcomitans responsible for FH binding, complement resistance, and other stress-related functions. Moreover, the role of apiA in overall gene regulation was observed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen, Newark, NJ 07103, USA; (S.J.); (L.G.); (D.G.); (S.K.V.); (N.G.); (H.S.)
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen, Newark, NJ 07103, USA; (S.J.); (L.G.); (D.G.); (S.K.V.); (N.G.); (H.S.)
| |
Collapse
|
2
|
Liu Q, Wang H, Zhu W, Peng S, Zou H, Zhang P, Li Z, Zhang Z, Fu L, Qian Z. Determination of extracellular proteinase in L. helveticus Lh191404 based on whole genome sequencing and proteomics analysis. Int J Biol Macromol 2024; 276:133958. [PMID: 39033899 DOI: 10.1016/j.ijbiomac.2024.133958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Lactobacillus helveticus exhibits a remarkable proteolytic system. However, the etiology of these protein hydrolysis characteristics, whether caused by extracellular proteinases (EP) or cell envelope proteinases (CEP), has been puzzling researchers. In this study, third-generation Nanopore whole genome sequencing and proteomics analysis were used to unravel the root cause of the aforementioned confusion. The genome of L. helveticus Lh191404 was 2,117,643 bp in length, with 67 secreted proteins were found. Combined with proteomic analysis, it was found that the protein composition of extraction from CEP and EP were indeed the same substance. Bioinformatics analysis indicated that the CEP belonged to the PrtH1 Variant (PrtH1_V) genotype by phylogenetic analysis. The three-dimensional structures of various domains within the PrtH1_V-191404 had been characterized, providing a comprehensive understanding of its structural features. Results of proteinase activity showed that the optimal reaction temperature was 40 °C, with a pH of 6.50. These findings suggested that the origin of EP in L. helveticus Lh191404 may be due to CEP being released into the substrate after detaching from the cell wall. This research is of guiding significance for further understanding the operational mechanism of the protein hydrolysis system in lactic acid bacteria.
Collapse
Affiliation(s)
- Qingwen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Wenye Zhu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Shanyu Peng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Hao Zou
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Pingyuan Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lijun Fu
- School of Environmental and Biological Engineering, Putian University, Putian, Fujian 351100, China
| | - Zhuozhen Qian
- Fisheries Research Institute of Fujian, 7 Haishan Road, Xiamen 361013, China
| |
Collapse
|
3
|
Tubero Euzebio Alves V, Alves T, Silva Rovai E, Hasturk H, Van Dyke T, Holzhausen M, Kantarci A. Arginine-specific gingipains (RgpA/RgpB) knockdown modulates neutrophil machinery. J Oral Microbiol 2024; 16:2376462. [PMID: 38988325 PMCID: PMC11234918 DOI: 10.1080/20002297.2024.2376462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Background Gingipains are important virulence factors present in Porphyromonas gingivalis. Arginine-specific gingipains (RgpA and RgpB) are critically associated with increased proteolytic activity and immune system dysfunction, including neutrophilic activity. In this study, we assessed the impact of gingipains (RgpA and RgpB) on neutrophil function. Methods Peripheral blood samples were obtained; neutrophils were isolated and incubated with P. gingivalis A7436, W50, and the double RgpA/RgpB double knockout mutant E8 at MOI 20 for 2 hours. Neutrophil viability was assessed by Sytox staining. Phagocytic capacity and apoptosis were measured by flow cytometry. Superoxide release was measured by superoxide dismutase and cytochrome c reduction assay. Gene expression of TLR2, p47-phox, p67-phox, and P2 × 7was measured by qPCR. Inflammatory cytokine and chemokine production was measured by IL-1β, IL-8, RANTES, and TNF-α in cell supernatants. Results Neutrophil TLR2 gene expression was reduced in the absence of RgpA/RgpB (p < 0.05), while superoxide production was not significantly impacted. RgpA/RgpB-/- significantly impaired neutrophil phagocytic function (p < 0.05) and increased TNF-α production when compared with the wild-type control (p < 0.05). Neutrophil apoptosis was not altered when exposed to RgpA/RgpB-/- E8 (p > 0.05). Conclusion These data suggest that arginine-specific gingipains (RgpA/RgpB) can modulate neutrophil responses against P. gingivalis infection.
Collapse
Affiliation(s)
- Vanessa Tubero Euzebio Alves
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Tomaz Alves
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emanuel Silva Rovai
- Division of Periodontology, São Paulo State University – School of Dentistry, São José dos Campos, Brazil
| | - Hatice Hasturk
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Thomas Van Dyke
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| | - Marinella Holzhausen
- Division of Periodontology, São Paulo State University – School of Dentistry, São José dos Campos, Brazil
| | - Alpdogan Kantarci
- Department of Applied Oral Sciences, ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Jiang N, Liu Z, Wang H, Zhang L, Li M, Li G, Li C, Wang B, Zhao C, Liu L. Alterations in metabolome and microbiome: new clues on cathelicidin-related antimicrobial peptide alleviates acute ulcerative colitis. Front Microbiol 2024; 15:1306068. [PMID: 38380090 PMCID: PMC10877057 DOI: 10.3389/fmicb.2024.1306068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease of the gastrointestinal tract. This study aimed to determine the effect of cathelicidin-related antimicrobial peptide (Cramp) on dextran sulfate sodium (DSS)-induced acute experimental colitis in mice and to investigate the underlying mechanisms. Acute UC was induced in C57BL/6 mice with 3% DSS for 7 days, 4 mg/kg b.w. synthetic Cramp peptide was administrated once daily starting on day 4 of the experimental period. Mice were evaluated for body weight, colon length, colon histopathology, and inflammatory cytokines in colon tissue. Using 16 s rRNA sequencing, the composition structure of gut microbiota was characterized. Metabolomic profiling of the serum was performed. The results showed that DSS treatment significantly induced intestinal damage as reflected by disease activity index, histopathological features, and colon length, while Cramp treatment significantly prevented these trends. Meanwhile, Cramp treatment decreased the levels of inflammatory cytokines in both serum and colonic tissue on DSS-induced colitis. It was also observed that DSS damaged the integrity of the intestinal epithelial barrier, whereas Cramp also played a protective role by attenuating these deteriorated effects. Furthermore, Cramp treatment reversed the oxidative stress by increasing the antioxidant enzymes of GSH-PX and decreasing the oxidant content of MDA. Notably, compared to the DSS group, Cramp treatment significantly elevated the abundance of Verrucomicrobiota at the phylum level. Furthermore, at the genus level, Parasutterella and Mucispirllum abundance was increased significantly in response to Cramp treatment, although Roseburia and Enterorhabdus reduced remarkably. Metabolic pathway analysis of serum metabolomics showed that Cramp intervention can regulate various metabolic pathways such as α-linolenic acid, taurine and hypotaurine, sphingolipid, and arachidonic acid metabolism. The study concluded that Cramp significantly ameliorated DSS-induced colonic injury, colonic inflammation, and intestinal barrier dysfunction in mice. The underlying mechanism is closely related to the metabolic alterations derived from gut microbiota.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Trauma Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhongyuan Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Haiyang Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Lichun Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Mengjiao Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Gaoqian Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Chang Li
- Department of Trauma Center and Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Bo Wang
- Department of Trauma Center and Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| | - Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, Jilin, China
| |
Collapse
|
5
|
Chua W, Marsh CO, Poh SE, Koh WL, Lee MLY, Koh LF, Tang XZE, See P, Ser Z, Wang SM, Sobota RM, Dawson TL, Yew YW, Thng S, O'Donoghue AJ, Oon HH, Common JE, Li H. A Malassezia pseudoprotease dominates the secreted hydrolase landscape and is a potential allergen on skin. Biochimie 2024; 216:181-193. [PMID: 37748748 DOI: 10.1016/j.biochi.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism. However, the functional significance of these enzymes is uncertain and presence of these genes in the genome does not always translate to expression at the cutaneous surface. In this study we utilized targeted RNA sequencing from samples isolated directly from the skin to quantify gene expression of M. globosa secreted proteases, lipases, phospholipases and sphingomyelinases. Our findings indicate that the expression of these enzymes is dynamically regulated by the environment in which the fungus resides, as different growth phases of the planktonic culture of M. globosa show distinct expression levels. Furthermore, we observed significant differences in the expression of these enzymes in culture compared to healthy sebaceous skin sites. By examining the in situ gene expression of M. globosa's secreted hydrolases, we identified a predicted aspartyl protease, MGL_3331, which is highly expressed on both healthy and disease-affected dermatological sites. However, molecular modeling and biochemical studies revealed that this protein has a non-canonical active site motif and lacks measurable proteolytic activity. This pseudoprotease MGL_3331 elicits a heightened IgE-reactivity in blood plasma isolated from patients with atopic dermatitis compared to healthy individuals and invokes a pro-inflammatory response in peripheral blood mononuclear cells. Overall, our study highlights the importance of studying fungal proteins expressed in physiologically relevant environments and underscores the notion that secreted inactive enzymes may have important functions in influencing host immunity.
Collapse
Affiliation(s)
- Wisely Chua
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Carl O Marsh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Si En Poh
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Winston Lc Koh
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Melody Li Ying Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Li Fang Koh
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore
| | - Xin-Zi Emily Tang
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Peter See
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Shi Mei Wang
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Thomas L Dawson
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore; College of Pharmacy, Department of Drug Discovery, Medical University of South Carolina, USA
| | - Yik Weng Yew
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Steven Thng
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Hazel H Oon
- National Skin Centre, National Healthcare Group, 1 Mandalay Rd, 308205, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - John E Common
- A∗STAR Skin Research Labs, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, 138648, Singapore; Skin Research Institute of Singapore, Skin Research Institute of Singapore (SRIS), 17-01 LKC CSB, 11 Mandalay Rd, 308232, Singapore
| | - Hao Li
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, Agency for Science Technology and Research, Singapore, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
6
|
Cornejo Ulloa P, van der Veen MH, Brandt BW, Buijs MJ, Krom BP. The effect of sex steroid hormones on the ecology of in vitro oral biofilms. Biofilm 2023; 6:100139. [PMID: 37621393 PMCID: PMC10447177 DOI: 10.1016/j.bioflm.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/26/2023] Open
Abstract
Sex steroid hormones (SSH) such as oestrogen, progesterone and testosterone are cholesterol derived molecules that regulate various physiological processes. They are present in both blood and saliva, where they come in contact with oral tissues and oral microorganisms. Several studies have confirmed the effect of these hormones on different periodontal-disease-associated bacteria, using single-species models. Bacteria can metabolize SSH, use them as alternative for vitamin K and also use them to induce the expression of virulence factors. However, it is still unclear what the effects of SSH are on the oral microbiome. In this study, we investigated the effects of four SSH on commensal in vitro oral biofilms. Saliva-derived oral biofilms were grown in Mc Bain medium without serum or menadione using the Amsterdam Active-Attachment model. After initial attachment in absence of SSH, the biofilms were grown in medium containing either oestradiol, oestriol, progesterone or testosterone at a 100-fold physiological concentration. Menadione or ethanol were included as positive control and negative control, respectively. After 12 days with daily medium refreshments, biofilm formation, biofilm red fluorescence and microbial composition were determined. The supernatants were tested for proteolytic activity using the Fluorescence Resonance Energy Transfer Analysis (FRET). No significant differences were found in biofilm formation, red fluorescence or microbial composition in any of the tested groups. Samples grown in presence of progesterone and oestradiol showed proteolytic activity comparable to biofilms supplemented with menadione. In contrast, testosterone and oestriol showed a decreased proteolytic activity compared to biofilms grown in presence of menadione. None of the tested SSH had large effects on the ecology of in vitro oral biofilms, therefore a direct translation of our results into in vivo effects is not possible. Future experiments should include other host factors such as oral tissues, immune cells and combinations of SSH as present in saliva, in order to have a more accurate picture of the phenomena taking place in both males and females.
Collapse
Affiliation(s)
- Pilar Cornejo Ulloa
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Monique H. van der Veen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Mark J. Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Duan X, Boo ZZ, Chua SL, Chong KHC, Long Z, Yang R, Zhou Y, Janela B, Chotirmall SH, Ginhoux F, Hu Q, Wu B, Yang L. A Bacterial Quorum Sensing Regulated Protease Inhibits Host Immune Responses by Cleaving Death Domains of Innate Immune Adaptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304891. [PMID: 37870218 PMCID: PMC10700182 DOI: 10.1002/advs.202304891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Innate immune adaptor proteins are critical components of the innate immune system that propagate pro-inflammatory responses from their upstream receptors, and lead to pathogen clearance from the host. Bacterial pathogens have developed strategies to survive inside host cells without triggering the innate immune surveillance in ways that are still not fully understood. Here, it is reported that Pseudomonas aeruginosa induces its quorum sensing mechanism after macrophage engulfment. Further investigation of its secretome identified a quorum sensing regulated product, LasB, is responsible for innate immune suppression depending on the MyD88-mediated signaling. Moreover, it is showed that this specific type of pathogen-mediated innate immune suppression is due to the enzymatic digestion of the death domains of the innate immune adaptors, mainly MyD88, and attributed to LasB's large substrate binding groove. Lastly, it is demonstrated that the secretion of LasB from P. aeruginosa directly contributed to MyD88 degradation within macrophages. Hence, it is discovered an example of bacterial quorum sensing-regulated cellular innate immune suppression by direct cleavage of immune adaptors.
Collapse
Affiliation(s)
- Xiangke Duan
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Shenzhen Center for Disease, Control and PreventionShenzhen518055P.R. China
| | - Zhao Zhi Boo
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong SAR999077P. R. China
| | - Kelvin Han Chung Chong
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Ziqi Long
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Renliang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Yachun Zhou
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Baptiste Janela
- Skin Research Institute of SingaporeSingapore308232Singapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore639798Singapore
| | | | - Florent Ginhoux
- Singapore Immunology NetworkAgency for Science, Technology and Research (A*STAR)8A Biomedical Grove, ImmunosSingapore138648Singapore
| | - Qinghua Hu
- Shenzhen Center for Disease, Control and PreventionShenzhen518055P.R. China
| | - Bin Wu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Liang Yang
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
8
|
McKenna S, Aylward F, Miliara X, Lau RJ, Huemer CB, Giblin SP, Huse KK, Liang M, Reeves L, Pearson M, Xu Y, Rouse SL, Pease JE, Sriskandan S, Kagawa TF, Cooney J, Matthews S. The protease associated (PA) domain in ScpA from Streptococcus pyogenes plays a role in substrate recruitment. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140946. [PMID: 37562488 DOI: 10.1016/j.bbapap.2023.140946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Annually, over 18 million disease cases and half a million deaths worldwide are estimated to be caused by Group A Streptococcus. ScpA (or C5a peptidase) is a well characterised member of the cell enveleope protease family, which possess a S8 subtilisin-like catalytic domain and a shared multi-domain architecture. ScpA cleaves complement factors C5a and C3a, impairing the function of these critical anaphylatoxins and disrupts complement-mediated innate immunity. Although the high resolution structure of ScpA is known, the details of how it recognises its substrate are only just emerging. Previous studies have identified a distant exosite on the 2nd fibronectin domain that plays an important role in recruitment via an interaction with the substrate core. Here, using a combination of solution NMR spectroscopy, mutagenesis with functional assays and computational approaches we identify a second exosite within the protease-associated (PA) domain. We propose a model in which the PA domain assists optimal delivery of the substrate's C terminus to the active site for cleavage.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Frances Aylward
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Xeni Miliara
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Rikin J Lau
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Camilla Berg Huemer
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Sean P Giblin
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Kristin K Huse
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Mingyang Liang
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Lucy Reeves
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - Sarah L Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK
| | - James E Pease
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London W12 0NN, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Todd F Kagawa
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jakki Cooney
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Bernal Institute, University of Limerick, Limerick, Ireland
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus SW7 2AZ, UK; Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
9
|
Lushington GH, Linde A, Melgarejo T. Bacterial Proteases as Potentially Exploitable Modulators of SARS-CoV-2 Infection: Logic from the Literature, Informatics, and Inspiration from the Dog. BIOTECH 2023; 12:61. [PMID: 37987478 PMCID: PMC10660736 DOI: 10.3390/biotech12040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
(1) Background: The COVID-19 pandemic left many intriguing mysteries. Retrospective vulnerability trends tie as strongly to odd demographics as to exposure profiles, genetics, health, or prior medical history. This article documents the importance of nasal microbiome profiles in distinguishing infection rate trends among differentially affected subgroups. (2) Hypothesis: From a detailed literature survey, microbiome profiling experiments, bioinformatics, and molecular simulations, we propose that specific commensal bacterial species in the Pseudomonadales genus confer protection against SARS-CoV-2 infections by expressing proteases that may interfere with the proteolytic priming of the Spike protein. (3) Evidence: Various reports have found elevated Moraxella fractions in the nasal microbiomes of subpopulations with higher resistance to COVID-19 (e.g., adolescents, COVID-19-resistant children, people with strong dietary diversity, and omnivorous canines) and less abundant ones in vulnerable subsets (the elderly, people with narrower diets, carnivorous cats and foxes), along with bioinformatic evidence that Moraxella bacteria express proteases with notable homology to human TMPRSS2. Simulations suggest that these proteases may proteolyze the SARS-CoV-2 spike protein in a manner that interferes with TMPRSS2 priming.
Collapse
Affiliation(s)
| | - Annika Linde
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Tonatiuh Melgarejo
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
10
|
Rancan F, Jurisch J, Hadam S, Vogt A, Blume-Peytavi U, Bayer IS, Contardi M, Schaudinn C. Ciprofloxacin-Loaded Polyvinylpyrrolidone Foils for the Topical Treatment of Wound Infections with Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutics 2023; 15:1876. [PMID: 37514062 PMCID: PMC10385417 DOI: 10.3390/pharmaceutics15071876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial infections are a constant challenge in the management of acute and chronic wounds. Chronic wounds, such as diabetic foot ulcers, have increased significantly in the last few years due to the rise of an aging population. A better understanding of the infectious pathophysiological mechanisms is urgently needed along with new options for the treatment of wound infections and wound-healing disorders. New advances in the preparation of biocompatible dressing materials that can be loaded with antimicrobial drugs may improve the topical treatment of infected wounds. In this study, we investigated the antimicrobial activity of polyvinylpyrrolidone (PVP) foils loaded with ciprofloxacin (Cipro-foils) in the presence of acetic acid as a co-solvent. We used ex vivo human wounds that were infected with two bacterial strains: methicillin-resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa (PAO1). The effectiveness of the treatment was demonstrated by the quantification of the living bacteria extracted from the wound and the detection of released immunological mediators in skin extracts and in the skin culture media. We found that Cipro-foils effectively treated the infection with both PAO1 and MRSA. Other than PAO1, MRSA had no lytic activity toward skin proteins. MRSA infections increased cytokines' expression and release. Interestingly, treatment with Cipro-foils could partially counteract these effects.
Collapse
Affiliation(s)
- Fiorenza Rancan
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Jana Jurisch
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Sabrina Hadam
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Annika Vogt
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Ulrike Blume-Peytavi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Zentrum für Biologische Gefahren und Spezielle Pathogene 4, Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
11
|
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De Oliveira DMP, Jespersen MG, Davies MR, Walker MJ. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat Rev Microbiol 2023; 21:431-447. [PMID: 36894668 PMCID: PMC9998027 DOI: 10.1038/s41579-023-00865-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/11/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is exquisitely adapted to the human host, resulting in asymptomatic infection, pharyngitis, pyoderma, scarlet fever or invasive diseases, with potential for triggering post-infection immune sequelae. GAS deploys a range of virulence determinants to allow colonization, dissemination within the host and transmission, disrupting both innate and adaptive immune responses to infection. Fluctuating global GAS epidemiology is characterized by the emergence of new GAS clones, often associated with the acquisition of new virulence or antimicrobial determinants that are better adapted to the infection niche or averting host immunity. The recent identification of clinical GAS isolates with reduced penicillin sensitivity and increasing macrolide resistance threatens both frontline and penicillin-adjunctive antibiotic treatment. The World Health Organization (WHO) has developed a GAS research and technology road map and has outlined preferred vaccine characteristics, stimulating renewed interest in the development of safe and effective GAS vaccines.
Collapse
Affiliation(s)
- Stephan Brouwer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Bodie F Curren
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Nichaela Harbison-Price
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
12
|
Serrano-Lopez R, Morandini AC. Fibroblasts at the curtain call: from ensemble to principal dancers in immunometabolism and inflammaging. J Appl Oral Sci 2023; 31:e20230050. [PMID: 37377310 PMCID: PMC10392869 DOI: 10.1590/1678-7757-2023-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammation is a necessary step in response to injuries, being vital in restoring homeostasis and facilitating tissue healing. Among the cells that play a crucial role in inflammatory responses, stromal cells, including fibroblasts, have an undeniable significance in fine-tuning the magnitude of mediators that directly affect hyper-inflammatory responses and tissue destruction. Fibroblasts, the dominant cells in the gingival connective tissue, are a very heterogeneous population of cells, and more recently they have been receiving well deserved attention as central players and often the 'principal dancers' of many pathological processes ranging from inflammation and fibrosis to altered immunity and cancer. The goal of the current investigation is to dive into the exact role of the stromal fibroblast and the responsible mechanistic factors involved in both regulation and dysregulation of the inflammatory responses. This article reviews the most recent literature on how fibroblasts, in their different activation states or subtypes, play a crucial role in contributing to inflammatory outcomes. We will focus on recent findings on inflammatory diseases. We will also provide connections regarding the stromal-immune relationship, which supports the idea of fibroblast coming out from the 'ensemble' of cell types to the protagonist role in immunometabolism and inflammaging. Additionally, we discuss the current advances in variation of fibroblast nomenclature and division into clusters with their own suggested function and particularities in gene expression. Here, we provide a perspective for the periodontal implications, discussing the fibroblast role in the infection-driven and inflammatory mediated diseases such as periodontitis.
Collapse
Affiliation(s)
- Rogelio Serrano-Lopez
- Augusta University, Dental College of Georgia, Department of Oral Biology and Diagnostic Sciences, Augusta, GA, USA
- Augusta University, Honors Program, College of Science and Mathematics, Augusta, GA, USA
| | - Ana Carolina Morandini
- Augusta University, Dental College of Georgia, Department of Oral Biology and Diagnostic Sciences, Augusta, GA, USA
- Augusta University, Dental College of Georgia, Department of Periodontics, Augusta, GA, USA
| |
Collapse
|
13
|
Yadalam PK, Anegundi RV, Munawar S, Ramadoss R, Rengaraj S, Ramesh S, Aljeldah M, Shammari BRA, Alshehri AA, Alwashmi ASS, Turkistani SA, Alawfi A, Alshengeti A, Garout M, Sabour AA, Alshiekheid MA, Aljebaly FS, Rabaan AA. Designing Novel Multi-Epitope Vaccine Construct against Prevotella intermedia-Interpain A: An Immunoinformatics Approach. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:302. [PMID: 36837503 PMCID: PMC9966096 DOI: 10.3390/medicina59020302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: Periodontitis is a chronic multifactorial inflammatory infectious disease marked by continuous degradation of teeth and surrounding parts. One of the most important periodontal pathogens is P. intermedia, and with its interpain A proteinase, it leads to an increase in lethal infection. Materials and Methods: The current study was designed to create a multi-epitope vaccine using an immunoinformatics method that targets the interpain A of P. intermedia. For the development of vaccines, P. intermedia peptides InpA were found appropriate. To create a multi-epitope vaccination design, interpain A, B, and T-cell epitopes were found and assessed depending on the essential variables. The vaccine construct was evaluated based on its stability, antigenicity, and allergenicity. Results: The vaccine construct reached a more significant population and was able to bind to both the binding epitopes of major histocompatibility complex (MHC)-I and MHC-II. Through the C3 receptor complex route, P. intermedia InpA promotes an immunological subunit. Utilizing InpA-C3 and vaccination epitopes as the receptor and ligand, the molecular docking and dynamics were performed using the ClusPro 2.0 server. Conclusion: The developed vaccine had shown good antigenicity, solubility, and stability. Molecular docking indicated the vaccine's 3D structure interacts strongly with the complement C3. The current study describes the design for vaccine, and steady interaction with the C3 immunological receptor to induce a good memory and an adaptive immune response against Interpain A of P. intermedia.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, India
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, India
| | - Safa Munawar
- Department of Medical Education, Nawaz Sharif Medical College, Gujrat 50700, Pakistan
| | - Ramya Ramadoss
- Department of Oral Pathology & Oral Biology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Santhiya Rengaraj
- Adhiparasakthi Dental College and Hospital, Melmaruvathur, Chennai 600077, India
| | - Sindhu Ramesh
- Department of Conservative Dentistry and Endodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, India
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | | | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fatimah S. Aljebaly
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
14
|
The human pathobiont Malassezia furfur secreted protease Mfsap1 regulates cell dispersal and exacerbates skin inflammation. Proc Natl Acad Sci U S A 2022; 119:e2212533119. [PMID: 36442106 PMCID: PMC9894114 DOI: 10.1073/pnas.2212533119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Malassezia form the dominant eukaryotic microbial community on the human skin. The Malassezia genus possesses a repertoire of secretory hydrolytic enzymes involved in protein and lipid metabolism which alter the external cutaneous environment. The exact role of most Malassezia secreted enzymes, including those in interaction with the epithelial surface, is not well characterized. In this study, we compared the expression level of secreted proteases, lipases, phospholipases, and sphingomyelinases of Malassezia globosa in healthy subjects and seborrheic dermatitis or atopic dermatitis patients. We observed upregulated gene expression of the previously characterized secretory aspartyl protease MGSAP1 in both diseased groups, in lesional and non-lesional skin sites, as compared to healthy subjects. To explore the functional roles of MGSAP1 in skin disease, we generated a knockout mutant of the homologous protease MFSAP1 in the genetically tractable Malassezia furfur. We observed the loss of MFSAP1 resulted in dramatic changes in the cell adhesion and dispersal in both culture and a human 3D reconstituted epidermis model. In a murine model of Malassezia colonization, we further demonstrated Mfsap1 contributes to inflammation as observed by reduced edema and inflammatory cell infiltration with the knockout mutant versus wildtype. Taken together, we show that this dominant secretory Malassezia aspartyl protease has an important role in enabling a planktonic cellular state that can potentially aid in colonization and additionally as a virulence factor in barrier-compromised skin, further highlighting the importance of considering the contextual relevance when evaluating the functions of secreted microbial enzymes.
Collapse
|
15
|
The Anti-Amoebic Activity of a Peptidomimetic against Acanthamoeba castellanii. Microorganisms 2022; 10:microorganisms10122377. [PMID: 36557630 PMCID: PMC9782699 DOI: 10.3390/microorganisms10122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Acanthamoeba is a free-living protozoan known to cause keratitis most commonly, especially among contact lens wearers. Treatment of Acanthamoeba keratitis is challenging as Acanthamoeba can encyst from the active form, a trophozoite, into a hibernating cyst that is refractory to antibiotics and difficult to kill; therefore, there is a need for more effective anti-amoebic strategies. In this study, we have evaluated the anti-amoebic activity of the antimicrobial peptide mimic RK-758 against Acanthamoeba castellanii. RK-758 peptidomimetic was subjected to biological assays to investigate its amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects on A. castellanii. The anti-amoebic activity of the peptide mimic RK-758 was compared with chlorhexidine against the Acanthamoeba castellanii ATCC30868 and Acanthamoeba castellanii 044 (a clinical strain) with the concentrations of both ranging from 125 µM down to 7.81 µM. All experiments were performed in duplicate with three independent replicates. The data were represented as mean ± SE and analysed using a two-sample t-test and two-tailed distributions. A p < 0.05 was considered statistically significant. The peptidomimetic RK-758 had anti-Acanthamoeba activity against both trophozoites and cysts in a dose-dependent manner. The RK-758 had amoebicidal and growth inhibitory activities of ≥50% at a concentration between 125 µM and 15.6 µM against the trophozoites of both Acanthamoeba strains. Inhibitory effects on the cyst formation and trophozoite re-emergence from cysts were noted at similar concentrations. Chlorhexidine had 50% activity at 7.81 µM and above against the trophozoites and cysts of both strains. In the haemolysis assay, the RK-758 lysed horse RBCs at concentrations greater than 50 µM whereas lysis occurred at concentrations greater than 125 µM for the chlorhexidine. The peptidomimetic RK-758, therefore, has activity against both the trophozoite and cyst forms of Acanthamoeba and has the potential to be further developed as an anti-microbial agent against Acanthamoeba. RK-758 may also have use as an anti-amoebic disinfectant in contact lens solutions.
Collapse
|
16
|
Aleksijević LH, Aleksijević M, Škrlec I, Šram M, Šram M, Talapko J. Porphyromonas gingivalis Virulence Factors and Clinical Significance in Periodontal Disease and Coronary Artery Diseases. Pathogens 2022; 11:pathogens11101173. [PMID: 36297228 PMCID: PMC9609396 DOI: 10.3390/pathogens11101173] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis is a gram-negative, anaerobic bacterium that lives in the oral cavity. It is an integral part of the oral microbiome, which includes more than 500 types of bacteria. Under certain circumstances, as a consequence of virulence factors, it can become very destructive and proliferate to many cells in periodontal lesions. It is one of the causative agents present extremely often in dental plaque and is the main etiological factor in the development of periodontal disease. During various therapeutic procedures, P. gingivalis can enter the blood and disseminate through it to distant organs. This primarily refers to the influence of periodontal agents on the development of subacute endocarditis and can facilitate the development of coronary heart disease, atherosclerosis, and ischemic infarction. The action of P. gingivalis is facilitated by numerous factors of virulence and pathogenicity such as fimbriae, hemolysin, hemagglutinin, capsules, outer membrane vesicles, lipopolysaccharides, and gingipains. A special problem is the possibility of biofilm formation. P. gingivalis in a biofilm is 500 to 1000 times less sensitive to antimicrobial drugs than planktonic cells, which represents a significant problem in the treatment of infections caused by this pathogen.
Collapse
Affiliation(s)
- Lorena Horvat Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (L.H.A.); (J.T.)
| | - Marko Aleksijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marko Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Miroslav Šram
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Cardiology, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Correspondence: (L.H.A.); (J.T.)
| |
Collapse
|
17
|
Pseudomonas Aeruginosa Lung Infection Subverts Lymphocytic Responses through IL-23 and IL-22 Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23158427. [PMID: 35955566 PMCID: PMC9369422 DOI: 10.3390/ijms23158427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, particularly in hospital patients undergoing ventilation and in individuals with cystic fibrosis. Although we and others have investigated mechanisms used by P.a to subvert innate immunity, relatively less is known about the potential strategies used by this bacterium to fight the adaptive immune system and, in particular, T cells. Here, using RAG KO (devoid of ‘classical’ αβ and γδ TCR T lymphocytes) and double RAG γC KO mice (devoid of T, NK and ILC cells), we demonstrate that the lymphocytic compartment is important to combat P.a (PAO1 strain). Indeed, we show that PAO1 load was increased in double RAG γC KO mice. In addition, we show that PAO1 down-regulates IL-23 and IL-22 protein accumulation in the lungs of infected mice while up-regulating their RNA production, thereby pointing towards a specific post-transcriptional regulatory mechanism not affecting other inflammatory mediators. Finally, we demonstrate that an adenovirus-mediated over-expression of IL-1, IL-23 and IL-7 induced lung neutrophil and lymphocytic influx and rescued mice against P.a-induced lethality in all WT, RAG γC KO and RAG γC KO RAG-deficient mice, suggesting that this regimen might be of value in ‘locally immunosuppressed’ individuals such as cystic fibrosis patients.
Collapse
|
18
|
Feito J, Araújo C, Gómez-Sala B, Contente D, Campanero C, Arbulu S, Saralegui C, Peña N, Muñoz-Atienza E, Borrero J, del Campo R, Hernández PE, Cintas LM. Antimicrobial activity, molecular typing and in vitro safety assessment of Lactococcus garvieae isolates from healthy cultured rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Oluwabusola ET, Katermeran NP, Poh WH, Goh TMB, Tan LT, Diyaolu O, Tabudravu J, Ebel R, Rice SA, Jaspars M. Inhibition of the Quorum Sensing System, Elastase Production and Biofilm Formation in Pseudomonas aeruginosa by Psammaplin A and Bisaprasin. Molecules 2022; 27:1721. [PMID: 35268822 PMCID: PMC8911947 DOI: 10.3390/molecules27051721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022] Open
Abstract
Natural products derived from marine sponges have exhibited bioactivity and, in some cases, serve as potent quorum sensing inhibitory agents that prevent biofilm formation and attenuate virulence factor expression by pathogenic microorganisms. In this study, the inhibitory activity of the psammaplin-type compounds, psammaplin A (1) and bisaprasin (2), isolated from the marine sponge, Aplysinellarhax, are evaluated in quorum sensing inhibitory assays based on the Pseudomonas aeruginosa PAO1 lasB-gfp(ASV) and rhlA-gfp(ASV) biosensor strains. The results indicate that psammaplin A (1) showed moderate inhibition on lasB-gfp expression, but significantly inhibited the QS-gene promoter, rhlA-gfp, with IC50 values at 14.02 μM and 4.99 μM, respectively. In contrast, bisaprasin (2) displayed significant florescence inhibition in both biosensors, PAO1 lasB-gfp and rhlA-gfp, with IC50 values at 3.53 μM and 2.41 μM, respectively. Preliminary analysis suggested the importance of the bromotyrosine and oxime functionalities for QSI activity in these molecules. In addition, psammaplin A and bisaprasin downregulated elastase expression as determined by the standard enzymatic elastase assay, although greater reduction in elastase production was observed with 1 at 50 μM and 100 μM. Furthermore, the study revealed that bisaprasin (2) reduced biofilm formation in P. aeruginosa.
Collapse
Affiliation(s)
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.P.K.); (T.M.B.G.); (L.T.T.)
| | - Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (W.H.P.); (S.A.R.)
| | - Teo Min Ben Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.P.K.); (T.M.B.G.); (L.T.T.)
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; (N.P.K.); (T.M.B.G.); (L.T.T.)
| | - Oluwatofunmilayo Diyaolu
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (O.D.); (R.E.)
| | - Jioji Tabudravu
- School of Forensic and Applied Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (O.D.); (R.E.)
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore; (W.H.P.); (S.A.R.)
- The School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (O.D.); (R.E.)
| |
Collapse
|
20
|
Abstract
Mycoplasmas are small, genome-reduced bacteria. They are obligate parasites that can be found in a wide range of host species, including the majority of livestock animals and humans. Colonization of the host can result in a wide spectrum of outcomes. In many cases, these successful parasites are considered commensal, as they are found in the microbiota of asymptomatic carriers. Conversely, mycoplasmas can also be pathogenic, as they are associated with a range of both acute and chronic inflammatory diseases which are problematic in veterinary and human medicine. The chronicity of mycoplasma infections and the ability of these bacteria to infect even recently vaccinated individuals clearly indicate that they are able to successfully evade their host’s humoral immune response. Over the years, multiple strategies of immune evasion have been identified in mycoplasmas, with a number of them aimed at generating important antigenic diversity. More recently, mycoplasma-specific anti-immunoglobulin strategies have also been characterized. Through the expression of the immunoglobulin-binding proteins protein M or mycoplasma immunoglobulin binding (MIB), mycoplasmas have the ability to target the host’s antibodies and to prevent them from interacting with their cognate antigens. In this review, we discuss how these discoveries shed new light on the relationship between mycoplasmas and their host’s immune system. We also propose that these strategies should be taken into consideration for future studies, as they are key to our understanding of mycoplasma diseases' chronic and inflammatory nature and are probably a contributing factor to reduce vaccine efficacy.
Collapse
|
21
|
McKenna S, Huse KK, Giblin S, Pearson M, Majid Al Shibar MS, Sriskandan S, Matthews S, Pease JE. The Role of Streptococcal Cell-Envelope Proteases in Bacterial Evasion of the Innate Immune System. J Innate Immun 2021; 14:69-88. [PMID: 34649250 PMCID: PMC9082167 DOI: 10.1159/000516956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteria possess the ability to evolve varied and ingenious strategies to outwit the host immune system, instigating an evolutionary arms race. Proteases are amongst the many weapons employed by bacteria, which specifically cleave and neutralize key signalling molecules required for a coordinated immune response. In this article, we focus on a family of S8 subtilisin-like serine proteases expressed as cell-envelope proteases (CEPs) by group A and group B streptococci. Two of these proteases known as Streptococcus pyogenes CEP (SpyCEP) and C5a peptidase cleave the chemokine CXCL8 and the complement fragment C5a, respectively. Both CXCL8 and C5a are potent neutrophil-recruiting chemokines, and by neutralizing their activity, streptococci evade a key defence mechanism of innate immunity. We review the mechanisms by which CXCL8 and C5a recruit neutrophils and the characterization of SpyCEP and C5a peptidase, including both in vitro and in vivo studies. Recently described structural insights into the function of this CEP family are also discussed. We conclude by examining the progress of prototypic vaccines incorporating SpyCEP and C5a peptidase in their preparation. Since streptococci-producing SpyCEP and C5a peptidase are responsible for a considerable global disease burden, targeting these proteases by vaccination strategies or by small-molecule antagonists should provide protection from and promote the resolution of streptococcal infections.
Collapse
Affiliation(s)
- Sophie McKenna
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kristin Krohn Huse
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Sean Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Max Pearson
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | - Shiranee Sriskandan
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Abstract
The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.
Collapse
|
23
|
Patient-specific effects of soluble factors from Staphylococcus aureus and Staphylococcus epidermidis biofilms on osteogenic differentiation of primary human osteoblasts. Sci Rep 2021; 11:17282. [PMID: 34446785 PMCID: PMC8390505 DOI: 10.1038/s41598-021-96719-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/13/2021] [Indexed: 11/08/2022] Open
Abstract
Due to the frequency of biofilm-forming Staphylococcus aureus and Staphylococcus epidermidis in orthopedics, it is crucial to understand the interaction between the soluble factors produced by prokaryotes and their effects on eukaryotes. Our knowledge concerning the effect of soluble biofilm factors (SBF) and their virulence potential on osteogenic differentiation is limited to few studies, particularly when there is no direct contact between prokaryotic and eukaryotic cells. SBF were produced by incubating biofilm from S. aureus and S. epidermidis in osteogenic media. Osteoblasts of seven donors were included in this study. Our results demonstrate that the detrimental effects of these pathogens do not require direct contact between prokaryotic and eukaryotic cells. SBF produced by S. aureus and S. epidermidis affect the metabolic activity of osteoblasts. However, the effect of SBF derived from S. aureus seems to be more pronounced compared to that of S. epidermidis. The influence of SBF of S. aureus and S. epidermidis on gene expression of COL1A1, ALPL, BGLAP, SPP1, RUNX2 is bacteria-, patient-, concentration-, and incubation time dependent. Mineralization was monitored by staining the calcium and phosphate deposition and revealed that the SBF of S. epidermidis markedly inhibits calcium deposition; however, S. aureus shows a less inhibitory effect. Therefore, these new findings support the hypotheses that soluble biofilm factors affect the osteogenic processes substantially, particularly when there is no direct interaction between bacteria and osteoblast.
Collapse
|
24
|
Ren Z, Pan L, Huang Y, Chen H, Liu Y, Liu H, Tu X, Liu Y, Li B, Dong X, Pan X, Li H, Fu YV, Agerberth B, Diana J, Sun J. Gut microbiota-CRAMP axis shapes intestinal barrier function and immune responses in dietary gluten-induced enteropathy. EMBO Mol Med 2021; 13:e14059. [PMID: 34125490 PMCID: PMC8350901 DOI: 10.15252/emmm.202114059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
In the gut, cathelicidin-related antimicrobial peptide (CRAMP) has been largely described for its anti-infective activities. With an increasing recognition of its immune regulatory effects in extra-intestinal diseases, the role of CRAMP in gluten-induced small intestinal enteropathy celiac disease remains unknown. This study aimed to investigate the unexplored role of CRAMP in celiac disease. By applying a mouse model of gluten-induced enteropathy (GIE) recapitulating small intestinal enteropathy of celiac disease, we observed defective CRAMP production in duodenal epithelium during GIE. CRAMP-deficient mice were susceptible to the development of GIE. Exogenous CRAMP corrected gliadin-triggered epithelial dysfunction and promoted regulatory immune responses at the intestinal mucosa. Additionally, GIE-associated gut dysbiosis with enriched Pseudomonas aeruginosa and production of the protease LasB contributed to defective intestinal CRAMP production. These results highlight microbiota-CRAMP axis in the modulation of barrier function and immune responses in GIE. Hence, modulating CRAMP may represent a therapeutic strategy for celiac disease.
Collapse
Affiliation(s)
- Zhengnan Ren
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Li‐Long Pan
- Wuxi Medical SchoolJiangnan UniversityWuxiChina
| | - Yiwen Huang
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hongbing Chen
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
| | - Yu Liu
- Department of Endocrinology and MetabolismSir Run Run Shaw HospitalNanjing Medical UniversityNanjingChina
| | - He Liu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Xing Tu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Yanyan Liu
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Binbin Li
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Xiaoliang Dong
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Xiaohua Pan
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Hanfei Li
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of ScienceBeijingChina
| | - Yu V Fu
- State Key Laboratory of Microbial ResourcesInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of ScienceBeijingChina
| | - Birgitta Agerberth
- Department of Laboratory MedicineDivision of Clinical MicrobiologyKarolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden
| | - Julien Diana
- Institut Necker Enfants Malades (INEM)Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance
| | - Jia Sun
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| |
Collapse
|
25
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
26
|
Borey M, Blanc F, Lemonnier G, Leplat JJ, Jardet D, Rossignol MN, Ravon L, Billon Y, Bernard M, Estellé J, Rogel-Gaillard C. Links between fecal microbiota and the response to vaccination against influenza A virus in pigs. NPJ Vaccines 2021; 6:92. [PMID: 34294732 PMCID: PMC8298503 DOI: 10.1038/s41541-021-00351-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
This study describes the associations between fecal microbiota and vaccine response variability in pigs, using 98 piglets vaccinated against the influenza A virus at 28 days of age (D28) with a booster at D49. Immune response to the vaccine is measured at D49, D56, D63, and D146 by serum levels of IAV-specific IgG and assays of hemagglutination inhibition (HAI). Analysis of the pre-vaccination microbiota characterized by 16S rRNA gene sequencing of fecal DNA reveals a higher vaccine response in piglets with a richer microbiota, and shows that 23 operational taxonomic units (OTUs) are differentially abundant between high and low IAV-specific IgG producers at D63. A stronger immune response is linked with OTUs assigned to the genus Prevotella and family Muribaculaceae, and a weaker response is linked with OTUs assigned to the genera Helicobacter and Escherichia-Shigella. A set of 81 OTUs accurately predicts IAV-specific IgG and HAI titer levels at all time points, highlighting early and late associations between pre-vaccination fecal microbiota composition and immune response to the vaccine.
Collapse
Affiliation(s)
- Marion Borey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | | | - Maria Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | |
Collapse
|
27
|
Zheng S, Yu S, Fan X, Zhang Y, Sun Y, Lin L, Wang H, Pan Y, Li C. Porphyromonas gingivalis survival skills: Immune evasion. J Periodontal Res 2021; 56:1007-1018. [PMID: 34254681 DOI: 10.1111/jre.12915] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023]
Abstract
Periodontitis is a chronic inflammatory condition that destroys the tooth-supporting tissues and eventually leads to tooth loss. As one of the most prevalent oral conditions, periodontitis endangers the oral health of 70% of people throughout the world. Periodontitis is also related to various systemic diseases, such as diabetes mellitus, atherosclerosis, and rheumatoid arthritis, which not only has a great impact on population health status and the quality of life but also increases the social burden. Porphyromonas gingivalis (P. gingivalis) is a gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. Porphyromonas gingivalis can express various of virulence factors to overturn innate and adaptive immunities, which makes P. gingivalis survive and propagate in the host, destroy periodontal tissues, and have connection to systemic diseases. Porphyromonas gingivalis can invade into and survive in host tissues by destructing the gingival epithelial barrier, internalizing into the epithelial cells, and enhancing autophagy in epithelial cells. Deregulation of complement system, degradation of antibacterial peptides, and destruction of phagocyte functions facilitate the evasion of P. gingivalis. Porphyromonas gingivalis can also suppress adaptive immunity, which allows P. gingivalis to exist in the host tissues and cause the inflammatory response persistently. Here, we review studies devoted to understanding the strategies utilized by P. gingivalis to escape host immunity. Methods for impairing P. gingivalis immune evasion are also mentioned.
Collapse
Affiliation(s)
- Shaowen Zheng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shiwen Yu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiaomiao Fan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yonghuan Zhang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yangyang Sun
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
28
|
Oba PM, Carroll MQ, Alexander C, Somrak AJ, Keating SCJ, Sage AM, Swanson KS. Dental chews positively shift the oral microbiota of adult dogs. J Anim Sci 2021; 99:6199860. [PMID: 33780530 DOI: 10.1093/jas/skab100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Microbiota plays a prominent role in periodontal disease, but the canine oral microbiota and how dental chews may affect these populations have been poorly studied. We aimed to determine the differences in oral microbiota of adult dogs consuming dental chews compared with control dogs consuming only a diet. Twelve adult female beagle dogs (mean age = 5.31 ± 1.08 yr) were used in a replicated 4 × 4 Latin square design consisting of 28-d periods. Treatments (n = 12/group) included: diet only (CT); diet + Bones & Chews Dental Treats (BC; Chewy, Inc., Dania Beach, FL); diet + Dr. Lyon's Grain-Free Dental Treats (DL; Dr. Lyon's, LLC, Dania Beach, FL); and diet + Greenies Dental Treats (GR; Mars Petcare US, Franklin, TN). Each day, one chew was provided 4 h after mealtime. On day 27, breath samples were analyzed for total volatile sulfur compound concentrations using a Halimeter. On day 0 of each period, teeth were cleaned by a veterinary dentist blinded to treatments. Teeth were scored for plaque, calculus, and gingivitis by the same veterinary dentist on day 28 of each period. After scoring, salivary (SAL), subgingival (SUB), and supragingival (SUP) samples were collected for microbiota analysis using Illumina MiSeq. All data were analyzed using SAS (version 9.4) using the Mixed Models procedure, with P < 0.05 considered significant. All dogs consuming chews had lower calculus coverage and thickness, pocket depth and bleeding, plaque thickness, and halitosis compared with CT. In all sites of collection, CT dogs had a higher relative abundance of one or more potentially pathogenic bacteria (Porphyromonas, Anaerovorax, Desulfomicrobium, Tannerella, and Treponema) and lower relative abundance of one or more genera associated with oral health (Neisseria, Corynebacterium, Capnocytophaga, Actinomyces, Lautropia, Bergeyella, and Moraxella) than those fed chews. DL reduced Porphyromonas in SUP and SUB samples. DL and GR reduced Treponema in SUP samples. DL increased Corynebacterium in all sites of collection. BC increased Corynebacterium in SAL samples. DL and GR increased Neisseria in SAL samples. DL increased Actinomyces in the SUB sample. GR increased Actinomyces in SAL samples. Our results suggest that the dental chews tested in this study may aid in reducing periodontal disease risk in dogs by beneficially shifting the microbiota inhabiting plaque and saliva of a dog's oral cavity. These shifts occurred over a short period of time and were correlated with improved oral health scores.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meredith Q Carroll
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Celeste Alexander
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amy J Somrak
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie C J Keating
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adrianna M Sage
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Yip CH, Mahalingam S, Wan KL, Nathan S. Prodigiosin inhibits bacterial growth and virulence factors as a potential physiological response to interspecies competition. PLoS One 2021; 16:e0253445. [PMID: 34161391 PMCID: PMC8221495 DOI: 10.1371/journal.pone.0253445] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/06/2021] [Indexed: 11/19/2022] Open
Abstract
Prodigiosin, a red linear tripyrrole pigment, has long been recognised for its antimicrobial property. However, the physiological contribution of prodigiosin to the survival of its producing hosts still remains undefined. Hence, the aim of this study was to investigate the biological role of prodigiosin from Serratia marcescens, particularly in microbial competition through its antimicrobial activity, towards the growth and secreted virulence factors of four clinical pathogenic bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa) as well as Staphylococcus aureus and Escherichia coli. Prodigiosin was first extracted from S. marcescens and its purity confirmed by absorption spectrum, high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). The extracted prodigiosin was antagonistic towards all the tested bacteria. A disc-diffusion assay showed that prodigiosin is more selective towards Gram-positive bacteria and inhibited the growth of MRSA, S. aureus and E. faecalis and Gram-negative E. coli. A minimum inhibitory concentration of 10 μg/μL of prodigiosin was required to inhibit the growth of S. aureus, E. coli and E. faecalis whereas > 10 μg/μL was required to inhibit MRSA growth. We further assessed the effect of prodigiosin towards bacterial virulence factors such as haemolysin and production of protease as well as on biofilm formation. Prodigiosin did not inhibit haemolysis activity of clinically associated bacteria but was able to reduce protease activity for MRSA, E. coli and E. faecalis as well as decrease E. faecalis, Salmonella Typhimurium and E. coli biofilm formation. Results of this study show that in addition to its role in inhibiting bacterial growth, prodigiosin also inhibits the bacterial virulence factor protease production and biofilm formation, two strategies employed by bacteria in response to microbial competition. As clinical pathogens were more resistant to prodigiosin, we propose that prodigiosin is physiologically important for S. marcescens to compete against other bacteria in its natural soil and surface water environments.
Collapse
Affiliation(s)
- Chee-Hoo Yip
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Sobina Mahalingam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Kiew-Lian Wan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
30
|
Sarwar MT, Ohara-Nemoto Y, Kobayakawa T, Naito M, Nemoto TK. Characterization of substrate specificity and novel autoprocessing mechanism of dipeptidase A from Prevotella intermedia. Biol Chem 2021; 401:629-642. [PMID: 31913843 DOI: 10.1515/hsz-2019-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 01/06/2023]
Abstract
Prevotella intermedia, a Gram-negative anaerobic rod, is frequently observed in subgingival polymicrobial biofilms from adults with chronic periodontitis. Peptidases in periodontopathic bacteria are considered to function as etiological reagents. Prevotella intermedia OMA14 cells abundantly express an unidentified cysteine peptidase specific for Arg-4-methycoumaryl-7-amide (MCA). BAU17746 (locus tag, PIOMA14_I_1238) and BAU18827 (locus tag, PIOMA14_II_0322) emerged as candidates of this peptidase from the substrate specificity and sequence similarity with C69-family Streptococcus gordonii Arg-aminopeptidase. The recombinant form of the former solely exhibited hydrolyzing activity toward Arg-MCA, and BAU17746 possesses a 26.6% amino acid identity with the C69-family Lactobacillus helveticus dipeptidase A. It was found that BAU17746 as well as L. helveticus dipeptidase A was a P1-position Arg-specific dipeptidase A, although the L. helveticus entity, a representative of the C69 family, had been reported to be specific for Leu and Phe. The full-length form of BAU17746 was intramolecularly processed to a mature form carrying the N-terminus of Cys15. In conclusion, the marked Arg-MCA-hydrolyzing activity in Pre. intermedia was mediated by BAU17746 belonging to the C69-family dipeptidase A, in which the mature form carries an essential cysteine at the N-terminus.
Collapse
Affiliation(s)
- Mohammad Tanvir Sarwar
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takeshi Kobayakawa
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
31
|
Oba PM, Carroll MQ, Alexander C, Valentine H, Somrak AJ, Keating SCJ, Sage AM, Swanson KS. Microbiota populations in supragingival plaque, subgingival plaque, and saliva habitats of adult dogs. Anim Microbiome 2021; 3:38. [PMID: 34001282 PMCID: PMC8130298 DOI: 10.1186/s42523-021-00100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Background Oral diseases are common in dogs, with microbiota playing a prominent role in the disease process. Oral cavity habitats harbor unique microbiota populations that have relevance to health and disease. Despite their importance, the canine oral cavity microbial habitats have been poorly studied. The objectives of this study were to (1) characterize the oral microbiota of different habitats of dogs and (2) correlate oral health scores with bacterial taxa and identify what sites may be good options for understanding the role of microbiota in oral diseases. We used next-generation sequencing to characterize the salivary (SAL), subgingival (SUB), and supragingival (SUP) microbial habitats of 26 healthy adult female Beagle dogs (4.0 ± 1.2 year old) and identify taxa associated with periodontal disease indices. Results Bacterial species richness was highest for SAL, moderate for SUB, and lowest for SUP samples (p < 0.001). Unweighted and weighted principal coordinates plots showed clustering by habitat, with SAL and SUP samples being the most different from one another. Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, Actinobacteria, and Spirochaetes were the predominant phyla in all habitats. Paludibacter, Filifactor, Peptostreptococcus, Fusibacter, Anaerovorax, Fusobacterium, Leptotrichia, Desulfomicrobium, and TG5 were enriched in SUB samples, while Actinomyces, Corynebacterium, Leucobacter, Euzebya, Capnocytophaga, Bergeyella, Lautropia, Lampropedia, Desulfobulbus, Enhydrobacter, and Moraxella were enriched in SUP samples. Prevotella, SHD-231, Helcococcus, Treponema, and Acholeplasma were enriched in SAL samples. p-75-a5, Arcobacter, and Pasteurella were diminished in SUB samples. Porphyromonas, Peptococcus, Parvimonas, and Campylobacter were diminished in SUP samples, while Tannerella, Proteocalla, Schwartzia, and Neisseria were diminished in SAL samples. Actinomyces, Corynebacterium, Capnocytophaga, Leptotrichia, and Neisseria were associated with higher oral health scores (worsened health) in plaque samples. Conclusions Our results demonstrate the differences that exist among canine salivary, subgingival plaque and supragingival plaque habitats. Salivary samples do not require sedation and are easy to collect, but do not accurately represent the plaque populations that are most important to oral disease. Plaque Actinomyces, Corynebacterium, Capnocytophaga, Leptotrichia, and Neisseria were associated with higher (worse) oral health scores. Future studies analyzing samples from progressive disease stages are needed to validate these results and understand the role of bacteria in periodontal disease development.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, 162 Animal Sciences Laboratory, Urbana, IL, 61801, USA
| | - Meredith Q Carroll
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, 162 Animal Sciences Laboratory, Urbana, IL, 61801, USA
| | - Celeste Alexander
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Helen Valentine
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amy J Somrak
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, 61801, USA
| | - Stephanie C J Keating
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, 61801, USA
| | - Adrianna M Sage
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, 2015 Linden Dr, Madison, WI, 53706, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, 162 Animal Sciences Laboratory, Urbana, IL, 61801, USA. .,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
32
|
Dietary Histidine, Threonine, or Taurine Supplementation Affects Gilthead Seabream ( Sparus aurata) Immune Status. Animals (Basel) 2021; 11:ani11051193. [PMID: 33919381 PMCID: PMC8143364 DOI: 10.3390/ani11051193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The concept of supporting animal health through the best possible nutrition is well-accepted in modern aquaculture, and functional amino acids (AAs) appear to be good candidates to improve health and growth performance. For instance, histidine (His), taurine (Tau), and threonine (Thr) appear to play important roles in homeostatic maintenance, detoxification of reactive species, and immune function. The present study aimed to evaluate the effects of His, Tau, and Thr supplementation on the gilthead seabream (Sparus aurata) immune status. In general, the results suggest that dietary supplementation with His, Tau, or Thr above their nominal requirements for this species has relatively mild effects. Still, some effects of threonine and taurine supplementation on the fish immune system were observed, particularly after a short-term feeding period (four weeks), which reinforces the importance of feeding period when aiming to improve immune alertness. Hence, further studies with other supplementation levels and eventually duration of supplementation could help to clarify the potential immunomodulatory role of these AAs for gilthead seabream. Abstract AAs have become interesting feed ingredients to be used in functional fish feeds as not only are they protein building blocks, but they also participate in several other key metabolic processes. In the present study, a comprehensive analysis of transcriptomics, hematology, and humoral immune parameters (plasma and skin mucus) were measured twice over the course of the feeding trial (four weeks). Plasma antiprotease activity increased in fish fed Thr compared to those fed the CTRL and Tau treatments, regardless of sampling time. The bactericidal activity in skin mucus decreased in fish fed Tau and His treatments compared to those fed the CTRL diet after two weeks. The membrane IgT (mIgT) was upregulated in fish fed Tau after four weeks, while C-type lectin domain family domain 10 member (clec10a) was downregulated in fish fed Thr after two weeks of feeding. By comparing the molecular signatures of head-kidney by means of a PLS-DA, it is possible to visualize that the main difference is between the two sampling points, regardless of diet. Altogether, these results suggest that dietary supplementation with these AAs at the tested levels causes mild immune-modulation effects in gilthead seabream, which should be further studied under disease challenge conditions.
Collapse
|
33
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
34
|
Antibody-Dependent Enhancement of Bacterial Disease: Prevalence, Mechanisms, and Treatment. Infect Immun 2021; 89:IAI.00054-21. [PMID: 33558319 DOI: 10.1128/iai.00054-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement (ADE) of viral disease has been demonstrated for infections caused by flaviviruses and influenza viruses; however, antibodies that enhance bacterial disease are relatively unknown. In recent years, a few studies have directly linked antibodies with exacerbation of bacterial disease. This ADE of bacterial disease has been observed in mouse models and human patients with bacterial infections. This antibody-mediated enhancement of bacterial infection is driven by various mechanisms that are disparate from those found in viral ADE. This review aims to highlight and discuss historic evidence, potential molecular mechanisms, and current therapies for ADE of bacterial infection. Based on specific case studies, we report how plasmapheresis has been successfully used in patients to ameliorate infection-related symptomatology associated with bacterial ADE. A greater understanding and appreciation of bacterial ADE of infection and disease could lead to better management of infections and inform current vaccine development efforts.
Collapse
|
35
|
Bunte K, Kuhn C, Walther C, Peters U, Aarabi G, Smeets R, Beikler T. Clinical significance of ragA, ragB, and PG0982 genes in Porphyromonas gingivalis isolates from periodontitis patients. Eur J Oral Sci 2021; 129:e12776. [PMID: 33667038 DOI: 10.1111/eos.12776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Consistent detection of ragA, ragB, and PG0982 in the genome of Porphyromonas gingivalis (P. gingivalis) isolates from periodontitis patients suggests that genotypes containing these genes may influence virulence and P. gingivalis-associated periodontitis progression. This study evaluated the prevalence of these genes in P. gingivalis isolates from periodontitis patients (n = 28) and in isolates from periodontally healthy P. gingivalis carriers (n = 34). The association of these genes with progression of periodontitis, in vitro cell invasiveness, and bacterial survival following periodontal therapy was also assessed. Periodontal charting and microbiological sampling were done at baseline, and at 6, 12, and 24 months following subgingival debridement of the periodontitis patients. Healthy controls were assessed at baseline for comparison. P. gingivalis isolates were analysed by ragA, ragB, and PG0982 specific polymerase chain reaction (PCR) and Sanger sequencing. Primary human gingival fibroblasts were used for invasion experiments. Results showed that 25% of the tested isolates from the periodontitis group had ragB detected, whereas this gene was undetected in isolates from healthy participants. However, none of the selected genes was associated with an increased cell invasiveness in vitro, with bacterial survival, or with significant clinical periodontal parameter changes. Identification of genes that influence P.gingivalis virulence and therapeutic outcome may have a diagnostic or prognostic value.
Collapse
Affiliation(s)
- Kübra Bunte
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carolin Walther
- Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghazal Aarabi
- Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Abstract
The functional diversity of the mammalian intestinal microbiome far exceeds that of the host organism, and microbial genes contribute substantially to the well-being of the host. However, beneficial gut organisms can also be pathogenic when present in the gut or other locations in the body. Among dominant beneficial bacteria are several species of Bacteroides, which metabolize polysaccharides and oligosaccharides, providing nutrition and vitamins to the host and other intestinal microbial residents. These topics and the specific organismal and molecular interactions that are known to be responsible for the beneficial and detrimental effects of Bacteroides species in humans comprise the focus of this review. The complexity of these interactions will be revealed.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara,Okara, PunjabPakistan
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, USA
| |
Collapse
|
37
|
Neilands J, Kinnby B. Porphyromonas gingivalis initiates coagulation and secretes polyphosphates - A mechanism for sustaining chronic inflammation? Microb Pathog 2020; 162:104648. [PMID: 33242642 DOI: 10.1016/j.micpath.2020.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Periodontitis is a chronic inflammation resulting in destruction of tooth-supporting bone. Chronic inflammation is characterized by extravascular fibrin deposition. Fibrin is central to destruction of bone; monocytes bind to fibrin and form osteoclasts, thus providing a link between coagulation and the tissue destructive processes in periodontitis. The oral microbiome is essential to oral health. However, local ecological changes, such as increased biofilm formation, result in a dysbiotic microbiome characterized by an increase of protease-producing species e.g. Porphyromonas gingivalis. Proteases initiate inflammation and may cleave coagulation factors. Polyphosphates (polyP) may also provide bacteria with procoagulant properties similar to platelet-released polyP. P. gingivalis has also been found in remote locations related to vascular pathology and Alzheimer's disease. OBJECTIVES The aim of this study was to investigate procoagulant activity of ten different species of oral bacteria present in oral health and disease as well as presence of polyP and fibrin formation in planktonic and biofilm bacteria. METHODS Oral bacteria were studied for protease production and procoagulant activity. The presence of polyP and formation of fibrin was observed using confocal microscopy. RESULTS P. gingivalis showed strong protease activity and was the only species exerting procoagulant activity. Confocal microscopy showed polyP intracellularly in planktonic bacteria and extracellularly after biofilm formation. Fibrin formation emanated from planktonic bacteria and from both bacteria and polyP in biofilm cultures. CONCLUSIONS The procoagulant activity of P. gingivalis could explain its role in chronic inflammation, locally in oral tissues as well as in remote locations.
Collapse
Affiliation(s)
- Jessica Neilands
- Dept of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Bertil Kinnby
- Dept of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden.
| |
Collapse
|
38
|
Gürsoy UK, Fteita D, Bikker FJ, Grande MA, Nazmi K, Gürsoy M, Könönen E, Belstrøm D. Elevated Baseline Salivary Protease Activity May Predict the Steadiness of Gingival Inflammation During Periodontal Healing: A 12-Week Follow-Up Study on Adults. Pathogens 2020; 9:pathogens9090751. [PMID: 32942694 PMCID: PMC7558121 DOI: 10.3390/pathogens9090751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/26/2022] Open
Abstract
Aim was to profile salivary total protease, Porphyromonas gingivalis gingipain, and neutrophil elastase activities in relation to the resolution of periodontal inflammation, salivary macrophage-derived chemokine (MDC), and macrophage inflammatory protein-1α concentrations. Nonsurgical periodontal treatment was performed in 24 periodontitis patients in a prospective interventional study design. Periodontal clinical parameters were recorded, and stimulated saliva samples were collected at baseline and 2, 6, and 12 weeks after treatment. Salivary total protease and gingipain activities were determined using fluorogenic substrates, elastase activity by chromogenic substrates, and cytokine concentrations by Luminex immunoassay. For statistical analyses, generalized linear mixed models for repeated measures were used. Salivary total protease activity elevated, while gingival inflammation and plaque accumulation decreased 2 and 6 weeks after periodontal therapy. Salivary MDC concentration was elevated 12 weeks after periodontal treatment. Patients with elevated protease activities at baseline in comparison to patients with low baseline total protease activities, had higher levels of gingival inflammation before and after periodontal treatment. In conclusion, elevations in salivary total protease activity seem to be part of periodontal healing at its early phases. Higher levels of salivary total protease activities before periodontal treatment may predict the severity and steadiness of unresolved gingival inflammation.
Collapse
Affiliation(s)
- Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
- Correspondence:
| | - Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, 1081LA Amsterdam, The Netherlands; (F.J.B.); (K.N.)
| | - Maria Anastasia Grande
- Section for Clinical Oral Microbiology, Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.A.G.); (D.B.)
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, 1081LA Amsterdam, The Netherlands; (F.J.B.); (K.N.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (D.F.); (M.G.); (E.K.)
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (M.A.G.); (D.B.)
| |
Collapse
|
39
|
Dissecting capture and twisting of aureolysin and pseudolysin: functional amino acids of the Dispase autolysis-inducing protein. Biochem J 2020; 477:2595-2606. [PMID: 32602533 DOI: 10.1042/bcj20200407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
The Dispase autolysis-inducing protein (DAIP) from Streptomyces mobaraensis attracts M4 metalloproteases, which results in inhibition and autolysis of bacillolysin (BL) and thermolysin (TL). The present study shows that aureolysin (AL) from Staphylococcus aureus and pseudolysin (LasB) from Pseudomonas aeruginosa are likewise impaired by DAIP. Complete inhibition occurred when DAIP significantly exceeded the amount of the target protease. At low DAIP concentrations, AL and BL performed autolysis, while LasB and TL degradation required reductants or detergents that break intramolecular disulfide bonds or change the protein structure. Site directed mutagenesis of DAIP and removal of an exposed protein loop either influenced binding or inhibition of AL and TL but had no effect on LasB and BL. The Y170A and Δ239-248 variants had completely lost affinity for TL and AL. The exchange of Asn-275 also impaired the interaction of DAIP with AL. In contrast, DAIP Phe-297 substitution abolished inhibition and autolysis of both target proteases but still allowed complex formation. Our results give rise to the conclusion that other, yet unknown DAIP amino acids inactivate LasB and BL. Obviously, various bacteria in the same habitat caused Streptomyces mobaraensis to continuously optimize DAIP in inactivating the tackling metalloproteases.
Collapse
|
40
|
Bowerman KL, Varelias A, Lachner N, Kuns RD, Hill GR, Hugenholtz P. Continuous pre- and post-transplant exposure to a disease-associated gut microbiome promotes hyper-acute graft-versus-host disease in wild-type mice. Gut Microbes 2020; 11:754-770. [PMID: 31928131 PMCID: PMC7524395 DOI: 10.1080/19490976.2019.1705729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The gut microbiome plays a key role in the development of acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation. Here we investigate the individual contribution of the pre- and post-transplant gut microbiome to acute GVHD using a well-studied mouse model. DESIGN Wild-type mice were cohoused with IL-17RA-/ - mice, susceptible to hyperacute GVHD, either pre- or post-transplant alone or continuously (i.e., pre- and post-transplant). Fecal samples were collected from both WT and IL-17RA-/ - mice pre- and post-cohousing and post-transplant and the microbiome analyzed using metagenomic sequencing. RESULTS Priming wild-type mice via cohousing pre-transplant only is insufficient to accelerate GVHD, however, accelerated disease is observed in WT mice cohoused post-transplant only. When mice are cohoused continuously, the effect of priming and exacerbation is additive, resulting in a greater acceleration of disease in WT mice beyond that seen with cohousing post-transplant only. Metagenomic analysis of the microbiome revealed pre-transplant cohousing is associated with the transfer of specific species within two as-yet-uncultured genera of the bacterial family Muribaculaceae; CAG-485 and CAG-873. Post-transplant, we observed GVHD-associated blooms of Enterobacteriaceae members Escherichia coli and Enterobacter hormaechei subsp. steigerwaltii, and hyperacute GVHD gut microbiome distinct from that associated with delayed-onset disease (>10 days post-transplant). CONCLUSION These results clarify the importance of the peri-transplant microbiome in the susceptibility to acute GVHD post-transplant and demonstrate the species-specific nature of this association.
Collapse
Affiliation(s)
- Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine, The University of Queensland, St Lucia, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine, The University of Queensland, St Lucia, Australia,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia,CONTACT Philip Hugenholtz School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia4072, Australia
| |
Collapse
|
41
|
Bikker FJ, Nascimento GG, Nazmi K, Silbereisen A, Belibasakis GN, Kaman WE, Lopez R, Bostanci N. Salivary Total Protease Activity Based on a Broad-Spectrum Fluorescence Resonance Energy Transfer Approach to Monitor Induction and Resolution of Gingival Inflammation. Mol Diagn Ther 2020; 23:667-676. [PMID: 31372941 PMCID: PMC6775538 DOI: 10.1007/s40291-019-00421-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Salivary total protease and chitinase activities were measured by a broad-spectrum fluorescence resonance energy transfer approach as predictors of induction and resolution of gingival inflammation in healthy individuals by applying an experimental human gingivitis model. METHODS Dental biofilm accumulated (21 days, Induction Phase) by omitting oral hygiene practices followed by a 2-week Resolution Phase to restore gingival health in an experimental gingivitis study. Plaque accumulation, as assessed by the Turesky Modification of the Quigley-Hein Plaque Index (TQHPI), and gingival inflammation, assessed using the Modified Gingival Index (MGI), scores were recorded and unstimulated saliva was collected weekly. Saliva was analysed for total protein, albumin, total protease activity and chitinase activity (n = 18). RESULTS The TQHPI and MGI scores, as well as total protease activity, increased until day 21. After re-establishment of oral hygiene, gingival inflammation levels returned to values similar to baseline (day 0). Levels of protease activity decreased significantly, but not to baseline values. Furthermore, 'fast' responders, who responded immediately to plaque, exhibited significantly higher proteolytic activity throughout the experimental course than 'slow' responders, who showed a lagged inflammatory response. CONCLUSION The results indicate that differential inflammatory responses encompass inherent variations in total salivary proteolytic activities, which could be further utilised in contemporary diagnostic, prognostic and treatment modalities for periodontal diseases.
Collapse
Affiliation(s)
- Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.
| | - Gustavo G Nascimento
- Section of Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Silbereisen
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Wendy E Kaman
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Rodrigo Lopez
- Section of Periodontology, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Nagihan Bostanci
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Formulation technologies and advances for oral delivery of novel nitroimidazoles and antimicrobial peptides. J Control Release 2020; 324:728-749. [PMID: 32380201 DOI: 10.1016/j.jconrel.2020.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance has become a global crisis, driving the exploration for novel antibiotics and novel treatment approaches. Among these research efforts two classes of antibiotics, bicyclic nitroimidazoles and antimicrobial peptides, have recently shown promise as novel antimicrobial agents with the possibility to treat multi-drug resistant infections. However, they suffer from the issue of poor oral bioavailability due to disparate factors: low solubility in the case of nitroimidazoles (BCS class II drugs), and low permeability in the case of peptides (BCS class III drugs). Moreover, antimicrobial peptides present another challenge as they are susceptible to chemical and enzymatic degradation, which can present an additional pharmacokinetic hurdle for their oral bioavailability. Formulation technologies offer a potential means for improving the oral bioavailability of poorly permeable and poorly soluble drugs, but there are still drawbacks and limitations associated with this approach. This review discusses in depth the challenges associated with oral delivery of nitroimidazoles and antimicrobial peptides and the formulation technologies that have been used to overcome these problems, including an assessment of the drawbacks and limitations associated with the technologies that have been applied. Furthermore, the potential for supercritical fluid technology to overcome the shortcomings associated with conventional drug formulation methods is reviewed.
Collapse
|
43
|
Virulence Characteristics of mecA-Positive Multidrug-Resistant Clinical Coagulase-Negative Staphylococci. Microorganisms 2020; 8:microorganisms8050659. [PMID: 32369929 PMCID: PMC7284987 DOI: 10.3390/microorganisms8050659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are an important group of opportunistic pathogenic microorganisms that cause infections in hospital settings and are generally resistant to many antimicrobial agents. We report on phenotypic and genotypic virulence characteristics of a select group of clinical, mecA-positive (encoding penicillin-binding protein 2a) CoNS isolates. All CoNS were resistant to two or more antimicrobials with S. epidermidis strain 214EP, showing resistance to fifteen of the sixteen antimicrobial agents tested. Aminoglycoside-resistance genes were the ones most commonly detected. The presence of megaplasmids containing both horizontal gene transfer and antimicrobial resistance genetic determinants indicates that CoNS may disseminate antibiotic resistance to other bacteria. Staphylococcus sciuri species produced six virulence enzymes, including a DNase, gelatinase, lipase, phosphatase, and protease that are suspected to degrade tissues into nutrients for bacterial growth and contribute to the pathogenicity of CoNS. The PCR assay for the detection of biofilm-associated genes found the eno (encoding laminin-binding protein) gene in all isolates. Measurement of their biofilm-forming ability and Spearman’s rank correlation coefficient analyses revealed that the results of crystal violet (CV) and extracellular polymeric substances (EPS) assays were significantly correlated (ρ = 0.9153, P = 3.612e-12). The presence of virulence factors, biofilm-formation capability, extracellular enzymes, multidrug resistance, and gene transfer markers in mecA-positive CoNS clinical strains used in this study makes them powerful opportunistic pathogens. The study also warrants a careful evaluation of nosocomial infections caused by CoNS and may be useful in studying the mechanism of virulence and factors associated with their pathogenicity in vivo and developing effective strategies for mitigation.
Collapse
|
44
|
Zhang Q, Li W, Yang J, Xu J, Meng Y, Shan W. Two Phytophthora parasitica cysteine protease genes, PpCys44 and PpCys45, trigger cell death in various Nicotiana spp. and act as virulence factors. MOLECULAR PLANT PATHOLOGY 2020; 21:541-554. [PMID: 32077241 PMCID: PMC7060141 DOI: 10.1111/mpp.12915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Weiwei Li
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiapeng Yang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of AgronomyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
45
|
Negi S, Jain S, Raj A. Combined ANN/EVOP Factorial Design Approach for Media Screening for Cost-effective Production of Alkaline Proteases from Rhizopus oryzae (SN5)/NCIM-1447 under SSF. AMB Express 2020; 10:60. [PMID: 32221743 PMCID: PMC7101461 DOI: 10.1186/s13568-020-00996-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/18/2020] [Indexed: 01/13/2023] Open
Abstract
In order to achieve high yield of fungal protease in a very cost effective way and to meet its increased market demand, current study deals with the screening of various agro-wastes as carbon source for the production of protease from Rhizopus oryzae (SN5)/NCIM-1447 under solid state fermentation. Substrates and culture parameters such as wheat bran, soybean meal, black-gram husk, rice husk, mixture of wheat bran, soybean meal, nitrogen sources, pH, temperature and incubation time were first optimized with one factor at time strategy and then EVOP factorial and yield of alkaline protease was achieved 412.8 U/gds at 28 °C and pH = 6 after 72 h of fermentation taking wheat bran and soybean as a substrate in 4:1 ratio. Further artificial neural networks (ANN), was trained with data of EVOP and yield of protease was enhanced up to 422.6 U/gds with wheat bran: soyabean in ratio of 70:30, pH 6.2 at 30 °C. The evolved process and Rhizopus oryzae (SN5)/NCIM-1447 strain would be promising for protease production at industrial scale at low cost.
Collapse
|
46
|
Srijampa S, Buddhisa S, Ngernpimai S, Leelayuwat C, Proungvitaya S, Chompoosor A, Tippayawat P. Influence of Gold Nanoparticles with Different Surface Charges on Localization and Monocyte Behavior. Bioconjug Chem 2020; 31:1133-1143. [PMID: 32208651 DOI: 10.1021/acs.bioconjchem.9b00847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of gold nanoparticles (AuNP) has been established in nanocarriers, diagnostics, and biosensors. Access to the targeted sites of these nanomaterials could directly involve the first line of defense, the innate immune system. Charges of nanomaterials play a critical role in a number of aspects such as stabilization, cellular uptake, modulation, and function of cells. Interactions and modulations of the charged nanomaterials against the innate immune system may occur even at very low concentration. To understand the effects of charges on monocyte behavior, in this study, the positively and negatively charged AuNP (AuNP+ve and AuNP-ve) of the similar size and shape on cytotoxicity, recognition, cellular behavior, and function were evaluated in vitro using U937 human monocyte cells as an innate immunity model. Both types of AuNP at various concentrations (0-5 nM) exhibited low toxicity. In addition, the cellular internalization of the AuNP+ve and AuNP-ve, as determined by TEM, occurred by different mechanisms, and the internalization had no effect on cellular destruction, as implied by the low levels of %LDH. Interestingly, the AuNP+ve recognition and internalization seemingly entered cells through receptor dependence and strongly affected cellular response to express both pro-inflammatory (IL-1β) and anti-inflammatory (TGF-β) cytokines, while the AuNP-ve stimulated TNF-α expression. Nevertheless, the AuNP-treated cells maintained normal function when exposed to planktonic bacteria. Thus, these results indicated that one part of the immune system interacted with different surface-charged AuNP, suggesting appropiate immunomodulation in biomedicine.
Collapse
Affiliation(s)
- Sukanya Srijampa
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surachat Buddhisa
- Department of Medical Technology, Faculty of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sawinee Ngernpimai
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanvit Leelayuwat
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siriporn Proungvitaya
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng Road, Hua mak, Bangkapi, Bangkok 10240, Thailand
| | - Patcharaporn Tippayawat
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
47
|
Galdino ACM, de Oliveira MP, Ramalho TC, de Castro AA, Branquinha MH, Santos ALS. Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target. Curr Protein Pept Sci 2019; 20:471-487. [PMID: 30727891 DOI: 10.2174/1389203720666190207100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative, gram-negative bacterium that is one of the most common pathogens responsible for hospital-acquired infections worldwide. The management of the infections caused by P. aeruginosa represents a huge challenge in the healthcare settings due to the increased emergence of resistant isolates, some of them resistant to all the currently available antimicrobials, which results in elevated morbimortality rates. Consequently, the development of new therapeutic strategies against multidrug-resistant P. aeruginosa is urgent and needful. P. aeruginosa is wellrecognized for its extreme genetic versatility and its ability to produce a lush variety of virulence factors. In this context, pseudolysin (or elastase B) outstands as a pivotal virulence attribute during the infectious process, playing multifunctional roles in different aspects of the pathogen-host interaction. This protein is a 33-kDa neutral zinc-dependent metallopeptidase that is the most abundant peptidase found in pseudomonal secretions, which contributes to the invasiveness of P. aeruginosa due to its ability to cleave several extracellular matrix proteins and to disrupt the basolateral intercellular junctions present in the host tissues. Moreover, pseudolysin makes P. aeruginosa able to overcome host defenses by the hydrolysis of many immunologically relevant molecules, including antibodies and complement components. The attenuation of this striking peptidase therefore emerges as an alternative and promising antivirulence strategy to combat antibiotic-refractory infections caused by P. aeruginosa. The anti-virulence approach aims to disarm the P. aeruginosa infective arsenal by inhibiting the expression/activity of bacterial virulence factors in order to reduce the invasiveness of P. aeruginosa, avoiding the emergence of resistance since the proliferation is not affected. This review summarizes the most relevant features of pseudolysin and highlights this enzyme as a promising target for the development of new anti-virulence compounds.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P de Oliveira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States
| | - Teodorico C Ramalho
- Departamento de Quimica, Universidade Federal de Lavras, Minas Gerais, Brazil
| | | | - Marta H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
48
|
Sochaj-Gregorczyk A, Ksiazek M, Waligorska I, Straczek A, Benedyk M, Mizgalska D, Thøgersen IB, Enghild JJ, Potempa J. Plasmin inhibition by bacterial serpin: Implications in gum disease. FASEB J 2019; 34:619-630. [PMID: 31914706 DOI: 10.1096/fj.201901490rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Tannerella forsythia is a periodontopathogen that expresses miropin, a protease inhibitor in the serpin superfamily. In this study, we show that miropin is also a specific and efficient inhibitor of plasmin; thus, it represents the first proteinaceous plasmin inhibitor of prokaryotic origin described to date. Miropin inhibits plasmin through the formation of a stable covalent complex triggered by cleavage of the Lys368-Thr369 (P2-P1) reactive site bond with a stoichiometry of inhibition of 3.8 and an association rate constant (kass) of 3.3 × 105 M-1s-1. The inhibition of the fibrinolytic activity of plasmin was nearly as effective as that exerted by α2-antiplasmin. Miropin also acted in vivo by reducing blood loss in a mice tail bleeding assay. Importantly, intact T. forsythia cells or outer membrane vesicles, both of which carry surface-associated miropin, strongly inhibited plasmin. In intact bacterial cells, the antiplasmin activity of miropin protects envelope proteins from plasmin-mediated degradation. In summary, in the environment of periodontal pockets, which are bathed in gingival crevicular fluid consisting of 70% of blood plasma, an abundance of T. forsythia in the bacterial biofilm can cause local inhibition of fibrinolysis, which could have possible deleterious effects on the tooth-supporting structures of the periodontium.
Collapse
Affiliation(s)
| | - Miroslaw Ksiazek
- Malopolska Center of Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Irena Waligorska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Straczek
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Benedyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ida B Thøgersen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, Aarhus University, Aarhus, Denmark
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| |
Collapse
|
49
|
Chen DD, Li JH, Yao YY, Zhang YA. Aeromonas hydrophila suppresses complement pathways via degradation of complement C3 in bony fish by metalloprotease. FISH & SHELLFISH IMMUNOLOGY 2019; 94:739-745. [PMID: 31561026 DOI: 10.1016/j.fsi.2019.09.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Aeromonas hydrophila is a pathogen that causes high mortality in the grass carp. The complement system, as a frontline defence of innate immunity, plays an important role in the immune response against pathogens. However, the immunity evasion mechanism of A. hydrophila against the complement system of grass carp remains unclear. In this study, we described an additional mechanism used by A. hydrophila GD18 to evade the complement system and survive in grass carp serum. First, A. hydrophila evaded the bactericidal activity of grass carp serum. Second, the haemolytic activity assays showed that A. hydrophila obviously suppressed the alternative pathway, which depended on preventing the formation or disabling the function of the membrane-attack complex (MAC). Further research indicated that A. hydrophila targeted complement C3, the central component of the three complement pathways, and degraded it in the grass carp serum, leading to the inhibition of the complement pathways, which resulted in the serum-resistance of A. hydrophila. Furthermore, cleavage analyses showed that extracellular proteases (ECPases) of A. hydrophila efficiently cleaved purified C3 as well as C3 in grass carp serum. Finally, protease inhibitor studies and mass spectrum analysis identified the secreted metalloprotease elastase (AhE), which was present in large amounts in crude ECPases, as the central molecule responsible for C3 cleavage. Compared to wild strain GD18, the AhE knockout, Δahe was dramatically reduced in the ability of serum resistance. Our findings suggested that A. hydrophila escaped serum-killing by suppressing the complement pathways via the degradation of complement C3 in bony fish, which was related to secreted metalloproteases.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China
| | - Ji-Hong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Yao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
50
|
Abstract
Subtiligase-catalyzed peptide ligation is a powerful approach for site-specific protein bioconjugation, synthesis and semisynthesis of proteins and peptides, and chemoproteomic analysis of cellular N termini. Here, we provide a comprehensive review of the subtiligase technology, including its development, applications, and impacts on protein science. We highlight key advantages and limitations of the tool and compare it to other peptide ligase enzymes. Finally, we provide a perspective on future applications and challenges and how they may be addressed.
Collapse
Affiliation(s)
- Amy M Weeks
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|