1
|
Shelp GV, Dong J, Orlov NO, Malysheva OV, Bender E, Shoveller AK, Bakovic M, Cho CE. Exposure to prenatal excess or imbalanced micronutrients leads to long-term perturbations in one-carbon metabolism, trimethylamine-N-oxide and DNA methylation in Wistar rat offspring. FASEB J 2024; 38:e70032. [PMID: 39212230 DOI: 10.1096/fj.202401018rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Prenatal multivitamins, including folic acid, are commonly consumed in excess, whereas choline, an essential nutrient and an important source of labile methyl groups, is underconsumed. Here, we characterized profiles of one-carbon metabolism and related pathways and patterns of DNA methylation in offspring exposed to excess or imbalanced micronutrients prenatally. Pregnant Wistar rats were fed either recommended 1× vitamins (RV), high 10× vitamins (HV), high 10× folic acid with recommended choline (HFolRC), or high 10× folic acid with no choline (HFolNC). Offspring were weaned to a high-fat diet for 12 weeks. Circulating metabolites were analyzed with a focus on the hypothalamus, an area known to be under epigenetic regulation. HV, HFolRC, and HFolNC males had higher body weight (BW) and lower plasma choline and methionine consistent with lower hypothalamic S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) and global DNA methylation compared with RV. HV and HFolNC females had higher BW and lower plasma 5-methyltetrahydrofolate and methionine consistent with lower hypothalamic global DNA methylation compared with RV. Plasma dimethylglycine (DMG) and methionine were higher as with hypothalamic SAM:SAH and global DNA methylation in HFolRC females without changes in BW compared with RV. Plasma trimethylamine and trimethylamine-N-oxide were higher in males but lower in females from HFolRC compared with RV. Network modeling revealed a link between the folate-dependent pathway and SAH, with most connections through DMG. Final BW was negatively correlated with choline, DMG, and global DNA methylation. In conclusion, prenatal intake of excess or imbalanced micronutrients induces distinct metabolic and epigenetic perturbations in offspring that reflect long-term nutritional programming of health.
Collapse
Affiliation(s)
- Gia V Shelp
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jianzhang Dong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nikolai O Orlov
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Erica Bender
- Division of Nutritional Sciences, Human Metabolic Research Unit, Cornell University, Ithaca, New York, USA
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Therapeutic Potential of the Purinergic System in Major Depressive Disorder Associated with COVID-19. Cell Mol Neurobiol 2023; 43:621-637. [PMID: 35348977 PMCID: PMC8960668 DOI: 10.1007/s10571-022-01215-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/18/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammation is closely related to the development of depression, since the latter is caused, among other factors, by inflammatory processes, mainly related to the activation of microglia and expression of specific genes, which occurs during the neuroinflammatory process. Thus, COVID-19 is an important risk factor for the development of depression, since in addition to generating the feeling of stress, which also increases the activity of the immune system, it is also the cause of pathological processes and physiological ones that lead to the development of neuroinflammation, microglial activation, gene expression dysfunction and decreased concentration of available serotonin. That said, drugs are being used to combat COVID-19 to reduce the oxidative stress presented in the disease. Thus, tramadol and fluoxetine are highlighted as drugs used, however, although they present some positive results, such as the reduction of pro-inflammatory cytokines, they are also associated with negative effects such as dependence, pulmonary, cardiac and brain impairment. From this, the purinergic system is highlighted in the literature as a possible therapeutic target. This is because its mechanisms are related to the regulation of microglia, astrocytes and the physiology of important neurotransmitters and hormones. Added to this, there is a modulation of inflammatory activity, especially with regard to the P2X7 receptors of this system. The latter is an important target for the treatment of depression and COVID-19, since positive results were obtained through the genetic exclusion of this receptor and the use of selective antagonists.
Collapse
|
3
|
ÇOBANOĞULLARI HAVVA, ERGOREN MAHMUTCERKEZ, DUNDAR MUNIS, BERTELLI MATTEO, TULAY PINAR. Periconceptional Mediterranean diet during pregnancy on children's health. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E65-E73. [PMID: 36479491 PMCID: PMC9710394 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
During pregnancy, rapid and subtle physiological changes are observed from conception to birth. Nutrition and other lifestyle factors before and during pregnancy have been shown in the literature to influence the health of both mother and child. A healthy and varied diet during pregnancy can provide adequate energy and nutrients for both the mother and the growing fetus. Current research focuses on the periconceptional phase, which includes the early processes of gametogenesis, embryogenesis and placentation. A variety of abnormalities and pregnancy-related problems occur during this period, including congenital defects, fetal loss, miscarriage and preterm birth. A varied and balanced diet during periconception is important to maintain fetal development and growth. To date, numerous studies have been conducted to investigate the effects of consuming different nutrients, foods or food groups during pregnancy on the health of mother and child. For example, the Mediterranean diet is considered as a balanced, nutrient-rich diet due to the low consumption of meat products and fatty foods and the high consumption of vegetables, cheese, olive oil, fish, shellfish and little meat. While many studies have been conducted in the literature to investigate the effects of a Mediterranean diet during pregnancy on fetal health, the results have been inconclusive. The aim of this article is to review the current literature on the Mediterranean diet during pregnancy.
Collapse
Affiliation(s)
- HAVVA ÇOBANOĞULLARI
- Near East University, Faculty of Medicine, Department of Molecular Medicine, Nicosia, Cyprus
| | - MAHMUT CERKEZ ERGOREN
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus
| | - MUNIS DUNDAR
- Erciyes University, Faculty of Medicine, Department of Medical Genetics, Kayseri, Turkey
| | - MATTEO BERTELLI
- MAGISNAT, Peachtree Corners, USA
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto, Italy
| | - PINAR TULAY
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus
- Near East University, DESAM Research Institute, Nicosia, Cyprus
- Correspondence: Pınar Tulay, Near East University, Faculty of Medicine, Department of Medical Genetics, 99138 Nicosia, Cyprus. E-mail:
| |
Collapse
|
4
|
Folic acid supplementation during pregnancy modulates hepatic methyl metabolism and genes expression profile of neonatal lambs of different litter sizes. Br J Nutr 2022; 128:1-12. [PMID: 34325757 DOI: 10.1017/s0007114521002841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Maternal folic acid (FA) plays an important role in the fetus development, but it is unknown the response of hepatic metabolism in the offspring from different litter sizes to maternal FA supplementation. In the present study, this was done by feeding the ewes with 0, 16 and 32 mg/(kg·DM) FA supplemented diet during pregnancy and analysing the hepatic one-carbon metabolism-related indices and gene expression in the neonatal lambs of different litter sizes (twins, TW; triplets, TR). Regardless of litter sizes, the concentrations of folate, methionine, S-adenosylmethionine and DNA methyltransferase increased significantly, but homocysteine and S-adenosylhomocysteine decreased in the liver of newborn lambs from ewes whose diet was supplemented with FA. In TW, maternal FA status has little effect on hepatic genes expression profile of newborn lambs, and no significant enriched pathway was found. However, DEG involved in cell proliferation such as CCNA2, CCNB2, CCNE2, CDK1 and BUB1 were significantly enriched when the ewes were supplemented with FA in TR groups. In addition, nucleotide synthesis-related genes such as POLD1, POLD2, MCM4 and MCM5 were enriched markedly in DNA replication and pyrimidine metabolism pathways in triplets when a higher FA ingestion [32 mg/(kg·DM)] was implemented in ewes. This finding demonstrated that the hepatic methyl metabolism in TW and TR newborn lambs was regulated by maternal FA status. The hepatic cell proliferation and nucleotide metabolism related genes in TR were more susceptible to maternal dietary FA supplementation during pregnancy.
Collapse
|
5
|
Hayden MR, Tyagi SC. Impaired Folate-Mediated One-Carbon Metabolism in Type 2 Diabetes, Late-Onset Alzheimer's Disease and Long COVID. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:16. [PMID: 35056324 PMCID: PMC8779539 DOI: 10.3390/medicina58010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022]
Abstract
Impaired folate-mediated one-carbon metabolism (FOCM) is associated with many pathologies and developmental abnormalities. FOCM is a metabolic network of interdependent biosynthetic pathways that is known to be compartmentalized in the cytoplasm, mitochondria and nucleus. Currently, the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be fully established. This review specifically examines the role of impaired FOCM in type 2 diabetes mellitus, Alzheimer's disease and the emerging Long COVID/post-acute sequelae of SARS-CoV-2 (PASC). Importantly, elevated homocysteine may be considered a biomarker for impaired FOCM, which is known to result in increased oxidative-redox stress. Therefore, the incorporation of hyperhomocysteinemia will be discussed in relation to impaired FOCM in each of the previously listed clinical diseases. This review is intended to fill gaps in knowledge associated with these clinical diseases and impaired FOCM. Additionally, some of the therapeutics will be discussed at this early time point in studying impaired FOCM in each of the above clinical disease states. It is hoped that this review will allow the reader to better understand the role of FOCM in the development and treatment of clinical disease states that may be associated with impaired FOCM and how to restore a more normal functional role for FOCM through improved nutrition and/or restoring the essential water-soluble B vitamins through oral supplementation.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Departments of Internal Medicine, Endocrinology Diabetes and Metabolism Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|
6
|
Guetterman HM, Huey SL, Knight R, Fox AM, Mehta S, Finkelstein JL. Vitamin B-12 and the Gastrointestinal Microbiome: A Systematic Review. Adv Nutr 2021; 13:S2161-8313(22)00075-8. [PMID: 34612492 PMCID: PMC8970816 DOI: 10.1093/advances/nmab123] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin B-12 deficiency is a major public health problem affecting individuals across the lifespan, with known hematological, neurological, and obstetric consequences. Emerging evidence suggests that vitamin B-12 may have an important role in other aspects of human health, including the composition and function of the gastrointestinal (gut) microbiome. Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required for over a dozen enzymes in bacteria, compared to only two in humans. However, the impact of vitamin B-12 on the gut microbiome has not been established. This systematic review was conducted to examine the evidence that links vitamin B-12 and the gut microbiome. A structured search strategy was used to identify in vitro, animal, and human studies that assessed vitamin B-12 status, dietary intake, or supplementation, and the gut microbiome using culture-independent techniques. A total of 22 studies (3 in vitro, 8 animal, 11 human observational studies) were included. Nineteen studies reported vitamin B-12 intake, status, or supplementation was associated with gut microbiome outcomes, including beta-diversity, alpha-diversity, relative abundance of bacteria, functional capacity, or short chain fatty acid production. Evidence suggests vitamin B-12 may be associated with changes in bacterial abundance. While results from in vitro studies suggest vitamin B-12 may increase alpha-diversity and shift gut microbiome composition (beta-diversity), findings from animal studies and observational human studies were heterogeneous. Based on evidence from in vitro and animal studies, microbiome outcomes may differ by cobalamin form and co-intervention. To date, few prospective observational studies and no randomized trials have been conducted to examine the effects of vitamin B-12 on the human gut microbiome. The impact of vitamin B-12 on the gut microbiome needs to be elucidated to inform screening and public health interventions. Statement of significance: Vitamin B-12 is synthesized and utilized by bacteria in the human gut microbiome and is required by over a dozen enzymes in bacteria. However, to date, no systematic reviews have been conducted to evaluate the impact of vitamin B-12 on the gut microbiome, or its implications for human health.
Collapse
Affiliation(s)
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA,Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA,Department of Bioengineering, University of California San Diego, La Jolla, CA, USA,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Allison M Fox
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA,Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA,Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
7
|
Abstract
The intestinal tract is the entry gate for nutrients and symbiotic organisms, being in constant contact with external environment. DNA methylation is one of the keys to how environmental conditions, diet and nutritional status included, shape functionality in the gut and systemically. This review aims to summarise findings on the importance of methylation to gut development, differentiation and function. Evidence to date on how external factors such as diet, dietary supplements, nutritional status and microbiota modifications modulate intestinal function through DNA methylation is also presented.
Collapse
|
8
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
9
|
Meng Z, Yi L, Hu Q, Lin Z, Ramaswamy HS, Wang C. Optimized Extraction and Characterization of Folates From Date Palm Fruits and Their Tracking During Fruits Wine Fermentation. Front Nutr 2021; 8:699555. [PMID: 34557510 PMCID: PMC8452929 DOI: 10.3389/fnut.2021.699555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022] Open
Abstract
Folates belong to the essential B vitamins group and participate in one-carbon metabolism. Date palm fruits (Phoenix dactilyfera L. family Arecaceae) are consumed by millions of people and are good sources of folates. To date, no detailed study has been carried out on suitable methods for folate extraction from date palm fruits. In the present study, an experimental design using response surface methodology (RSM) was used to maximize the extraction yield of folates from date palm fruits by including enzymatic depectinization. By applying this new strategy and a UHPLC-MS/MS technique for analysis, total folate and different folate vitamers of three cultivars of date palm fruits (Muzafti, Zahdi, and Rubai), brewer's yeast, and fermented date wine were analyzed. The optimized extraction conditions of folates from date palm fruits were found to be a pectinase activity of 47.7 U, an incubation temperature of 40°C, and an incubation time of 38 min, which yielded a total folate content of 191–301 μg/100 g. In brewer's yeast, the extracted total folate content was very high (4,870 μg/100 g), and, in the resulting date wine, it reached a maximum of 700 μg/L on the fifth day. The predominant folate vitamers in date fruit and fruit wine were 5-formyltetrahydrofolate (5-CHO-THF) and 5-methyltetrahydrofolate (5-CH3-THF). During date palm fruit fermentation for up to 8 days, the 5-CHO-THF content gradually decreased by 20%, while 5-CH3-THF increased linearly from day 1 to day 5 (y = 0.058 x + 0.0284, R2 = 0.9614). This study shows that date palm fruit and fruit wine are excellent sources of folate, and further study can be focused on different methods to improve folate stability during wine storage.
Collapse
Affiliation(s)
- Ziyi Meng
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Ling Yi
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingxin Hu
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Zhiyi Lin
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, Macdonald Campus of McGill University, Montréal, QC, Canada
| | - Chao Wang
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Goh YQ, Cheam G, Wang Y. Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10774-10789. [PMID: 34392687 DOI: 10.1021/acs.jafc.1c03077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Choline is an essential macronutrient involved in neurotransmitter synthesis, cell-membrane signaling, lipid transport, and methyl-group metabolism. Nevertheless, the vast majority are not meeting the recommended intake requirement. Choline deficiency is linked to nonalcoholic fatty liver disease, skeletal muscle atrophy, and neurodegenerative diseases. The conversion of dietary choline to trimethylamine by gut microbiota is known for its association with atherosclerosis and may contribute to choline deficiency. Choline-utilizing bacteria constitutes less than 1% of the gut community and is modulated by lifestyle interventions such as dietary patterns, antibiotics, and probiotics. In addition, choline utilization is also affected by genetic factors, further complicating the impact of choline on health. This review overviews the complex interplay between dietary intakes of choline, gut microbiota and genetic factors, and the subsequent impact on health. Understanding of gut microbiota metabolism of choline substrates and interindividual variability is warranted in the development of personalized choline nutrition.
Collapse
Affiliation(s)
- Ying Qi Goh
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Guoxiang Cheam
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
11
|
Piras IS, Costa A, Tirindelli MC, Stoccoro A, Huentelman MJ, Sacco R, Coppedè F, Lintas C. Genetic and epigenetic MTHFR gene variants in the mothers of attention-deficit/hyperactivity disorder affected children as possible risk factors for neurodevelopmental disorders. Epigenomics 2020; 12:813-823. [PMID: 32485115 DOI: 10.2217/epi-2019-0356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To assess promoter methylation levels, gene expression levels and 677C>T/1298A>C genotype and allele frequencies of the MTHFR gene in 45 mothers of attention-deficit/hyperactivity disorder affected child/children (ADHDM) and compare it with age matched healthy control mothers (HCM). Materials & methods: High resolution melting analysis, quantitative real time PCR and PCR-RFLP were performed to assess methylation, gene expression and genotyping, respectively. Significance between ADHDM and HCM was assessed by linear (methylation and gene expression) and logistic regression (genotypes). Results: MTHFR gene expression levels were significantly higher in the ADHDM compared with the HCM group (adj-p < 7.7E-04). No differences in MTHFR promoter methylation level and 677C>T/1298A>C genotype frequencies were detected between ADHDM and HCM. Conclusion: We observed increased MTHFR expression levels not resulting from promoter methylation changes in ADHDM respect to HMC, potentially contributing to the ADHD condition in their children and deserving further investigation.
Collapse
Affiliation(s)
- Ignazio Stefano Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Anna Costa
- Service for Neurodevelopmental Disorders, University Campus Bio-Medico, Rome, Italy
| | | | - Andrea Stoccoro
- Medical Genetics Laboratory, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Roberto Sacco
- Service for Neurodevelopmental Disorders, University Campus Bio-Medico, Rome, Italy
| | - Fabio Coppedè
- Medical Genetics Laboratory, Department of Translational Research & New Technologies in Medicine & Surgery, University of Pisa, Pisa, Italy
| | - Carla Lintas
- Service for Neurodevelopmental Disorders, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
12
|
Contestabile R, di Salvo ML, Bunik V, Tramonti A, Vernì F. The multifaceted role of vitamin B 6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biol 2020; 10:200034. [PMID: 32208818 PMCID: PMC7125957 DOI: 10.1098/rsob.200034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity.
Collapse
Affiliation(s)
- Roberto Contestabile
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Martino Luigi di Salvo
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy
| | - Victoria Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia.,Sechenov Medical University, Sechenov University, 119048 Moscow, Russia
| | - Angela Tramonti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti and Dipartimento di Scienze Biochimiche 'A. Rossi Fanelli', Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Pl.e A. Moro, 5, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'Charles Darwin', Sapienza Università di Roma, Pl.e A. Moro, 5, 00185 Roma, Italy
| |
Collapse
|
13
|
Lindermayr C, Rudolf EE, Durner J, Groth M. Interactions between metabolism and chromatin in plant models. Mol Metab 2020; 38:100951. [PMID: 32199818 PMCID: PMC7300381 DOI: 10.1016/j.molmet.2020.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND One of the fascinating aspects of epigenetic regulation is that it provides means to rapidly adapt to environmental change. This is particularly relevant in the plant kingdom, where most species are sessile and exposed to increasing habitat fluctuations due to global warming. Although the inheritance of epigenetically controlled traits acquired through environmental impact is a matter of debate, it is well documented that environmental cues lead to epigenetic changes, including chromatin modifications, that affect cell differentiation or are associated with plant acclimation and defense priming. Still, in most cases, the mechanisms involved are poorly understood. An emerging topic that promises to reveal new insights is the interaction between epigenetics and metabolism. SCOPE OF REVIEW This study reviews the links between metabolism and chromatin modification, in particular histone acetylation, histone methylation, and DNA methylation, in plants and compares them to examples from the mammalian field, where the relationship to human diseases has already generated a larger body of literature. This study particularly focuses on the role of reactive oxygen species (ROS) and nitric oxide (NO) in modulating metabolic pathways and gene activities that are involved in these chromatin modifications. As ROS and NO are hallmarks of stress responses, we predict that they are also pivotal in mediating chromatin dynamics during environmental responses. MAJOR CONCLUSIONS Due to conservation of chromatin-modifying mechanisms, mammals and plants share a common dependence on metabolic intermediates that serve as cofactors for chromatin modifications. In addition, plant-specific non-CG methylation pathways are particularly sensitive to changes in folate-mediated one-carbon metabolism. Finally, reactive oxygen and nitrogen species may fine-tune epigenetic processes and include similar signaling mechanisms involved in environmental stress responses in plants as well as animals.
Collapse
Affiliation(s)
- Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany.
| | - Eva Esther Rudolf
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany
| | - Martin Groth
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 München/Neuherberg, Germany.
| |
Collapse
|
14
|
Lisboa JVDC, Ribeiro MR, Luna RCP, Lima RPA, do Nascimento RAF, Monteiro MGCA, Lima KQDF, Fechine CPNDS, de Oliveira NFP, Persuhn DC, Veras RC, Gonçalves MDCR, Ferreira FELDL, Lima RT, da Silva AS, Diniz ADS, de Almeida ATC, de Moraes RM, Verly Junior E, Costa MJDC. Food Intervention with Folate Reduces TNF-α and Interleukin Levels in Overweight and Obese Women with the MTHFR C677T Polymorphism: A Randomized Trial. Nutrients 2020; 12:E361. [PMID: 32019154 PMCID: PMC7071147 DOI: 10.3390/nu12020361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated with body fat accumulation could possibly trigger an inflammatory process by elevating homocysteine levels and increasing cytokine production, causing several diseases. This study aimed to evaluate the effects of food intervention, and not folate supplements, on the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in overweight and obese women with the MTHFR C677T polymorphism. A randomized, double-blind eight-week clinical trial of 48 overweight and obese women was conducted. Participants were randomly assigned into two groups. They received 300 g of vegetables daily for eight weeks containing different doses of folate: 95 µg/day for Group 1 and 191 µg/day for Group 2. MTHFR C677T polymorphism genotyping was assessed by digestion with HinfI enzyme and on 12% polyacrylamide gels. Anthropometric measurements, 24-h dietary recall, and biochemical analysis (blood folic acid, vitamin B12, homocysteine (Hcy), TNF-α, IL-1β, and IL-6) were determined at the beginning and end of the study. Group 2 had a significant increase in folate intake (p < 0.001) and plasma folic acid (p < 0.05) for individuals with the cytosine-cytosine (CC), cytosine-thymine (CT), and thymine-thymine (TT) genotypes. However, only individuals with the TT genotype presented reduced levels of Hcy, TNF-α, IL-6, and IL-1β (p < 0.001). Group 1 showed significant differences in folate consumption (p < 0.001) and folic acid levels (p < 0.05) for individuals with the CT and TT genotypes. Food intervention with folate from vegetables increased folic acid levels and reduced interleukins, TNF-α, and Hcy levels, mainly for individuals with the TT genotype.
Collapse
Affiliation(s)
- Jéssica Vanessa de Carvalho Lisboa
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Marina Ramalho Ribeiro
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Rafaella Cristhine Pordeus Luna
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Raquel Patrícia Ataíde Lima
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Rayner Anderson Ferreira do Nascimento
- Postgraduate Program in Molecular and Human Biology, Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil;
| | - Mussara Gomes Cavalcante Alves Monteiro
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Keylha Querino de Farias Lima
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Carla Patrícia Novaes dos Santos Fechine
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | | | - Darlene Camati Persuhn
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Robson Cavalcante Veras
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Maria da Conceição Rodrigues Gonçalves
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Flávia Emília Leite de Lima Ferreira
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Roberto Teixeira Lima
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Alexandre Sérgio da Silva
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| | - Alcides da Silva Diniz
- Postgraduate Program in Nutrition Sciences, Federal University of Pernambuco, Recife 50670901, Brazil;
| | - Aléssio Tony Cavalcanti de Almeida
- Department of Economics, Postgraduate Program in App1lied Economics and Economics of the Public Sector, Center for Applied Social Sciences, Federal University of Paraíba, João Pessoa 58059-900, Brazil;
| | - Ronei Marcos de Moraes
- Postgraduate Program in Health Decision Models, Federal University of Paraíba, João Pessoa 58059-900, Brazil;
| | - Eliseu Verly Junior
- Department of Epidemiology, Institute of Social Medicine, State University of Rio de Janeiro, Rio de Janeiro 20550-900, Brazil;
| | - Maria José de Carvalho Costa
- Postgraduate Program in Nutrition Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa 58059-900, Brazil; (M.R.R.); (R.C.P.L.); (R.P.A.L.); (M.G.C.A.M.); (K.Q.d.F.L.); (C.P.N.d.S.F.); (D.C.P.); (R.C.V.); (M.d.C.R.G.); (F.E.L.d.L.F.); (R.T.L.); (A.S.d.S.); (M.J.d.C.C.)
| |
Collapse
|
15
|
Ren ZJ, Zhang YP, Ren PW, Yang B, Deng S, Peng ZF, Liu LR, Wei W, Dong Q. Contribution of MTR A2756G polymorphism and MTRR A66G polymorphism to the risk of idiopathic male infertility. Medicine (Baltimore) 2019; 98:e18273. [PMID: 31860974 PMCID: PMC6940140 DOI: 10.1097/md.0000000000018273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Methionine synthase reductase gene (MTRR A66G) polymorphism and methionine synthase gene (MTR A2756G) polymorphism have shown an association with idiopathic male infertility risk in several ethnic populations. However, their small sample sizes and inconsistent outcomes have prevented strong conclusions. We performed a meta-analysis with published studies to evaluate the associations of the 2 single nucleotide polymorphisms (SNPs) and idiopathic male infertility risk. METHODS A thorough literature search was performed up to Jun 21, 2019 with Medline, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), China Biology Medical literature (CBM), China Science and Technology Journal Database (VIP), and Chinese literature (Wan Fang) databases. Odds ratio (OR) and 95% confidence interval (95% CI) were used to assess the strength of associations. RESULTS Seventeen studies including 3269 cases and 3192 controls met the inclusion criteria. Our meta-analysis showed that the MTR A2756G mutation may contribute to genetic susceptibility to the risk of idiopathic male infertility in Non-Asians, but not to Asian population, whereas the MTRR A66G polymorphism may be unrelated to idiopathic male infertility in both Non-Asian and Asian populations. In the stratified analysis by infertility type, the MTR A2756G polymorphism was a risk factor for both non-obstructive azoospermia (NOA) and oligoasthenoteratozoospermia (OAT) patients. However, the MTRR A66G polymorphism is associated with risk for OAT in Asian, but not in Non-Asian population. CONCLUSION This meta-analysis suggested that the MTR A2756G and MTRR A66G polymorphisms were risk factors for idiopathic male infertility. Studies with larger sample sizes and representative population-based cases and well-matched controls are needed to validate our results.
Collapse
Affiliation(s)
- Zheng-Ju Ren
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Yan-Ping Zhang
- Department of Anesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing
| | - Peng-Wei Ren
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Shi Deng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Zhu-Feng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Liang-Ren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - WuRan Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan
| |
Collapse
|
16
|
Krupenko SA, Horita DA. The Role of Single-Nucleotide Polymorphisms in the Function of Candidate Tumor Suppressor ALDH1L1. Front Genet 2019; 10:1013. [PMID: 31737034 PMCID: PMC6831610 DOI: 10.3389/fgene.2019.01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Folate (vitamin B9) is a common name for a group of coenzymes that function as carriers of chemical moieties called one-carbon groups in numerous biochemical reactions. The combination of these folate-dependent reactions constitutes one-carbon metabolism, the name synonymous to folate metabolism. Folate coenzymes and associated metabolic pathways are vital for cellular homeostasis due to their key roles in nucleic acid biosynthesis, DNA repair, methylation processes, amino acid biogenesis, and energy balance. Folate is an essential nutrient because humans are unable to synthesize this coenzyme and must obtain it from the diet. Insufficient folate intake can ultimately increase risk of certain diseases, most notably neural tube defects. More than 20 enzymes are known to participate in folate metabolism. Single-nucleotide polymorphisms (SNPs) in genes encoding for folate enzymes are associated with altered metabolism, changes in DNA methylation and modified risk for the development of human pathologies including cardiovascular diseases, birth defects, and cancer. ALDH1L1, one of the folate-metabolizing enzymes, serves a regulatory function in folate metabolism restricting the flux of one-carbon groups through biosynthetic processes. Numerous studies have established that ALDH1L1 is often silenced or strongly down-regulated in cancers. The loss of ALDH1L1 protein positively correlates with the occurrence of malignant tumors and tumor aggressiveness, hence the enzyme is viewed as a candidate tumor suppressor. ALDH1L1 has much higher frequency of non-synonymous exonic SNPs than most other genes for folate enzymes. Common SNPs at the polymorphic loci rs3796191, rs2886059, rs9282691, rs2276724, rs1127717, and rs4646750 in ALDH1L1 exons characterize more than 97% of Europeans while additional common variants are found in other ethnic populations. The effects of these SNPs on the enzyme is not clear but studies indicate that some coding and non-coding ALDH1L1 SNPs are associated with altered risk of certain cancer types and it is also likely that specific haplotypes define the metabolic response to dietary folate. This review discusses the role of ALDH1L1 in folate metabolism and etiology of diseases with the focus on non-synonymous coding ALDH1L1 SNPs and their effects on the enzyme structure/function, metabolic role and association with cancer.
Collapse
Affiliation(s)
- Sergey A. Krupenko
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David A. Horita
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
17
|
Sharma S, Akundi RS. Mitochondria: A Connecting Link in the Major Depressive Disorder Jigsaw. Curr Neuropharmacol 2019; 17:550-562. [PMID: 29512466 PMCID: PMC6712299 DOI: 10.2174/1570159x16666180302120322] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Background Depression is a widespread phenomenon with varying degrees of pathology in different patients. Various hypotheses have been proposed for the cause and continuance of depression. Some of these include, but not limited to, the monoamine hypothesis, the neuroendocrine hypothesis, and the more recent epigenetic and inflammatory hypotheses. Objective In this article, we review all the above hypotheses with a focus on the role of mitochondria as the connecting link. Oxidative stress, respiratory activity, mitochondrial dynamics and metabolism are some of the mitochondria-dependent factors which are affected during depression. We also propose exogenous ATP as a contributing factor to depression. Result Literature review shows that pro-inflammatory markers are elevated in depressive individuals. The cause for elevated levels of cytokines in depression is not completely understood. We propose exogenous ATP activates purinergic receptors which in turn increase the levels of various pro-inflammatory factors in the pathophysiology of depression. Conclusion Mitochondria are integral to the function of neurons and undergo dysfunction in major depressive disorder patients. This dysfunction is reflected in all the various hypotheses that have been proposed for depression. Among the newer targets identified, which also involve mitochondria, includes the role of exogenous ATP. The diversity of purinergic receptors, and their differential expression among various individuals in the population, due to genetic and environmental (prenatal) influences, may influence the susceptibility and severity of depression. Identifying specific receptors involved and using patient-specific purinergic receptor antagonist may be an appropriate therapeutic course in the future.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ravi S Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
18
|
Min DJ, Vural S, Krushkal J. Association of transcriptional levels of folate-mediated one-carbon metabolism-related genes in cancer cell lines with drug treatment response. Cancer Genet 2019; 237:19-38. [DOI: 10.1016/j.cancergen.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
|
19
|
Maternal Haplotypes in DHFR Promoter and MTHFR Gene in Tuning Childhood Acute Lymphoblastic Leukemia Onset-Latency: Genetic/Epigenetic Mother/Child Dyad Study (GEMCDS). Genes (Basel) 2019; 10:genes10090634. [PMID: 31443485 PMCID: PMC6770441 DOI: 10.3390/genes10090634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) peaks around age 2–4, and in utero genetic epigenetic mother-fetus crosstalk might tune ALL onset during childhood life. Folate genes variably interact with vitamin status on ALL risk and prognosis. We investigated DHFR and MTHFR gene variants in 235 ALL children and their mothers to disclose their role in determining ALL onset age and survival. Pyrosequence of DHFR 19bp ins/del (rs70991108; W/D), MTHFR C677T (rs1801133; C>T), and MTHFR A1298C (rs1801131; A>C) was assessed in children and in 72% of mothers for dyad-analysis comparison. DHFR DD-children had delayed ALL onset compared to WW-children (7.5 ± 4.8 vs. 5.2 ± 3.7 years; P = 0.002) as well as MTHFR 1298 CC-children compared to AA-children (8.03 ± 4.8 vs. 5.78 ± 4.1 years; P = 0.006), and according to the strong linkage disequilibrium between MTHFR 677 T-allele and 1298C-allele, MTHFR TT-children showed early mean age of onset though not significant. Offspring of MTHFR 677 TT-mothers had earlier ALL onset compared to offspring of 677 CC-mothers (5.4 ± 3.3 vs. 7 ± 5.3 years; P = 0.017). DHFR/MTHFR 677 polymorphism combination influenced onset age by comparing DD/CC vs. WW/TT children (8.1 ± 5.7 vs. 4.7 ± 2.1 years; P = 0.017). Moreover, mother-child genotype combination gave 5.5-years delayed onset age in favor of DD-offspring of 677 CC-mothers vs. WW-offspring of 677 TT-mothers, and it was further confirmed including any D-carrier children and any 677 T-carrier mothers (P = 0.00052). Correction for multiple comparisons maintained statistical significance for DHFR ins/del and MTHFR A1298C polymorphisms. Unexpectedly, among the very-early onset group (<2.89 years; 25th), DD-genotype inversely clustered in children and mothers (4.8% vs. 23.8% respectively), and accordingly ALL offspring of homozygous DD-mothers had increased risk to have early-onset (adjusted OR (odds ratio) = 3.08; 1.1–8.6; P = 0.03). The opposite effect DHFR promoter variant has in tuning ALL onset-time depending on who is the carrier (i.e., mother or child) might suggest a parent-origin-effect of the D-allele or a two-faced epigenetic role driven by unbalanced folate isoform availability during the in-utero leukemogenesis responsible for the wide postnatal childhood ALL latency.
Collapse
|
20
|
James PT, Jawla O, Mohammed NI, Ceesay K, Akemokwe FM, Sonko B, Sise EA, Prentice AM, Silver MJ. A novel nutritional supplement to reduce plasma homocysteine in nonpregnant women: A randomised controlled trial in The Gambia. PLoS Med 2019; 16:e1002870. [PMID: 31408467 PMCID: PMC6691988 DOI: 10.1371/journal.pmed.1002870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Infant DNA methylation profiles are associated with their mother's periconceptional nutritional status. DNA methylation relies on nutritional inputs for one-carbon metabolic pathways, including the efficient recycling of homocysteine. This randomised controlled trial in nonpregnant women in rural Gambia tests the efficacy of a novel nutritional supplement designed to improve one-carbon-related nutrient status by reducing plasma homocysteine, and assesses its potential future use in preconception trials. METHODS AND FINDINGS We designed a novel drink powder based on determinants of plasma homocysteine in the target population and tested it in a three-arm, randomised, controlled trial. Nonpregnant women aged between 18 and 45 from the West Kiang region of The Gambia were randomised in a 1:1:1 allocation to 12 weeks daily supplementation of either (a) a novel drink powder (4 g betaine, 800 μg folic acid, 5.2 μg vitamin B12, and 2.8 mg vitamin B2), (b) a widely used multiple micronutrient tablet (United Nations Multiple Micronutrient Preparation [UNIMMAP]) containing 15 micronutrients, or (c) no intervention. The trial was conducted between March and July 2018. Supplementation was observed daily. Fasted venepuncture samples were collected at baseline, midline (week 5), and endline (week 12) to measure plasma homocysteine. We used linear regression models to determine the difference in homocysteine between pairs of trial arms at midline and endline, adjusted for baseline homocysteine, age, and body mass index (BMI). Blood pressure and pulse were measured as secondary outcomes. Two hundred and ninety-eight eligible women were enrolled and randomised. Compliance was >97.8% for both interventions. At endline (our primary endpoint), the drink powder and UNIMMAP reduced mean plasma homocysteine by 23.6% (-29.5 to -17.1) and 15.5% (-21.2 to -9.4), respectively (both p < 0.001), compared with the controls. Compared with UNIMMAP, the drink powder reduced mean homocysteine by 8.8% (-15.8 to -1.2; p = 0.025). The effects were stronger at midline. There was no effect of either intervention on blood pressure or pulse compared with the control at endline. Self-reported adverse events (AEs) were similar in both intervention arms. There were two serious AEs reported over the trial duration, both in the drink powder arm, but judged to be unrelated to the intervention. Limitations of the study include the use of a single targeted metabolic outcome, homocysteine. CONCLUSIONS The trial confirms that dietary supplements can influence metabolic pathways that we have shown in previous studies to predict offspring DNA methylation. Both supplements reduced homocysteine effectively and remain potential candidates for future epigenetic trials in pregnancy in rural Gambia. TRIAL REGISTRATION Clinicaltrials.gov Reference NCT03431597.
Collapse
Affiliation(s)
- Philip T. James
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | - Ousubie Jawla
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nuredin I. Mohammed
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kabiru Ceesay
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fatai M. Akemokwe
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bakary Sonko
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ebrima A. Sise
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matt J. Silver
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
21
|
Zou Y, Duan H, Li L, Chen X, Wang C. Quantification of polyglutamyl 5-methyltetrahydrofolate, monoglutamyl folate vitamers, and total folates in different berries and berry juice by UHPLC–MS/MS. Food Chem 2019; 276:1-8. [DOI: 10.1016/j.foodchem.2018.09.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/09/2018] [Accepted: 09/24/2018] [Indexed: 11/26/2022]
|
22
|
Do Gametes Woo? Evidence for Their Nonrandom Union at Fertilization. Genetics 2018; 207:369-387. [PMID: 28978771 DOI: 10.1534/genetics.117.300109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of inheritance in sexually reproducing organisms such as humans and laboratory mice is that gametes combine randomly at fertilization, thereby ensuring a balanced and statistically predictable representation of inherited variants in each generation. This principle is encapsulated in Mendel's First Law. But exceptions are known. With transmission ratio distortion, particular alleles are preferentially transmitted to offspring. Preferential transmission usually occurs in one sex but not both, and is not known to require interactions between gametes at fertilization. A reanalysis of our published work in mice and of data in other published reports revealed instances where any of 12 mutant genes biases fertilization, with either too many or too few heterozygotes and homozygotes, depending on the mutant gene and on dietary conditions. Although such deviations are usually attributed to embryonic lethality of the underrepresented genotypes, the evidence is more consistent with genetically-determined preferences for specific combinations of egg and sperm at fertilization that result in genotype bias without embryo loss. This unexpected discovery of genetically-biased fertilization could yield insights about the molecular and cellular interactions between sperm and egg at fertilization, with implications for our understanding of inheritance, reproduction, population genetics, and medical genetics.
Collapse
|
23
|
Barrington WT, Wulfridge P, Wells AE, Rojas CM, Howe SYF, Perry A, Hua K, Pellizzon MA, Hansen KD, Voy BH, Bennett BJ, Pomp D, Feinberg AP, Threadgill DW. Improving Metabolic Health Through Precision Dietetics in Mice. Genetics 2018; 208:399-417. [PMID: 29158425 PMCID: PMC5753872 DOI: 10.1534/genetics.117.300536] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
The incidence of diet-induced metabolic disease has soared over the last half-century, despite national efforts to improve health through universal dietary recommendations. Studies comparing dietary patterns of populations with health outcomes have historically provided the basis for healthy diet recommendations. However, evidence that population-level diet responses are reliable indicators of responses across individuals is lacking. This study investigated how genetic differences influence health responses to several popular diets in mice, which are similar to humans in genetic composition and the propensity to develop metabolic disease, but enable precise genetic and environmental control. We designed four human-comparable mouse diets that are representative of those eaten by historical human populations. Across four genetically distinct inbred mouse strains, we compared the American diet's impact on metabolic health to three alternative diets (Mediterranean, Japanese, and Maasai/ketogenic). Furthermore, we investigated metabolomic and epigenetic alterations associated with diet response. Health effects of the diets were highly dependent on genetic background, demonstrating that individualized diet strategies improve health outcomes in mice. If similar genetic-dependent diet responses exist in humans, then a personalized, or "precision dietetics," approach to dietary recommendations may yield better health outcomes than the traditional one-size-fits-all approach.
Collapse
Affiliation(s)
- William T Barrington
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
- Department of Biological Sciences, Genetics Program, North Carolina State University, Raleigh, North Carolina 27695
| | - Phillip Wulfridge
- Center for Epigenetics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ann E Wells
- UT-ORNL Graduate School of Genome Science and Technology, Department of Animal Science, University of Tennessee, Knoxville, Tennessee 37996
| | - Carolina Mantilla Rojas
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Selene Y F Howe
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
| | - Amie Perry
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843
| | - Kunjie Hua
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27559
| | | | - Kasper D Hansen
- Center for Epigenetics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, Maryland 21205
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205
- Nathan-McKusick Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Brynn H Voy
- UT-ORNL Graduate School of Genome Science and Technology, Department of Animal Science, University of Tennessee, Knoxville, Tennessee 37996
| | - Brian J Bennett
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27559
| | - Daniel Pomp
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27559
| | - Andrew P Feinberg
- Center for Epigenetics, Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, Maryland 21205
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas 77843
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843
- Faculty of Nutrition, Texas A&M University, College Station, Texas 77843
- Faculty of Genetics, Texas A&M University, College Station, Texas 77843
- Faculty of Toxicology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
24
|
Wang X, Guan Z, Dong Y, Zhu Z, Wang J, Niu B. Inhibition of thymidylate synthase affects neural tube development in mice. Reprod Toxicol 2017; 76:17-25. [PMID: 29258758 DOI: 10.1016/j.reprotox.2017.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 06/26/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Thymidylate synthase (TYMS) is a key enzyme in the de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP) from 2'-deoxyuridine-5'-monophosphate (dUMP). Our aim was to investigate the role of dTMP dysmetabolism via inhibition of TYMS by an inhibitor, 5-fluorouracil (5-FU) in the occurrence of neural tube defects (NTDs). We found that a high incidence of NTDs occurred after treatment with 5-FU at 12.5 mg/kg body weight. TYMS activity was significantly inhibited with decreased dTMP and accumulation of dUMP after 5-FU injection. The proliferation of neuroepithelial cells were markedly inhibited in NTDs compared with control. Expressions of proliferating cell nuclear antigen and phosphohistone H3 were significantly decreased in NTDs, while phosphorylated replication protein A2, P53 and Caspase3 were significantly increased in NTDs compared with control. These results indicated that inhibition of TYMS affected the balance between proliferation and apoptosis in neuroepithelial cells, which might shed some lights on the mechanisms involved in NTDs.
Collapse
Affiliation(s)
- Xiuwei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Zhen Guan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yanting Dong
- The Respiratory Department, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhiqiang Zhu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianhua Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
25
|
Desai M, Chauhan J. Analysis of polymorphisms in genes involved in folate metabolism and its impact on Down syndrome and other intellectual disability. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
26
|
Jones P, Lucock M, Veysey M, Jablonski N, Chaplin G, Beckett E. Frequency of folate-related polymorphisms varies by skin pigmentation. Am J Hum Biol 2017; 30. [DOI: 10.1002/ajhb.23079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/27/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Patrice Jones
- School of Environmental & Life Sciences, University of Newcastle; Ourimbah NSW Australia
| | - Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle; Ourimbah NSW Australia
| | - Martin Veysey
- Hull-York Medical School; University of York; Heslington York UK
| | - Nina Jablonski
- Anthropology Department; The Pennsylvania State University; Pennsylvania
| | - George Chaplin
- Anthropology Department; The Pennsylvania State University; Pennsylvania
| | - Emma Beckett
- School of Environmental & Life Sciences, University of Newcastle; Ourimbah NSW Australia
- School of Medicine and Public Health; University of Newcastle; Ourimbah NSW Australia
| |
Collapse
|
27
|
Ebara S. Nutritional role of folate. Congenit Anom (Kyoto) 2017; 57:138-141. [PMID: 28603928 DOI: 10.1111/cga.12233] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 12/11/2022]
Abstract
Folate functions as a coenzyme to transfer one-carbon units that are necessary for deoxythymidylate synthesis, purine synthesis, and various methylation reactions. Ingested folate becomes a functional molecule through intestinal absorption, circulation, transport to cells, and various modifications to its structure. Associations between nutritional folate status and chronic diseases such as cardiovascular disease, cancer, and cognitive dysfunction have been reported. It has also been reported that maternal folate nutritional status is related to the risk of neural tube defects (NTDs) in the offspring. It has also been recommended that folate be consumed in the diet to promote the maintenance of good health. To reduce the risk of NTDs, supplementation with folic acid (a synthetic form of folate) during the periconceptional period has also been recommended. This paper describes the basic features and nutritional role of folate.
Collapse
Affiliation(s)
- Shuhei Ebara
- School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan
| |
Collapse
|
28
|
Martín Tornero E, Espinosa-Mansilla A, Durán Merás I. High-performance liquid chromatography with fast-scanning fluorescence detection and post-column on-line photoderivatization for the analysis of folic acid and its metabolites in vegetables. Microchem J 2017. [DOI: 10.1016/j.microc.2017.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Burdennyy AM, Loginov VI, Zavarykina TM, Braga EA, Kubatiev AA. The role of molecular genetic alterations in genes involved in folate and homocysteine metabolism in multifactorial diseases pathogenesis. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417040044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Steluti J, Carvalho AM, Carioca AAF, Miranda A, Gattás GJF, Fisberg RM, Marchioni DM. Genetic Variants Involved in One-Carbon Metabolism: Polymorphism Frequencies and Differences in Homocysteine Concentrations in the Folic Acid Fortification Era. Nutrients 2017; 9:E539. [PMID: 28587068 PMCID: PMC5490518 DOI: 10.3390/nu9060539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/28/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Folate and other B vitamins are essential co-factors of one-carbon metabolism, and genetic variants, such as polymorphisms, can alter the metabolism. Furthermore, the adoption of food fortification with folic acid showed a decrease of homocysteine concentration. The aim of this study was to investigate the frequencies of the polymorphisms of enzymes and carrier proteins involved in one-carbon metabolism, and to evaluate homocysteine concentrations in the presence of these genetic variants in a population exposed to mandatory food fortification with folic acid. Using data from a population-based cross-sectional study in São Paulo, Brazil, the study population comprised 750 participants above 12 years of age of both genders. A linear regression model was used to evaluate the homocysteine concentrations according to genetic variants and folate level. The results showed that the minor allelic frequencies were 0.33 for MTHFR (rs1801133), 0.24 for MTHFR (rs1801131), 0.19 for MTR (rs1805087), 0.42 for MTRR (rs1801394), 0.46 for RFC1 (rs1051266), and 0.47 for DHFR (19-bp deletion). The genetic variants of MTHFR 677C>T, MTRR 66A>G and RFC-1 80G>A were different according to race. The homocysteine concentrations increased in the CT and TT compared to CC genotypes of polymorphism MTHFR 677C>T in all populations, and differences between the homocysteine concentrations according to the genotypes of MTHFR 677C>T were observed regardless of folate level.
Collapse
Affiliation(s)
- Josiane Steluti
- Department of Nutrition, School of Public Health, Sao Paulo University, Avenida Doutor Arnaldo, 715-Cerqueira César, São Paulo-SP, São Paulo 01246-904, Brazil.
| | - Aline M Carvalho
- Department of Nutrition, School of Public Health, Sao Paulo University, Avenida Doutor Arnaldo, 715-Cerqueira César, São Paulo-SP, São Paulo 01246-904, Brazil.
| | - Antonio A F Carioca
- Department of Nutrition, School of Public Health, Sao Paulo University, Avenida Doutor Arnaldo, 715-Cerqueira César, São Paulo-SP, São Paulo 01246-904, Brazil.
| | - Andreia Miranda
- Department of Nutrition, School of Public Health, Sao Paulo University, Avenida Doutor Arnaldo, 715-Cerqueira César, São Paulo-SP, São Paulo 01246-904, Brazil.
| | - Gilka J F Gattás
- Department of Legal Medicine, Bioethics and Occupational Health, School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455-Cerqueira César, São Paulo-SP, São Paulo 01246-903, Brazil.
| | - Regina M Fisberg
- Department of Nutrition, School of Public Health, Sao Paulo University, Avenida Doutor Arnaldo, 715-Cerqueira César, São Paulo-SP, São Paulo 01246-904, Brazil.
| | - Dirce M Marchioni
- Department of Nutrition, School of Public Health, Sao Paulo University, Avenida Doutor Arnaldo, 715-Cerqueira César, São Paulo-SP, São Paulo 01246-904, Brazil.
| |
Collapse
|
31
|
Bae S, Kamynina E, Farinola AF, Caudill MA, Stover PJ, Cassano PA, Berry R, Peña-Rosas JP. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2017. [DOI: 10.1002/14651858.cd012649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sajin Bae
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Elena Kamynina
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Adetutu F Farinola
- University of Ibadan; Faculty of Public Health, Department of Human Nutrition and Dietetics; Seat of Wisdom Chapel Ibadan Oyo State Nigeria 200282
| | - Marie A Caudill
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Patrick J Stover
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Patricia A Cassano
- Cornell University; Division of Nutritional Sciences; 324 Savage Hall 244 Garden Avenue Ithaca NY USA 14853
| | - Robert Berry
- Independent cosultant; 1376 N Decatur Rd NE Atlanta Georgia USA 30306
| | - Juan Pablo Peña-Rosas
- World Health Organization; Evidence and Programme Guidance, Department of Nutrition for Health and Development; 20 Avenue Appia Geneva GE Switzerland 1211
| |
Collapse
|
32
|
Xu J, Sinclair KD. One-carbon metabolism and epigenetic regulation of embryo development. Reprod Fertil Dev 2017; 27:667-76. [PMID: 25710200 DOI: 10.1071/rd14377] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
One-carbon (1C) metabolism consists of an integrated series of metabolic pathways that include the folate cycle and methionine remethylation and trans-sulfuration pathways. Most, but not all, 1C metabolic enzymes are expressed in somatic cells of the ovary, mammalian oocytes and in preimplantation embryos. The metabolic implications of this, with regard to the provision of methyl donors (e.g. betaine) and 1C cofactors (e.g. vitamin B12), together with consequences of polymorphic variances in genes encoding 1C enzymes, are not fully understood but are the subject of ongoing investigations at the authors' laboratory. However, deficiencies in 1C-related substrates and/or cofactors during the periconception period are known to lead to epigenetic alterations in DNA and histone methylation in genes that regulate key developmental processes in the embryo. Such epigenetic modifications have been demonstrated to negatively impact on the subsequent health and metabolism of offspring. For this reason, parental nutrition around the time of conception has become a focal point of investigation in many laboratories with the aim of providing improved nutritional advice to couples. These issues are considered in detail in this article, which offers a contemporary overview of the effects of 1C metabolism on epigenetic programming in mammalian gametes and the early embryo.
Collapse
Affiliation(s)
- Juan Xu
- School of Bioscience, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Kevin D Sinclair
- School of Bioscience, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK
| |
Collapse
|
33
|
Kamynina E, Lachenauer ER, DiRisio AC, Liebenthal RP, Field MS, Stover PJ. Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci U S A 2017; 114:E2319-E2326. [PMID: 28265077 PMCID: PMC5373342 DOI: 10.1073/pnas.1619745114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As2O3), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As2O3 exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As2O3 inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As2O3-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.
Collapse
Affiliation(s)
- Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Erica R Lachenauer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
- Graduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853
| | - Aislyn C DiRisio
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | | | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853;
- Graduate Field of Biology and Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
34
|
Baker BC, Mackie FL, Lean SC, Greenwood SL, Heazell AEP, Forbes K, Jones RL. Placental dysfunction is associated with altered microRNA expression in pregnant women with low folate status. Mol Nutr Food Res 2017; 61. [PMID: 28105727 PMCID: PMC5573923 DOI: 10.1002/mnfr.201600646] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/27/2016] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
SCOPE Low maternal folate status during pregnancy increases the risk of delivering small for gestational age (SGA) infants, but the mechanistic link between maternal folate status, SGA, and placental dysfunction is unknown. microRNAs (miRNAs) are altered in pregnancy pathologies and by folate in other systems. We hypothesized that low maternal folate status causes placental dysfunction, mediated by altered miRNA expression. METHODS AND RESULTS A prospective observational study recruited pregnant adolescents and assessed third trimester folate status and placental function. miRNA array, QPCR, and bioinformatics identified placental miRNAs and target genes. Low maternal folate status is associated with higher incidence of SGA infants (28% versus 13%, p < 0.05) and placental dysfunction, including elevated trophoblast proliferation and apoptosis (p < 0.001), reduced amino acid transport (p < 0.01), and altered placental hormones (pregnancy-associated plasma protein A, progesterone, and human placental lactogen). miR-222-3p, miR-141-3p, and miR-34b-5p were upregulated by low folate status (p < 0.05). Bioinformatics predicted a gene network regulating cell turnover. Quantitative PCR demonstrated that key genes in this network (zinc finger E-box binding homeobox 2, v-myc myelocytomatosis viral oncogene homolog (avian), and cyclin-dependent kinase 6) were reduced (p < 0.05) in placentas with low maternal folate status. CONCLUSION This study supports that placental dysfunction contributes to impaired fetal growth in women with low folate status and suggests altered placental expression of folate-sensitive miRNAs and target genes as a mechanistic link.
Collapse
Affiliation(s)
- Bernadette C Baker
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | - Fiona L Mackie
- Centre of Women's and Newborn's Health & Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Samantha C Lean
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| | | | - Karen Forbes
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Measurement of Histone Methylation Dynamics by One-Carbon Metabolic Isotope Labeling and High-energy Collisional Dissociation Methylation Signature Ion Detection. Sci Rep 2016; 6:31537. [PMID: 27530234 PMCID: PMC4987619 DOI: 10.1038/srep31537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that cellular metabolites and nutrition levels control epigenetic modifications, including histone methylation. However, it is not currently possible to measure the metabolic control of histone methylation. Here we report a novel detection method to monitor methyl transfer from serine to histones through the one-carbon metabolic pathway, using stable-isotope labeling and detection of lysine methylation signature ions generated in high-energy-dissociation (HCD) tandem mass spectrometry. This method is a long-needed tool to study the metabolic control of histone methylation.
Collapse
|
36
|
Desai A, Sequeira JM, Quadros EV. The metabolic basis for developmental disorders due to defective folate transport. Biochimie 2016; 126:31-42. [DOI: 10.1016/j.biochi.2016.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
|
37
|
One carbon metabolism and bone homeostasis and remodeling: A review of experimental research and population studies. Biochimie 2016; 126:115-23. [DOI: 10.1016/j.biochi.2016.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/08/2016] [Indexed: 01/22/2023]
|
38
|
Krushkal J, Zhao Y, Hose C, Monks A, Doroshow JH, Simon R. Concerted changes in transcriptional regulation of genes involved in DNA methylation, demethylation, and folate-mediated one-carbon metabolism pathways in the NCI-60 cancer cell line panel in response to cancer drug treatment. Clin Epigenetics 2016; 8:73. [PMID: 27347216 PMCID: PMC4919895 DOI: 10.1186/s13148-016-0240-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrant patterns of DNA methylation are abundant in cancer, and epigenetic pathways are increasingly being targeted in cancer drug treatment. Genetic components of the folate-mediated one-carbon metabolism pathway can affect DNA methylation and other vital cell functions, including DNA synthesis, amino acid biosynthesis, and cell growth. RESULTS We used a bioinformatics tool, the Transcriptional Pharmacology Workbench, to analyze temporal changes in gene expression among epigenetic regulators of DNA methylation and demethylation, and one-carbon metabolism genes in response to cancer drug treatment. We analyzed gene expression information from the NCI-60 cancer cell line panel after treatment with five antitumor agents, 5-azacytidine, doxorubicin, vorinostat, paclitaxel, and cisplatin. Each antitumor agent elicited concerted changes in gene expression of multiple pathway components across the cell lines. Expression changes of FOLR2, SMUG1, GART, GADD45A, MBD1, MTR, MTHFD1, and CTH were significantly correlated with chemosensitivity to some of the agents. Among many genes with concerted expression response to individual antitumor agents were genes encoding DNA methyltransferases DNMT1, DNMT3A, and DNMT3B, epigenetic and DNA repair factors MGMT, GADD45A, and MBD1, and one-carbon metabolism pathway members MTHFD1, TYMS, DHFR, MTR, MAT2A, SLC19A1, ATIC, and GART. CONCLUSIONS These transcriptional changes are likely to influence vital cellular functions of DNA methylation and demethylation, cellular growth, DNA biosynthesis, and DNA repair, and some of them may contribute to cytotoxic and apoptotic action of the drugs. This concerted molecular response was observed in a time-dependent manner, which may provide future guidelines for temporal selection of genetic drug targets for combination drug therapy treatment regimens.
Collapse
Affiliation(s)
- Julia Krushkal
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| | - Yingdong Zhao
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| | - Curtis Hose
- />Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Anne Monks
- />Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - James H. Doroshow
- />Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892 USA
| | - Richard Simon
- />Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD 20850 USA
| |
Collapse
|
39
|
Moreno FS, Heidor R, Pogribny IP. Nutritional Epigenetics and the Prevention of Hepatocellular Carcinoma with Bioactive Food Constituents. Nutr Cancer 2016; 68:719-33. [DOI: 10.1080/01635581.2016.1180410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Ding YP, Pedersen EKR, Johansson S, Gregory JF, Ueland PM, Svingen GFT, Helgeland Ø, Meyer K, Fredriksen Å, Nygård OK. B vitamin treatments modify the risk of myocardial infarction associated with a MTHFD1 polymorphism in patients with stable angina pectoris. Nutr Metab Cardiovasc Dis 2016; 26:495-501. [PMID: 26803590 DOI: 10.1016/j.numecd.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Methylenetetrahydrofolate dehydrogenase (MTHFD1) catalyzes three sequential reactions that metabolize derivatives of tetrahydrofolate (THF) in folate-dependent one-carbon metabolism. Impaired MTHFD1 flux has been linked to disturbed lipid metabolism and oxidative stress. However, limited information is available on its relation to the development of atherothrombotic cardiovascular disease. METHODS AND RESULTS We explored the association between a MTHFD1 polymorphism (rs1076991 C > T) and acute myocardial infarction (AMI), and potential effect modifications by folic acid/B12 and/or vitamin B6 treatment in suspected stable angina pectoris patients (n = 2381) participating in the randomized Western Norway B Vitamin Intervention Trial (WENBIT). During the median follow-up of 4.9 years 204 participants (8.6%) suffered an AMI. After adjusting for established CVD risk factors, the MTHFD1 polymorphism was significantly associated with AMI (HR: 1.49; 95% CI, 1.23-1.81). A similar association was observed among patients allocated to treatment with vitamin B6 alone (HR: 1.53; 95% CI, 1.01-2.31), and an even stronger relationship was seen in patients treated with both vitamin B6 and folic acid/B12 (HR: 2.35; 95% CI, 1.55-3.57). However, no risk association between the MTHFD1 polymorphism and AMI was seen in patients treated with placebo (HR: 1.29; 95% CI, 0.86-1.93) or folic acid/B12 (1.17; 95% CI, 0.83-1.65). CONCLUSION A common and functional MTHFD1 polymorphism is associated with increased risk of AMI, although the risk seems to be dependent on specific B vitamin treatment. Further studies are warranted to elucidate the possible mechanisms, also in order to explore potential effect modifications by nutritional factors.
Collapse
Affiliation(s)
- Y P Ding
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway.
| | - E K R Pedersen
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - S Johansson
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen 5021, Norway
| | - J F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - P M Ueland
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen 5021, Norway
| | - G F T Svingen
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - Ø Helgeland
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - K Meyer
- Bevital AS, Bergen 5020, Norway
| | - Å Fredriksen
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway
| | - O K Nygård
- Department of Clinical Science, University of Bergen, Bergen 5021, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen 5021, Norway; KG Jebsen Center for Diabetes Research, Haukeland University Hospital, Bergen 5021, Norway
| |
Collapse
|
41
|
Liu Y, Walkey CJ, Green TJ, van Vuuren HJ, Kitts DD. Enhancing the natural folate level in wine using bioengineering and stabilization strategies. Food Chem 2016; 194:26-31. [DOI: 10.1016/j.foodchem.2015.07.138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/07/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
|
42
|
Sudiwala S, De Castro SCP, Leung KY, Brosnan JT, Brosnan ME, Mills K, Copp AJ, Greene NDE. Formate supplementation enhances folate-dependent nucleotide biosynthesis and prevents spina bifida in a mouse model of folic acid-resistant neural tube defects. Biochimie 2016; 126:63-70. [PMID: 26924399 PMCID: PMC4909716 DOI: 10.1016/j.biochi.2016.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/19/2016] [Indexed: 11/27/2022]
Abstract
The curly tail mouse provides a model for neural tube defects (spina bifida and exencephaly) that are resistant to prevention by folic acid. The major ct gene, responsible for spina bifida, corresponds to a hypomorphic allele of grainyhead-like 3 (Grhl3) but the frequency of NTDs is strongly influenced by modifiers in the genetic background. Moreover, exencephaly in the curly tail strain is not prevented by reinstatement of Grhl3 expression. In the current study we found that expression of Mthfd1L, encoding a key component of mitochondrial folate one-carbon metabolism (FOCM), is significantly reduced in ct/ct embryos compared to a partially congenic wild-type strain. This expression change is not attributable to regulation by Grhl3 or the genetic background at the Mthfd1L locus. Mitochondrial FOCM provides one-carbon units as formate for FOCM reactions in the cytosol. We found that maternal supplementation with formate prevented NTDs in curly tail embryos and also resulted in increased litter size. Analysis of the folate profile of neurulation-stage embryos showed that formate supplementation resulted in an increased proportion of formyl-THF and THF but a reduction in proportion of 5-methyl THF. In contrast, THF decreased and 5-methyl THF was relatively more abundant in the liver of supplemented dams than in controls. In embryos cultured through the period of spinal neurulation, incorporation of labelled thymidine and adenine into genomic DNA was suppressed by supplemental formate, suggesting that de novo folate-dependent biosynthesis of nucleotides (thymidylate and purines) was enhanced. We hypothesise that reduced Mthfd1L expression may contribute to susceptibility to NTDs in the curly tail strain and that formate acts as a one-carbon donor to prevent NTDs. Neural tube defects in curly tail (ct/ct) embryos are not preventable by folic acid. Expression of Mthfd1L is diminished in ct/ct (Grhl3 hypomorph) embryos. Mthfd1L acts in mitochondrial folate one-carbon metabolism to generate formate. Supplemental formate reduces the frequency of neural tube defects in ct/ct embryos. Formate alters folate profiles of maternal liver and embryos and enhances folate-dependent nucleotide biosynthesis.
Collapse
Affiliation(s)
- Sonia Sudiwala
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Sandra C P De Castro
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Kit-Yi Leung
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, A1B3X9, Canada
| | - Kevin Mills
- Genetics & Genomic Medicine Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
43
|
Maddocks ODK, Labuschagne CF, Adams PD, Vousden KH. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells. Mol Cell 2016; 61:210-21. [PMID: 26774282 PMCID: PMC4728077 DOI: 10.1016/j.molcel.2015.12.014] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/02/2015] [Accepted: 12/03/2015] [Indexed: 12/22/2022]
Abstract
Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids.
Collapse
Affiliation(s)
| | | | - Peter D Adams
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK; University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow, G61 1QH, UK
| | - Karen H Vousden
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK.
| |
Collapse
|
44
|
Nilsson TK, Hurtig-Wennlöf A, Sjöström M, Herrmann W, Obeid R, Owen JR, Zeisel S. Plasma 1-carbon metabolites and academic achievement in 15-yr-old adolescents. FASEB J 2016; 30:1683-8. [PMID: 26728177 DOI: 10.1096/fj.15-281097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/14/2015] [Indexed: 11/11/2022]
Abstract
Academic achievement in adolescents is correlated with 1-carbon metabolism (1-CM), as folate intake is positively related and total plasma homocysteine (tHcy) negatively related to academic success. Because another 1-CM nutrient, choline is essential for fetal neurocognitive development, we hypothesized that choline and betaine could also be positively related to academic achievement in adolescents. In a sample of 15-yr-old children (n= 324), we measured plasma concentrations of homocysteine, choline, and betaine and genotyped them for 2 polymorphisms with effects on 1-CM, methylenetetrahydrofolate reductase (MTHFR) 677C>T, rs1801133, and phosphatidylethanolamineN-methyltransferase (PEMT), rs12325817 (G>C). The sum of school grades in 17 major subjects was used as an outcome measure for academic achievement. Lifestyle and family socioeconomic status (SES) data were obtained from questionnaires. Plasma choline was significantly and positively associated with academic achievement independent of SES factors (paternal education and income, maternal education and income, smoking, school) and of folate intake (P= 0.009,R(2)= 0.285). With the addition of thePEMTrs12325817 polymorphism, the association value was only marginally changed. Plasma betaine concentration, tHcy, and theMTHFR677C>T polymorphism did not affect academic achievement in any tested model involving choline. Dietary intake of choline is marginal in many adolescents and may be a public health concern.-Nilsson, T. K., Hurtig-Wennlöf, A., Sjöström, M., Herrmann, W., Obeid, R., Owen, J. R., Zeisel, S. Plasma 1-carbon metabolites and academic achievement in 15-yr-old adolescents.
Collapse
Affiliation(s)
- Torbjörn K Nilsson
- *Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umeå, Sweden; Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany; Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, North Carolina, USA; and Department of Nutrition, University of North Carolina Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anita Hurtig-Wennlöf
- *Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umeå, Sweden; Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany; Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, North Carolina, USA; and Department of Nutrition, University of North Carolina Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael Sjöström
- *Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umeå, Sweden; Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany; Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, North Carolina, USA; and Department of Nutrition, University of North Carolina Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Herrmann
- *Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umeå, Sweden; Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany; Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, North Carolina, USA; and Department of Nutrition, University of North Carolina Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rima Obeid
- *Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umeå, Sweden; Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany; Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, North Carolina, USA; and Department of Nutrition, University of North Carolina Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer R Owen
- *Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umeå, Sweden; Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany; Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, North Carolina, USA; and Department of Nutrition, University of North Carolina Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven Zeisel
- *Department of Medical Biosciences/Clinical Chemistry, Umeå University, Umeå, Sweden; Faculty of Medicine and Health, School of Health and Medical Sciences, Örebro University, Örebro, Sweden; Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg/Saar, Germany; Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, North Carolina, USA; and Department of Nutrition, University of North Carolina Gillings School of Global Public Health, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
45
|
Postnatal epigenetic regulation of intestinal stem cells requires DNA methylation and is guided by the microbiome. Genome Biol 2015; 16:211. [PMID: 26420038 PMCID: PMC4589031 DOI: 10.1186/s13059-015-0763-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/28/2015] [Indexed: 01/09/2023] Open
Abstract
Background DNA methylation is an epigenetic mechanism central to development and maintenance of complex mammalian tissues, but our understanding of its role in intestinal development is limited. Results We use whole genome bisulfite sequencing, and find that differentiation of mouse colonic intestinal stem cells to intestinal epithelium is not associated with major changes in DNA methylation. However, we detect extensive dynamic epigenetic changes in intestinal stem cells and their progeny during the suckling period, suggesting postnatal epigenetic development in this stem cell population. We find that postnatal DNA methylation increases at 3′ CpG islands (CGIs) correlate with transcriptional activation of glycosylation genes responsible for intestinal maturation. To directly test whether 3′ CGI methylation regulates transcription, we conditionally disrupted two major DNA methyltransferases, Dnmt1 or Dnmt3a, in fetal and adult intestine. Deficiency of Dnmt1 causes severe intestinal abnormalities in neonates and disrupts crypt homeostasis in adults, whereas Dnmt3a loss was compatible with intestinal development. These studies reveal that 3′ CGI methylation is functionally involved in the regulation of transcriptional activation in vivo, and that Dnmt1 is a critical regulator of postnatal epigenetic changes in intestinal stem cells. Finally, we show that postnatal 3′ CGI methylation and associated gene activation in intestinal epithelial cells are significantly altered by germ-free conditions. Conclusions Our results demonstrate that the suckling period is critical for epigenetic development of intestinal stem cells, with potential important implications for lifelong gut health, and that the gut microbiome guides and/or facilitates these postnatal epigenetic processes. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0763-5) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Abstract
Vitamin B-12 deficiency (<148 pmol/L) is associated with adverse maternal and neonatal outcomes, including developmental anomalies, spontaneous abortions, preeclampsia, and low birth weight (<2500 g). The importance of adequate vitamin B-12 status periconceptionally and during pregnancy cannot be overemphasized, given its fundamental role in neural myelination, brain development, and growth. Infants born to vitamin B-12-deficient women may be at increased risk of neural tube closure defects, and maternal vitamin B-12 insufficiency (<200 pmol/L) can impair infant growth, psychomotor function, and brain development, which may be irreversible. However, the underlying causal mechanisms are unknown. This review was conducted to examine the evidence that links maternal vitamin B-12 status and perinatal outcomes. Despite the high prevalence of vitamin B-12 deficiency and associated risk of pregnancy complications, few prospective studies and, to our knowledge, only 1 randomized trial have examined the effects of vitamin B-12 supplementation during pregnancy. The role of vitamin B-12 in the etiology of adverse perinatal outcomes needs to be elucidated to inform public health interventions.
Collapse
Affiliation(s)
- Julia L Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; and St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | | | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; and
| |
Collapse
|
47
|
You YA, Lee JH, Kwon EJ, Yoo JY, Kwon WS, Pang MG, Kim YJ. Proteomic Analysis of One-carbon Metabolism-related Marker in Liver of Rat Offspring. Mol Cell Proteomics 2015; 14:2901-9. [PMID: 26342040 PMCID: PMC4638034 DOI: 10.1074/mcp.m114.046888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Indexed: 01/17/2023] Open
Abstract
Maternal food intake has a significant effect on the fetal environment, and an inadequate maternal diet may result in intrauterine growth restriction. Intrauterine growth restriction newborn rat pups nursed by normal diet-fed dams exhibited rapid catch-up growth, which plays a critical role in the risk for metabolic and cardiovascular disease in later life. Specifically, one-carbon metabolism in the liver plays a critical role in placental and fetal growth. Impaired functioning of one-carbon metabolism is associated with increased homocysteine levels. In this study, we applied a comprehensive proteomic approach to identify differential expression of proteins related to one-carbon metabolism in the livers of rat offspring as an effect of maternal food restriction during gestation. Data are available via ProteomeXchange with identifier PXD002578. We determined that betaine-homocysteine S-methyltransferase 1, methylenetetrahydrofolate dehydrogenase 1, and ATP synthase subunit beta mitochondrial (ATP5B) expression levels were significantly reduced in the livers of rat offspring exposed to maternal food restriction during gestation compared with in the offspring of rats fed a normal diet (p < 0.05). Moreover, the expression levels of betaine-homocysteine S-methyltransferase 1, methylenetetrahydrofolate dehydrogenase 1, and ATP synthase subunit beta mitochondrial were negatively correlated with serum homocysteine concentration in male offspring exposed to maternal food restriction during gestation and normal diet during lactation. However, in female offspring only expression levels of methylenetetrahydrofolate dehydrogenase 1 were negatively correlated with homocysteine concentration. This study shows that maternal food restriction during late gestation and normal diet during lactation lead to increased homocysteine concentration through disturbance of one-carbon metabolism in the livers of male offspring. This suggests that male offspring have an increased gender-specific susceptibility to disease in later life through fetal programming.
Collapse
Affiliation(s)
- Young-Ah You
- From the ‡Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, Korea
| | - Ji Hye Lee
- §Department of Obstetrics and Gynecology, Ewha Womans University, Seoul, 158-710, Korea
| | - Eun Jin Kwon
- §Department of Obstetrics and Gynecology, Ewha Womans University, Seoul, 158-710, Korea
| | - Jae Young Yoo
- From the ‡Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, Korea
| | - Woo-Sung Kwon
- ¶Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Korea
| | - Myung-Geol Pang
- ¶Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Korea
| | - Young Ju Kim
- From the ‡Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, Korea; §Department of Obstetrics and Gynecology, Ewha Womans University, Seoul, 158-710, Korea;
| |
Collapse
|
48
|
Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF, Mills JL, Pfeiffer CM, Fazili Z, Zhang M, Ueland PM, Molloy AM, Caudill MA, Shane B, Berry RJ, Bailey RL, Hausman DB, Raghavan R, Raiten DJ. Biomarkers of Nutrition for Development-Folate Review. J Nutr 2015; 145:1636S-1680S. [PMID: 26451605 PMCID: PMC4478945 DOI: 10.3945/jn.114.206599] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/11/2014] [Accepted: 04/14/2015] [Indexed: 12/13/2022] Open
Abstract
The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate's history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development.
Collapse
Affiliation(s)
- Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA;
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Helene McNulty
- Northern Ireland Centre for Food and Health, Biomedical Sciences Research Institute, University of Ulster, Londonderry, United Kingdom
| | - Michael F Fenech
- Genome Health Nutrigenomics Laboratory, Food, Nutrition, and Bioproducts Flagship, Commonwealth Scientific and Industrial Research Organization, Adelaide, Australia
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - James L Mills
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | | | - Zia Fazili
- National Center for Environmental Health, CDC, Atlanta, GA
| | - Mindy Zhang
- National Center for Environmental Health, CDC, Atlanta, GA
| | - Per M Ueland
- Department of Clinical Science, Univeristy of Bergen, Bergen, Norway
| | - Anne M Molloy
- Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA; and
| | | | - Dorothy B Hausman
- Department of Foods and Nutrition, University of Georgia, Athens, GA
| | - Ramkripa Raghavan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD;
| |
Collapse
|
49
|
Semmler A, Heese P, Stoffel-Wagner B, Muschler M, Heberlein A, Bigler L, Prost JC, Frieling H, Kornhuber J, Banger M, Bleich S, Hillemacher T, Linnebank M. Alcohol abuse and cigarette smoking are associated with global DNA hypermethylation: results from the German Investigation on Neurobiology in Alcoholism (GINA). Alcohol 2015; 49:97-101. [PMID: 25702197 DOI: 10.1016/j.alcohol.2015.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/16/2014] [Accepted: 01/02/2015] [Indexed: 02/04/2023]
Abstract
Recent studies have shown that smoking and alcoholism may be associated with altered DNA methylation and that alcohol consumption might induce changes in DNA methylation by altering homocysteine metabolism. In this monocenter study, we included 363 consecutive patients referred for hospitalization for alcohol detoxification treatment. Blood samples were obtained on treatment days 1, 3, and 7 for measurement of global DNA methylation in leukocytes by liquid chromatography tandem mass spectrometry. Genomic DNA was used for genotyping the following seven genetic variants of homocysteine metabolism: cystathionine beta-synthase (CBS) c.844_855ins68, dihydrofolate-reductase (DHFR) c.594 + 59del19bp, methylenetetrahydrofolate-reductase (MTHFR) c.677C > T and c.1298A > C, methyltetrahydrofolate-transferase (MTR) c.2756A > G, reduced folate carrier 1 (RFC1) c.80G > A, and transcobalamin 2 c.776C > G. Multivariate linear regression showed a positive correlation of global DNA methylation with alcohol consumption and smoking on day 1 of hospitalization. DNA methylation was not correlated with homocysteine or vitamin plasma levels, nor with the tested genetic variants of homocysteine metabolism. This suggests a direct effect of alcohol consumption and smoking on DNA methylation, which is not mediated by effects of alcohol on homocysteine metabolism.
Collapse
|
50
|
Abstract
There is now considerable epidemiological and experimental evidence indicating that early-life environmental conditions, including nutrition, affect subsequent development in later life. These conditions induce highly integrated responses in endocrine-related homeostasis, resulting in persistent changes in the developmental trajectory producing an altered adult phenotype. Early-life events trigger processes that prepare the individual for particular circumstances that are anticipated in the postnatal environment. However, where the intrauterine and postnatal environments differ markedly, such modifications to the developmental trajectory may prove maladaptive in later life. Reproductive maturation and function are similarly influenced by early-life events. This should not be surprising, because the primordial follicle pool is established early in life and is thus vulnerable to early-life events. Results of clinical and experimental studies have indicated that early-life adversity is associated with a decline in ovarian follicular reserve, changes in ovulation rates, and altered age at onset of puberty. However, the underlying mechanisms regulating the relationship between the early-life developmental environment and postnatal reproductive development and function are unclear. This review examines the evidence linking early-life nutrition and effects on the female reproductive system, bringing together clinical observations in humans and experimental data from targeted animal models.
Collapse
Affiliation(s)
- K A Chan
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| | - M W Tsoulis
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| | - D M Sloboda
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1 Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1 Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|