1
|
Altunkaynak HO, Karaismailoglu E, Massy ZA. The Ability of AST-120 to Lower the Serum Indoxyl Sulfate Level Improves Renal Outcomes and the Lipid Profile in Diabetic and Nondiabetic Animal Models of Chronic Kidney Disease: A Meta-Analysis. Toxins (Basel) 2024; 16:544. [PMID: 39728802 DOI: 10.3390/toxins16120544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
The therapeutic benefit of the oral adsorbent drug AST-120 in chronic kidney disease (CKD) is related to an indoxyl sulfate (IS)-lowering action. Diabetes and dyslipidemia might worsen kidney damage in CKD. However, it is not known whether AST-120 influences lipid abnormalities as well as renal function in patients with CKD and diabetes. The objective of the present meta-analysis was to evaluate the efficacy of AST-120 treatment in CKD using data from preclinical studies. Mixed-effect or random-effect models were used to estimate the standardized mean difference (SMD) and the 95% confidence interval (CI). Publication bias was assessed with a funnel plot and Egger's test. The potential influence of some variables (the dose and duration of AST-120 treatment, the animal species, and the CKD model's diabetic status) was evaluated in subgroup analyses. Treatment with AST-120 was associated with a significantly lower IS level in animals with CKD (SMD = -1.75; 95% CI = -2.00, -1.49; p < 0.001). Significant improvements in markers of renal function and the lipid profile were also observed. In subgroup analyses of the cholesterol level, the diabetic status, the AST-120 dose, and the animal species were found to be influential factors. AST-120 lowered serum IS and triglyceride levels and improved renal function in animal models of CKD independent of diabetes status. However, AST-120's ability to lower the total cholesterol level was more prominent in animals with diabetic CKD.
Collapse
Affiliation(s)
- Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, 06018 Ankara, Turkey
| | - Eda Karaismailoglu
- Department of Medical Informatics, Gulhane Faculty of Medicine, University of Health Sciences, 06018 Ankara, Turkey
| | - Ziad A Massy
- Association pour L'utilisation du rein Artificiel en Région Parisienne (AURA), 75014 Paris, France
- Department of Nephrology, CHU Ambroise Paré, APHP, Boulogne Billancourt, 92100 Paris Cedex, France
- Centre for Research in Epidemiology and Population Health, University Paris-Saclay, University Versailles-Saint Quentin, Inserm UMRS 1018, Clinical Epidemiology Team, 94000 Villejuif, France
| |
Collapse
|
2
|
Fu Q, Yang Y, Tian Q, Zhu Y, Xu H, Wang J, Huang Q. Exploring the mechanism of Paotianxiong polysaccharide in the treatment of chronic kidney disease combining metabolomics and microbiomics technologies. Int J Biol Macromol 2024; 289:138629. [PMID: 39667450 DOI: 10.1016/j.ijbiomac.2024.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A close relationship between the pathogenesis of chronic kidney disease (CKD) and abnormalities in the gut-kidney axis. Paotianxiong polysaccharides (PTXP) that have demonstrated therapeutic effects on CKD. However, the specific mechanism by which PTXP ameliorates CKD through the gut-kidney axis remains to be explored. In this study, the microbiomes and metabolomics were combined to investigate the impact of PTXP on intestinal flora structure and metabolism, further unveiling the relationship through correlation analysis. The results showed that PTXP intervention significantly modulated renal function abnormalities in CKD rats and significantly modulates gut microbial disorders, evidenced by an increased abundance of Lactobacillus murinus, Bacteroides fragilis, and a decreased abundance of Bifidobacterium pseudolongum. Furthermore, PTXP reversed the changes in intestinal metabolites, such as linoleic acid and docosahexaenoic acid, induced by CKD and identified unsaturated fatty acid metabolism as a key metabolic pathway. Correlation analyses also revealed associations among gut microorganisms, metabolites, and renal function indexes, confirming that PTXP alleviated CKD through the gut-kidney axis. Moreover, the above conclusions were verified by fecal bacteria transplantation experiments. These findings provide insights into the mechanism of PTXP for the treatment of CKD and provide new targets for the treatment of CKD.
Collapse
Affiliation(s)
- Qinwen Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Yu Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Qingqing Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Ying Zhu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Huiyuan Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Jin Wang
- College of Ethnic Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Ghajavand B, Avesani C, Stenvinkel P, Bruchfeld A. Unlocking the Potential of Brewers' Spent Grain: A Sustainable Model to Use Beer for Better Outcome in Chronic Kidney Disease. J Ren Nutr 2024; 34:482-492. [PMID: 38621435 DOI: 10.1053/j.jrn.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The rising global incidence of chronic inflammatory diseases calls for innovative and sustainable medical solutions. Brewers' spent grain (BSG), a byproduct of beer production, presents a unique opportunity in this regard. This review explores the multifaceted health benefits of BSG, with a focus on managing chronic kidney disease (CKD). BSG is identified as a potent prebiotic with potential as a therapeutic agent in CKD. We emphasize the role of gut dysbiosis in CKD and discuss how BSG could help mitigate metabolic derangements resulting from dysbiosis and CKD. Fermentation of BSG further enhances its positive impact on gut health. Incorporating fermented BSG as a key component in preventive health care could promote a more sustainable and healthier future. By optimizing the use of this typically discarded byproduct, we can align proactive health-care strategies with responsible resource management, benefiting both people and the environment.
Collapse
Affiliation(s)
- Babak Ghajavand
- Department of Renal Medicine, Linköping University Hospital, Linköping, Sweden.
| | - Carla Avesani
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Liu H, Diep TN, Wang Y, Wang Y, Yan LJ. Diabetic Kidney Disease: Contribution of Phenyl Sulfate Derived from Dietary Tyrosine upon Gut Microbiota Catabolism. Biomolecules 2024; 14:1153. [PMID: 39334919 PMCID: PMC11429668 DOI: 10.3390/biom14091153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Deranged gut microbiota can release increased levels of uremic toxins leading to exacerbated kidney injury. In diabetic kidney disease (DKD), phenyl sulfate (PS) derived from tyrosine catabolism by gut microbiota has been demonstrated to be both an early diagnostic marker and a therapeutic target. In this perspective article, we summarize PS generation pathways and recent findings on PS and kidney injury in DKD. Increasing evidence has shown that the underlying mechanisms of PS-induced kidney injury mainly involve oxidative stress, redox imbalance, and mitochondrial dysfunction, which all may be targeted to attenuate PS-induced kidney injury. For future research directions, we think that a deeper understanding of the pathogenic role of PS in kidney injury using a variety of diabetic animal models should be investigated. Moreover, we also suggest beneficial approaches that could be used to mitigate the deleterious effect of PS on the kidney. These approaches include caloric restriction, tyrosine restriction, and administration of ketogenic drugs, ketogenic diets or natural products; all of which should be conducted under obese and diabetic conditions.
Collapse
Affiliation(s)
- Haoxin Liu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tram N Diep
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ying Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Bakinowska E, Olejnik-Wojciechowska J, Kiełbowski K, Skoryk A, Pawlik A. Pathogenesis of Sarcopenia in Chronic Kidney Disease-The Role of Inflammation, Metabolic Dysregulation, Gut Dysbiosis, and microRNA. Int J Mol Sci 2024; 25:8474. [PMID: 39126043 PMCID: PMC11313360 DOI: 10.3390/ijms25158474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic kidney disease (CKD) is a progressive disorder associated with a decline in kidney function. Consequently, patients with advanced stages of CKD require renal replacement therapies, such as dialysis and kidney transplantation. Various conditions lead to the development of CKD, including diabetes mellitus, hypertension, and glomerulonephritis, among others. The disease is associated with metabolic and hormonal dysregulation, including uraemia and hyperparathyroidism, as well as with low-grade systemic inflammation. Altered homeostasis increases the risk of developing severe comorbidities, such as cardiovascular diseases or sarcopenia, which increase mortality. Sarcopenia is defined as a progressive decline in muscle mass and function. However, the precise mechanisms that link CKD and the development of sarcopenia are poorly understood. Knowledge about these linking mechanisms might lead to the introduction of precise treatment strategies that could prevent muscle wasting. This review discusses inflammatory mediators, metabolic and hormonal dysregulation, gut microbiota dysbiosis, and non-coding RNA alterations that could link CKD and sarcopenia.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
- Independent Laboratory of Community Nursing, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Anastasiia Skoryk
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (J.O.-W.); (K.K.); (A.S.)
| |
Collapse
|
6
|
Liabeuf S, Hafez G, Pešić V, Spasovski G, Bobot M, Mačiulaitis R, Bumblyte IA, Ferreira AC, Farinha A, Malyszko J, Pépin M, Massy ZA, Unwin R, Capasso G, Mani LY. Drugs with a negative impact on cognitive functions (part 3): antibacterial agents in patients with chronic kidney disease. Clin Kidney J 2024; 17:sfae174. [PMID: 39114495 PMCID: PMC11304602 DOI: 10.1093/ckj/sfae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Indexed: 08/10/2024] Open
Abstract
The relationship between chronic kidney disease (CKD) and cognitive function has received increased attention in recent years. Antibacterial agents (ABs) represent a critical component of therapy regimens in patients with CKD due to increased susceptibility to infections. Following our reviewing work on the neurocognitive impact of long-term medications in patients with CKD, we propose to focus on AB-induced direct and indirect consequences on cognitive function. Patients with CKD are predisposed to adverse drug reactions (ADRs) due to altered drug pharmacokinetics, glomerular filtration decline, and the potential disruption of the blood-brain barrier. ABs have been identified as a major cause of ADRs in vulnerable patient populations. This review examines the direct neurotoxic effects of AB classes (e.g. beta-lactams, fluoroquinolones, aminoglycosides, and metronidazole) on the central nervous system (CNS) in patients with CKD. We will mainly focus on the acute effects on the CNS associated with AB since they are the most extensively studied effects in CKD patients. Moreover, the review describes the modulation of the gut microbiota by ABs, potentially influencing CNS symptoms. The intricate brain-gut-kidney axis emerges as a pivotal focus, revealing the interplay between microbiota alterations induced by ABs and CNS manifestations in patients with CKD. The prevalence of antibiotic-associated encephalopathy in patients with CKD undergoing intravenous AB therapy supports the use of therapeutic drug monitoring for ABs to reduce the number and seriousness of ADRs in this patient population. In conclusion, elucidating AB-induced cognitive effects in patients with CKD demands a comprehensive understanding and tailored therapeutic strategies that account for altered pharmacokinetics and the brain-gut-kidney axis.
Collapse
Affiliation(s)
- Sophie Liabeuf
- Pharmacoepidemiology Unit, Department of Clinical Pharmacology, Amiens University Medical Center, Amiens, France
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, Amiens, France
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Vesna Pešić
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Goce Spasovski
- Department of Nephrology, Clinical Centre “Mother Theresa”, Saints Cyril and Methodius University, Skopje, North Macedonia
| | - Mickaël Bobot
- Aix-Marseille University, Department of Nephrology, AP-HM, La Conception Hospital, Marseille, France; C2VN Laboratory, Inserm 1263, INRAE 1260, Aix-Marseille University, Marseille, France
| | - Romaldas Mačiulaitis
- Department of Nephrology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Faculty of Medicines, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ana Carina Ferreira
- Nephrology Department, Centro Hospitalar e Universitário de Lisboa Central, Lisbon, Portugal
- Universidade Nova de Lisboa-Faculdade de Ciências Médicas-Nephology, Lisbon, Portugal
| | - Ana Farinha
- Department of Nephrology, Hospital de Vila Franca de Xira, Lisbon, Portugal
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marion Pépin
- Department of Geriatrics, Ambroise Paré University Medical Center, APHP, Boulogne-Billancourt, France
- Paris-Saclay University, UVSQ, Inserm, Clinical Epidemiology Team, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France
| | - Ziad A Massy
- Paris-Saclay University, UVSQ, Inserm, Clinical Epidemiology Team, Centre de Recherche en Epidémiologie et Santé des Populations (CESP), Villejuif, France
- Department of Nephrology, Ambroise Paré University Medical Center, APHP, Paris, France
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Giovambattista Capasso
- Department of Translantional Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Laila-Yasmin Mani
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Dong Y, Gai Z, Han M, Xu J, Zou K. Reduction in Serum Concentrations of Uremic Toxins Driven by Bifidobacterium Longum Subsp. Longum BL21 is Associated with Gut Microbiota Changes in a Rat Model of Chronic Kidney Disease. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10293-5. [PMID: 38829564 DOI: 10.1007/s12602-024-10293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
Gut microbiota dysbiosis and consequent impairment of gut barrier function, culminating in elevated levels of uremic toxins, are prevalent in chronic kidney disease (CKD) patients. These toxins, notably indoxyl sulphate (IS), indole-3-acetic acid (IAA), and trimethylamine oxide (TMAO), are implicated in a spectrum of CKD-related complications, including cardiovascular disease, bone and mineral disorders, and inflammation. The specific impacts of various probiotics on these CKD manifestations remain unexplored. This study delved into the potential of dietary probiotic interventions, particularly Bifidobacterium longum subsp. longum BL21, to modulate gut microbiota and mitigate metabolic disorders in a CKD rat model. Over a six-week period, we administered a dietary regimen of BL21 and conducted comprehensive analyses, including serum uremic toxin quantification and 16S rRNA gene sequencing, to systematically profile gut microbial alterations at the phylogenetic level. Our findings reveal that BL21 intervention significantly ameliorated CKD-induced disruptions in gut microbial populations, enhancing both microbial richness and the relative abundance of key taxa. Importantly, BL21 appeared to exert its beneficial effects by modulating the abundance of crucial species such as Barnesiella and Helicobacter. Functionally, the intervention markedly normalized serum levels of IS, IAA, and TMAO, while potentially attenuating p-cresol sulphate (PCS) and p-cresol glucuronide (PCG) concentrations. Consequently, BL21 demonstrated efficacy in regulating gut microbiota and curtailing the accumulation of uremic toxins. Our results advocate for the utilization of BL21 as a dietary intervention to diminish serum uremic toxins and re-establish gut microbiota equilibrium at the phylogenetic level, underscoring the promise of probiotic strategies in the management of CKD.
Collapse
Affiliation(s)
- Yao Dong
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhonghui Gai
- Department of Research and Development, Wecare Probiotics Co., Ltd, Suzhou, 215200, China
| | - Mei Han
- Department of Food Quality and Safety, Shanghai Business School, Shanghai, 200235, China
| | - Jiaqi Xu
- Department of Research and Development, Wecare Probiotics Co., Ltd, Suzhou, 215200, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Wakamatsu T, Yamamoto S, Yoshida S, Narita I. Indoxyl Sulfate-Induced Macrophage Toxicity and Therapeutic Strategies in Uremic Atherosclerosis. Toxins (Basel) 2024; 16:254. [PMID: 38922148 PMCID: PMC11209365 DOI: 10.3390/toxins16060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Cardiovascular disease (CVD) frequently occurs in patients with chronic kidney disease (CKD), particularly those undergoing dialysis. The mechanisms behind this may be related to traditional risk factors and CKD-specific factors that accelerate atherosclerosis and vascular calcification in CKD patients. The accumulation of uremic toxins is a significant factor in CKD-related systemic disorders. Basic research suggests that indoxyl sulfate (IS), a small protein-bound uremic toxin, is associated with macrophage dysfunctions, including increased oxidative stress, exacerbation of chronic inflammation, and abnormalities in lipid metabolism. Strategies to mitigate the toxicity of IS include optimizing gut microbiota, intervening against the abnormality of intracellular signal transduction, and using blood purification therapy with higher efficiency. Further research is needed to examine whether lowering protein-bound uremic toxins through intervention leads to a reduction in CVD in patients with CKD.
Collapse
Affiliation(s)
- Takuya Wakamatsu
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
- Ohgo Clinic, Maebashi 371-0232, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| | - Shiori Yoshida
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (T.W.); (S.Y.); (I.N.)
| |
Collapse
|
9
|
Lee TH, Chen JJ, Wu CY, Lin TY, Hung SC, Yang HY. Immunosenescence, gut dysbiosis, and chronic kidney disease: Interplay and implications for clinical management. Biomed J 2024; 47:100638. [PMID: 37524304 PMCID: PMC10979181 DOI: 10.1016/j.bj.2023.100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Immunosenescence refers to the immune system changes observed in individuals over 50 years old, characterized by diminished immune response and chronic inflammation. Recent investigations have highlighted similar immune alterations in patients with reduced kidney function. The immune system and kidney function have been found to be closely interconnected. Studies have shown that as kidney function declines, both innate and adaptive immunity are affected. Chronic kidney disease (CKD) patients exhibit decreased levels of naive and regular T cells, as well as naive and memory B cells, while memory T cell counts increase. Furthermore, research suggests that CKD and end-stage kidney disease (ESKD) patients experience early thymic dysfunction and heightened homeostatic proliferation of naive T cells. In addition to reduced thymic T cell production, CKD patients display shorter telomeres in both CD4+ and CD8+ T cells. Declining kidney function induces uremic conditions, which alter the intestinal metabolic environment and promote pathogen overgrowth while reducing diversity. This dysbiosis-driven imbalance in the gut microbiota can result in elevated production of uremic toxins, which, in turn, enter the systemic circulation due to compromised gut barrier function under uremic conditions. The accumulation of gut-derived uremic toxins exacerbates local and systemic kidney inflammation. Immune-mediated kidney damage occurs due to the activation of immune cells in the intestine as a consequence of dysbiosis, leading to the production of cytokines and soluble urokinase-type plasminogen activator receptor (suPAR), thereby contributing to kidney inflammation. In this review, we delve into the fundamental mechanisms of immunosenescence in CKD, encompassing alterations in adaptive immunity, gut dysbiosis, and an overview of the clinical findings pertaining to immunosenescence.
Collapse
Affiliation(s)
- Tao Han Lee
- Nephrology Department, Chansn Hospital, Taoyuan, Taiwan
| | - Jia-Jin Chen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, And Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yun Lin
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Cha RH. Pharmacologic therapeutics in sarcopenia with chronic kidney disease. Kidney Res Clin Pract 2024; 43:143-155. [PMID: 38389147 PMCID: PMC11016676 DOI: 10.23876/j.krcp.23.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 02/24/2024] Open
Abstract
Inflammation, metabolic acidosis, renin-angiotensin system activation, insulin resistance, and impaired perfusion to skeletal muscles, among others, are possible causes of uremic sarcopenia. These conditions induce the activation of the nuclear factor-kappa B and mitogen-activated protein kinase pathways, adenosine triphosphate ubiquitin-proteasome system, and reactive oxygen species system, resulting in protein catabolism. Strategies for the prevention and treatment of sarcopenia in chronic kidney disease (CKD) are aerobic and resistance exercises along with nutritional interventions. Anabolic hormones have shown beneficial effects. Megestrol acetate increased weight, protein catabolic rate, and albumin concentration, and it increased intracellular water component and muscle mass. Vitamin D supplementation showed improvement in physical function, muscle strength, and muscle mass. Correction of metabolic acidosis showed an increase in protein intake, serum albumin levels, body weight, and mid-arm circumference. The kidney- gut-muscle axis indicates that dysbiosis and changes in gut-derived uremic toxins and short-chain fatty acids affect muscle mass, composition, strength, and functional capacity. Biotic supplements, AST-120 administration, hemodiafiltration, and preservation of residual renal function are alleged to reduce uremic toxins, including indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Synbiotics reversed the microbiota change in CKD patients and decreased uremic toxins. AST-120 administration changed the overall gut microbiota composition in CKD. AST-120 prevented IS and PCS tissue accumulation, ameliorated muscle atrophy, improved exercise capacity and mitochondrial biogenesis, restored epithelial tight junction proteins, and reduced plasma endotoxin levels and markers of oxidative stress and inflammation. In a human study, the addition of AST-120 to standard treatment had modest beneficial effects on gait speed change and quality of life.
Collapse
Affiliation(s)
- Ran-hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Republic of Korea
| |
Collapse
|
11
|
Chen Z, Wu S, Huang L, Li J, Li X, Zeng Y, Chen Z, Chen M. Colonic microflora and plasma metabolite-based comparative analysis of unilateral ureteral obstruction-induced chronic kidney disease after treatment with the Chinese medicine FuZhengHuaYuJiangZhuTongLuo and AST-120. Heliyon 2024; 10:e24987. [PMID: 38333870 PMCID: PMC10850519 DOI: 10.1016/j.heliyon.2024.e24987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background Many researchers have investigated the use of Chinese herbs to delay the progression of chronic kidney disease (CKD) through their effects on colonic microflora and microbiota-derived metabolites. However, whether FuZhengHuaYuJiangZhuTongLuo (FZHY) has effects that are similar to those of AST-120 on CKD needs to be elucidated. Methods In this study, we compared the effects of FZHY and AST-120 on the colonic microbiota and plasma metabolites in the CKD rat model. We developed a unilateral ureteral obstruction (UUO)-induced CKD rat model and then administered FZHY and AST-120 to these model rats. Non-targeted metabolomic LC-MS analysis, 16S rRNA sequencing, and histopathological staining were performed on plasma, stool, and kidney tissues, respectively, and the joint correlation between biomarkers and metabolites of candidate bacteria was analyzed. Results Our results showed that administering FZHY and AST-120 effectively ameliorated UUO-induced abnormal renal function and renal fibrosis and regulated the composition of microbiota and metabolites. Compared to the UUO model group, the p_Firmicutes and o_Peptostreptococcales_Tissierellales were increased, while 14 negative ion metabolites were upregulated and 21 were downregulated after FZHY treatment. Additionally, 40 positive ion metabolites were upregulated and 63 were downregulated. On the other hand, AST-120 treatment resulted in an increase in the levels of g_Prevotellaceae_NK3B31_group and f_Prevotellaceae, as well as 12 upregulated and 23 downregulated negative ion metabolites and 56 upregulated and 63 downregulated positive ion metabolites. Besides, FZHY increased the levels of candidate bacterial biomarkers that were found to be negatively correlated with some poisonous metabolites, such as 4-hydroxyretinoic acid, and positively correlated with beneficial metabolites, such as l-arginine. AST-120 increased the levels of candidate bacterial biomarkers that were negatively correlated with some toxic metabolites, such as glycoursodeoxycholic acid, 4-ethylphenol, and indole-3-acetic acid. Conclusion FZHY and AST-120 effectively reduced kidney damage, in which, the recovery of some dysregulated bacteria and metabolites are probably involved. As their mechanisms of regulation were different, FZHY might play a complementary role to AST-120 in treating CKD.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shaobo Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Li Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Jing Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xueying Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yu Zeng
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Zejun Chen
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu Traditional Chinese and Western Medicine Hospital, Chengdu First People's Hospital, Chengdu, Sichuan 610072, China
| | - Ming Chen
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
12
|
Sun L, Li Z, Hu C, Ding J, Zhou Q, Pang G, Wu Z, Yang R, Li S, Li J, Cai J, Sun Y, Li R, Zhen H, Sun S, Zhang J, Fang M, Chen Z, Lv Y, Cao Q, Sun Y, Gong R, Huang Z, Duan Y, Liu H, Dong J, Li J, Ruan J, Lu H, He B, Li N, Li T, Xue W, Li Y, Shen J, Yang F, Zhao C, Liang Q, Zhang M, Chen C, Gong H, Hou Y, Wang J, Zhang Y, Yang H, Zhu S, Xiao L, Jin Z, Guo H, Zhao P, Brix S, Xu X, Jia H, Kristiansen K, Yang Z, Nie C. Age-dependent changes in the gut microbiota and serum metabolome correlate with renal function and human aging. Aging Cell 2023; 22:e14028. [PMID: 38015106 PMCID: PMC10726799 DOI: 10.1111/acel.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023] Open
Abstract
Human aging is invariably accompanied by a decline in renal function, a process potentially exacerbated by uremic toxins originating from gut microbes. Based on a registered household Chinese Guangxi longevity cohort (n = 151), we conducted comprehensive profiling of the gut microbiota and serum metabolome of individuals from 22 to 111 years of age and validated the findings in two independent East Asian aging cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique age-dependent differences in the microbiota and serum metabolome. We discovered that the influence of the gut microbiota on serum metabolites intensifies with advancing age. Furthermore, mediation analyses unveiled putative causal relationships between the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio piger) and serum metabolite markers related to impaired renal function (p-cresol, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal microbiota transplantation experiment demonstrated that the feces of elderly individuals could influence markers related to impaired renal function in the serum. Our findings reveal novel links between age-dependent alterations in the gut microbiota and serum metabolite markers of impaired renal function, providing novel insights into the effects of microbiota-metabolite interplay on renal function and healthy aging.
Collapse
Affiliation(s)
- Liang Sun
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Zhiming Li
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
- State Key Laboratory of Genetic EngineeringCollaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan UniversityShanghaiChina
| | | | - Jiahong Ding
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| | - Qi Zhou
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | | | - Zhu Wu
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Ruiyue Yang
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Shenghui Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Jian Li
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Jianping Cai
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Yuzhe Sun
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| | - Rui Li
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Hefu Zhen
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| | - Shuqin Sun
- School of GerontologyBinzhou Medical UniversityYantaiChina
| | - Jianmin Zhang
- School of GerontologyBinzhou Medical UniversityYantaiChina
| | - Mingyan Fang
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Zhihua Chen
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Yuan Lv
- Jiangbin HospitalNanningChina
| | - Qizhi Cao
- School of GerontologyBinzhou Medical UniversityYantaiChina
| | - Yanan Sun
- School of GerontologyBinzhou Medical UniversityYantaiChina
| | - Ranhui Gong
- Office of Longevity Cultural, People's Government of Yongfu CountyGuilinChina
| | - Zezhi Huang
- Office of Longevity Cultural, People's Government of Yongfu CountyGuilinChina
| | - Yong Duan
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Institute of Experimental DiagnosisKunmingChina
| | - Hengshuo Liu
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Jun Dong
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Junchun Li
- Office of Longevity Cultural, People's Government of Yongfu CountyGuilinChina
| | - Jie Ruan
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Haorong Lu
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | | | | | - Tao Li
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Wenbin Xue
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Yan Li
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| | - Juan Shen
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Fan Yang
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Cheng Zhao
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | | | - Mingrong Zhang
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Chen Chen
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Huan Gong
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Yong Hou
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Jian Wang
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Ying Zhang
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Huanming Yang
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Shida Zhu
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI ResearchShenzhenChina
| | - Liang Xiao
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI ResearchShenzhenChina
| | - Zhen Jin
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
- Yunnan Institute of Experimental DiagnosisKunmingChina
| | - Haiyun Guo
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
| | - Peng Zhao
- Yunnan Key Laboratory of Laboratory MedicineKunmingChina
| | - Susanne Brix
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Xun Xu
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
| | - Huijue Jia
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
| | - Karsten Kristiansen
- BGI ResearchShenzhenChina
- Laboratory of Genomics and Molecular Biomedicine, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Qingdao‐Europe Advanced Institute for Life SciencesQingdaoShandongChina
| | - Ze Yang
- The NHC Key Laboratory of GeriatricsInstitute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health CommissionBeijingChina
| | - Chao Nie
- BGI ResearchShenzhenChina
- China National GeneBank, BGI ResearchShenzhenChina
- Shenzhen Key Laboratory of Neurogenomics, BGI ResearchShenzhenChina
| |
Collapse
|
13
|
Jariyasopit N, Khoomrung S. Mass spectrometry-based analysis of gut microbial metabolites of aromatic amino acids. Comput Struct Biotechnol J 2023; 21:4777-4789. [PMID: 37841334 PMCID: PMC10570628 DOI: 10.1016/j.csbj.2023.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
Small molecules derived from gut microbiota have been increasingly investigated to better understand the functional roles of the human gut microbiome. Microbial metabolites of aromatic amino acids (AAA) have been linked to many diseases, such as metabolic disorders, chronic kidney diseases, inflammatory bowel disease, diabetes, and cancer. Important microbial AAA metabolites are often discovered via global metabolite profiling of biological specimens collected from humans or animal models. Subsequent metabolite identity confirmation and absolute quantification using targeted analysis enable comparisons across different studies, which can lead to the establishment of threshold concentrations of potential metabolite biomarkers. Owing to their excellent selectivity and sensitivity, hyphenated mass spectrometry (MS) techniques are often employed to identify and quantify AAA metabolites in various biological matrices. Here, we summarize the developments over the past five years in MS-based methodology for analyzing gut microbiota-derived AAA. Sample preparation, method validation, analytical performance, and statistical methods for correlation analysis are discussed, along with future perspectives.
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
14
|
Ahmed S, de Vries JC, Lu J, Stuart MHV, Mihăilă SM, Vernooij RWM, Masereeuw R, Gerritsen KGF. Animal Models for Studying Protein-Bound Uremic Toxin Removal-A Systematic Review. Int J Mol Sci 2023; 24:13197. [PMID: 37686004 PMCID: PMC10487432 DOI: 10.3390/ijms241713197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Protein-bound uremic toxins (PBUTs) are associated with the progression of chronic kidney disease (CKD) and its associated morbidity and mortality. The conventional dialysis techniques are unable to efficiently remove PBUTs due to their plasma protein binding. Therefore, novel approaches are being developed, but these require validation in animals before clinical trials can begin. We conducted a systematic review to document PBUT concentrations in various models and species. The search strategy returned 1163 results for which abstracts were screened, resulting in 65 full-text papers for data extraction (rats (n = 41), mice (n = 17), dogs (n = 3), cats (n = 4), goats (n = 1), and pigs (n = 1)). We performed descriptive and comparative analyses on indoxyl sulfate (IS) concentrations in rats and mice. The data on large animals and on other PBUTs were too heterogeneous for pooled analysis. Most rodent studies reported mean uremic concentrations of plasma IS close to or within the range of those during kidney failure in humans, with the highest in tubular injury models in rats. Compared to nephron loss models in rats, a greater rise in plasma IS compared to creatinine was found in tubular injury models, suggesting tubular secretion was more affected than glomerular filtration. In summary, tubular injury rat models may be most relevant for the in vivo validation of novel PBUT-lowering strategies for kidney failure in humans.
Collapse
Affiliation(s)
- Sabbir Ahmed
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Joost C. de Vries
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Jingyi Lu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Milan H. Verrijn Stuart
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| | - Silvia M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Robin W. M. Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (S.A.); (J.L.); (S.M.M.); (R.M.)
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.C.d.V.); (M.H.V.S.); (R.W.M.V.)
| |
Collapse
|
15
|
Kim KR, Kim SM, Kim JH. A pilot study of alterations of the gut microbiome in canine chronic kidney disease. Front Vet Sci 2023; 10:1241215. [PMID: 37691637 PMCID: PMC10484476 DOI: 10.3389/fvets.2023.1241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Gut dysbiosis has been noted in humans and animals with chronic kidney disease (CKD). However, little is known about the gut microbiome in canine patients with CKD. This study aimed to analyze and compare the gut microbiome profiles of healthy and CKD dogs, including differences in the gut microbiome between each CKD stage. Methods The study was conducted on 29 client-owned dogs who underwent physical examination, complete blood count (CBC), serum biochemistry, and urinalysis. The gut microbiome profile of healthy dogs (n = 10) and dogs with CKD (n = 19) was analyzed employing 16S rRNA sequencing. Results Significant differences were seen in the composition of the gut microbiome, with increased operational taxonomic units from the phylum Proteobacteria (p = 0.035), family Enterobacteriaceae (p < 0.001), and genus Enterococcus (p = 0.002) in dogs with CKD, and a decrease in the genus Ruminococcus (p = 0.007). Furthermore, an increase in both the progression of CKD and abundance of genus Klebsiella (Jonckheere-Terpstra test statistic value (JT) = 2.852, p = 0.004) and Clostridium (JT = 2.018, p = 0.044) was observed. Discussion Our study demonstrated that in dogs with CKD, the composition of the gut microbiome varied depending on the stage of CKD. Alterations in gut microbiome composition observed in CKD patients are characterized by an increase in proteolytic bacteria and a decrease in saccharolytic bacteria. These findings suggest specific gut microbiota could be targeted for clinical management of uremic dogs with CKD.
Collapse
Affiliation(s)
- Kyung-Ryung Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | | | - Jung-Hyun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Tang KS, Ho CY, Hsu CN, Tain YL. Melatonin and Kidney Health: From Fetal Stage to Later Life. Int J Mol Sci 2023; 24:ijms24098105. [PMID: 37175813 PMCID: PMC10179476 DOI: 10.3390/ijms24098105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Melatonin, an endogenous hormone mainly released at night by the pineal gland, has multifaceted biofunctions. Emerging evidence points to melatonin having a crucial role in kidney health and disease. As the prevalence of chronic kidney disease (CKD) is still rising, a superior strategy to advance global kidney health is needed to not just treat CKD, but prevent it early on. Adult kidney disease can have its origins in early life. This review aims to evaluate the recent literature regarding melatonin's effect on kidney development, its clinical uses in the early stage of life, animal models documenting preventive applications of melatonin on offspring's kidney-related disease, and a thorough summary of therapeutic considerations concerning melatonin supplementation.
Collapse
Affiliation(s)
- Kuo-Shu Tang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chun-Yi Ho
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Feng Shan Hospital-Under the Management of Chang Gung Medical Foundation, Kaohsiung 830, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
17
|
Osredkar J, Baškovič BŽ, Finderle P, Bobrowska-Korczak B, Gątarek P, Rosiak A, Giebułtowicz J, Vrhovšek MJ, Kałużna-Czaplińska J. Relationship between Excreted Uremic Toxins and Degree of Disorder of Children with ASD. Int J Mol Sci 2023; 24:7078. [PMID: 37108238 PMCID: PMC10138607 DOI: 10.3390/ijms24087078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex developmental disorder in which communication and behavior are affected. A number of studies have investigated potential biomarkers, including uremic toxins. The aim of our study was to determine uremic toxins in the urine of children with ASD (143) and compare the results with healthy children (48). Uremic toxins were determined with a validated high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS) method. We observed higher levels of p-cresyl sulphate (pCS) and indoxyl sulphate (IS) in the ASD group compared to the controls. Moreover, the toxin levels of trimethylamine N-oxide (TMAO), symmetric dimethylarginine (SDMA), and asymmetric dimethylarginine (ADMA) were lower in ASD patients. Similarly, for pCS and IS in children classified, according to the intensity of their symptoms, into mild, moderate, and severe, elevated levels of these compounds were observed. For mild severity of the disorder, elevated levels of TMAO and comparable levels of SDMA and ADMA for ASD children as compared to the controls were observed in the urine. For moderate severity of ASD, significantly elevated levels of TMAO but reduced levels of SDMA and ADMA were observed in the urine of ASD children as compared to the controls. When the results obtained for severe ASD severity were considered, reduced levels of TMAO and comparable levels of SDMA and ADMA were observed in ASD children.
Collapse
Affiliation(s)
- Joško Osredkar
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Barbara Žvar Baškovič
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
| | - Petra Finderle
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Njegoseva 4, 1000 Ljubljana, Slovenia; (B.Ž.B.); (P.F.)
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Paulina Gątarek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Angelina Rosiak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Maja Jekovec Vrhovšek
- Center for Autism, Unit of Child Psychiatry, University Children’s Hospital, University Medical Centre Ljubljana, Zaloška c.002, 1000 Ljubljana, Slovenia;
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.G.); (A.R.)
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
18
|
Randall DW, Kieswich J, Hoyles L, McCafferty K, Curtis M, Yaqoob MM. Gut Dysbiosis in Experimental Kidney Disease: A Meta-Analysis of Rodent Repository Data. J Am Soc Nephrol 2023; 34:533-553. [PMID: 36846952 PMCID: PMC10103368 DOI: 10.1681/asn.0000000000000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/05/2022] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Alterations in gut microbiota contribute to the pathophysiology of a diverse range of diseases, leading to suggestions that chronic uremia may cause intestinal dysbiosis that contributes to the pathophysiology of CKD. Various small, single-cohort rodent studies have supported this hypothesis. In this meta-analysis of publicly available repository data from studies of models of kidney disease in rodents, cohort variation far outweighed any effect of experimental kidney disease on the gut microbiota. No reproducible changes in animals with kidney disease were seen across all cohorts, although a few trends observed in most experiments may be attributable to kidney disease. The findings suggest that rodent studies do not provide evidence for the existence of "uremic dysbiosis" and that single-cohort studies are unsuitable for producing generalizable results in microbiome research. BACKGROUND Rodent studies have popularized the notion that uremia may induce pathological changes in the gut microbiota that contribute to kidney disease progression. Although single-cohort rodent studies have yielded insights into host-microbiota relationships in various disease processes, their relevance is limited by cohort and other effects. We previously reported finding metabolomic evidence that batch-to-batch variations in the microbiome of experimental animals are significant confounders in an experimental study. METHODS To attempt to identify common microbial signatures that transcend batch variability and that may be attributed to the effect of kidney disease, we downloaded all data describing the molecular characterization of the gut microbiota in rodents with and without experimental kidney disease from two online repositories comprising 127 rodents across ten experimental cohorts. We reanalyzed these data using the DADA2 and Phyloseq packages in R, a statistical computing and graphics system, and analyzed data both in a combined dataset of all samples and at the level of individual experimental cohorts. RESULTS Cohort effects accounted for 69% of total sample variance ( P <0.001), substantially outweighing the effect of kidney disease (1.9% of variance, P =0.026). We found no universal trends in microbial population dynamics in animals with kidney disease, but observed some differences (increased alpha diversity, a measure of within-sample bacterial diversity; relative decreases in Lachnospiraceae and Lactobacillus ; and increases in some Clostridia and opportunistic taxa) in many cohorts that might represent effects of kidney disease on the gut microbiota . CONCLUSIONS These findings suggest that current evidence that kidney disease causes reproducible patterns of dysbiosis is inadequate. We advocate meta-analysis of repository data as a way of identifying broad themes that transcend experimental variation.
Collapse
Affiliation(s)
- David W. Randall
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Julius Kieswich
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Lesley Hoyles
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, United Kingdom
| | - Kieran McCafferty
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Michael Curtis
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Tower Wing, Great Maze Pond, United Kingdom
| | - Muhammed M. Yaqoob
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
19
|
Matsui A, Yoshifuji A, Irie J, Tajima T, Uchiyama K, Itoh T, Wakino S, Itoh H. Canagliflozin protects the cardiovascular system through effects on the gut environment in non-diabetic nephrectomized rats. Clin Exp Nephrol 2023; 27:295-308. [PMID: 36611128 DOI: 10.1007/s10157-022-02312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/30/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND The gut produces toxins that contribute to the cardiovascular complications of chronic kidney disease. Canagliflozin, a sodium glucose cotransporter (SGLT) 2 inhibitor that is used as an anti-diabetic drug, has a weak inhibitory effect against SGLT1 and may affect the gut glucose concentration and environment. METHODS Here, we determined the effect of canagliflozin on the gut microbiota and the serum gut-derived uremic toxin concentrations in 5/6th nephrectomized (Nx) rats. RESULTS Canagliflozin increased the colonic glucose concentration and restored the number of Lactobacillus bacteria, which was low in Nx rats. In addition, the expression of tight junction proteins in the ascending colon was low in Nx rats, and this was partially restored by canagliflozin. Furthermore, the serum concentrations of gut-derived uremic toxins were significantly increased by Nx and reduced by canagliflozin. Finally, the wall of the thoracic aorta was thicker and there was more cardiac interstitial fibrosis in Nx rats, and these defects were ameliorated by canagliflozin. CONCLUSIONS The increases in colonic glucose concentration, Lactobacillus numbers and tight junction protein expression, and the decreases in serum uremic toxin concentrations and cardiac interstitial fibrosis may have been caused by the inhibition of SGLT1 by canagliflozin because similar effects were not identified in tofogliflozin-treated rats.
Collapse
Affiliation(s)
- Ayumi Matsui
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Ayumi Yoshifuji
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Junichiro Irie
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Takaya Tajima
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Kiyotaka Uchiyama
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Tomoaki Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-Ku, Tokyo, 160-8584, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
20
|
Ragi N, Pallerla P, Babi Reddy Gari AR, Lingampelly SS, Ketavarapu V, Addipilli R, Chirra N, Kantevari S, Yadla M, Sripadi P. Assessment of uremic toxins in advanced chronic kidney disease patients on maintenance hemodialysis by LC-ESI-MS/MS. Metabolomics 2023; 19:14. [PMID: 36826619 DOI: 10.1007/s11306-023-01978-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
INTRODUCTION In the advanced stage of chronic kidney disease (CKD), electrolytes, fluids, and metabolic wastes including various uremic toxins, accumulate at high concentrations in the patients' blood. Hemodialysis (HD) is the conventional procedure used worldwide to remove metabolic wastes. The creatinine and urea levels have been routinely monitored to estimate kidney function and effectiveness of the HD process. This study, first from in Indian perspective, aimed at the identification and quantification of major uremic toxins in CKD patients on maintenance HD (PRE-HD), and compared with the healthy controls (HC) as well as after HD (POST-HD). OBJECTIVES The study mainly focused on the identification of major uremic toxins in Indian perspective and the quantitative analysis of indoxyl sulfate and p-cresol sulfate (routinely targeted uremic toxins), and phenyl sulfate, catechol sulfate, and guaiacol sulfate (targeted for the first time), apart from creatinine and urea in PRE-HD, POST-HD, and HC groups. METHODS Blood samples were collected from 90 HD patients (both PRE-HD and POST-HD), and 74 HCs. The plasma samples were subjected to direct ESI-HRMS and LC/HRMS for untargeted metabolomics and LC-MS/MS for quantitative analysis. RESULTS Various known uremic toxins, and a few new and unknown peaks were detected in PRE-HD patients. The p-cresol sulfate and indoxyl sulfate were dominant in PRE-HD, the concentrations of phenyl sulfate, catechol sulfate, and guaiacol sulfate were about 50% of that of indoxyl sulfate. Statistical evaluation on the levels of targeted uremic toxins in PRE-HD, POST-HD, and HC groups showed a significant difference among the three groups. The dialytic clearance of indoxyl sulfate and p-cresol sulfate was found to be < 35%, while that of the other three sulfates was 50-58%. CONCLUSION LC-MS/MS method was developed and validated to evaluate five major uremic toxins in CKD patients on HD. The levels of the targeted uremic toxins could be used to assess kidney function and the effectiveness of HD.
Collapse
Affiliation(s)
- Nagarjunachary Ragi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Pavankumar Pallerla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | | | - Sai Sachin Lingampelly
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | | | - Ramunaidu Addipilli
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Nagaraju Chirra
- Department of Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Srinivas Kantevari
- Department of Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Manjusha Yadla
- Department of Nephrology, Gandhi Medical College, Gandhi Hospitals, Hyderabad, Telangana, 500025, India.
| | - Prabhakar Sripadi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- Centre for Mass Spectrometry, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
21
|
Li N, Wang Y, Wei P, Min Y, Yu M, Zhou G, Yuan G, Sun J, Dai H, Zhou E, He W, Sheng M, Gao K, Zheng M, Sun W, Zhou D, Zhang L. Causal Effects of Specific Gut Microbiota on Chronic Kidney Diseases and Renal Function-A Two-Sample Mendelian Randomization Study. Nutrients 2023; 15:nu15020360. [PMID: 36678231 PMCID: PMC9863044 DOI: 10.3390/nu15020360] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Targeting the gut microbiota may become a new therapeutic to prevent and delay the progression of chronic kidney disease (CKD). Nonetheless, the causal relationship between specific intestinal flora and CKD is still unclear. MATERIALS AND METHOD To identify genetically predicted microbiota, we used summary data from genome-wide association studies on gut microbiota in 18340 participants from 24 cohorts. Furthermore, we genetically predicted the causal relationship between 211 gut microbiotas and six phenotypes (outcomes) (CKD, estimated glomerular filtration rate (eGFR), urine albumin to creatinine ratio (UACR), dialysis, rapid progress to CKD, and rapid decline of eGFR). Four Mendelian randomization (MR) methods, including inverse variance weighted (IVW), MR-Egger, weighted median, and weighted mode were used to investigate the casual relationship between gut microbiotas and various outcomes. The result of IVW was deemed as the primary result. Then, Cochrane's Q test, MR-Egger, and MR-PRESSO Global test were used to detect heterogeneity and pleiotropy. The leave-one method was used for testing the stability of MR results and Bonferroni-corrected was used to test the strength of the causal relationship between exposure and outcome. RESULTS Through the MR analysis of 211 microbiotas and six clinical phenotypes, a total of 36 intestinal microflora were found to be associated with various outcomes. Among them, Class Bacteroidia (=-0.005, 95% CI: -0.001 to -0.008, p = 0.002) has a strong causality with lower eGFR after the Bonferroni-corrected test, whereas phylum Actinobacteria (OR = 1.0009, 95%CI: 1.0003-1.0015, p = 0.0024) has a strong causal relationship with dialysis. The Cochrane's Q test reveals that there is no significant heterogeneity between various single nucleotide polymorphisms. In addition, no significant level of pleiotropy was found according to MR-Egger and MR-PRESSO Global tests. CONCLUSIONS Through the two-sample MR analysis, we identified the specific intestinal flora that has a causal relationship with the incidence and progression of CKD at the level of gene prediction, which may provide helpful biomarkers for early disease diagnosis and potential therapeutic targets for CKD.
Collapse
Affiliation(s)
- Ning Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yi Wang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Ping Wei
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yu Min
- Department of Biotherapy and National Clinical Research Center, Sichuan University, Chengdu 610041, China
| | - Manshu Yu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Guowei Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Gui Yuan
- Division of Nephrology, Department of Medicine, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
| | - Jinyi Sun
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Huibo Dai
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Enchao Zhou
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Weiming He
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Meixiao Sheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Min Zheng
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Wei Sun
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut, School of Medicine, Farmington, CT 06030, USA
- Correspondence: (D.Z.); (L.Z.)
| | - Lu Zhang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- Correspondence: (D.Z.); (L.Z.)
| |
Collapse
|
22
|
Abe T. [Therapy for CKD and DKD]. Nihon Yakurigaku Zasshi 2023; 158:319-325. [PMID: 37394553 DOI: 10.1254/fpj.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Specific remedies are needed for preventing Type 2 diabetes which causes significant changes in an array of plasma metabolites. By untargeted metabolome analysis, phenyl sulfate (PS) increased with the progression of diabetes. In experimental diabetes models, PS administration induces albuminuria and podocyte damage due to the mitochondrial dysfunction. By clinical diabetic kidney disease (DKD) cohort analysis, it was also confirmed that the PS levels significantly correlate with basal and predicted 2-year progression of albuminuria. Phenol is synthesized from dietary tyrosine by gut bacterial-specific tyrosine phenol-lyase (TPL), and absorbed phenol is metabolized into PS in the liver. Inhibition of TPL reduces not only the circulating PS level but also albuminuria in diabetic mice. TPL inhibitor did not significantly alter the major composition, showing the non-lethal inhibition of microbial-specific enzymes has a therapeutic advantage, with lower selective pressure for the development of drug resistance. Clinically, 362 patients in a multi-center clinical study in diabetic nephropathy cohort (U-CARE) were analyzed with full data. The basal plasma PS level significantly correlated with ACR, eGFR, age, duration, HbA1c and uric acid, but not with suPAR. Multiple regression analysis revealed that ACR was the only factor that significantly correlated with PS. By stratified logistic regression analysis, in the microalbuminuria group, PS was the only factor related to the amount of change in the 2-year ACR in all models. PS is not only an early diagnosis marker, but also a modifiable cause and therefore a target for the treatment of DKD. Reduction of microbiota-derived phenol by the inhibitor should represent another aspect for developing drugs of DKD prevention.
Collapse
Affiliation(s)
- Takaaki Abe
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine
- AMED Moon Program Manager
| |
Collapse
|
23
|
Xie J, Ma X, Zheng Y, Mao N, Ren S, Fan J. Panax notoginseng saponins alleviate damage to the intestinal barrier and regulate levels of intestinal microbes in a rat model of chronic kidney disease. Ren Fail 2022; 44:1948-1960. [PMID: 36354128 PMCID: PMC9662016 DOI: 10.1080/0886022x.2022.2143378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objectives Chronic kidney disease (CKD) is a long-term condition characterized by poor prognosis and a high mortality rate. Panax notoginseng saponins (PNS) are the main active ingredient of the traditional Chinese herb Panaxnotoginseng(Burk.)F.H.Chen, which has been widely reported to have various pharmacological effects. Here, we examined the effect of PNS on renal function and the modulation of intestinal flora and intestinal barrier in a rat model of adenine-induced CKD. Methods Adenine was used to establish a rat model of CKD, biochemical testing, histopathologic examination, ELISA, immunohistochemical assay, western blot assay, and fecal microbiota 16s rRNA analysis was used to test the effect of PNS on CKD rats. Results Adenine induced a significant decrease in glomerular filtration rate, an increase in urinary protein excretion rate, and pathological damage to renal tissue in CKD rats. TNF-α, MCP-1, IL-1β, IL-18, TMAO, and endotoxin levels were increased in the blood of the model rats. Application of PNS countered the effects of adenine, restoring the above parameters to the level observed in healthy rats. In addition, activation of the inflammatory proteins NF-κB (p65) and NLRP3 and the fibrosis-associated proteins α-SMA and smad3 were inhibited in the kidneys of CKD rats. Furthermore, PNS promoted the expression of the tight junction proteins Occludin and ZO-1, increased SIgA levels, strengthened intestinal immunity, reduced mechanical damage to the intestine, was reduced levels of DAO and D-LA. Our data suggest PNS may delay CKD by restoring gut microbiota, and through the subsequent generation of a microbial barrier and modulation of microbiota metabolites. Conclusions In conclusion, PNS may inhibit the development of inflammation and fibrosis in the kidney tissue through regulation of intestinal microorganisms and inhibition of the activation of pro-inflammatory and pro-fibrotic proteins in the kidney.
Collapse
Affiliation(s)
- Jing Xie
- Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
- Department of Nephrology No.1, the Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xin Ma
- Department of Nephrology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, PR China
| | - Yixuan Zheng
- Clinical Medical College of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
- Department of Nephrology No.1, the Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Nan Mao
- Department of Nephrology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, PR China
| | - Sichong Ren
- Department of Nephrology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, PR China
- Clinical Medical College of Chengdu Medical College, Chengdu, PR China
| | - Junming Fan
- Department of Nephrology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, PR China
- Clinical Medical College of Chengdu Medical College, Chengdu, PR China
| |
Collapse
|
24
|
Traditional Chinese Medicine: An Exogenous Regulator of Crosstalk between the Gut Microbial Ecosystem and CKD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7940684. [DOI: 10.1155/2022/7940684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is often accompanied by an imbalance in the gut microbial ecosystem. Notably, the imbalanced gut microbiota and impaired intestinal barrier are the keys to the crosstalk between the gut microbial ecosystem and CKD, which was the central point of previous studies. Traditional Chinese medicine (TCM) has shown considerable efficacy in the treatment of CKD. However, the therapeutic mechanisms have not been fully elucidated. In this review, we explored therapeutic mechanisms by which TCM improved CKD via the gut microbial ecosystem. In particular, we focused on the restored gut microbiota (i.e., short-chain fatty acid- and uremic toxin-producing bacteria), improved gut-derived metabolites (i.e., short-chain fatty acid, indoxyl sulfate, p-Cresyl sulfate, and trimethylamine-N-oxide), and intestinal barrier (i.e., permeability and microbial translocation) as therapeutic mechanisms. The results found that the metabolic pattern of gut microbiota and the intestinal barrier were improved through TCM treatment. Moreover, the microbiota-transfer study confirmed that part of the protective effect of TCM was dependent on gut microbiota, especially SCFA-producing bacteria. In conclusion, TCM may be an important exogenous regulator of crosstalk between the gut microbial ecosystem and CKD, which was partly attributable to the mediation of microbiota-targeted intervention.
Collapse
|
25
|
Li HB, Xu ML, Xu XD, Tang YY, Jiang HL, Li L, Xia WJ, Cui N, Bai J, Dai ZM, Han B, Li Y, Peng B, Dong YY, Aryal S, Manandhar I, Eladawi MA, Shukla R, Kang YM, Joe B, Yang T. Faecalibacterium prausnitzii Attenuates CKD via Butyrate-Renal GPR43 Axis. Circ Res 2022; 131:e120-e134. [PMID: 36164984 PMCID: PMC9588706 DOI: 10.1161/circresaha.122.320184] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Despite available clinical management strategies, chronic kidney disease (CKD) is associated with severe morbidity and mortality worldwide, which beckons new solutions. Host-microbial interactions with a depletion of Faecalibacterium prausnitzii in CKD are reported. However, the mechanisms about if and how F prausnitzii can be used as a probiotic to treat CKD remains unknown. METHODS We evaluated the microbial compositions in 2 independent CKD populations for any potential probiotic. Next, we investigated if supplementation of such probiotic in a mouse CKD model can restore gut-renal homeostasis as monitored by its effects on suppression on renal inflammation, improvement in gut permeability and renal function. Last, we investigated the molecular mechanisms underlying the probiotic-induced beneficial outcomes. RESULTS We observed significant depletion of Faecalibacterium in the patients with CKD in both Western (n=283) and Eastern populations (n=75). Supplementation of F prausnitzii to CKD mice reduced renal dysfunction, renal inflammation, and lowered the serum levels of various uremic toxins. These are coupled with improved gut microbial ecology and intestinal integrity. Moreover, we demonstrated that the beneficial effects in kidney induced by F prausnitzii-derived butyrate were through the GPR (G protein-coupled receptor)-43. CONCLUSIONS Using a mouse CKD model, we uncovered a novel beneficial role of F prausnitzii in the restoration of renal function in CKD, which is, at least in part, attributed to the butyrate-mediated GPR-43 signaling in the kidney. Our study provides the necessary foundation to harness the therapeutic potential of F prausnitzii for ameliorating CKD.
Collapse
Affiliation(s)
- Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Meng-Lu Xu
- Department of Nephrology, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| | - Xu-Dong Xu
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Yu-Yan Tang
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Hong-Li Jiang
- Department of Renal Dialysis, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
| | - Lu Li
- Department of Nephrology, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Nan Cui
- Department of Reproductive Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, 710061 Xi’an, China
| | - Juan Bai
- Department of Anesthesiology, Center for Brain Science, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhi-Ming Dai
- Department of Anesthesiology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, 710061 Xi’an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Bo Peng
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Yuan-Yuan Dong
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Sachin Aryal
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Ishan Manandhar
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Mahmoud Ali Eladawi
- Department of Neuroscience, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Rammohan Shukla
- Department of Neuroscience, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Basic Medical Sciences, Xi’an 710061, China
| | - Bina Joe
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| | - Tao Yang
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, University of Toledo, OH 43614, USA
| |
Collapse
|
26
|
Kim H, Nam BY, Park J, Song S, Kim WK, Lee K, Nam TW, Park JT, Yoo TH, Kang SW, Ko G, Han SH. Lactobacillus acidophilus KBL409 reduces kidney fibrosis via immune modulatory effects in mice with chronic kidney disease. Mol Nutr Food Res 2022; 66:e2101105. [PMID: 36059191 DOI: 10.1002/mnfr.202101105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/10/2022] [Indexed: 11/10/2022]
Abstract
SCOPE Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD. METHODS AND RESULTS An animal model of CKD was established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice were administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria were improved by administration of KBL409. Ade-CKD mice also exhibited a disrupted intestinal barrier and elevated levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes were attenuated by KBL409. Administration of KBL409 significantly reduced macrophage infiltration and promoted a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway was activated in the kidneys of Ade-CKD and decreased by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increased M2 macrophage polarization factors and decreased profibrotic markers. CONCLUSIONS These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hyoungnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea.,Graduate School, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Young Nam
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | - Jimin Park
- Department of Internal Medicine, College of Medicine, Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Institute of Kidney Disease Research, Yonsei University, Seoul, Korea
| | | | - Woon-Ki Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | | | | | - Jung Tak Park
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Tae-Hyun Yoo
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Shin-Wook Kang
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - GwangPyo Ko
- KoBiolabs, Inc., Seoul, Korea.,Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Seung Hyeok Han
- Yonsei University, Institute of Kidney Disease Research, College of Medicine, Department of Internal Medicine, Seoul, Korea
| |
Collapse
|
27
|
Asgharian M, Gholizadeh P, Samadi Kafil H, Ghojazadeh M, Samadi A, Soleymani J, Jouyban A, Tayebi Khosroshahi H. Correlation of inflammatory biomarkers with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in the intestinal microbiota of patients with end stage renal disease. Adv Med Sci 2022; 67:304-310. [PMID: 35994929 DOI: 10.1016/j.advms.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 07/18/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Serum levels of inflammatory cytokines and uremic toxins, and their inter-correlations with the diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families in intestinal microbiota were investigated in patients with end stage renal disease (ESRD). METHODS Stool and blood samples from 20 ESRD patients on maintenance hemodialysis were collected. DNA genome of the bacterial composition of the stool samples was extracted and evaluated by the sequencing analysis of 16S rRNA genes. Serum levels of inflammatory cytokines and uremic toxins were then analyzed. RESULTS The mean serum concentrations of TNF-α, IL-6, indoxyl sulfate (IS) and p-cresol (PC) were 305.99 ± 12.03 ng/L, 159.95 ± 64.22 ng/L, 36.76 ± 5.09 μg/mL and 0.39 ± 0.15 μg/mL, respectively. The most significant positive correlation was observed between Prevotellaceae family and total antioxidant capacity (TAC), Lactobacilli species and CRP and PC, as well as Scardovia wiggsiae and IS (p < 0.001). A negative correlation was also found between Bacteroides clarus and PC. Patients with ESRD on maintenance hemodialysis had elevated levels of PC and IS and increased levels of the inflammatory markers. The most positive correlation was found between microbiota and CRP and PC, while the most negative one was between microbiota and IL-1 and TAC. CONCLUSIONS The abundance and diversity of Bacteroidaceae, Bifidobacteriaceae, Prevotellaceae and Lactobacillaceae families and their correlations with clinical parameters could provide benefits in the ESRD patients but they could not promote the symptoms.
Collapse
Affiliation(s)
- Mostafa Asgharian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Ghojazadeh
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Samadi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, Nicosia, North Cyprus, Mersin, Turkey
| | | |
Collapse
|
28
|
Rahman MM, Islam F, -Or-Rashid MH, Mamun AA, Rahaman MS, Islam MM, Meem AFK, Sutradhar PR, Mitra S, Mimi AA, Emran TB, Fatimawali, Idroes R, Tallei TE, Ahmed M, Cavalu S. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol 2022; 12:903570. [PMID: 35795187 PMCID: PMC9251340 DOI: 10.3389/fcimb.2022.903570] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
In the last two decades, considerable interest has been shown in understanding the development of the gut microbiota and its internal and external effects on the intestine, as well as the risk factors for cardiovascular diseases (CVDs) such as metabolic syndrome. The intestinal microbiota plays a pivotal role in human health and disease. Recent studies revealed that the gut microbiota can affect the host body. CVDs are a leading cause of morbidity and mortality, and patients favor death over chronic kidney disease. For the function of gut microbiota in the host, molecules have to penetrate the intestinal epithelium or the surface cells of the host. Gut microbiota can utilize trimethylamine, N-oxide, short-chain fatty acids, and primary and secondary bile acid pathways. By affecting these living cells, the gut microbiota can cause heart failure, atherosclerosis, hypertension, myocardial fibrosis, myocardial infarction, and coronary artery disease. Previous studies of the gut microbiota and its relation to stroke pathogenesis and its consequences can provide new therapeutic prospects. This review highlights the interplay between the microbiota and its metabolites and addresses related interventions for the treatment of CVDs.
Collapse
|
29
|
Hu M, Wang Q, Liu B, Ma Q, Zhang T, Huang T, Lv Z, Wang R. Chronic Kidney Disease and Cancer: Inter-Relationships and Mechanisms. Front Cell Dev Biol 2022; 10:868715. [PMID: 35663394 PMCID: PMC9158340 DOI: 10.3389/fcell.2022.868715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) has been recognized as an increasingly serious public health problem globally over the decades. Accumulating evidence has shown that the incidence rate of cancer was relatively higher in CKD patients than that in general population, which, mechanistically, may be related to chronic inflammation, accumulation of carcinogenic compounds, oxidative stress, impairment of DNA repair, excessive parathyroid hormone and changes in intestinal microbiota, etc. And in patients with cancer, regardless of tumor types or anticancer treatment, it has been indicated that the morbidity and incidence rate of concomitant CKD was also increased, suggesting a complex inter-relationship between CKD and cancer and arousing increasing attention from both nephrologists and oncologists. This narrative review focused on the correlation between CKD and cancer, and underlying molecular mechanisms, which might provide an overview of novel interdisciplinary research interests and the potential challenges related to the screening and treatment of CKD and cancer. A better understanding of this field might be of help for both nephrologists and oncologists in the clinical practice.
Collapse
Affiliation(s)
- Mengsi Hu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qianhui Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bing Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiqi Ma
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
30
|
Hsu CN, Tain YL. Chronic Kidney Disease and Gut Microbiota: What Is Their Connection in Early Life? Int J Mol Sci 2022; 23:3954. [PMID: 35409313 PMCID: PMC9000069 DOI: 10.3390/ijms23073954] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
The gut-kidney interaction implicating chronic kidney disease (CKD) has been the focus of increasing interest in recent years. Gut microbiota-targeted therapies could prevent CKD and its comorbidities. Considering that CKD can originate in early life, its treatment and prevention should start in childhood or even earlier in fetal life. Therefore, a better understanding of how the early-life gut microbiome impacts CKD in later life and how to develop ideal early interventions are unmet needs to reduce CKD. The purpose of the current review is to summarize (1) the current evidence on the gut microbiota dysbiosis implicated in pediatric CKD; (2) current knowledge supporting the impact of the gut-kidney axis in CKD, including inflammation, immune response, alterations of microbiota compositions, short-chain fatty acids, and uremic toxins; and (3) an overview of the studies documenting early gut microbiota-targeted interventions in animal models of CKD of developmental origins. Treatment options include prebiotics, probiotics, postbiotics, etc. To accelerate the transition of gut microbiota-based therapies for early prevention of CKD, an extended comprehension of gut microbiota dysbiosis implicated in renal programming is needed, as well as a greater focus on pediatric CKD for further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
31
|
Wehedy E, Shatat IF, Al Khodor S. The Human Microbiome in Chronic Kidney Disease: A Double-Edged Sword. Front Med (Lausanne) 2022; 8:790783. [PMID: 35111779 PMCID: PMC8801809 DOI: 10.3389/fmed.2021.790783] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing global health burden. Current treatments for CKD include therapeutics to target factors that contribute to CKD progression, including renin–angiotensin–aldosterone system inhibitors, and drugs to control blood pressure and proteinuria control. Recently, associations between chronic disease processes and the human microbiota and its metabolites have been demonstrated. Dysbiosis—a change in the microbial diversity—has been observed in patients with CKD. The relationship between CKD and dysbiosis is bidirectional; gut-derived metabolites and toxins affect the progression of CKD, and the uremic milieu affects the microbiota. The accumulation of microbial metabolites and toxins is linked to the loss of kidney functions and increased mortality risk, yet renoprotective metabolites such as short-chain fatty acids and bile acids help restore kidney functions and increase the survival rate in CKD patients. Specific dietary interventions to alter the gut microbiome could improve clinical outcomes in patients with CKD. Low-protein and high-fiber diets increase the abundance of bacteria that produce short-chain fatty acids and anti-inflammatory bacteria. Fluctuations in the urinary microbiome are linked to increased susceptibility to infection and antibiotic resistance. In this review, we describe the potential role of the gut, urinary and blood microbiome in CKD pathophysiology and assess the feasibility of modulating the gut microbiota as a therapeutic tool for treating CKD.
Collapse
Affiliation(s)
- Eman Wehedy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Souhaila Al Khodor
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Souhaila Al Khodor
| |
Collapse
|
32
|
Popkov VA, Zharikova AA, Demchenko EA, Andrianova NV, Zorov DB, Plotnikov EY. Gut Microbiota as a Source of Uremic Toxins. Int J Mol Sci 2022; 23:ijms23010483. [PMID: 35008909 PMCID: PMC8745165 DOI: 10.3390/ijms23010483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Uremic retention solutes are the compounds that accumulate in the blood when kidney excretory function is impaired. Some of these compounds are toxic at high concentrations and are usually known as “uremic toxins”. The cumulative detrimental effect of uremic toxins results in numerous health problems and eventually mortality during acute or chronic uremia, especially in end-stage renal disease. More than 100 different solutes increase during uremia; however, the exact origin for most of them is still debatable. There are three main sources for such compounds: exogenous ones are consumed with food, whereas endogenous ones are produced by the host metabolism or by symbiotic microbiota metabolism. In this article, we identify uremic retention solutes presumably of gut microbiota origin. We used database analysis to obtain data on the enzymatic reactions in bacteria and human organisms that potentially yield uremic retention solutes and hence to determine what toxins could be synthesized in bacteria residing in the human gut. We selected biochemical pathways resulting in uremic retention solutes synthesis related to specific bacterial strains and revealed links between toxin concentration in uremia and the proportion of different bacteria species which can synthesize the toxin. The detected bacterial species essential for the synthesis of uremic retention solutes were then verified using the Human Microbiome Project database. Moreover, we defined the relative abundance of human toxin-generating enzymes as well as the possibility of the synthesis of a particular toxin by the human metabolism. Our study presents a novel bioinformatics approach for the elucidation of the origin of both uremic retention solutes and uremic toxins and for searching for the most likely human microbiome producers of toxins that can be targeted and used for the therapy of adverse consequences of uremia.
Collapse
Affiliation(s)
- Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Anastasia A. Zharikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Evgenia A. Demchenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)939-59-44
| |
Collapse
|
33
|
Sudo N. Possible role of the gut microbiota in the pathogenesis of anorexia nervosa. Biopsychosoc Med 2021; 15:25. [PMID: 34844634 PMCID: PMC8630889 DOI: 10.1186/s13030-021-00228-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN), an eating disorder, is characterized by extreme weight loss and fear of weight gain. Psychosocial factors are thought to play important roles in the development and progression of AN; however, biological factors also presumably contribute to eating disorders. Recent evidence has shown that the gut microbiota plays an important role in pathogenesis of neuropsychiatric disorders including AN. In this article, we describe the possible role of the gut microbiota in the development and persistence of AN, based on the latest research works, including those of our group.
Collapse
Affiliation(s)
- Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
34
|
Hiraga Y, Kubota T, Katoh M, Horai Y, Suzuki H, Yamashita Y, Hirata R, Moroi M. AST-120 Treatment Alters the Gut Microbiota Composition and Suppresses Hepatic Triglyceride Levels in Obese Mice. Endocr Res 2021; 46:178-185. [PMID: 34060951 DOI: 10.1080/07435800.2021.1927074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing worldwide. The existence of a relationship between the microbiota and the pathology of hepatic steatosis is also becoming increasingly clear. AST-120, an oral spherical carbon adsorbent, has been shown to be useful for delaying dialysis initiation and improving uremic symptoms in patients with chronic kidney disease. However, little is known about the effect of AST-120 on fatty liver.Methods: AST-120 (5% w/w) was administrated to 6-week-old male db/db mice for 8 weeks. The body weight, blood glucose and food consumption were examined. Hepatic triglyceride (TG) levels, lipid droplets and epididymal fat cell size were measured. The gut microbiota compositions were investigated in feces and cecum.Results: Significant decreases of the hepatic weight and hepatic TG levels were observed in the AST-120-treated db/db mice. Furthermore, AST-120 treatment was also associated with a decrease of Bacteroidetes, increase of Firmicutes, and a reduced ratio of Bacteroidetes to Firmicutes (B/F ratio) in the feces in the db/db mice. The B/F ratio in the feces was correlated with the liver weight and area of the liver occupied by lipid droplets in the db/db mice.Conclusions: These data suggest that AST-120 treatment alters the composition of the fecal microbiota and suppresses hepatic TG levels in the db/db mice.
Collapse
Affiliation(s)
- Yuki Hiraga
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
- Sohyaku Project Planning & Management Department Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan
| | - Tetsuya Kubota
- Faculty of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine (Ohashi), Toho University, Tokyo, Japan
- Division of Diabetes and Metabolism, The Institute for Medical Science Asahi Life Foundation, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
- Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan
- Analysis Tool Development Group, Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Makoto Katoh
- Naka Kinen Clinic, Ibaraki, Japan
- Research Administration Center, Saitama Medical University, Saitama, Japan
- Department of Cardiology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Yasushi Horai
- Research Unit/Frontier Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Hiroyuki Suzuki
- Medical Materials Laboratory, Medical Materials Research Laboratories, Kureha Corporation, Fukushima, Japan
| | - Yusuke Yamashita
- Medical Materials Laboratory, Medical Materials Research Laboratories, Kureha Corporation, Fukushima, Japan
| | - Rieko Hirata
- Medical Materials Laboratory, Medical Materials Research Laboratories, Kureha Corporation, Fukushima, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
- Faculty of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine (Ohashi), Toho University, Tokyo, Japan
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Xu X, Wang H, Guo D, Man X, Liu J, Li J, Luo C, Zhang M, Zhen L, Liu X. Curcumin modulates gut microbiota and improves renal function in rats with uric acid nephropathy. Ren Fail 2021; 43:1063-1075. [PMID: 34187292 PMCID: PMC8253186 DOI: 10.1080/0886022x.2021.1944875] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well known that the progression of hyperuricemia disease often contributes to renal dysfunction. However, there have been few studies on uric acid nephropathy (UAN), especially its relationship with gut microbiota. UAN is usually accompanied by disordered intestinal flora, and damaged gut barrier, which are closely related to tubulointerstitial fibrosis, and systemic inflammation. In previous studies, it has been confirmed that curcumin could alleviate tubulointerstitial fibrosis, and improve renal function through its antioxidant, anti-apoptotic, and anti-inflammatory efficacies. However, the effects curcumin exerts on intestinal flora in uric acid nephropathy are still unknown. Therefore, we used next-generation sequencing technology to investigate the effects of curcumin on gut microbiota in a rat model of UAN induced by adenine and potassium oxonate, and rats were randomly divided into control, model or curcumin treatment groups. The results demonstrated that, compared to the model group, the treatment group showed decreased serum uric acid (156.80 ± 11.90 μmol/L vs. 325.60 ± 18.65 μmol/L, p < 0.001), serum creatinine (66.20 ± 11.88 μmol/L vs. 182.20 ± 8.87 μmol/L, p < 0.001) and BUN level (13.33 ± 3.16 mmol/L vs. 36.04 ± 6.60 mmol/L, p < 0.001). The treatment group also displayed attenuated renal pathological lesions and metabolic endotoxemia (25.60 ± 5.90 ng/mL vs. 38.40 ± 4.98 ng/mL, p < 0.01), and improved tightly linked proteins expression. Besides, curcumin altered the gut microbiota structure in UAN rats. More specifically, curcumin treatment protected against the overgrowth of opportunistic pathogens in UAN, including Escherichia-Shigella and Bacteroides, and increased the relative abundance of bacteria producing short‐chain fatty acids (SCFAs), such as Lactobacillus and Ruminococcaceae. These results suggest that curcumin could modulate gut microbiota, fortify the intestinal barrier, attenuate metabolic endotoxemia, and consequently protect the renal function in UAN rats.
Collapse
Affiliation(s)
- Xueling Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huifang Wang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dandan Guo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofei Man
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Liu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junying Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Congjuan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Zhen
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemei Liu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Deng Q, Wang H, Lai Y, Liang H. Secondary stone formation 8 weeks after percutaneous nephrolithotomy treatment: A case report. Medicine (Baltimore) 2021; 100:e26091. [PMID: 34032746 PMCID: PMC8154477 DOI: 10.1097/md.0000000000026091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION This work reports a patient with recurrent renal calculi subjected to three surgeries in half a year to be in the same position, and the high-throughput sequencing data showed different species in the renal pus and urine samples, which suggested that partial renal infection or stone formation can be judged by the bacteria in urine. PATIENT CONCERNS The female patient aged 43 years was referred to the authors' department on April 13, 2020, due to left waist pain and fever for 3 days. DIAGNOSIS Kidney stones and hydronephrosis were determined by a urinary system computed tomography scan. INTERVENTIONS On April 20, 2020 and June 15, 2020, the patient was successfully treated with left percutaneous nephrolithotomy twice under general anesthesia. An investigation on the health and eating habits of the patient within 6 months was completed at the last admission. The components of the second renal calculus sample were analyzed with an infrared spectrum analyzer. The third renal stone (renal pus, triplicates) was subjected to microbial metagenome sequencing, and urine samples before and after surgery were subjected to 16S RNA sequencing by SEQHEALTH (Wuhan, China). OUTCOMES After percutaneous nephrolithotomy, the left kidney stones were basically cleared, stone analysis revealed that the main components were calcium oxalate monohydrate, silica, and a small amount of calcium oxalate dehydrate. Although the urine samples exhibited differences, the renal pus and urine sample shared a single species. CONCLUSION It is not clear that the prospects of partial renal infection or stone formation can be judged by the bacteria in urine.
Collapse
Affiliation(s)
- Qiong Deng
- Department of Urology, Affiliated Longhua People's Hospital
- College of Basic Medicine, Southern Medical University, Shenzhen, Guandong, China
| | - Hongliang Wang
- Department of Urology, Affiliated Longhua People's Hospital
| | - Yulin Lai
- Department of Urology, Affiliated Longhua People's Hospital
| | - Hui Liang
- Department of Urology, Affiliated Longhua People's Hospital
| |
Collapse
|
37
|
Uchiyama K, Wakino S, Irie J, Miyamoto J, Matsui A, Tajima T, Itoh T, Oshima Y, Yoshifuji A, Kimura I, Itoh H. Contribution of uremic dysbiosis to insulin resistance and sarcopenia. Nephrol Dial Transplant 2021; 35:1501-1517. [PMID: 32535631 DOI: 10.1093/ndt/gfaa076] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) leads to insulin resistance (IR) and sarcopenia, which are associated with a high mortality risk in CKD patients; however, their pathophysiologies remain unclear. Recently, alterations in gut microbiota have been reported to be associated with CKD. We aimed to determine whether uremic dysbiosis contributes to CKD-associated IR and sarcopenia. METHODS CKD was induced in specific pathogen-free mice via an adenine-containing diet; control animals were fed a normal diet. Fecal microbiota transplantation (FMT) was performed by oral gavage in healthy germ-free mice using cecal bacterial samples obtained from either control mice (control-FMT) or CKD mice (CKD-FMT). Vehicle mice were gavaged with sterile phosphate-buffered saline. Two weeks after inoculation, mice phenotypes, including IR and sarcopenia, were evaluated. RESULTS IR and sarcopenia were evident in CKD mice compared with control mice. These features were reproduced in CKD-FMT mice compared with control-FMT and vehicle mice with attenuated insulin-induced signal transduction and mitochondrial dysfunction in skeletal muscles. Intestinal tight junction protein expression and adipocyte sizes were lower in CKD-FMT mice than in control-FMT mice. Furthermore, CKD-FMT mice showed systemic microinflammation, increased concentrations of serum uremic solutes, fecal bacterial fermentation products and elevated lipid content in skeletal muscle. The differences in gut microbiota between CKD and control mice were mostly consistent between CKD-FMT and control-FMT mice. CONCLUSIONS Uremic dysbiosis induces IR and sarcopenia, leaky gut and lipodystrophy.
Collapse
Affiliation(s)
- Kiyotaka Uchiyama
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Shu Wakino
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Junichiro Irie
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Junki Miyamoto
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ayumi Matsui
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Takaya Tajima
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoaki Itoh
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Yoichi Oshima
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| | - Ayumi Yoshifuji
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ikuo Kimura
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
38
|
Miyata N, Hata T, Takakura S, Yoshihara K, Morita C, Mikami K, Nomoto K, Miyazaki K, Tsuji H, Sudo N. Metabolomics profile of Japanese female patients with restricting-type anorexia nervosa. Physiol Behav 2021; 228:113204. [PMID: 33053407 DOI: 10.1016/j.physbeh.2020.113204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
In this study, the serum metabolic profiles of 10 female patients with restricting type anorexia nervosa (ANR) were compared to those of 10 age-matched healthy female controls. While the levels of amino acids were lower among the patients than among the controls, the levels of uremic toxins, including p-cresyl sulfate (PCS), indole-3-acetic acid, and phenyl sulfate, were higher in ANR patients. The serum PCS levels correlated positively with the abundance of the Clostridium coccoides group or the C. leptum subgroup in the feces of patients, but not in those of controls. Collectively, these results indicate that the serum metabolic profiles of patients with ANR differ from those of healthy women in terms of both decreased amino acid levels and increased uremic toxins. Gut microbes including C. coccoides or C. leptum may be involved in such an increase in uremic toxins.
Collapse
Affiliation(s)
- Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chihiro Morita
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsunaka Mikami
- Department of Psychiatry, Tokai University School of Medicine, Isehara, Japan
| | - Koji Nomoto
- Tokyo University of Agriculture, Faculty of Life Sciences, Department of Molecular Microbiology, Japan
| | | | | | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
39
|
Winther SA, Henriksen P, Vogt JK, Hansen TH, Ahonen L, Suvitaival T, Hein Zobel E, Frimodt-Møller M, Hansen TW, Hansen T, Parving HH, Legido-Quigley C, Rossing P, Pedersen O. Gut microbiota profile and selected plasma metabolites in type 1 diabetes without and with stratification by albuminuria. Diabetologia 2020; 63:2713-2724. [PMID: 32886190 DOI: 10.1007/s00125-020-05260-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Abnormal gut microbiota and blood metabolome profiles have been reported both in children and adults with uncomplicated type 1 diabetes as well as in adults with type 1 diabetes and advanced stages of diabetic nephropathy. In this study we aimed to investigate the gut microbiota and a panel of targeted plasma metabolites in individuals with type 1 diabetes of long duration without and with different levels of albuminuria. METHODS In a cross-sectional study we included 161 individuals with type 1 diabetes and 50 healthy control individuals. Individuals with type 1 diabetes were categorised into three groups according to historically measured albuminuria: (1) normoalbuminuria (<3.39 mg/mmol); (2) microalbuminuria (3.39-33.79 mg/mmol); and (3) macroalbuminuria (≥33.90 mg/mmol). From faecal samples, the gut microbiota composition at genus level was characterised by 16S rRNA gene amplicon sequencing and in plasma a targeted profile of 31 metabolites was analysed with ultra HPLC coupled to MS/MS. RESULTS Study participants were aged 60 ± 11 years (mean ± SD) and 42% were women. The individuals with type 1 diabetes had had diabetes for a mean of 42 ± 15 years and had an eGFR of 75 ± 25 ml min-1 (1.73 m)-2. Measures of the gut microbial beta diversity differed significantly between healthy controls and individuals with type 1 diabetes, either with micro- or macroalbuminuria. Taxonomic analyses showed that 79 of 324 genera differed in relative abundance between individuals with type 1 diabetes and healthy controls and ten genera differed significantly among the three albuminuria groups with type 1 diabetes. For the measured plasma metabolites, 11 of 31 metabolites differed significantly between individuals with type 1 diabetes and healthy controls. When individuals with type 1 diabetes were stratified by the level of albuminuria, individuals with macroalbuminuria had higher plasma concentrations of indoxyl sulphate and L-citrulline than those with normo- or microalbuminuria and higher plasma levels of homocitrulline and L-kynurenine compared with individuals with normoalbuminuria. Whereas plasma concentrations of tryptophan were lower in individuals with macroalbuminuria compared with those with normoalbuminuria. CONCLUSIONS/INTERPRETATION We demonstrate that individuals with type 1 diabetes of long duration are characterised by aberrant profiles of gut microbiota and plasma metabolites. Moreover, individuals with type 1 diabetes with initial stages of diabetic nephropathy show different gut microbiota and plasma metabolite profiles depending on the level of albuminuria. Graphical abstract.
Collapse
Affiliation(s)
- Signe A Winther
- Steno Diabetes Center Copenhagen, Gentofte, Denmark.
- Novo Nordisk A/S, Maaloev, Denmark.
| | | | - Josef K Vogt
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue H Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Linda Ahonen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Biosyntia ApS, Copenhagen, Denmark
| | | | | | | | | | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Cristina Legido-Quigley
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Impact of gut microbiota: How it could play roles beyond the digestive system on development of cardiovascular and renal diseases. Microb Pathog 2020; 152:104583. [PMID: 33164814 DOI: 10.1016/j.micpath.2020.104583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
In recent years, a significant interest in gut microbiota-host crosstalk has increased due to the involvement of gut bacteria on host health and diseases. Gut dysbiosis, a change in the gut microbiota composition alters host-microbiota interactions and induces gut immune dysregulation that have been associated with pathogenesis of several diseases, including cardiovascular diseases (CVD) and chronic kidney diseases (CKD). Gut microbiota affect the host, mainly through the immunological and metabolism-dependent and metabolism-independent pathways. In addition to these, the production of trimethylamine (TMA)/trimethylamine N-oxide (TMAO), uremic toxins and lipopolysaccharides (LPS) by gut microbiota are involved in the pathogenesis of CVD and CKD. Given the current approaches and challenges that can reshape the bacterial composition by restoring the balance between host and microbiota. In this review, we discuss the complex interplay between the gut microbiota, and the heart and the kidney, and explain the gut-cardiovascular axis and gut-kidney axis on the development and progression of cardiovascular diseases and chronic kidney diseases. In addition, we discuss the interplay between gut and kidney on hypertension or cardiovascular pathology.
Collapse
|
41
|
Zhang L, Zhou W, Zhan L, Hou S, Zhao C, Bi T, Lu X. Fecal microbiota transplantation alters the susceptibility of obese rats to type 2 diabetes mellitus. Aging (Albany NY) 2020; 12:17480-17502. [PMID: 32920548 PMCID: PMC7521520 DOI: 10.18632/aging.103756] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Obesity is one of the susceptibility factors for type 2 diabetes (T2DM), both of which could accelerate the aging of the body and bring many hazards. A causal relationship is present between intestinal microbiota and body metabolism, but how the microbiota play a role in the progression of obesity to T2DM has not been elucidated. In this study, we transplanted healthy or obese-T2DM intestinal microbiota to ZDF and LZ rats, and used 16S rRNA and targeted metabonomics to evaluate the directional effect of the microbiota on the susceptibility of obese rats to T2DM. The glycolipid metabolism phenotype could be changed bidirectionally in obese rats instead of in lean ones. One possible mechanism is that the microbiota and metabolites alter the structure of the intestinal tract, and improve insulin and leptin resistance through JAK2 / IRS / Akt pathway. It is worth noting that 7 genera, such as Lactobacillus, Clostridium and Roche, can regulate 15 metabolites, such as 3-indolpropionic acid, acetic acid and docosahexaenoic acid, and have a significant improvement on glycolipid metabolism phenotype. Attention to intestinal homeostasis may be the key to controlling obesity and preventing T2DM.
Collapse
Affiliation(s)
- Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shenglin Hou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chunyan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian 116001, China
| |
Collapse
|
42
|
He LX, Abdolmaleky HM, Yin S, Wang Y, Zhou JR. Dietary Fermented Soy Extract and Oligo-Lactic Acid Alleviate Chronic Kidney Disease in Mice via Inhibition of Inflammation and Modulation of Gut Microbiota. Nutrients 2020; 12:E2376. [PMID: 32784477 PMCID: PMC7468970 DOI: 10.3390/nu12082376] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic kidney disease (CKD) is a global epidemic with an increasing prevalence worldwide. Effective preventive strategies are urgently needed. This study aimed to investigate the effect of nutraceutical components, a fermented soybean product (ImmuBalance, IMB) and an oligo-lactic acid product (LAP), on the prevention of adenine-induced CKD in mice. Female C57BL/6 mice were randomly assigned into following experimental groups: negative control; model control; and models treated with IMB at 250 or 1000 mg/kg body weight (BW), LAP at 1000 or 2000 mg/kg BW, and IMB/LAP combinations. The CKD model was established by intraperitoneal injection of adenine daily for 4 weeks, and treatments started 2 weeks before adenine injection and ended after 10 weeks. Compared with the model control, the treatments did not significantly alter the body weight or food intake. Both IMB and LAP, especially their combination, significantly inhibited tubular dilation, tubulointerstitial degeneration or atrophy, interstitial chronic inflammation and acute inflammation in the kidneys of CKD mice, and significantly decreased serum cystatin C levels. IMB or LAP significantly reversed CKD-associated increases of circulating and kidney levels of inflammatory cytokines, circulating levels of kidney injury biomarkers, and kidney levels of stem cell biomarkers, and significantly reversed CKD-associated reduction of cecum Clostridium leptum group. Our results suggest that dietary supplementation of IMB or LAP may significantly delay the development and/or progression of CKD.
Collapse
Affiliation(s)
- Li-Xia He
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (L.-X.H.); (H.M.A.); (S.Y.)
- Feihe Nutrition Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hamid M. Abdolmaleky
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (L.-X.H.); (H.M.A.); (S.Y.)
| | - Sheng Yin
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (L.-X.H.); (H.M.A.); (S.Y.)
| | - Yihong Wang
- Department of Pathology and Laboratory of Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (L.-X.H.); (H.M.A.); (S.Y.)
| |
Collapse
|
43
|
Zhao T, Zhang H, Yin X, Zhao H, Ma L, Yan M, Peng L, Wang Q, Dong X, Li P. Tangshen formula modulates gut Microbiota and reduces gut-derived toxins in diabetic nephropathy rats. Biomed Pharmacother 2020; 129:110325. [PMID: 32535383 DOI: 10.1016/j.biopha.2020.110325] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022] Open
Abstract
Growing evidence shows that diabetic kidney disease (DKD) is linked with intestinal dysbiosis from gut-derived toxins. Tangshen Formula (TSF) is a traditional Chinese herbal medicine that has been used to treat DKD. In this study, streptozotocin injection and uninephrectomy-induced diabetic nephropathy (DN) rat model was established to explore the impact of TSF on gut microbiota composition, gut-derived toxins, and the downstream inflammatory pathway of urotoxins in the kidney. TSF treatment for 12 weeks showed significant attenuation of both renal histologic injuries and urinary excretion of albumin compared with DN rats without treatment. TSF treatment also reconstructed gut dysbiosis and reduced levels of indoxyl sulfate and metabolic endotoxemia/lipopolysaccharide. MCP-1 and TNF-α were decreased by TSF both in the serum and kidney. In addition, we revealed that the inhibitory effect of TSF on renal inflammation was associated with the inhibition of aryl hydrocarbon, a receptor of indoxyl sulfate, and TLR4, thereby inhibiting JNK and NF-κB signaling in the kidney. Spearman correlation analysis found that a cluster of gut bacterial phyla and genera were significantly correlated with renal pathology, renal function, and systemic inflammation. In conclusion, orally administered TSF significantly inhibited diabetic renal injury, and modulated gut microbiota, which decreased levels of lipopolysaccharide and indoxyl sulfate, and attenuated renal inflammation. Our results indicate that TSF may be used as an agent in the prevention of gut dysbiosis and elimination of intestinal toxins in DN individuals.
Collapse
Affiliation(s)
- TingTing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - HaoJun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Xingbin Yin
- Beijing University of Chinese Medicine, No. 11 Beisanhuan Donglu, Chaoyang District, Beijing 100029, China
| | - HaiLing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Liang Ma
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - MeiHua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Liang Peng
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Qian Wang
- Beijing University of Chinese Medicine, No. 11 Beisanhuan Donglu, Chaoyang District, Beijing 100029, China
| | - Xi Dong
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Pharmacology, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
44
|
Zheng L, Chen S, Wang F, Huang S, Liu X, Yang X, Zhou H, Zhao GP, Luo M, Li S, Chen J. Distinct Responses of Gut Microbiota to Jian-Pi-Yi-Shen Decoction Are Associated With Improved Clinical Outcomes in 5/6 Nephrectomized Rats. Front Pharmacol 2020; 11:604. [PMID: 32435197 PMCID: PMC7219274 DOI: 10.3389/fphar.2020.00604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Gut dysbiosis contributes to the development and progression of chronic kidney disease (CKD) and its complications. However, the effect of drugs on the gut microbiota of CKD patients and its influence on treatment outcomes remains to be explored. Here, we assessed whether the response of gut microbiota to the traditional Chinese medicine Jian-Pi-Yi-Shen (JPYS) decoction differed from that to piperazine ferulate (PF), a kidney-targeted drug, by 16S rDNA sequencing, and whether the difference could be linked with drug-specific clinical outcomes. We showed that both JPYS and PF improved renal function, but only JPYS was able to restore the blood reticulocyte counting and serum calcium level in CKD rats. We also found that weighted UniFrac beta-diversity of the gut microbiome of the JPYS treated rats was significantly different from that of PF. Microbiome markers of drug-specific response were identified and subjected to correlation network analysis, together with clinical parameters and KEGG pathways. Among the microbiome markers of CKD, Corynebacterium was found to form a network hub that was closely correlated with the JPYS responder Enterococcus, suggesting a potential indirect impact of JPYS on Corynebacterium via interspecies interactions. We also identified two network hubs of the PF responder Blautia and the JPYS-only marker Coprococcus, which were connected with many genera and clinical parameters. They might serve as keystone taxa driving the response of gut microbiota to the drugs and influence host outcomes. Moreover, the JPYS-only marker Clostridium_XIVb was found to be connected to many pathways that are associated with CKD progression and might account for the improved outcomes in the JPYS treated rats. At last, the identified keystone markers of drug response were validated by qPCR for their differential abundance between CKD and the two drugs. Taken together, our study revealed that the responses of gut microbiota to JPYS were distinct from that to PF, and pinpointed drug-specific keystone microbiome markers closely correlated to clinical parameters, which could serve as candidate microbiome targets for further studies on their roles in medicating the drug efficacy of TCM in CKD.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuo Chen
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Fochang Wang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shiying Huang
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xilan Yang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Guo-Ping Zhao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Shunmin Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
45
|
Gupta N, Buffa JA, Roberts AB, Sangwan N, Skye SM, Li L, Ho KJ, Varga J, DiDonato JA, Tang WHW, Hazen SL. Targeted Inhibition of Gut Microbial Trimethylamine N-Oxide Production Reduces Renal Tubulointerstitial Fibrosis and Functional Impairment in a Murine Model of Chronic Kidney Disease. Arterioscler Thromb Vasc Biol 2020; 40:1239-1255. [PMID: 32212854 PMCID: PMC7203662 DOI: 10.1161/atvbaha.120.314139] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Gut microbial metabolism of dietary choline, a nutrient abundant in a Western diet, produces trimethylamine (TMA) and the atherothrombosis- and fibrosis-promoting metabolite TMA-N-oxide (TMAO). Recent clinical and animal studies reveal that elevated TMAO levels are associated with heightened risks for both cardiovascular disease and incident chronic kidney disease development. Despite this, studies focusing on therapeutically targeting gut microbiota-dependent TMAO production and its impact on preserving renal function are limited. Approach and Results: Herein we examined the impact of pharmacological inhibition of choline diet-induced gut microbiota-dependent production of TMA, and consequently TMAO, on renal tubulointerstitial fibrosis and functional impairment in a model of chronic kidney disease. Initial studies with a gut microbial choline TMA-lyase mechanism-based inhibitor, iodomethylcholine, confirmed both marked suppression of TMA generation, and consequently TMAO levels, and selective targeting of the gut microbial compartment (ie, both accumulation of the drug in intestinal microbes and limited systemic exposure in the host). Dietary supplementation of either choline or TMAO significantly augmented multiple indices of renal functional impairment and fibrosis associated with chronic subcutaneous infusion of isoproterenol. However, the presence of the gut microbiota-targeting inhibitor iodomethylcholine blocked choline diet-induced elevation in TMAO, and both significantly improved decline in renal function, and significantly attenuated multiple indices of tubulointerstitial fibrosis. Iodomethylcholine treatment also reversed many choline diet-induced changes in cecal microbial community composition associated with TMAO and renal functional impairment. CONCLUSIONS Selective targeting of gut microbiota-dependent TMAO generation may prevent adverse renal structural and functional alterations in subjects at risk for chronic kidney disease.
Collapse
Affiliation(s)
- Nilaksh Gupta
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Jennifer A Buffa
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Adam B Roberts
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Naseer Sangwan
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Sarah M Skye
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Lin Li
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Karen J Ho
- Division of Vascular Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL (K.J.H)
| | - John Varga
- Division of Rheumatology, Northwestern University, Chicago, IL (J.V.)
| | - Joseph A DiDonato
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - W H Wilson Tang
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Department of Cardiovascular Medicine, Heart and Vascular Institute (W.H.W.T., S.L.H.), Cleveland Clinic, OH
| | - Stanley L Hazen
- From the Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Center for Microbiome & Human Health (N.G., J.A.B., A.B.R., N.S., S.M.S., L.L., J.A.D., W.H.W.T., S.L.H.), Cleveland Clinic, OH
- Department of Cardiovascular Medicine, Heart and Vascular Institute (W.H.W.T., S.L.H.), Cleveland Clinic, OH
| |
Collapse
|
46
|
Bush KT, Singh P, Nigam SK. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight 2020; 5:133817. [PMID: 32271169 DOI: 10.1172/jci.insight.133817] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
The role of the renal organic anion transporters OAT1 (also known as SLC22A6, originally identified as NKT) and OAT3 (also known as SLC22A8) in chronic kidney disease (CKD) remains poorly understood. This is particularly so from the viewpoint of residual proximal tubular secretion, a key adaptive mechanism to deal with protein-bound uremic toxins in CKD. Using the subtotal nephrectomy (STN) model, plasma metabolites accumulating in STN rats treated with and without the OAT inhibitor, probenecid, were identified. Comparisons with metabolomics data from Oat1-KO and Oat3-KO mice support the centrality of the OATs in residual tubular secretion of uremic solutes, such as indoxyl sulfate, kynurenate, and anthranilate. Overlapping our data with those of published metabolomics data regarding gut microbiome-derived uremic solutes - which can have dual roles in signaling and toxicity - indicates that OATs play a critical role in determining their plasma levels in CKD. Thus, the OATs, along with other SLC and ABC drug transporters, are critical to the movement of uremic solutes across tissues and into various body fluids, consistent with the remote sensing and signaling theory. The data support a role for OATs in modulating remote interorganismal and interorgan communication (gut microbiota-blood-liver-kidney-urine). The results also have implications for understanding drug-metabolite interactions involving uremic toxins.
Collapse
Affiliation(s)
- Kevin T Bush
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Prabhleen Singh
- Division of Nephrology-Hypertension, University of California, San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
47
|
An overview of the mechanisms in vascular calcification during chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 28:289-296. [PMID: 30985336 DOI: 10.1097/mnh.0000000000000507] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) facilitates a unique environment to strongly accelerate vascular calcification - the pathological deposition of calcium-phosphate in the vasculature. These calcifications are associated with the excessive cardiovascular mortality of CKD patients. RECENT FINDINGS Vascular calcification is a multifaceted active process, mediated, at least partly, by vascular smooth muscle cells. These cells are able to transdifferentiate into cells with osteo/chondrogenic properties, which exert multiple effects to facilitate vascular tissue mineralization. As the understanding of the underlying pathophysiology increases, first therapeutic concepts begin to emerge. SUMMARY This brief review provides an overview on the so far known mechanisms involved in the initiation and progression of vascular calcification in CKD.
Collapse
|
48
|
Wu IW, Lin CY, Chang LC, Lee CC, Chiu CY, Hsu HJ, Sun CY, Chen YC, Kuo YL, Yang CW, Gao SS, Hsieh WP, Chung WH, Lai HC, Su SC. Gut Microbiota as Diagnostic Tools for Mirroring Disease Progression and Circulating Nephrotoxin Levels in Chronic Kidney Disease: Discovery and Validation Study. Int J Biol Sci 2020; 16:420-434. [PMID: 32015679 PMCID: PMC6990903 DOI: 10.7150/ijbs.37421] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022] Open
Abstract
The interplay of the gut microbes with gut-producing nephrotoxins and the renal progression remains unclear in large human cohort. Significant compositional and functional differences in the intestinal microbiota (by 16S rRNA gene sequencing) were noted among 30 controls and 92 (31 mild, 30 moderate and 31 advanced) patients at different chronic kidney disease (CKD) stages (discovery cohort). A core CKD-associated microbiota consisted of 7 genera (Escherichia_Shigella, Dialister, Lachnospiraceae_ND3007_group, Pseudobutyrivibrio, Roseburia, Paraprevotella and Ruminiclostridium) and 2 species (Collinsella stercoris and Bacteroides eggerthii) were identified to be highly correlated with the stages of CKD. Paraprevotella, Pseudobutyrivibrio and Collinsella stercoris were superior in discriminating CKD from the controls than the use of urine protein/creatinine ratio, even at early-stage of disease. The performance was further confirmed in a validation cohort comprising 22 controls and 76 peritoneal dialysis patients. Bacterial genera highly correlated with indoxyl sulfate and p-cresyl sulfate levels were identified. Prediction of the functional capabilities of microbial communities showed that microbial genes related to the metabolism of aromatic amino acids (phenylalanine, tyrosine, and tryptophan) were differentially enriched among the control and different CKD stages. Collectively, our results provide solid human evidence of the impact of gut-metabolite-kidney axis on the severity of chronic kidney disease and highlight a usefulness of specific gut microorganisms as possible disease differentiate marker of this global health burden.
Collapse
Affiliation(s)
- I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chan-Yu Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkuo, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Florida, US
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chih-Yung Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yuen-Chan Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Kuo
- Biotools, Co., Ltd, New Taipei City, Taiwan
| | - Chi-Wei Yang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkuo, Taiwan
| | - Sheng-Siang Gao
- Institute of Statistics, National Tsing-Hua University, Hsinchu, Taiwan
| | - Wen-Ping Hsieh
- Institute of Statistics, National Tsing-Hua University, Hsinchu, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Hsin-Chih Lai
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Microbiota Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|
49
|
Charcoal for the management of pruritus and uremic toxins in patients with chronic kidney disease. Curr Opin Nephrol Hypertens 2020; 29:71-79. [DOI: 10.1097/mnh.0000000000000567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Suga H, Ichimura Y, Oda M, Saitoh H. Different Correlation between Serum Levels of Indoxyl Sulfate and Estimated GFR in the Elderly with or without Dementia. ACTA ACUST UNITED AC 2020. [DOI: 10.1248/bpbreports.3.3_102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hideyuki Suga
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
- Department of Pharmacy, Hokusei Hospital
| | - Yuichi Ichimura
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Masako Oda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Hiroshi Saitoh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| |
Collapse
|