1
|
Dutuze MF, Clark SD, Del Perio F, Christofferson RC. Preliminary evidence that Bunyamwera virus causes severe disease characterized by systemic vascular and multiorgan necrosis in an immunocompromised mouse model. J Gen Virol 2024; 105:002040. [PMID: 39503743 PMCID: PMC11539936 DOI: 10.1099/jgv.0.002040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Bunyamwera virus (BUNV) is the prototypical member of the Bunyamwera serogroup within the Orthobunyvirus genus. BUNV is transmitted by mosquito vectors of the genera Culex, Aedes and Anopheles and has historically circulated in East Africa, though the transmission has been observed in Argentina. BUNV has been identified as an agent of human and animal disease and has also been misdiagnosed as other agents. BUNV is often thought to be an agent of mild febrile illness in humans, though it can cause abortions in ruminants and neurological disease in horses. Joint pain and gastritis have also been attributed to BUNV. There are limited data concerning the possible spectrum of disease and extent of pathogenesis of BUNV infection, and there are currently no therapeutics or vaccines available. Furthermore, options for animal models for Orthobunyaviruses in general - of which BUNV is the prototypical member - are limited. Eight mice deficient in the type I interferon response were infected with BUNV, and all developed overt disease. All mice developed detectable viraemia and clinical signs, including weight loss, hunched posture and lethargy. Three of the eight mice developed severe diseases, including vascular necrosis and necrosis in the liver, lungs, reproductive organs, bone marrow and spleen, as well as haemorrhages (n=1) and severe diffuse facial oedema (n=3), reminiscent of the pathology of Schmallenberg and the Arenaviruses Lassa and Lujo viruses. Thus, BUNV infection of IRF3/7 DKO mice could serve as a BSL-2 model for severe diseases of higher-risk group viruses, which often must be studied at BSL-4. Additionally, our results suggest that BUNV may have the ability to cause severe disease in immunocompromised hosts. Thus, further investigation into the potential spectrum of pathogenesis due to BUNV is important to prioritize for outbreak response, diagnostics and the development of countermeasures.
Collapse
Affiliation(s)
- M. Fausta Dutuze
- Rwanda Institute for Conservation Agriculture, Kigali, Rwanda
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Samantha D. Clark
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Fabio Del Perio
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
2
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
3
|
Wang Q, Li B, Sun XN, Gan Z. Evolutionary and functional conservation of IRF7 in the Tibetan frog Nanorana parkeri. Mol Biol Rep 2024; 51:114. [PMID: 38227268 DOI: 10.1007/s11033-023-09067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND The production of interferons (IFNs) is essential for the control of viral infections, and interferon regulatory factor 7 (IRF7) is considered as a vital regulator for the transcription of type I IFNs. Amphibians appear to possess a highly expanded type I IFN repertoire, consisting of intron-containing genes as observed in fish, and intronless genes as in other higher vertebrates. However, the knowledge on transcriptional regulatory mechanism of these two types of type I IFN genes is rather scarce in amphibians. METHODS AND RESULTS A IRF7 gene named as Np-IRF7 was identified in Tibetan frog (Nanorana parkeri), and bioinformatic analysis revealed that the predicted protein of Np-IRF7 contains several important structural features known in IRF7. Expression analysis showed that Np-IRF7 gene was widely expressed and rapidly induced by poly(I:C) in different organs/tissues. Interestingly, luciferase reporter assay revealed that intronless IFN promoters were more effectively activated than intron-containing IFN promoter in Np-IRF7-transfected cells. Moreover, the overexpression of Np-IRF7 could induce the expression of ISGs and suppress the replication of FV3 in A6 cells. CONCLUSION Np-IRF7 is indeed the ortholog of known IRF7, and IRF7 is structurally conserved in different lineages of vertebrates. Np-IRF7 played distinct roles in the activation of intron-containing and intronless type I IFN promoters, thus inducing the expression of interferon-stimulated antiviral effectors and providing a protection against ranavirus infection. The present research thus contributes to a better understanding of regulatory function of IRF7 in the IFN-mediated antiviral response of anuran amphibians.
Collapse
Affiliation(s)
- Qing Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Bo Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xin Na Sun
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic, Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
4
|
Wang B, Zheng H, Dong X, Zhang W, Wu J, Chen H, Zhang J, Zhou A. The Identification Distinct Antiviral Factors Regulated Influenza Pandemic H1N1 Infection. Int J Microbiol 2024; 2024:6631882. [PMID: 38229736 PMCID: PMC10791480 DOI: 10.1155/2024/6631882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Influenza pandemic with H1N1 (H1N1pdms) causes severe lung damage and "cytokine storm," leading to higher mortality and global health emergencies in humans and animals. Explaining host antiviral molecular mechanisms in response to H1N1pdms is important for the development of novel therapies. In this study, we organised and analysed multimicroarray data for mouse lungs infected with different H1N1pdm and nonpandemic H1N1 strains. We found that H1N1pdms infection resulted in a large proportion of differentially expressed genes (DEGs) in the infected lungs compared with normal lungs, and the number of DEGs increased markedly with the time of infection. In addition, we found that different H1N1pdm strains induced similarly innate immune responses and the identified DEGs during H1N1pdms infection were functionally concentrated in defence response to virus, cytokine-mediated signalling pathway, regulation of innate immune response, and response to interferon. Moreover, comparing with nonpandemic H1N1, we identified ten distinct DEGs (AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3, ORM1, RETNLA, and UBD), which were enriched in immune response and cell surface receptor signalling pathway as well as interacted with immune response-related dysregulated genes during H1N1pdms. Our discoveries will provide comprehensive insights into host responding to pandemic with influenza H1N1 and find broad-spectrum effective treatment.
Collapse
Affiliation(s)
- Baoxin Wang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Hao Zheng
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Xia Dong
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Wenhua Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hongbo Chen
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Jing Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Ao Zhou
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| |
Collapse
|
5
|
Grabowski F, Kochańczyk M, Korwek Z, Czerkies M, Prus W, Lipniacki T. Antagonism between viral infection and innate immunity at the single-cell level. PLoS Pathog 2023; 19:e1011597. [PMID: 37669278 PMCID: PMC10503725 DOI: 10.1371/journal.ppat.1011597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/15/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
When infected with a virus, cells may secrete interferons (IFNs) that prompt nearby cells to prepare for upcoming infection. Reciprocally, viral proteins often interfere with IFN synthesis and IFN-induced signaling. We modeled the crosstalk between the propagating virus and the innate immune response using an agent-based stochastic approach. By analyzing immunofluorescence microscopy images we observed that the mutual antagonism between the respiratory syncytial virus (RSV) and infected A549 cells leads to dichotomous responses at the single-cell level and complex spatial patterns of cell signaling states. Our analysis indicates that RSV blocks innate responses at three levels: by inhibition of IRF3 activation, inhibition of IFN synthesis, and inhibition of STAT1/2 activation. In turn, proteins coded by IFN-stimulated (STAT1/2-activated) genes inhibit the synthesis of viral RNA and viral proteins. The striking consequence of these inhibitions is a lack of coincidence of viral proteins and IFN expression within single cells. The model enables investigation of the impact of immunostimulatory defective viral particles and signaling network perturbations that could potentially facilitate containment or clearance of the viral infection.
Collapse
Affiliation(s)
- Frederic Grabowski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Korwek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Czerkies
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Prus
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- Department of Statistics, Rice University, Houston, Texas, United States of America
| |
Collapse
|
6
|
Guo HY, He HX, Liu BS, Zhang N, Zhu KC, Zhang DC. The regulatory mechanisms of IRF7 mediated by the type I IFN signalling pathway against Streptococcus iniae in yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). Int J Biol Macromol 2023; 247:125635. [PMID: 37399879 DOI: 10.1016/j.ijbiomac.2023.125635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Interferon regulatory factor 7 (IRF7) regulates type I interferon (IFN) genes via combining to the ISRE region in the immune response against bacteria. Streptococcus iniae is one of the dominant pathogenic bacteria of yellowfin seabream, Acanthopagrus latus. However, the regulatory mechanisms of A. latus IRF7 (AlIRF7) mediated by the type I IFN signalling pathway against S. iniae was ambiguously. In the present study, IRF7, and two IFNa3s (IFNa3 and IFNa3-like) were authenticated from A. latus. The total length of AlIRF7 cDNA is 2142 bp, containing a 1314 bp open reading frame (ORF) encoding an inferred 437 amino acids (aa). Three typical regions, a serine-rich domain (SRD), a DNA-binding domain (DBD), and an IRF association domain (IAD), are conserved in AlIRF7. Furthermore, AlIRF7 is fundamentally expressed in various kinds of organs, with high levels in the spleen and liver. Additionally, S. iniae challenge promoted AlIRF7 expression in the spleen, liver, kidney, and brain. AlIRF7 is confirmed to be located at the nucleus and cytoplasm by overexpression of AlIRF7. Moreover, truncation mutation analyses shows that the regions, -821 bp to +192 bp and -928 bp to +196 bp, were known as core promoters from AlIFNa3 and AlIFNa3-like, respectively. The point mutation analyses and electrophoretic mobile shift assay (EMSA) verified that AlIFNa3 and AlIFNa3-like transcriptions are depended on the M2/5 and M2/3/4 binding sites with AlIRF7 regulation, respectively. Additionally, an overexpression experiment showed that AlIRF7 can dramatically decrease the mRNA levels of two AlIFNa3s and interferon signalling molecules. These results suggest that two IFNa3s may mediate the regulation of AlIRF7 in the immune responses of A. latus against S. iniae infection.
Collapse
Affiliation(s)
- Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Hong-Xi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
7
|
Schwanke H, Gonçalves Magalhães V, Schmelz S, Wyler E, Hennig T, Günther T, Grundhoff A, Dölken L, Landthaler M, van Ham M, Jänsch L, Büssow K, van den Heuvel J, Blankenfeldt W, Friedel CC, Erhard F, Brinkmann MM. The Cytomegalovirus M35 Protein Directly Binds to the Interferon-β Enhancer and Modulates Transcription of Ifnb1 and Other IRF3-Driven Genes. J Virol 2023; 97:e0040023. [PMID: 37289084 PMCID: PMC10308904 DOI: 10.1128/jvi.00400-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Induction of type I interferon (IFN) gene expression is among the first lines of cellular defense a virus encounters during primary infection. We previously identified the tegument protein M35 of murine cytomegalovirus (MCMV) as an essential antagonist of this antiviral system, showing that M35 interferes with type I IFN induction downstream of pattern-recognition receptor (PRR) activation. Here, we report structural and mechanistic details of M35's function. Determination of M35's crystal structure combined with reverse genetics revealed that homodimerization is a key feature for M35's immunomodulatory activity. In electrophoretic mobility shift assays (EMSAs), purified M35 protein specifically bound to the regulatory DNA element that governs transcription of the first type I IFN gene induced in nonimmune cells, Ifnb1. DNA-binding sites of M35 overlapped with the recognition elements of interferon regulatory factor 3 (IRF3), a key transcription factor activated by PRR signaling. Chromatin immunoprecipitation (ChIP) showed reduced binding of IRF3 to the host Ifnb1 promoter in the presence of M35. We furthermore defined the IRF3-dependent and the type I IFN signaling-responsive genes in murine fibroblasts by RNA sequencing of metabolically labeled transcripts (SLAM-seq) and assessed M35's global effect on gene expression. Stable expression of M35 broadly influenced the transcriptome in untreated cells and specifically downregulated basal expression of IRF3-dependent genes. During MCMV infection, M35 impaired expression of IRF3-responsive genes aside of Ifnb1. Our results suggest that M35-DNA binding directly antagonizes gene induction mediated by IRF3 and impairs the antiviral response more broadly than formerly recognized. IMPORTANCE Replication of the ubiquitous human cytomegalovirus (HCMV) in healthy individuals mostly goes unnoticed but can impair fetal development or cause life-threatening symptoms in immunosuppressed or -deficient patients. Like other herpesviruses, CMV extensively manipulates its hosts and establishes lifelong latent infections. Murine CMV (MCMV) presents an important model system as it allows the study of CMV infection in the host organism. We previously showed that during entry into host cells, MCMV virions release the evolutionary conserved protein M35 protein to immediately dampen the antiviral type I interferon (IFN) response induced by pathogen detection. Here, we show that M35 dimers bind to regulatory DNA elements and interfere with recruitment of interferon regulatory factor 3 (IRF3), a key cellular factor for antiviral gene expression. Thereby, M35 interferes with expression of type I IFNs and other IRF3-dependent genes, reflecting the importance for herpesviruses to avoid IRF3-mediated gene induction.
Collapse
Affiliation(s)
- Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Association, Berlin, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | | | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Association, Berlin, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Konrad Büssow
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joop van den Heuvel
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
8
|
Dalskov L, Gad HH, Hartmann R. Viral recognition and the antiviral interferon response. EMBO J 2023:e112907. [PMID: 37367474 DOI: 10.15252/embj.2022112907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Interferons (IFNs) are antiviral cytokines that play a key role in the innate immune response to viral infections. In response to viral stimuli, cells produce and release interferons, which then act on neighboring cells to induce the transcription of hundreds of genes. Many of these gene products either combat the viral infection directly, e.g., by interfering with viral replication, or help shape the following immune response. Here, we review how viral recognition leads to the production of different types of IFNs and how this production differs in spatial and temporal manners. We then continue to describe how these IFNs play different roles in the ensuing immune response depending on when and where they are produced or act during an infection.
Collapse
Affiliation(s)
- Louise Dalskov
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Association Between IL10 Polymorphisms and the Susceptibility to Sepsis: A Meta-Analysis. Biochem Genet 2022; 61:847-860. [DOI: 10.1007/s10528-022-10310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
|
10
|
Zhang Q, Li P, Li H, Yi D, Guo S, Wang L, Zhao D, Wang C, Wu T, Hou Y. Multifaceted Effects and Mechanisms of N-Acetylcysteine on Intestinal Injury in a Porcine Epidemic Diarrhea Virus-Infected Porcine Model. Mol Nutr Food Res 2022; 66:e2200369. [PMID: 36321532 DOI: 10.1002/mnfr.202200369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/04/2022] [Indexed: 11/06/2022]
Abstract
SCOPE This study investigates the potential effects of N-acetylcysteine (NAC) on intestinal injury in a porcine epidemic diarrhea virus (PEDV)-infected porcine model. METHODS AND RESULTS Thirty-two piglets are randomly assigned to one of four groups: the control, PEDV, NAC, and NAC+PEDV. Piglets in the NAC+PEDV group are orally administrated with NAC (100 mg (kg·BW)-1 day-1 ) for 4 consecutive days after 2 days of PEDV infection. The results show that NAC administration decreases the diarrhea rate and improves intestinal morphology. The concentration of diamine oxidase and intestinal fatty-acid binding protein, as well as IL-1β, IL-8, and TNF-α in the plasma, is decreased by NAC. Intriguingly, NAC administration significantly increases the viral load in the jejunum and ileum and down-regulates the expression of interferon-related genes. Microarray and proteomic analyses show that the differentially expressed genes/proteins between NAC+PEDV and PEDV groups are highly enriched in substance transport. Furthermore, aquaporin 8/10 expression is significantly increased by NAC upon PEDV infection. CONCLUSION NAC administration alleviates PEDV-induced intestinal injury by inhibiting inflammatory responses and improving substance transport, but promotes viral replication by inhibiting interferon signaling. These results suggest NAC exhibits multifaceted effects upon PEDV infection, and thus caution is required when using NAC as a dietary supplement to prevent viral infection.
Collapse
Affiliation(s)
- Qian Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Hanbo Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Di Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Chao Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
11
|
IRF2 Cooperates with Phosphoprotein of Spring Viremia of Carp Virus to Suppress Antiviral Response in Zebrafish. J Virol 2022; 96:e0131422. [PMID: 36314827 PMCID: PMC9683000 DOI: 10.1128/jvi.01314-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IFN regulatory factor (IRF) 2 belongs to the IRF1 subfamily, and its functions are not yet fully understood. In this study, we showed that IRF2a was a negative regulator of the interferon (IFN) response induced by spring viremia of carp virus (SVCV). Irf2a-/- knockout zebrafish were less susceptible to SVCV than wild-type fish. Transcriptomic analysis reveals that differentially expressed genes (DEGs) in the irf2a-/- and irf2a+/+ cells derived caudal fins were mainly involved in cytokine-cytokine receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-beta (TGF-beta) signaling pathway. Interestingly, the basal expression levels of interferon stimulating genes (ISGs), including pkz, mx, apol, and stat1 were higher in the irf2a-/- cells than irf2a+/+ cells, suggesting that they may contribute to the increased viral resistance of the irf2a-/- cells. Overexpression of IRF2a inhibited the activation of ifnφ1 and ifnφ3 induced by SVCV and poly(I:C) in the epithelioma papulosum cyprini (EPC) cells. Further, it was found that SVCV phosphoprotein (SVCV-P) could interact with IRF2a to promote IRF2a nuclear translocation and protein stability via suppressing K48-linked ubiquitination of IRF2a. Both IRF2a and SVCV-P not only destabilized STAT1a but reduced its translocation into the nucleus. Our work demonstrates that IRF2a cooperates with SVCV-P to suppress host antiviral response against viral infection in zebrafish. IMPORTANCE Interferon regulatory factors (IRFs) are central in the regulation of interferon-mediated antiviral immunity. Here, we reported that IRF2a suppressed interferon response and promoted virus replication in zebrafish. The suppressive effects were enhanced by the phosphoprotein of the spring viremia of carp virus (SVCV) via inhibition of K48-linked ubiquitination of IRF2a. IRF2a and SVCV phosphoprotein cooperated to degrade STAT1 and block its nuclear translocation. Our work demonstrated that IRFs and STATs were targeted by the virus through posttranslational modifications to repress interferon-mediated antiviral response in lower vertebrates.
Collapse
|
12
|
Campbell TM, Liu Z, Zhang Q, Moncada-Velez M, Covill LE, Zhang P, Alavi Darazam I, Bastard P, Bizien L, Bucciol G, Lind Enoksson S, Jouanguy E, Karabela ŞN, Khan T, Kendir-Demirkol Y, Arias AA, Mansouri D, Marits P, Marr N, Migeotte I, Moens L, Ozcelik T, Pellier I, Sendel A, Şenoğlu S, Shahrooei M, Smith CE, Vandernoot I, Willekens K, Kart Yaşar K, Bergman P, Abel L, Cobat A, Casanova JL, Meyts I, Bryceson YT. Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. J Exp Med 2022; 219:e20220202. [PMID: 35670811 PMCID: PMC9178406 DOI: 10.1084/jem.20220202] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-β. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-β and compensatory adaptive immunity.
Collapse
Affiliation(s)
- Tessa Mollie Campbell
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Qian Zhang:
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Laura E. Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Ilad Alavi Darazam
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Giorgia Bucciol
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Sara Lind Enoksson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Şemsi Nur Karabela
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Taushif Khan
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Andres Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Davood Mansouri
- Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Per Marits
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Nico Marr
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Isabelle Migeotte
- Centre de Génétique Humaine de l’Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Bilkent-Ankara, Turkey
| | - Isabelle Pellier
- Université d'Angers, INSERM, CNRS, CRCINA, Pediatric Immuno-Hemato-oncology Unit, CHU Angers, Angers, France
| | - Anton Sendel
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sevtap Şenoğlu
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran
- Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - C.I. Edvard Smith
- Department of Infectious Diseases, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Translational Research Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Vandernoot
- Centre de Génétique Humaine de l’Université Libre de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Karen Willekens
- Department of Molecular Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Kadriye Kart Yaşar
- Department of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Peter Bergman
- Department of Infectious Diseases, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Jean-Laurent Casanova:
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Huang Z, Li H, Liu S, Jia J, Zheng Y, Cao B. Identification of Neutrophil-Related Factor LCN2 for Predicting Severity of Patients With Influenza A Virus and SARS-CoV-2 Infection. Front Microbiol 2022; 13:854172. [PMID: 35495713 PMCID: PMC9039618 DOI: 10.3389/fmicb.2022.854172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 01/14/2023] Open
Abstract
Background Influenza and COVID-19 are respiratory infectious diseases that are characterized by high contagiousness and high mutation and pose a serious threat to global health. After Influenza A virus (IAV) and SARS-CoV-2 infection, severe cases may develop into acute lung injury. Immune factors act as an important role during infection and inflammation. However, the molecular immune mechanisms still remain unclear. We aimed to explore immune-related host factors and core biomarker for severe infection, to provide a new therapeutic target of host factor in patients. Methods Gene expression profiles were obtained from Gene Expression Omnibus and the Seurat R package was used for data process of single-cell transcriptome. Differentially expressed gene analysis and cell cluster were used to explore core host genes and source cells of genes. We performed Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes analysis, and gene set enrichment analysis to explore potential biological functions of genes. Gene set variation analysis was used to evaluate the important gene set variation score for different samples. We conduct Enzyme-linked immunosorbent assay (ELISA) to test plasma concentrations of Lipocalin 2 (LCN2). Results Multiple virus-related, cytokine-related, and chemokine-related pathways involved in process of IAV infection and inflammatory response mainly derive from macrophages and neutrophils. LCN2 mainly in neutrophils was significantly upregulated after either IAV or SARS-CoV-2 infection and positively correlated with disease severity. The plasma LCN2 of influenza patients were elevated significantly compared with healthy controls by ELISA and positively correlated with disease severity of influenza patients. Further bioinformatics analysis revealed that LCN2 involved in functions of neutrophils, including neutrophil degranulation, neutrophil activation involved in immune response, and neutrophil extracellular trap formation. Conclusion The neutrophil-related LCN2 could be a promising biomarker for predicting severity of patients with IAV and SARS-CoV-2 infection and may as a new treatment target in severe patients.
Collapse
Affiliation(s)
- Zhisheng Huang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Shuai Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ju Jia
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Ying Zheng
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,China-Japan Friendship Hospital, National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Xin Y, Chen S, Tang K, Wu Y, Guo Y. Identification of Nifurtimox and Chrysin as Anti-Influenza Virus Agents by Clinical Transcriptome Signature Reversion. Int J Mol Sci 2022; 23:ijms23042372. [PMID: 35216485 PMCID: PMC8876279 DOI: 10.3390/ijms23042372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 12/28/2022] Open
Abstract
The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds’ perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov–Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 μM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.
Collapse
Affiliation(s)
- Yijing Xin
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shubing Chen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ke Tang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - You Wu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Guo
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (Y.X.); (S.C.); (K.T.); (Y.W.)
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: ; Tel.: +86-010-63161716
| |
Collapse
|
15
|
Wani SA, Sahu AR, Khan RIN, Praharaj MR, Saxena S, Rajak KK, Muthuchelvan D, Sahoo A, Mishra B, Singh RK, Mishra BP, Gandham RK. Proteome Modulation in Peripheral Blood Mononuclear Cells of Peste des Petits Ruminants Vaccinated Goats and Sheep. Front Vet Sci 2021; 8:670968. [PMID: 34631844 PMCID: PMC8493254 DOI: 10.3389/fvets.2021.670968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/31/2021] [Indexed: 12/03/2022] Open
Abstract
In the present study, healthy goats and sheep (n = 5) that were confirmed negative for peste des petits ruminants virus (PPRV) antibodies by monoclonal antibody-based competitive ELISA and by serum neutralization test and for PPRV antigen by s-ELISA were vaccinated with Sungri/96. A quantitative study was carried out to compare the proteome of peripheral blood mononuclear cells (PBMCs) of vaccinated goat and sheep [5 days post-vaccination (dpv) and 14 dpv] vs. unvaccinated (0 day) to divulge the alteration in protein expression following vaccination. A total of 232 and 915 proteins were differentially expressed at 5 and 14 dpv, respectively, in goats. Similarly, 167 and 207 proteins were differentially expressed at 5 and 14 dpv, respectively, in sheep. Network generated by Ingenuity Pathway Analysis was “infectious diseases, antimicrobial response, and inflammatory response,” which includes the highest number of focus molecules. The bio functions, cell-mediated immune response, and humoral immune response were highly enriched in goats at 5 dpv and at 14 dpv. At the molecular level, the immune response produced by the PPRV vaccine virus in goats is effectively coordinated and stronger than that in sheep, though the vaccine provides protection from virulent virus challenge in both. The altered expression of certain PBMC proteins especially ISG15 and IRF7 induces marked changes in cellular signaling pathways to coordinate host immune responses.
Collapse
Affiliation(s)
- Sajad Ahmad Wani
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India.,College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, United States
| | - Amit Ranjan Sahu
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Raja Ishaq Nabi Khan
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Manas Ranjan Praharaj
- Systems Biology Lab, Department of Biotechnology -National Institute of Animal Biotechnology, Hyderabad, India
| | - Shikha Saxena
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Kaushal Kishor Rajak
- Division of Biological Products, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Dhanavelu Muthuchelvan
- Division of Virology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Mukteswar, India
| | - Aditya Sahoo
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Bina Mishra
- Division of Biological Products, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - R K Singh
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Bishnu Prasad Mishra
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India
| | - Ravi Kumar Gandham
- Division of Veterinary Biotechnology, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Bareilly, India.,Systems Biology Lab, Department of Biotechnology -National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
16
|
Zhao M, Zhang Y, Yang X, Jin J, Shen Z, Feng X, Zou T, Deng L, Cheng D, Zhang X, Qin C, Niu C, Ye Z, Zhang X, He J, Hou C, Li G, Han G, Cheng Q, Wang Q, Wei L, Dong J, Zhang J. Myeloid neddylation targets IRF7 and promotes host innate immunity against RNA viruses. PLoS Pathog 2021; 17:e1009901. [PMID: 34506605 PMCID: PMC8432861 DOI: 10.1371/journal.ppat.1009901] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/16/2021] [Indexed: 12/03/2022] Open
Abstract
Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity. With the features of high mutation rates and fast propagation, RNA viruses remain a great challenge for the control and prevention of epidemic. Better understanding of the molecular mechanisms involved in host innate immunity against RNA viruses will facilitate the development of anti-viral drugs and vaccines. Neddylation has been implicated in innate and adapted immunity. But the role of neddylation in RNA virus-triggered type I IFN production remains elusive. Here, using mouse models with myeloid deficiency of UBA3 or NEDD8, we report for the first time that neddylation contributes to innate immunity against RNA viruses in mammals. Neddylation is indispensable for RNA virus-induced IFN-α production although its role in IFN-β production is much blunted in macrophages. In mechanism, neddylation directly targets IRF7 and enhances its transcriptional activity through, at least partially, promoting its nuclear translocation and preventing its dimerization with IRF5, an Ifna repressor when interacting with IRF7. Our study provides insight into the regulation of IRF7 and innate immune signaling.
Collapse
Affiliation(s)
- Min Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiayang Jin
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhuo Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaoyao Feng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tao Zou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijiao Deng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Daohai Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Cheng Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhenjie Ye
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xueying Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jia He
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ge Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Gencheng Han
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qingyang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lin Wei
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
- * E-mail: (LW); (JD); (JZ)
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (LW); (JD); (JZ)
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- * E-mail: (LW); (JD); (JZ)
| |
Collapse
|
17
|
Essential Oil-Rich Chinese Formula Luofushan-Baicao Oil Inhibits the Infection of Influenza A Virus through the Regulation of NF- κB P65 and IRF3 Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5547424. [PMID: 34497658 PMCID: PMC8421167 DOI: 10.1155/2021/5547424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022]
Abstract
Background Luofushan-Baicao Oil (LBO) is an essential oil-rich traditional Chinese medicine (TCM) formula that is commonly used to treat cold, cough, headache, sore throat, swelling, and pain. However, the anti-influenza activities of LBO and the underlying mechanism remain to be investigated. Methods The in vitro anti-influenza activity of LBO was tested with methyl thiazolyl tetrazolium (MTT) and plaque assays. The effects of LBO on the expressions of viral nucleoprotein and cytokines were evaluated. In the polyinosinic-polycytidylic acid- (Poly I: C-) induced inflammation model, the influences of LBO on the expression of cytokines and the activation of NF-κB P65 (P65) and interferon regulatory factor 3 (IRF3) were tested. After influenza A virus (IVA) infection, mice were administered with LBO for 5 days. The lung index, histopathologic change, the expression of viral protein, P65, and IRF3 in the lung tissue were measured. The levels of proinflammatory cytokines in serum were examined. Results In vitro, LBO could significantly inhibit the infection of IVA, decrease the formation of plaques, and reduce the expression of viral nucleoprotein and cytokines. LBO could also effectively downregulate the expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and interferon-β and the activation of P65 and IRF3 in Poly I:C-treated cells. In the IVA-infected mice model, inhalation of LBO with atomizer could decrease the lung index, alleviate the pathological injury in the lung tissue, and reduce the serum levels of IL-1β and IL-6. LBO could significantly downregulate the expression of viral protein (nucleoprotein, PB2, and matrix 2 ion channel) and the phosphorylation of P65 and IRF3 in the lungs of mice. Conclusion The therapeutic effects of LBO on treating influenza might result from the regulation of the immune response of IVA infection. LBO can be developed as an alternative therapeutic agent for influenza prevention.
Collapse
|
18
|
Baris AM, Fraile-Bethencourt E, Anand S. Nucleic Acid Sensing in the Tumor Vasculature. Cancers (Basel) 2021; 13:4452. [PMID: 34503262 PMCID: PMC8431390 DOI: 10.3390/cancers13174452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Endothelial cells form a powerful interface between tissues and immune cells. In fact, one of the underappreciated roles of endothelial cells is to orchestrate immune attention to specific sites. Tumor endothelial cells have a unique ability to dampen immune responses and thereby maintain an immunosuppressive microenvironment. Recent approaches to trigger immune responses in cancers have focused on activating nucleic acid sensors, such as cGAS-STING, in combination with immunotherapies. In this review, we present a case for targeting nucleic acid-sensing pathways within the tumor vasculature to invigorate tumor-immune responses. We introduce two specific nucleic acid sensors-the DNA sensor TREX1 and the RNA sensor RIG-I-and discuss their functional roles in the vasculature. Finally, we present perspectives on how these nucleic acid sensors in the tumor endothelium can be targeted in an antiangiogenic and immune activation context. We believe understanding the role of nucleic acid-sensing in the tumor vasculature can enhance our ability to design more effective therapies targeting the tumor microenvironment by co-opting both vascular and immune cell types.
Collapse
Affiliation(s)
- Adrian M. Baris
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
19
|
Qin C, Niu C, Shen Z, Zhang Y, Liu G, Hou C, Dong J, Zhao M, Cheng Q, Yang X, Zhang J. RACK1 T50 Phosphorylation by AMPK Potentiates Its Binding with IRF3/7 and Inhibition of Type 1 IFN Production. THE JOURNAL OF IMMUNOLOGY 2021; 207:1411-1418. [PMID: 34348973 DOI: 10.4049/jimmunol.2100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) adaptor protein has been implicated in viral infection. However, whether RACK1 promotes in vivo viral infection in mammals remains unknown. Moreover, it remains elusive how RACK1 is engaged in antiviral innate immune signaling. In this study, we report that myeloid RACK1 deficiency does not affect the development and survival of myeloid cells under resting conditions but renders mice less susceptible to viral infection. RACK1-deficient macrophages produce more IFN-α and IFN-β in response to both RNA and DNA virus infection. In line with this, RACK1 suppresses transcriptional activation of type 1 IFN gene promoters in response to virus infection. Analysis of virus-mediated signaling indicates that RACK1 inhibits the phosphorylation of IRF3/7. Indeed, RACK1 interacts with IRF3/7, which is enhanced after virus infection. Further exploration indicates that virus infection triggers AMPK activation, which in turn phosphorylates RACK1 at Thr50 RACK1 phosphorylation at Thr50 enhances its interaction with IRF3/7 and thereby limits IRF3/7 phosphorylation. Thus, our results confirm that myeloid RACK1 promotes in vivo viral infection and provide insight into the control of type 1 IFN production in response to virus infection.
Collapse
Affiliation(s)
- Cheng Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhuo Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Genyu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Min Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Gaur P, Riehn M, Zha L, Köster M, Hauser H, Wirth D. Defective interferon amplification and impaired host responses against influenza virus in obese mice. Obesity (Silver Spring) 2021; 29:1272-1278. [PMID: 34314110 DOI: 10.1002/oby.23196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Obesity is a major risk factor that increases morbidity and mortality upon infection. Although type I and type III interferon (IFN)-induced innate immune responses represent the first line of defense against viral infections, their functionality in the context of metabolic disorders remains largely obscure. This study aimed to investigate IFN responses upon respiratory viral infection in obese mice. METHODS The activation of IFNs as well as IFN regulatory factors (IRFs) upon H3N2 influenza infection in mice upon high-fat-diet feeding was investigated. RESULTS Influenza infection of obese mice was characterized by higher mortalities. In-depth analysis revealed impaired induction of both type I and type III IFNs as well as markedly reduced IFN responses. Notably, it was found that IRF7 gene expression in obese animals was reduced in homeostasis, and its induction by the virus was strongly attenuated. CONCLUSIONS The results suggest that the attenuated IRF7 expression and induction are responsible for the reduced expression levels of type I and III IFNs and, thus, for the higher susceptibility and severity of respiratory infections in obese mice.
Collapse
Affiliation(s)
- Pratibha Gaur
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mathias Riehn
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisha Zha
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hansjörg Hauser
- Staff Unit Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Experimental Hematology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Chen Y, Lei X, Jiang Z, Fitzgerald KA. Cellular nucleic acid-binding protein is essential for type I interferon-mediated immunity to RNA virus infection. Proc Natl Acad Sci U S A 2021; 118:e2100383118. [PMID: 34168080 PMCID: PMC8255963 DOI: 10.1073/pnas.2100383118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Type I interferons (IFNs) are innate immune cytokines required to establish cellular host defense. Precise control of IFN gene expression is crucial to maintaining immune homeostasis. Here, we demonstrated that cellular nucleic acid-binding protein (CNBP) was required for the production of type I IFNs in response to RNA virus infection. CNBP deficiency markedly impaired IFN production in macrophages and dendritic cells that were infected with a panel of RNA viruses or stimulated with synthetic double-stranded RNA. Furthermore, CNBP-deficient mice were more susceptible to influenza virus infection than were wild-type mice. Mechanistically, CNBP was phosphorylated and translocated to the nucleus, where it directly binds to the promoter of IFNb in response to RNA virus infection. Furthermore, CNBP controlled the recruitment of IFN regulatory factor (IRF) 3 and IRF7 to IFN promoters for the maximal induction of IFNb gene expression. These studies reveal a previously unrecognized role for CNBP as a transcriptional regulator of type I IFN genes engaged downstream of RNA virus-mediated innate immune signaling, which provides an additional layer of control for IRF3- and IRF7-dependent type I IFN gene expression and the antiviral innate immune response.
Collapse
Affiliation(s)
- Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Xuqiu Lei
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhaozhao Jiang
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
22
|
Wang Y, Yang F, Yin H, He Q, Lu Y, Zhu Q, Lan X, Zhao X, Li D, Liu Y, Xu H. Chicken interferon regulatory factor 7 (IRF7) can control ALV-J virus infection by triggering type I interferon production through affecting genes related with innate immune signaling pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104026. [PMID: 33497733 DOI: 10.1016/j.dci.2021.104026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
In order to breed new birds with strong disease resistance, it is necessary to first understand the mechanism of avian antiviral response. Interferon regulatory factor 7 (IRF7) is not only a member of type I interferons (IFNs) regulatory factor (IRFs) family, but also a major regulator of the IFN response in mammals. However, whether IRF7 is involved in the host innate immune response remains unclear in poultry, due to the absence of IRF3. Here, we first observed by HE stains that with the increase of the time of ALV-J challenge, the thymus was obviously loose and swollen, the arrangement of liver cell was disordered, and the bursa of fabricius formed vacuolated. Real-time PCR detection showed that the expression level of IRF7 gene and related immune genes in ALV-J group was significantly higher than that in control group (P < 0.05). To further study the role of chicken IRF7 during avian leukosis virus subgroup J (ALV-J) infection, we constructed an induced IRF7 overexpression and interfered chicken embryo fibroblasts (CEFs) cell and performed in vitro infection using low pathogenic ALV-J and virus analog poly(I:C). In ALV-J and poly(I:C) stimulated CEFs cells, the expression level of STAT1, IFN-α, IFN-β, TLR3 and TLR7 were increased after IRF7 overexpressed, while the results were just the opposite after IRF7 interfered, which indicating that IRF7 may be associated with Toll-like receptor signaling pathway and JAK-STAT signaling pathway. These findings suggest that chicken IRF7 is an important regulator of IFN and is involved in chicken anti-ALV-J innate immunity.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Fuling Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Huadong Yin
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Qijian He
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Yuxiang Lu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Qing Zhu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, 2# Tiansheng Road, Beibei District Chongqing, 400715, China
| | - Xiaoling Zhao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Yiping Liu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Hengyong Xu
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China.
| |
Collapse
|
23
|
Yum S, Li M, Fang Y, Chen ZJ. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc Natl Acad Sci U S A 2021; 118:e2100225118. [PMID: 33785602 PMCID: PMC8040795 DOI: 10.1073/pnas.2100225118] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The induction of type I interferons through the transcription factor interferon regulatory factor 3 (IRF3) is considered a major outcome of stimulator of interferon genes (STING) activation that drives immune responses against DNA viruses and tumors. However, STING activation can also trigger other downstream pathways such as nuclear factor κB (NF-κB) signaling and autophagy, and the roles of interferon (IFN)-independent functions of STING in infectious diseases or cancer are not well understood. Here, we generated a STING mouse strain with a mutation (S365A) that disrupts IRF3 binding and therefore type I interferon induction but not NF-κB activation or autophagy induction. We also generated STING mice with mutations that disrupt the recruitment of TANK-binding kinase 1 (TBK1), which is important for both IRF3 and NF-κB activation but not autophagy induction (L373A or ∆CTT, which lacks the C-terminal tail). The STING-S365A mutant mice, but not L373A or ∆CTT mice, were still resistant to herpes simplex virus 1 (HSV-1) infections and mounted an antitumor response after cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) treatment despite the absence of STING-induced interferons. These results demonstrate that STING can function independently of type I interferons and autophagy, and that TBK1 recruitment to STING is essential for antiviral and antitumor immunity.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Minghao Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Yan Fang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148;
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148
| |
Collapse
|
24
|
Singh H, Koury J, Kaul M. Innate Immune Sensing of Viruses and Its Consequences for the Central Nervous System. Viruses 2021; 13:170. [PMID: 33498715 PMCID: PMC7912342 DOI: 10.3390/v13020170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections remain a global public health concern and cause a severe societal and economic burden. At the organismal level, the innate immune system is essential for the detection of viruses and constitutes the first line of defense. Viral components are sensed by host pattern recognition receptors (PRRs). PRRs can be further classified based on their localization into Toll-like receptors (TLRs), C-type lectin receptors (CLR), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), NOD-like receptors (NLRs) and cytosolic DNA sensors (CDS). TLR and RLR signaling results in production of type I interferons (IFNα and -β) and pro-inflammatory cytokines in a cell-specific manner, whereas NLR signaling leads to the production of interleukin-1 family proteins. On the other hand, CLRs are capable of sensing glycans present in viral pathogens, which can induce phagocytic, endocytic, antimicrobial, and pro- inflammatory responses. Peripheral immune sensing of viruses and the ensuing cytokine response can significantly affect the central nervous system (CNS). But viruses can also directly enter the CNS via a multitude of routes, such as the nasal epithelium, along nerve fibers connecting to the periphery and as cargo of infiltrating infected cells passing through the blood brain barrier, triggering innate immune sensing and cytokine responses directly in the CNS. Here, we review mechanisms of viral immune sensing and currently recognized consequences for the CNS of innate immune responses to viruses.
Collapse
Affiliation(s)
- Hina Singh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.S.); (J.K.)
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Hazlewood JE, Dumenil T, Le TT, Slonchak A, Kazakoff SH, Patch AM, Gray LA, Howley PM, Liu L, Hayball JD, Yan K, Rawle DJ, Prow NA, Suhrbier A. Injection site vaccinology of a recombinant vaccinia-based vector reveals diverse innate immune signatures. PLoS Pathog 2021; 17:e1009215. [PMID: 33439897 PMCID: PMC7837487 DOI: 10.1371/journal.ppat.1009215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/26/2021] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1β, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design. Poxvirus vector systems have been widely developed for vaccine applications. Despite considerable progress, so far only one recombinant poxvirus vectored vaccine has to date been licensed for human use, with ongoing efforts seeking to enhance immunogenicity whilst minimizing reactogenicity. The latter two characteristics are often determined by early post-vaccination events at the injection site. We therefore undertook an injection site vaccinology approach to analyzing gene expression at the vaccination site after intramuscular inoculation with a recombinant, multiplication defective, vaccinia-based vaccine. This provided detailed insights into inter alia expression of vector-encoded immunoregulatory genes, as well as host innate and adaptive immune responses. We propose that such injection site vaccinology can inform rational vaccine vector design, and we discuss how the information and approach elucidated herein might be used to improve immunogenicity and limit reactogenicity of poxvirus-based vaccine vector systems.
Collapse
Affiliation(s)
- Jessamine E. Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Stephen H. Kazakoff
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Ann-Marie Patch
- Clinical Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Lesley-Ann Gray
- Australian Genome Research Facility Ltd., Melbourne, Australia
| | | | - Liang Liu
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - John D. Hayball
- Sementis Ltd., Hackney, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Experimental Therapeutics Laboratory, University of South Australia Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Infectious Disease Research Centre, Brisbane, Australia
- * E-mail:
| |
Collapse
|
26
|
Deng Y, Guo SL, Li JQ, Xie SS, Zhou YC, Wei B, Wang Q, Wang F. Interferon regulatory factor 7 inhibits rat vascular smooth muscle cell proliferation and inflammation in monocrotaline-induced pulmonary hypertension. Life Sci 2021; 264:118709. [PMID: 33152351 DOI: 10.1016/j.lfs.2020.118709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
AIMS Although interferon regulatory factor 7 (IRF7) has known roles in regulating the inflammatory response, vascular smooth muscle cell proliferation, and apoptosis, its role in the pathogenesis of pulmonary hypertension (PH) is unclear. We hypothesized that IRF7 overexpression could inhibit pulmonary vascular remodeling and slow the progression of PH. MAIN METHODS IRF7 mRNA and protein levels in the lung samples and pulmonary artery smooth muscle cells (PASMCs) isolated from monocrotaline (MCT)-induced PH rats were assessed. We evaluated the effects of IRF7 on inflammation, proliferation, and apoptosis using an in vivo MCT-induced PH rat model and in vitro methods. KEY FINDINGS We noted decreased IRF7 mRNA and protein levels in the pulmonary vasculature of MCT-induced PH rats. IRF7 upregulation attenuated pulmonary vascular remodeling, decreased the pulmonary artery systolic pressure, and improved the right ventricular (RV) structure and function. Our findings suggest that nuclear factor kappa-Bp65 (NF-κBp65) deactivation could confer pulmonary vasculature protection, reduce proinflammatory cytokine (tumor necrosis factor-α, interleukin 6) release, and decrease PASMC proliferation and resistance to apoptosis via deactivating transcription factor 3 (ATF3) signaling. ATF3 deactivation induced the downregulation of the proliferation-dependent genes proliferating cell nuclear antigen (PCNA), cyclin D1, and survivin, coupled with increased levels of B cell lymphoma-2-associated X protein (Bax)/B cell lymphoma-2 (Bcl2) ratio, and cleaved caspase-3 in PASMCs. SIGNIFICANCE Our findings showed that IRF7 downregulation could initiate inflammation via NF-κBp65 signaling, causing PASMC proliferation via ATF3 signaling pathway activation. Therefore, IRF7 could be a potential molecular target for PH therapy.
Collapse
MESH Headings
- Activating Transcription Factor 3/metabolism
- Animals
- Apoptosis
- Caspase 3/metabolism
- Cell Proliferation
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Cyclin D1/metabolism
- Dependovirus/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Inflammation/complications
- Inflammation/pathology
- Interferon Regulatory Factor-7/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Signal Transduction
- Survivin/metabolism
- Up-Regulation
- Vascular Remodeling
- bcl-2-Associated X Protein/metabolism
- Rats
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Sheng-Lan Guo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| | - Shan-Shan Xie
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fen Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Host genetic susceptibility to viral infections: the role of type I interferon induction. Genes Immun 2020; 21:365-379. [PMID: 33219336 PMCID: PMC7677911 DOI: 10.1038/s41435-020-00116-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The innate immune response is the major front line of defense against viral infections. It involves hundreds of genes with antiviral properties which expression is induced by type I interferons (IFNs) and are therefore called interferon stimulated genes (ISGs). Type I IFNs are produced after viral recognition by pathogen recognition receptors, which trigger a cascade of activation events. Human and mouse studies have shown that defective type I IFNs induction may hamper the ability to control viral infections. In humans, moderate to high-effect variants have been identified in individuals with particularly severe complications following viral infection. In mice, functional studies using knock-out alleles have revealed the specific role of most genes of the IFN pathway. Here, we review the role of the molecular partners of the type I IFNs induction pathway and their implication in the control of viral infections and of their complications.
Collapse
|
28
|
Yu J, Sun X, Goie JYG, Zhang Y. Regulation of Host Immune Responses against Influenza A Virus Infection by Mitogen-Activated Protein Kinases (MAPKs). Microorganisms 2020; 8:microorganisms8071067. [PMID: 32709018 PMCID: PMC7409222 DOI: 10.3390/microorganisms8071067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza is a major respiratory viral disease caused by infections from the influenza A virus (IAV) that persists across various seasonal outbreaks globally each year. Host immune response is a key factor determining disease severity of influenza infection, presenting an attractive target for the development of novel therapies for treatments. Among the multiple signal transduction pathways regulating the host immune activation and function in response to IAV infections, the mitogen-activated protein kinase (MAPK) pathways are important signalling axes, downstream of various pattern recognition receptors (PRRs), activated by IAVs that regulate various cellular processes in immune cells of both innate and adaptive immunity. Moreover, aberrant MAPK activation underpins overexuberant production of inflammatory mediators, promoting the development of the “cytokine storm”, a characteristic of severe respiratory viral diseases. Therefore, elucidation of the regulatory roles of MAPK in immune responses against IAVs is not only essential for understanding the pathogenesis of severe influenza, but also critical for developing MAPK-dependent therapies for treatment of respiratory viral diseases. In this review, we will summarise the current understanding of MAPK functions in both innate and adaptive immune response against IAVs and discuss their contributions towards the cytokine storm caused by highly pathogenic influenza viruses.
Collapse
Affiliation(s)
- Jiabo Yu
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Xiang Sun
- Integrative Biomedical Sciences Programme, University of Edinburgh Institute, Zhejiang University, International Campus Zhejiang University, Haining 314400, China; (J.Y.); (X.S.)
| | - Jian Yi Gerald Goie
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- The Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
- Correspondence: ; Tel.: +65-65166407
| |
Collapse
|
29
|
CHEN Y, LI Q, ZHANG J, GU R, LI K, ZHAO G, YUAN H, FENG T, OU D, LIN P. [Increased TRIM5 is associated with a poor prognosis and immune infiltration in glioma patients]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:469-479. [PMID: 32597089 PMCID: PMC10319560 DOI: 10.7507/1001-5515.202004064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/11/2020] [Indexed: 02/05/2023]
Abstract
Tripartite motif 5 (TRIM5) plays a significant function in autophagy and involves in immune and tumor processes. While the function of TRIM5 remains poorly understood in glioma. We purpose to evaluate the possible prognostic role of TRIM5 in glioma via bioinformatics analyses. The database clinical samples of glioma in this study included low grade glioma (LGG) and glioblastoma multiforme (GBM). TRIM5 expression in glioma tissues were explored in Oncomine, GEPIA and The Cancer Genome Atlas (TCGA) databases. Survival analysis and the multivariate Cox regression analysis of TRIM5 based on TCGA were used to evaluate the prognostic role of TRIM5. The protein networks of TRIM5 was detected by STRING database. KEGG enrichment analyses were performed to predict the potential molecular pathways of TRIM5 in glioma. In addition, immune infiltration analysis was conducted by CIBERSORT and TIMER databases. We found that TRIM5 was strongly increased in glioma samples compared with normal samples in Oncomine, GEPIA and TCGA databases. Higher TRIM5 was significantly contributed to worse overall survival (OS) in LGG+GBM patients and LGG patients, while was no correlated with OS of GBM patients. Interaction networks analysis identified that IRF3, IRF7, OAS1, OAS2, OAS3, OASL, GBP1, PML, BTBD1 and BTBD2 proteins were contacted with TRIM5. Moreover, KEGG revealed that apoptosis and cancer- and immune-related pathways were enriched with elevated TRIM5. Specifically, TRIM5 could influence the immune infiltration levels, such as activated NK cells, monocytes, activated mast cells and macrophages in glioma. In conclusion, our data indicated that TRIM5 was upregulated in glioma tissues and associated with poor prognosis and immune infiltration. TRIM5 may be acted as a biomarker in prognosis and immunotherapy guidance of glioma.
Collapse
Affiliation(s)
- Yue CHEN
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Qin LI
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Jie ZHANG
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Rui GU
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Kai LI
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Gang ZHAO
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Hang YUAN
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Tianyu FENG
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Deqiong OU
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - Ping LIN
- Lab of Experimental Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| |
Collapse
|
30
|
Campbell LK, Magor KE. Pattern Recognition Receptor Signaling and Innate Responses to Influenza A Viruses in the Mallard Duck, Compared to Humans and Chickens. Front Cell Infect Microbiol 2020; 10:209. [PMID: 32477965 PMCID: PMC7236763 DOI: 10.3389/fcimb.2020.00209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.
Collapse
Affiliation(s)
- Lee K Campbell
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
31
|
IRF5 Promotes Influenza Virus-Induced Inflammatory Responses in Human Induced Pluripotent Stem Cell-Derived Myeloid Cells and Murine Models. J Virol 2020; 94:JVI.00121-20. [PMID: 32075938 PMCID: PMC7163152 DOI: 10.1128/jvi.00121-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
The inflammatory response to influenza A virus (IAV) participates in infection control but contributes to disease severity. After viral detection, intracellular pathways are activated, initiating cytokine production, but these pathways are incompletely understood. We show that interferon regulatory factor 5 (IRF5) mediates IAV-induced inflammation and, in mice, drives pathology. This was independent of antiviral type 1 IFN and virus replication, implying that IRF5 could be specifically targeted to treat influenza virus-induced inflammation. We show for the first time that human iPSC technology can be exploited in genetic studies of virus-induced immune responses. Using this technology, we deleted IRF5 in human myeloid cells. These IRF5-deficient cells exhibited impaired influenza virus-induced cytokine production and revealed that IRF5 acts downstream of Toll-like receptor 7 and possibly retinoic acid-inducible gene I. Our data demonstrate the importance of IRF5 in influenza virus-induced inflammation, suggesting that genetic variation in the IRF5 gene may influence host susceptibility to viral diseases. Recognition of influenza A virus (IAV) by the innate immune system triggers pathways that restrict viral replication, activate innate immune cells, and regulate adaptive immunity. However, excessive innate immune activation can exaggerate disease. The pathways promoting excessive activation are incompletely understood, with limited experimental models to investigate the mechanisms driving influenza virus-induced inflammation in humans. Interferon regulatory factor 5 (IRF5) is a transcription factor that plays important roles in the induction of cytokines after viral sensing. In an in vivo model of IAV infection, IRF5 deficiency reduced IAV-driven immune pathology and associated inflammatory cytokine production, specifically reducing cytokine-producing myeloid cell populations in Irf5−/− mice but not impacting type 1 interferon (IFN) production or virus replication. Using cytometry by time of flight (CyTOF), we identified that human lung IRF5 expression was highest in cells of the myeloid lineage. To investigate the role of IRF5 in mediating human inflammatory responses by myeloid cells to IAV, we employed human-induced pluripotent stem cells (hIPSCs) with biallelic mutations in IRF5, demonstrating for the first time that induced pluripotent stem cell-derived dendritic cells (iPS-DCs) with biallelic mutations can be used to investigate the regulation of human virus-induced immune responses. Using this technology, we reveal that IRF5 deficiency in human DCs, or macrophages, corresponded with reduced virus-induced inflammatory cytokine production, with IRF5 acting downstream of Toll-like receptor 7 (TLR7) and, possibly, retinoic acid-inducible gene I (RIG-I) after viral sensing. Thus, IRF5 acts as a regulator of myeloid cell inflammatory cytokine production during IAV infection in mice and humans and drives immune-mediated viral pathogenesis independently of type 1 IFN and virus replication. IMPORTANCE The inflammatory response to influenza A virus (IAV) participates in infection control but contributes to disease severity. After viral detection, intracellular pathways are activated, initiating cytokine production, but these pathways are incompletely understood. We show that interferon regulatory factor 5 (IRF5) mediates IAV-induced inflammation and, in mice, drives pathology. This was independent of antiviral type 1 IFN and virus replication, implying that IRF5 could be specifically targeted to treat influenza virus-induced inflammation. We show for the first time that human iPSC technology can be exploited in genetic studies of virus-induced immune responses. Using this technology, we deleted IRF5 in human myeloid cells. These IRF5-deficient cells exhibited impaired influenza virus-induced cytokine production and revealed that IRF5 acts downstream of Toll-like receptor 7 and possibly retinoic acid-inducible gene I. Our data demonstrate the importance of IRF5 in influenza virus-induced inflammation, suggesting that genetic variation in the IRF5 gene may influence host susceptibility to viral diseases.
Collapse
|
32
|
Kim TH, Kern C, Zhou H. Knockout of IRF7 Highlights its Modulator Function of Host Response Against Avian Influenza Virus and the Involvement of MAPK and TOR Signaling Pathways in Chicken. Genes (Basel) 2020; 11:genes11040385. [PMID: 32252379 PMCID: PMC7230310 DOI: 10.3390/genes11040385] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Interferon regulatory factor 7 (IRF7) is known as the master transcription factor of the type I interferon response in mammalian species along with IRF3. Yet birds only have IRF7, while they are missing IRF3, with a smaller repertoire of immune-related genes, which leads to a distinctive immune response in chickens compared to in mammals. In order to understand the functional role of IRF7 in the regulation of the antiviral response against avian influenza virus in chickens, we generated IRF7-/- chicken embryonic fibroblast (DF-1) cell lines and respective controls (IRF7wt) by utilizing the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system. IRF7 knockout resulted in increased viral titers of low pathogenic avian influenza viruses. Further RNA-sequencing performed on H6N2-infected IRF7-/- and IRF7wt cell lines revealed that the deletion of IRF7 resulted in the significant down-regulation of antiviral effectors and the differential expression of genes in the MAPK (mitogen-activated protein kinase) and mTOR (mechanistic target of rapamycin) signaling pathways. Dynamic gene expression profiling of the host response between the wildtype and IRF7 knockout revealed potential signaling pathways involving AP1 (activator protein 1), NF-κB (nuclear factor kappa B) and inflammatory cytokines that may complement chicken IRF7. Our findings in this study provide novel insights that have not been reported previously, and lay a solid foundation for enhancing our understanding of the host antiviral response against the avian influenza virus in chickens.
Collapse
Affiliation(s)
- Tae Hyun Kim
- Department of Animal Science, University of California, Davis, CA 95616, USA; (T.H.K.); (C.K.)
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
| | - Colin Kern
- Department of Animal Science, University of California, Davis, CA 95616, USA; (T.H.K.); (C.K.)
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA; (T.H.K.); (C.K.)
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-530-752-1034; Fax: +1-530-752-0175
| |
Collapse
|
33
|
IRF7 Is Required for the Second Phase Interferon Induction during Influenza Virus Infection in Human Lung Epithelia. Viruses 2020; 12:v12040377. [PMID: 32235406 PMCID: PMC7232147 DOI: 10.3390/v12040377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) infection is a major cause of morbidity and mortality. Retinoic acid-inducible protein I (RIG-I) plays an important role in the recognition of IAV in most cell types, and leads to the activation of interferon (IFN). We investigated mechanisms of RIG-I and IFN induction by IAV in the BCi-NS1.1 immortalized human airway basal cell line and in the A549 human alveolar epithelial cell line. We found that the basal expression levels of RIG-I and regulatory transcription factor (IRF) 7 were very low in BCi-NS1.1 cells. IAV infection induced robust RIG-I and IRF7, not IRF3, expression. siRNA against IRF7 and mitochondrial antiviral-signaling protein (MAVS), but not IRF3, significantly inhibited RIG-I mRNA expression and IFN induction by IAV infection. Most importantly, even without virus infection, IFN-β alone induced RIG-I, and siRNA against IRF7 did not inhibit RIG-I induction by IFN-β. Similar results were found in the alveolar basal epithelial A549 cell line. RIG-I and IRF7 expression in humans is highly inducible and greatly amplified by IFN produced from virus infected cells. IFN induction can be separated into two phases, that initially induced by the virus with basal RIG-I (the first phase), and that induced by the subsequent virus with amplified RIG-I from the first phase IFN (the second phase). The de novo synthesis of IRF7 is required for the second phase IFN induction during influenza virus infection in human lung bronchial and alveolar epithelial cells.
Collapse
|
34
|
Interferon-β Plays a Detrimental Role in Experimental Traumatic Brain Injury by Enhancing Neuroinflammation That Drives Chronic Neurodegeneration. J Neurosci 2020; 40:2357-2370. [PMID: 32029532 DOI: 10.1523/jneurosci.2516-19.2020] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023] Open
Abstract
DNA damage and type I interferons (IFNs) contribute to inflammatory responses after traumatic brain injury (TBI). TBI-induced activation of microglia and peripherally-derived inflammatory macrophages may lead to tissue damage and neurological deficits. Here, we investigated the role of IFN-β in secondary injury after TBI using a controlled cortical impact model in adult male IFN-β-deficient (IFN-β-/-) mice and assessed post-traumatic neuroinflammatory responses, neuropathology, and long-term functional recovery. TBI increased expression of DNA sensors cyclic GMP-AMP synthase and stimulator of interferon genes in wild-type (WT) mice. IFN-β and other IFN-related and neuroinflammatory genes were also upregulated early and persistently after TBI. TBI increased expression of proinflammatory mediators in the cortex and hippocampus of WT mice, whereas levels were mitigated in IFN-β-/- mice. Moreover, long-term microglia activation, motor, and cognitive function impairments were decreased in IFN-β-/- TBI mice compared with their injured WT counterparts; improved neurological recovery was associated with reduced lesion volume and hippocampal neurodegeneration in IFN-β-/- mice. Continuous central administration of a neutralizing antibody to the IFN-α/β receptor (IFNAR) for 3 d, beginning 30 min post-injury, reversed early cognitive impairments in TBI mice and led to transient improvements in motor function. However, anti-IFNAR treatment did not improve long-term functional recovery or decrease TBI neuropathology at 28 d post-injury. In summary, TBI induces a robust neuroinflammatory response that is associated with increased expression of IFN-β and other IFN-related genes. Inhibition of IFN-β reduces post-traumatic neuroinflammation and neurodegeneration, resulting in improved neurological recovery. Thus, IFN-β may be a potential therapeutic target for TBI.SIGNIFICANCE STATEMENT TBI frequently causes long-term neurological and psychiatric changes in head injury patients. TBI-induced secondary injury processes including persistent neuroinflammation evolve over time and can contribute to chronic neurological impairments. The present study demonstrates that TBI is followed by robust activation of type I IFN pathways, which have been implicated in microglial-associated neuroinflammation and chronic neurodegeneration. We examined the effects of genetic or pharmacological inhibition of IFN-β, a key component of type I IFN mechanisms to address its role in TBI pathophysiology. Inhibition of IFN-β signaling resulted in reduced neuroinflammation, attenuated neurobehavioral deficits, and limited tissue loss long after TBI. These preclinical findings suggest that IFN-β may be a potential therapeutic target for TBI.
Collapse
|
35
|
Seifert LL, Si C, Saha D, Sadic M, de Vries M, Ballentine S, Briley A, Wang G, Valero-Jimenez AM, Mohamed A, Schaefer U, Moulton HM, García-Sastre A, Tripathi S, Rosenberg BR, Dittmann M. The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response. PLoS Pathog 2019; 15:e1007634. [PMID: 31682641 PMCID: PMC6932815 DOI: 10.1371/journal.ppat.1007634] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/26/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Induction of vast transcriptional programs is a central event of innate host responses to viral infections. Here we report a transcriptional program with potent antiviral activity, driven by E74-like ETS transcription factor 1 (ELF1). Using microscopy to quantify viral infection over time, we found that ELF1 inhibits eight diverse RNA and DNA viruses after multi-cycle replication. Elf1 deficiency results in enhanced susceptibility to influenza A virus infections in mice. ELF1 does not feed-forward to induce interferons, and ELF1’s antiviral effect is not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNA-seq revealed that the ELF1 transcriptional program is distinct from interferon signatures. Thus, ELF1 provides an additional layer of the innate host response, independent from the action of type I interferons. After decades of research on the innate immune system, we still struggle to understand exactly how this first line of defense protects cells against viral infections. Our gap in knowledge stems, on one hand, from the sheer number of effector genes, few of which have been characterized in mechanistic detail. On the other hand, our understanding of innate gene transcription is constantly evolving. We know that different regulatory mechanisms greatly influence the quality, magnitude, and timing of gene expression, all of which may contribute to the antiviral power of the innate response. Deciphering these regulatory mechanisms is indispensable for harnessing the power of innate immunity in novel antiviral therapies. Here, we report a novel transcriptional program as part of the cell-intrinsic immune system, raised by E74-like ETS transcription factor 1 (ELF1). ELF1 potently restricts multi-cycle propagation of all viruses tested in our study. Reduced levels of ELF1 significantly diminish host defenses against influenza A virus in vitro and in vivo, suggesting a critical but previously overlooked role of this ETS transcription factor. The ELF1 program is complex and comprises over 300 potentially antiviral genes, which are almost entirely distinct from those known to be induced by interferon. Taken together, our data provide evidence for a program of antiviral protection that expands the previously known arsenal of the innate immune response.
Collapse
Affiliation(s)
- Leon Louis Seifert
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Clara Si
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Debjani Saha
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mohammad Sadic
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Maren de Vries
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah Ballentine
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aaron Briley
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ana M. Valero-Jimenez
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Adil Mohamed
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Uwe Schaefer
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York, United States of America
| | - Hong M. Moulton
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Microbiology and Cell Biology Department, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Meike Dittmann
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wu M, Dan C, Gui JF, Zhang YB. Fish species-specific TRIM gene FTRCA1 negatively regulates interferon response through attenuating IRF7 transcription. FISH & SHELLFISH IMMUNOLOGY 2019; 90:180-187. [PMID: 31048035 DOI: 10.1016/j.fsi.2019.04.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
In mammals and fish, emerging evidence highlights that TRIM family members play important roles in the interferon (IFN) antiviral immune response. Fish TRIM family has undergone an unprecedented expansion leading to generation of finTRIM subfamily, which is exclusively specific to fish. Our recent results have shown that FTRCA1 (finTRIM C. auratus 1) is likely a fish species-specific finTRIM member in crucian carp C. auratus and acts as a negative modulator to downregulate fish IFN response by autophage-lysosomal degradation of protein kinase TBK1. In the present study, we found that FTRCA1 also impedes the activation of crucian carp IFN promoter by IRF7 but not by IRF3. Mechanistically, FTRCA1 attenuates IRF7 transcription levels likely due to enhanced decay of IRF7 mRNA, leading to reduced IRF7 protein levels and subsequently reduced fish IFN expression. E3 ligase activity is required for FTRCA1 to negatively regulate IRF7-mediated IFN response, because ligase-inactive mutants and the RING-deleted mutant of FTRCA1 lose the ability to block the activation of crucian carp IFN promoter by IRF7. These results together indicate that FTRCA1 is a multifaceted modulator to target different signaling factors for shaping fish IFN response in crucian carp.
Collapse
Affiliation(s)
- Min Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 10049, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China; Key Laboratory of Aquaculture Disease Control of Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
37
|
Thomsen MM, Jørgensen SE, Gad HH, Storgaard M, Gjedsted J, Christiansen M, Hartmann R, Mogensen TH. Defective interferon priming and impaired antiviral responses in a patient with an IRF7 variant and severe influenza. Med Microbiol Immunol 2019; 208:869-876. [PMID: 31172279 DOI: 10.1007/s00430-019-00623-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/25/2019] [Indexed: 12/19/2022]
Abstract
Influenza infection is common worldwide with many individuals affected each year during epidemics and occasionally pandemics. Previous studies in animal models and a few human cases have established an important role of innate type I and III interferon (IFN) for viral elimination and mounting of antiviral responses. However, genetic and immunological determinants of very severe disseminated influenza virus infection in humans remain incompletely understood. Here, we describe an adult patient with severe influenza virus A (IAV) infection, in whom we identified a rare variant E331V in IFN regulatory factor (IRF)7 by whole-exome sequencing. Examination of patient cells demonstrated a cellular phenotype suggesting functional IRF7 impairment, since priming with IFN was almost abolished and IFN responses to IAV were significantly impaired in patient cells. Moreover, IAV replication was significantly higher in patient cells than in controls. Finally, expression of IRF7 E331V in HEK293 cells demonstrated significantly reduced activation of both IFNA7 and IFNB promoters in a luciferase reporter gene expression assay compared to IRF7 wild type. These findings provide further support for the essential role of IRF7 in amplifying antiviral IFN responses to ensure potent and sustained IFN responses during influenza virus infection in humans.
Collapse
Affiliation(s)
- Michelle M Thomsen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, CF Møllers Alle 6, 8000, Aarhus C, Denmark
| | - Sofie E Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, CF Møllers Alle 6, 8000, Aarhus C, Denmark
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Merete Storgaard
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jakob Gjedsted
- Department of Intensive Care, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Biomedicine, Aarhus University, CF Møllers Alle 6, 8000, Aarhus C, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
| |
Collapse
|
38
|
Involvement of Interferon Regulatory Factor 7 in Nicotine's Suppression of Antiviral Immune Responses. J Neuroimmune Pharmacol 2019; 14:551-564. [PMID: 31154625 DOI: 10.1007/s11481-019-09845-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/05/2019] [Indexed: 01/16/2023]
Abstract
Nicotine, the active ingredient in tobacco smoke, suppresses antiviral responses. Interferon regulatory factors (IRFs) regulate transcription of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in this response. IRF7 is a key member of the IRF family. Expression of Irf7 is elevated in the brains of virus-infected animals, including human immunodeficiency virus-1 transgenic (HIV-1Tg) rats. We hypothesized that IRF7 affects nicotine's modulation of antiviral responses. Using CRISPR/Cas9 system, IRF7-mutant cell lines were created from human embryonic kidney 293FT cells in which 16 nicotinic acetylcholine receptors (nAChRs) were detected. Decreased expression of IRF7 was confirmed at both the mRNA and protein levels, as was IRF7-regulated cell growth in two IRF7-mutant cell lines, designated IRF7-Δ7 and IRF7-Δ11. In IRF7-Δ7 cells, expression of two nAChR genes, CHRNA3 and CHRNA9, changed modestly. After stimulation with polyinosinic-polycytidylic acid (poly I:C) (0.25 μg/ml) for 4 h to mimic viral infection, 293FT wild-type (WT) and IRF7-Δ7 cells were treated with 0, 1, or 100 μM nicotine for 24 h, which increased IFN-β expression in both types of cells but elevation was higher in WT cells (p < 0.001). Expression was significantly suppressed in WT cells (p < 0.001) but not in IRF7-Δ7 cells by 24-h nicotine exposure. Poly I:C stimulation increased mRNA expression of retinoic-acid-inducible protein I (RIG-I), melanoma-differentiation-associated gene 5 (MDA5), IFN-stimulated gene factor 3 (ISG3) complex, and IFN-stimulated genes (IRF7, ISG15, IFIT1, OAS1); nicotine attenuated mRNA expression only in WT cells. Overall, IRF7 is critical to nicotine's effect on the antiviral immune response. Graphical Abstract Involvement of IRF7 in nicotine's suppression of poly I:C-induced antiviral immune responses. PAMPs, such as a synthetic viral analogue of dsRNA poly I:C attack cells, will be recognized by PRRs, and the host innate immunity against viral infection will be activated. PRRs signaling trigger phosphorylation of IRF7 and IRF3 to induce their translocation to the nucleus and result in the production of type I IFNs. Then IFNs bind to IFNAR to activate the transcription factor ISGF3, a complex consisting of STAT1, STAT2, and IRF9. Further, it induces the expression of ISGs, including IFIT1, OAS1, IRF7, ISG15, etc. Nicotine suppresses the immune responses stimulated by poly I:C. In the IRF7-mutant cells, nicotine's suppressive effects on poly I:C-stimulated immune responses were restrained.
Collapse
|
39
|
Lambertz RLO, Gerhauser I, Nehlmeier I, Leist SR, Kollmus H, Pöhlmann S, Schughart K. Tmprss2 knock-out mice are resistant to H10 influenza A virus pathogenesis. J Gen Virol 2019; 100:1073-1078. [PMID: 31099738 DOI: 10.1099/jgv.0.001274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The surface protein haemagglutinin (HA) of influenza A viruses (IAV) needs to be cleaved by a host protease to become functional. Here, we investigated if IAV of the H10 subtype also requires TMPRSS2 for replication and pathogenesis in mice. We first showed in cell culture that TMPRSS2 is able to cleave H10-HA. When Tmprss2-/- deficient mice were infected with a re-assorted virus H10-HA, they did not lose body weight and no viral replication was observed in contrast to wild-type mice. Histopathological analysis showed that inflammatory lesions in the lung of Tmprss2-/- mice were reduced compared to wild-type mice. In addition, no viral antigen was detected in the lungs of Tmprss2-/- mice and no evidence for HA cleavage was observed. We conclude from these studies that TMPRSS2 activity is also essential for in vivo replication and pathogenesis of H10 IAV.
Collapse
Affiliation(s)
- Ruth L O Lambertz
- 1 Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ingo Gerhauser
- 2 Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Inga Nehlmeier
- 3 Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sarah R Leist
- 1 Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Heike Kollmus
- 1 Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Pöhlmann
- 3 Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.,4 Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Klaus Schughart
- 1 Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,5 University of Veterinary Medicine Hannover, Hannover, Germany.,6 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
40
|
Transcriptomic Analysis Reveals Priming of The Host Antiviral Interferon Signaling Pathway by Bronchobini ® Resulting in Balanced Immune Response to Rhinovirus Infection in Mouse Lung Tissue Slices. Int J Mol Sci 2019; 20:ijms20092242. [PMID: 31067687 PMCID: PMC6540047 DOI: 10.3390/ijms20092242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022] Open
Abstract
Rhinovirus (RV) is the predominant virus causing respiratory tract infections. Bronchobini® is a low dose multi component, multi target preparation used to treat inflammatory respiratory diseases such as the common cold, described to ease severity of symptoms such as cough and viscous mucus production. The aim of the study was to assess the efficacy of Bronchobini® in RV infection and to elucidate its mode of action. Therefore, Bronchobini®’s ingredients (BRO) were assessed in an ex vivo model of RV infection using mouse precision-cut lung slices, an organotypic tissue capable to reflect the host immune response to RV infection. Cytokine profiles were assessed using enzyme-linked immunosorbent assay (ELISA) and mesoscale discovery (MSD). Gene expression analysis was performed using Affymetrix microarrays and ingenuity pathway analysis. BRO treatment resulted in the significant suppression of RV-induced antiviral and pro-inflammatory cytokine release. Transcriptome analysis revealed a multifactorial mode of action of BRO, with a strong inhibition of the RV-induced pro-inflammatory and antiviral host response mediated by nuclear factor kappa B (NFkB) and interferon signaling pathways. Interestingly, this was due to priming of these pathways in the absence of virus. Overall, BRO exerted its beneficial anti-inflammatory effect by priming the antiviral host response resulting in a reduced inflammatory response to RV infection, thereby balancing an otherwise excessive inflammatory response.
Collapse
|
41
|
Yang L, Tu L, Zhao P, Wang Y, Wang S, Lu W, Wang Y, Li X, Yu Y, Hua S, Wang L. Attenuation of interferon regulatory factor 7 activity in local infectious sites of trachea and lung for preventing the development of acute lung injury caused by influenza A virus. Immunology 2019; 157:37-51. [PMID: 30667045 DOI: 10.1111/imm.13045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/24/2022] Open
Abstract
The excessive activation of interferon regulatory factor 7 (IRF7) promotes the development of acute lung injury (ALI) caused by influenza A virus (IAV). However, the deficiency of IRF7 increases the susceptibility to deadly IAV infection in both humans and mice. To test whether the attenuation rather than the abolishment of IRF7 activity in local infectious sites could alleviate IAV-induced ALI, we established IAV-infected mouse model and trachea/lung-tissue culture systems, and designed two IRF7-interfering oligodeoxynucleotides, IRF7-rODN M1 and IRF7-rODN A1, based on the mouse and human consensus sequences of IRF7-binding sites of Ifna/IFNA genes, respectively. In the model mice, we found a close relationship between the IAV-induced ALI and the level/activity of IRF7 in local infectious sites, and also found that the reduced IRF7 level or activity in the lungs of mice treated with IRF7-rODN M1 led to decreased mRNA levels of Ifna genes, reduced neutrophil infiltration in the lungs and prolonged survival of mice. Furthermore, we found that the effects of IRF7-rODN M1 on alleviating IAV-induced ALI could be correlated to the reduced translocation of IRF7, caused by the IRF7-rODN M1, from cytosol to nucleus in IAV-infected cells. These data suggest that the proper attenuation of IRF7 activity in local infectious sites could be a novel approach for treating IAV-induced ALI.
Collapse
Affiliation(s)
- Lei Yang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Liqun Tu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Peiyan Zhao
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Ying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Shengnan Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Wenting Lu
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yangyang Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Xin Li
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shucheng Hua
- Department of Respiratory Medicine, The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology in College of Basic Medical Sciences and Institute of Pediatrics in The First Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| |
Collapse
|
42
|
Abstract
Pneumonia is an important cause of morbidity and mortality. However, pneumonia is an unusual outcome of respiratory infection. Most of the time, microbes in the lung can be controlled by a combination of constitutive and recruited defense mechanisms. Inflammation is a key component of recruited defenses. Variations in inflammation that influence pneumonia susceptibility and severity are considered here.
Collapse
Affiliation(s)
- Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Birth and death of Mx genes and the presence/absence of genes regulating Mx transcription are correlated with the diversity of anti-pathogenicity in vertebrate species. Mol Genet Genomics 2018; 294:121-133. [DOI: 10.1007/s00438-018-1490-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022]
|
44
|
Luk ADW, Ni K, Wu Y, Lam KT, Chan KW, Lee PP, Tu W, Mao H, Lau YL. Type I and III Interferon Productions Are Impaired in X-Linked Agammaglobulinemia Patients Toward Poliovirus but Not Influenza Virus. Front Immunol 2018; 9:1826. [PMID: 30147693 PMCID: PMC6095995 DOI: 10.3389/fimmu.2018.01826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background X-linked agammaglobulinemia (XLA) is a primary immunodeficiency caused by Bruton's tyrosine kinase (BTK) mutation. Patients are susceptible to severe enterovirus infections. The underlying mechanism remains unknown. BTK is involved in toll-like receptors pathway, which initiates antiviral responses including interferon (IFN) productions. Objective To demonstrate type I and III IFN productions in dendritic cells of XLA patients is decreased in response to oral poliovirus vaccine (OPV) but not H1N1 virus. Methods Monocyte-derived dendritic cells (MoDCs) were derived from nine XLA patients aged 22-32 years old and 23 buffy coats from Hong Kong Red Cross blood donors. LFM-A13 was used to inhibit BTK. OPV Sabin type 1 and H1N1 influenza virus were used to stimulate MoDCs with RPMI as mock stimulation. The antiviral cytokine productions and phenotypic maturation of MoDCs were determined 24 h post-stimulation. OPV RNA was determined at 0, 6, 12, and 24 h post-stimulation. Results Upon OPV stimulation, IFN-α2, IFN-β, and IFN-λ1 productions in MoDCs from XLA patients and BTK-inhibited MoDCs of healthy controls were significantly lower than that from healthy controls. Whereas upon H1N1 stimulation, the IFN-α2, IFN-β, and IFN-λ1 productions were similar in MoDCs from XLA patients, BTK-inhibited MoDCs of healthy controls and healthy controls. The mean fluorescent intensities (MFI) of CD83, CD86, and MHC-II in MoDCs from XLA patients in response to OPV was similar to that in response to mock stimulation, while the MFI of CD83, CD86, and MHC-II were significantly higher in response to H1N1 stimulation than that in response to mock stimulation. Whereas, the MFI of CD83, CD86, and MHC-II in MoDCs of healthy controls were significantly higher in response to both OPV and H1N1 stimulation compared to that in response to mock stimulation. Conclusion Production of type I and III IFN in response to OPV was deficient in MoDCs from XLA patients, but was normal in response to H1N1 due to deficient BTK function. Moreover, phenotypic maturation of MoDCs from XLA patients was impaired in response to OPV but not to H1N1. These selective impairments may account for the unique susceptibility of XLA patients toward severe enterovirus infections.
Collapse
Affiliation(s)
- Anderson Dik Wai Luk
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ke Ni
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuet Wu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kwok-Tai Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Pamela P. Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, Department of Paediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wenwei Tu
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, Department of Paediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Huawei Mao
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Rheumatology and Immunology, Ministry of Education Key Laboratory of Child Development and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- Shenzhen Primary Immunodeficiency Diagnostic and Therapeutic Laboratory, Department of Paediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
45
|
Kollmus H, Pilzner C, Leist SR, Heise M, Geffers R, Schughart K. Of mice and men: the host response to influenza virus infection. Mamm Genome 2018; 29:446-470. [PMID: 29947965 PMCID: PMC6132725 DOI: 10.1007/s00335-018-9750-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022]
Abstract
Influenza virus (IV) infections represent a very serious public health problem. At present, no established biomarkers exist to support diagnosis for respiratory viral infections and more importantly for severe IV disease. Studies in animal models are extremely important to understand the biological, genetic, and environmental factors that contribute to severe IV disease and to validate biomarker candidates from human studies. However, mouse human cross-species comparisons are often compromised by the fact that animal studies concentrate on the infected lungs, whereas in humans almost all studies use peripheral blood from patients. In addition, human studies do not consider genetic background as variable although human populations are genetically very diverse. Therefore, in this study, we performed a cross-species gene expression study of the peripheral blood from human patients and from the highly genetically diverse Collaborative Cross (CC) mouse population after IV infection. Our results demonstrate that changes of gene expression in individual genes are highly similar in mice and humans. The top-regulated genes in humans were also differentially regulated in mice. We conclude that the mouse is a highly valuable in vivo model system to validate and to discover gene candidates which can be used as biomarkers in humans. Furthermore, mouse studies allow confirmation of findings in humans in a well-controlled experimental system adding enormous value to the understanding of expression and function of human candidate genes.
Collapse
Affiliation(s)
- Heike Kollmus
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Carolin Pilzner
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Sarah R Leist
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Genome Analytics Research Group, Brunswick, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Brunswick, Germany.
- University of Veterinary Medicine Hannover, Hannover, Germany.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
46
|
Chen Y, Thomas PS, Kumar RK, Herbert C. The role of noncoding RNAs in regulating epithelial responses in COPD. Am J Physiol Lung Cell Mol Physiol 2018; 315:L184-L192. [PMID: 29722561 DOI: 10.1152/ajplung.00063.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), one of the leading causes of death in the world, is a chronic inflammatory disease of the airways usually caused by long-term exposure to inhaled irritants. Airway epithelial cells (AECs) play a key role in initializing COPD and driving the exacerbation of this disease through the release of various cytokines. This AEC-derived cytokine response is tightly regulated possibly through the regulatory effects of noncoding RNAs (ncRNAs). Although the importance of ncRNAs in pulmonary diseases has been increasingly realized, little is known about the role of ncRNA in the regulation of inflammatory responses in COPD. This review outlines the features of AEC-derived cytokine responses in COPD and how ncRNAs regulate these inflammatory responses.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Pathology, School of Medical Sciences, University of New South Wales Australia , Sydney , Australia
| | - Paul S Thomas
- Department of Pathology, School of Medical Sciences, University of New South Wales Australia , Sydney , Australia.,Department of Respiratory Medicine, Prince of Wales Hospital , Sydney , Australia
| | - Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, University of New South Wales Australia , Sydney , Australia
| | - Cristan Herbert
- Department of Pathology, School of Medical Sciences, University of New South Wales Australia , Sydney , Australia
| |
Collapse
|
47
|
Pang P, Zheng K, Wu S, Xu H, Deng L, Shi Y, Chen X. Baicalin Downregulates RLRs Signaling Pathway to Control Influenza A Virus Infection and Improve the Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:4923062. [PMID: 29681974 PMCID: PMC5846362 DOI: 10.1155/2018/4923062] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/23/2018] [Indexed: 12/31/2022]
Abstract
The objective of this study is to investigate the effects of baicalin on controlling the pulmonary infection and improving the prognosis in influenza A virus (IAV) infection. PCR and western blot were used to measure the changes of some key factors in RLRs signaling pathway. MSD electrochemiluminescence was used to measure the expression of pulmonary inflammatory cytokines including IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, and KC/GRO. Flow cytometry was used to detect the proportion of Th1, Th2, Th17, and Treg. The results showed that IAV infection led to low body weight and high viral load and high expression of RIG-I, IRF3, IRF7, and NF-κB mRNA, as well as RIG-I and NF-κB p65 protein. However, baicalin reduced the rate of body weight loss, inhibited virus replication, and downregulated the key factors of the RLRs signaling pathway. Besides, baicalin reduced the high expression inflammatory cytokines in lung and decreased the ratios of Th1/Th2 and Th17/Treg to arouse a brief but not overviolent inflammatory response. Therefore, baicalin activated a balanced host inflammatory response to limit immunopathologic injury, which was helpful to the improvement of clinical and survival outcomes.
Collapse
Affiliation(s)
- Peng Pang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ke Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
- Department of Disease Control and Prevention, No. 371 Central Hospital of the People's Liberation Army, Xinxiang, Henan 453000, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
48
|
Egarnes B, Blanchet MR, Gosselin J. Treatment with the NR4A1 agonist cytosporone B controls influenza virus infection and improves pulmonary function in infected mice. PLoS One 2017; 12:e0186639. [PMID: 29053748 PMCID: PMC5650162 DOI: 10.1371/journal.pone.0186639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 02/04/2023] Open
Abstract
The transcription factor NR4A1 has emerged as a pivotal regulator of the inflammatory response and immune homeostasis. Although contribution of NR4A1 in the innate immune response has been demonstrated, its role in host defense against viral infection remains to be investigated. In the present study, we show that administration of cytosporone B (Csn-B), a specific agonist of NR4A1, to mice infected with influenza virus (IAV) reduces lung viral loads and improves pulmonary function. Our results demonstrate that administration of Csn-B to naive mice leads to a modest production of type 1 IFN. However, in IAV-infected mice, such production of IFNs is markedly increased following treatment with Csn-B. Our study also reveals that alveolar macrophages (AMs) appear to have a significant role in Csn-B effects, since selective depletion of AMs with clodronate liposome correlates with a marked reduction of IFN production, viral clearance and morbidity in IAV-infected mice. Furthermore, when reemergence of AMs is observed following clodronate liposome administration, an increased production of IFNs was detected in bronchoalveolar fluids of IAV-infected mice treated with Csn-B, supporting the contribution of AMs in Csn-B effects. While treatment of mice with Csn-B induces phosphorylation of transcriptional factors IRF3 and IRF7, the latter appears to be less indispensable since effects of Csn-B treatment on the synthesis of IFNs were slightly affected in IAV-infected mice lacking functional IRF7. Together, our results highlight the capacity of Csn-B and consequently of NR4A1 transcription factor in controlling IAV infection.
Collapse
Affiliation(s)
- Benoit Egarnes
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval (CHUL) and Department of Molecular Medicine, Université Laval, Quebec, QC, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Jean Gosselin
- Laboratory of Innate Immunology, Centre de recherche du CHU de Québec-Université Laval (CHUL) and Department of Molecular Medicine, Université Laval, Quebec, QC, Canada
- * E-mail:
| |
Collapse
|
49
|
Ji ZH, Chen J, Gao W, Zhang JY, Quan FS, Hu JP, Yuan B, Ren WZ. Cutaneous transcriptome analysis in NIH hairless mice. PLoS One 2017; 12:e0182463. [PMID: 28787439 PMCID: PMC5546695 DOI: 10.1371/journal.pone.0182463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
Mice with spontaneous coat mutations are ideal animal models for studying skin development and tumorigenesis. In this study, skin hair growth cycle abnormalities were examined in NIH hairless mice 42 days after birth (P42) by using hematoxylin-eosin (H&E) staining. To examine the gene expression patterns in the skin of mutant mice, the dorsal skin of P42 female NIH mice and NIH hairless mice was sequenced by RNA-Seq, and 5,068 differentially expressed genes (DEGs) were identified (false discovery rate [FDR] ≥ 2, P < 0.05). A pathway analysis showed that basal cell carcinoma, the cell cycle and the Hippo, Hedgehog and Wnt signaling pathways were up-regulated in NIH hairless mice. Previous studies have shown that these pathways are closely associated with cell proliferation, cell cycle, organ size and cancer development. In contrast, signal transduction, bacterial and parasitic infection, and receptor-mediated pathways, including calcium signaling, were down-regulated in NIH hairless mice. A gene interaction network analysis was performed to identify genes related to hair follicle development. To verify the reliability of the RNA-Seq results, we used q-PCR to analyze 12 key genes identified from the gene interaction network analysis, including eight down-regulated and four up-regulated genes, and the results confirmed the reliability of the RNA-Seq results. Finally, we constructed the differential gene expression profiles of mutant mice by RNA-Seq. NIH hairless mice exhibited abnormalities in hair development and immune-related pathways. Pik3r1 and Pik3r3 were identified as key genes, laying the foundation for additional in-depth studies of hairless mice.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jin-Yu Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Fu-Shi Quan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jin-Ping Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
50
|
Rosenberger CM, Podyminogin RL, Diercks AH, Treuting PM, Peschon JJ, Rodriguez D, Gundapuneni M, Weiss MJ, Aderem A. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog 2017; 13:e1006305. [PMID: 28380049 PMCID: PMC5393898 DOI: 10.1371/journal.ppat.1006305] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
Antiviral responses must rapidly defend against infection while minimizing inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. miRNAs are small non-coding RNAs that suppress protein levels by binding target sequences on their cognate mRNA. Here, we identify miR-144 as a negative regulator of the host antiviral response. Ectopic expression of miR-144 resulted in increased replication of three RNA viruses in primary mouse lung epithelial cells: influenza virus, EMCV, and VSV. We identified the transcriptional network regulated by miR-144 and demonstrate that miR-144 post-transcriptionally suppresses TRAF6 levels. In vivo ablation of miR-144 reduced influenza virus replication in the lung and disease severity. These data suggest that miR-144 reduces the antiviral response by attenuating the TRAF6-IRF7 pathway to alter the cellular antiviral transcriptional landscape. Antiviral responses must be regulated to rapidly defend against infection while minimizing inflammatory damage. However, the mechanisms for establishing the magnitude of response within an infected cell are incompletely understood. miRNAs are small non-coding RNAs that negatively regulate protein levels by binding complementary sequences on their target mRNA. In this study, we show that microRNA-144 impairs the ability of host cells to control the replication of three viruses: influenza virus, EMCV, and VSV. We identify a mechanism underlying the effect of this microRNA on antiviral responses. microRNA-144 suppresses TRAF6 levels and impairs the gene expression program regulated by the transcription factor IRF7. The resulting dysregulated expression of antiviral genes correlates with enhanced viral replication. Our findings in isolated lung epithelial cells were consistent with the effects observed in influenza virus-infected mice lacking miR-144. Together, these data support a role for miRNAs in tuning transcriptional programs during early responses to viral infection.
Collapse
Affiliation(s)
- Carrie M. Rosenberger
- Center for Infectious Disease Research, Seattle, WA United States of America
- * E-mail: (CMR); (AA)
| | | | - Alan H. Diercks
- Center for Infectious Disease Research, Seattle, WA United States of America
| | - Piper M. Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Jacques J. Peschon
- Center for Infectious Disease Research, Seattle, WA United States of America
| | - David Rodriguez
- Center for Infectious Disease Research, Seattle, WA United States of America
| | | | - Mitchell J. Weiss
- Hematology, St. Jude Children's Research Hospital, Memphis, TN United States of America
| | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA United States of America
- * E-mail: (CMR); (AA)
| |
Collapse
|