1
|
Dellink A, Hebbrecht K, Zeeuws D, Baeken C, De Fré G, Bervoets C, De Witte S, Sabbe B, Morrens M, Coppens V. Continuous theta burst stimulation for bipolar depression: A multicenter, double-blind randomized controlled study exploring treatment efficacy and predictive potential of kynurenine metabolites. J Affect Disord 2024; 361:693-701. [PMID: 38936704 DOI: 10.1016/j.jad.2024.06.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND While theta burst stimulation (TBS) shows promise in Major Depressive Disorder (MDD), its effectiveness in bipolar depression (BD-D) remains uncertain. Optimizing treatment parameters is crucial in the pursuit of rapid symptom relief. Moreover, aligning with personalized treatment strategies and increased interest in immunopsychiatry, biomarker-based stratification of patients most likely to benefit from TBS might improve remission rates. We investigated treatment effectiveness of continuous TBS (cTBS) compared to sham in BD-D, and assessed the capacity of plasma kynurenine pathway metabolites to predict treatment outcome. METHODS Thirty-seven patients with BD-D underwent accelerated active or sham cTBS treatment in a multicenter, double-blind, randomized controlled trial. Depressive symptoms were measured with the 17-item Hamilton Depression Rating Scale (HDRS-17) before treatment (T0), 3-4 days posttreatment (T1) and 10-11 days posttreatment (T2). Plasma tryptophan, kynurenine, kynurenic acid and quinolinic acid concentrations were quantified with ELISA. Linear mixed models were used for statistical analyses. RESULTS Although the total sample showed depressive symptom improvement, active cTBS did not demonstrate greater symptom alleviation compared to sham. However, higher baseline quinolinic acid significantly predicted symptom improvement in the active treatment group, not in sham-stimulated patients. LIMITATIONS The modest sample size limited the power to detect significant differences with regard to treatment effect. Also, the follow-up period was 10-11 days, whereas similar studies usually follow up for at least one month. CONCLUSION More research is required to optimize cTBS for BD-D and explore the involvement of quinolinic acid in treatment outcome.
Collapse
Affiliation(s)
- Annelies Dellink
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Kaat Hebbrecht
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Dieter Zeeuws
- Department of Psychiatry, Universitair Ziekenhuis Brussel, Brussels, Belgium; Neuroprotection and Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Chris Baeken
- Department of Psychiatry, Universitair Ziekenhuis Brussel, Brussels, Belgium; Neuroprotection and Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | | | - Chris Bervoets
- Department of Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium
| | - Sara De Witte
- Neuroprotection and Neuromodulation Research Group (NEUR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium
| | - Bernard Sabbe
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuel Morrens
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Violette Coppens
- Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Duffel, Duffel, Belgium; Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Chen Y, Xia X, Zhou Z, Yuan M, Peng Y, Liu Y, Tang J, Fu Y. Interleukin-6 is correlated with amygdala volume and depression severity in adolescents and young adults with first-episode major depressive disorder. Brain Imaging Behav 2024; 18:773-782. [PMID: 38467915 DOI: 10.1007/s11682-024-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Inflammatory mechanisms may play crucial roles in the pathophysiology of major depressive disorder (MDD), and cytokine concentrations are correlated with brain alterations. Adolescents and young adults with MDD have higher recurrence and suicide rates than adults, but there has been limited research on the underlying mechanisms. In this study, we aimed to investigate the potential correlations among cytokines, depression severity, and the volumes of the amygdala, hippocampus, and nucleus accumbens in Han Chinese adolescents and young adults with first-episode MDD. Nineteen patients with MDD aged 10-21 years were enrolled from the Psychiatry Department of the First Affiliated Hospital of Chongqing Medical University, along with 18 age-matched healthy controls from a local school. We measured the concentrations of interleukin (IL)-4, IL-6, IL-8, and IL-10 in the peripheral blood, along with the volumes of the amygdala, hippocampus, and nucleus accumbens, as determined by magnetic resonance imaging. We observed that patients with MDD had higher concentrations of IL-6 and a trend towards reduced left amygdala and bilateral hippocampus volumes than healthy controls. Additionally, the concentration of IL-6 was correlated with the left amygdala volume and depression severity, while the left hippocampus volume was correlated with depression severity. This study suggests that inflammation is an underlying neurobiological change and implies that IL-6 could serve as a potential biomarker for identifying early stage MDD in adolescents and young adults.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaodi Xia
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zheyi Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Meng Yuan
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yadong Peng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ying Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jinxiang Tang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yixiao Fu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Young JR, Evans MK, Hwang J, Kritzer MD, Kellner CH, Weiner RD. Electroconvulsive Therapy Changes Immunological Markers in Patients With Major Depressive Disorder: A Scoping Review. J ECT 2024:00124509-990000000-00170. [PMID: 38924480 DOI: 10.1097/yct.0000000000001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
ABSTRACT Major depressive disorder (MDD) is a highly prevalent and disabling condition. As such, understanding the causes of and treatment options for MDD is critical. Electroconvulsive therapy (ECT) remains the gold standard depression treatment, but the molecular mechanisms that underlie its effects are still largely unknown. One such explanation hinges on the immuno-inflammatory correlates of ECT treatment, given mounting evidence supporting the inflammatory hypothesis of depression. This review aims to provide an overview of the suggested immunomodulatory effects of ECT and the predictive value of immune biomarkers in relation to treatment outcomes and side effects. We conducted a preregistered, systematic literature search utilizing MEDLINE (PubMed), Embase (Elsevier), and PsycINFO (EBSCO) databases. We employed keywords related to MDD, ECT, gut microbiome, and the immune system. We only included human subjects research published between 1985 and January 13, 2021. Twenty-six unique studies were included in our analyses. Findings indicate a proinflammatory profile associated with MDD, with immune biomarkers exhibiting acute and chronic changes following ECT. Consistently, lower baseline interleukin 6 levels and higher C-reactive protein levels are correlated with a greater reduction in depressive symptoms following ECT. Furthermore, included studies emphasize the predictive value of peripheral immune changes, specifically interleukin 6 and tumor necrosis factor α, on cognitive outcomes following ECT. Given these results, further exploration of the potential roles of immunomodulatory effects on ECT treatment outcomes, as well as adverse cognitive side effects, is indicated.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard D Weiner
- From the Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine
| |
Collapse
|
4
|
Belge JB, van Eijndhoven P, Mulders PCR. Mechanism of Action of ECT in Depression. Curr Top Behav Neurosci 2024; 66:279-295. [PMID: 37962811 DOI: 10.1007/7854_2023_450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Electroconvulsive therapy (ECT) remains the most potent antidepressant treatment available for patients with major depressive disorder (MDD). ECT is highly effective, achieving a response rate of 70-80% and a remission rate of 50-60% even in treatment-resistant patients. The underlying mechanisms of ECT are not fully understood, although several hypotheses have been proposed, including the monoamine hypothesis, anticonvulsive hypothesis, neuroplastic effects, and immunomodulatory properties. In this paper, we provide an overview of magnetic resonance imaging evidence that addresses the neuroplastic changes that occur after ECT at the human systems level and elaborate further on ECTs potent immunomodulatory properties. Despite a growing body of evidence that suggests ECT may normalize many of the structural and functional changes in the brain associated with severe depression, there is a lack of convergence between neurobiological changes and the robust clinical effects observed in depression. This may be due to sample sizes used in ECT studies being generally small and differences in data processing and analysis pipelines. Collaborations that acquire large datasets, such as the GEMRIC consortium, can help translate ECT's clinical efficacy into a better understanding of its mechanisms of action.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| | - Peter C R Mulders
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Medical Neuroscience, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Sartorius A, Karl S, Zilles-Wegner D. Hippocampal neuroplasticity, major depression and, not to forget: ECT. Mol Psychiatry 2024; 29:1-2. [PMID: 36038727 PMCID: PMC11078706 DOI: 10.1038/s41380-022-01746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Sebastian Karl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
| | - David Zilles-Wegner
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| |
Collapse
|
6
|
Brooks JO, Kruse JL, Kubicki A, Hellemann G, Espinoza RT, Irwin MR, Narr KL. Structural brain plasticity and inflammation are independently related to changes in depressive symptoms six months after an index ECT course. Psychol Med 2024; 54:108-116. [PMID: 36600668 DOI: 10.1017/s0033291722003555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is effective for treatment-resistant depression and leads to short-term structural brain changes and decreases in the inflammatory response. However, little is known about how brain structure and inflammation relate to the heterogeneity of treatment response in the months following an index ECT course. METHODS A naturalistic six-month study following an index ECT course included 20 subjects with treatment-resistant depression. Upon conclusion of the index ECT course and again after six months, structural magnetic resonance imaging scans and peripheral inflammation measures [interleukin-6 (IL-6), IL-8, tumor necrosis factor (TNF-α), and C-reactive protein] were obtained. Voxel-based morphometry processed with the CAT-12 Toolbox was used to estimate changes in gray matter volume. RESULTS Between the end of the index ECT course and the end of follow-up, we found four clusters of significant decreases in gray matter volume (p < 0.01, FWE) and no regions of increased volume. Decreased HAM-D scores were significantly related only to reduced IL-8 level. Decreased volume in one cluster, which included the right insula and Brodmann's Area 22, was related to increased HAM-D scores over six months. IL-8 levels did not mediate or moderate the relationship between volumetric change and depression. CONCLUSIONS Six months after an index ECT course, multiple regions of decreased gray matter volume were observed in a naturalistic setting. The independent relations between brain volume and inflammation to depressive symptoms suggest novel explanations of the heterogeneity of longer-term ECT treatment response.
Collapse
Affiliation(s)
- John O Brooks
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Jennifer L Kruse
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Antoni Kubicki
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | - Randall T Espinoza
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L Narr
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Zhang Y, Yang Y, Li H, Feng Q, Ge W, Xu X. Investigating the Potential Mechanisms and Therapeutic Targets of Inflammatory Cytokines in Post-stroke Depression. Mol Neurobiol 2024; 61:132-147. [PMID: 37592185 DOI: 10.1007/s12035-023-03563-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Post-stroke depression (PSD) affects approximately one-third of stroke survivors, severely impacting general recovery and quality of life. Despite extensive studies, the exact mechanisms underlying PSD remain elusive. However, emerging evidence implicates proinflammatory cytokines, including interleukin-1β, interleukin-6, tumor necrosis factor-alpha, and interleukin-18, play critical roles in PSD development. These cytokines contribute to PSD through various mechanisms, including hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neurotransmitter alterations, neurotrophic factor changes, gut microbiota imbalances, and genetic predispositions. This review is aimed at exploring the role of cytokines in stroke and PSD while identifying their potential as specific therapeutic targets for managing PSD. A more profound understanding of the mechanisms regulating inflammatory cytokine expression and anti-inflammatory cytokines like interleukin-10 in PSD may facilitate the development of innovative interventions to improve outcomes for stroke survivors experiencing depression.
Collapse
Affiliation(s)
- Yutong Zhang
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yuehua Yang
- Department of Neurology, Suzhou Yongding Hospital, Suzhou, 215028, China
| | - Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Qian Feng
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wei Ge
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221600, China.
| | - Xingshun Xu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
8
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
9
|
Hallihan H, Tsai P, Lv N, Xiao L, Peñalver Bernabé B, Wu Y, Pandey GN, Williams LM, Ajilore OA, Ma J. Affective neural circuits and inflammatory markers linked to depression and anxiety symptoms in patients with comorbid obesity. J Psychiatr Res 2023; 160:9-18. [PMID: 36764197 PMCID: PMC10023437 DOI: 10.1016/j.jpsychires.2023.01.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Although we have effective treatments for depression and anxiety, we lack mechanistic understanding or evidence-based strategies to tailor these treatments in the context of major comorbidities such as obesity. The current feasibility study uses functional neuroimaging and biospecimen data to determine if changes in inflammatory markers, fecal short-chain fatty acids, and neural circuit-based targets can predict depression and anxiety outcomes among participants with comorbid obesity. Blood and stool samples and functional magnetic resonance imaging data were obtained at baseline and 2 months, during the parent ENGAGE-2 trial. From 30 participants with both biospecimen and fMRI data, this subsample study explored the relationship among changes in inflammatory markers and fecal short-chain fatty acids and changes in neural targets, and their joint relationship with depression and anxiety symptoms. Bivariate and partial correlation, canonical correlation, and partial least squares analyses were conducted, with adjustments for age, sex, and treatment group. Initial correlation analyses revealed three inflammatory markers (IL-1RA, IL-6, and TNF-α) and five neural targets (in Negative Affect, Positive Affect, and Default Mode Circuits) with significantly associated changes at 2 months. Partial least squares analyses then showed that changes in IL-1RA and TNF-α and changes in three neural targets (in Negative Affect and Positive Affect Circuits) at 2 months were associated with changes in depression and anxiety symptoms at 6 months. This study sheds light on the plausibility of incorporation of inflammatory and gastrointestinal biomarkers with neural targets as predictors of depression and comorbid anxiety outcomes among patients with obesity.
Collapse
Affiliation(s)
- Hagar Hallihan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60608, USA
| | - Perry Tsai
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Nan Lv
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL, 60608, USA
| | - Lan Xiao
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, USA
| | | | - Yichao Wu
- Department of Mathematics, Statistics, and Computer Science, College of Liberal Arts and Sciences, Chicago, IL, 60607, USA
| | - Ghanshyam N Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Olusola A Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Jun Ma
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60608, USA.
| |
Collapse
|
10
|
Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 2023; 13:5. [PMID: 36624089 PMCID: PMC9829236 DOI: 10.1038/s41398-022-02297-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Mood disorders are associated with elevated inflammation, and the reduction of symptoms after multiple treatments is often accompanied by pro-inflammation restoration. A variety of neuromodulation techniques that regulate regional brain activities have been used to treat refractory mood disorders. However, their efficacy varies from person to person and lack reliable indicator. This review summarizes clinical and animal studies on inflammation in neural circuits related to anxiety and depression and the evidence that neuromodulation therapies regulate neuroinflammation in the treatment of neurological diseases. Neuromodulation therapies, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES), electroconvulsive therapy (ECT), photobiomodulation (PBM), transcranial ultrasound stimulation (TUS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS), all have been reported to attenuate neuroinflammation and reduce the release of pro-inflammatory factors, which may be one of the reasons for mood improvement. This review provides a better understanding of the effective mechanism of neuromodulation therapies and indicates that inflammatory biomarkers may serve as a reference for the assessment of pathological conditions and treatment options in anxiety and depression.
Collapse
Affiliation(s)
- Bingqi Guo
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Mengyao Zhang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Wensi Hao
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Yuping Wang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XInstitute of sleep and consciousness disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Tingting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| |
Collapse
|
11
|
Zhuo B, Zheng D, Cai M, Wang C, Zhang S, Zhang Z, Tian F, Wang X, Lin H. Mediation Effect of Brain Volume on the Relationship Between Peripheral Inflammation and Cognitive Decline. J Alzheimers Dis 2023; 95:523-533. [PMID: 37545239 DOI: 10.3233/jad-230253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Studies have reported the associations between inflammation, brain volume, and cognition separately. It is reasonable to assume peripheral inflammation may contribute to cognitive decline through brain volume atrophy. OBJECTIVE To examine the associations between peripheral inflammation, brain volume, and cognition among adults, and to investigate whether brain volume atrophy mediates the inflammation-cognition relationshipMethods:We retrieved 20,381 participants with available data on peripheral inflammation, brain volume, and cognition from the UK Biobank cohort. Cognitive function was assessed by performance on cognitive tasks probing various cognitive domains. Brain volumes were measured by magnetic resonance imaging (MRI). Multivariable linear models were used to investigate the associations between three peripheral inflammatory indexes (C-reactive protein, systemic immune-inflammatory index, neutrophil-to-lymphocyte ratio), brain volume, and cognition. Mediation analyses were conducted to assess the potential mediating effect of brain volume atrophy. All results were corrected for multiple comparisons using the false-discovery rate (FDR). RESULTS Peripheral inflammation was inversely associated with grey matter volume (GMV), white matter volume (WMV), and cognition after adjusting for potential covariates. For instance, CRP was associated with the GMV of left parahippocampal gyrus (β= -0.05, 95% confidence interval [CI]: -0.06 to -0.04, pFDR =1.07×10-16) and general cognitive factor (β= -0.03, 95% CI: -0. -0.04 to -0.01, pFDR = 0.001). Brain volume atrophy mediated the inflammation-cognitive decline relationship, accounting for 15-29% of the overall impact. CONCLUSION In this cohort study, peripheral inflammation was associated with brain volume atrophy and cognitive decline. Brain atrophy may mediate the inflammation-cognitive decline relationship.
Collapse
Affiliation(s)
- Bingting Zhuo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dashan Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Henan, China
| | - Shiyu Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Li Y, Yang L, Li J, Gao W, Zhao Z, Dong K, Duan W, Dai B, Guo R. Antidepression of Xingpijieyu formula targets gut microbiota derived from depressive disorder. CNS Neurosci Ther 2022; 29:669-681. [PMID: 36550591 PMCID: PMC9873506 DOI: 10.1111/cns.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This investigation aims to determine the antidepressant role of Xingpijieyu formula (XPJYF) mediated via gut microbiota (GM)-brain axis. METHODS We collected fecal microbiota from patients with depressive disorder (DD) and cultured microbiota in vitro. Some of microbiota were transplanted into germ-free rats with the intragastric administration of XPJYF grain at the dose of 1.533 g/kg/day. The behaviors were studied by forced swimming test, open field test, sucrose preference test, and body weight. Products of hypothalamus-pituitary-adrenocortical (HPA) axis, neurotransmitter, and serum cytokines were investigated by enzyme linked immunosorbent assay. Glial fibrillary acidic protein (GFAP), a biomarker of astrocyte, was quantified using immunofluorescence. Microbiota culturing in vitro after XPJYF treatment was analyze by 16 s RNA sequencing technology. We used lipopolysaccharide (LPS) to mimic activated rat primary astrocyte in vitro. Brain-derived neurotrophic factor (BDNF), cytokines, and oxidative stress factors were determined by western blotting, and glycometabolism in astrocyte was investigated by 2-deoxy-D-glucose (2-DG) uptake, adenosine triphosphate (ATP), and glucose-1-phosphate (G1P) kits. RESULTS Microbiota composition during 8 mg/ml of XPJYF (H12-8) for 12 h showed the more consistency. Lactococcus is enriched in DD-derived microbiota composition, and Biffdobacterium and Lactobacillus in H12-8 group. GLUCOSE1PMETAB-PWY and PWY-7328 of which biofunctions were dominantly encoded by Biffdobacterium were the top two of altered pathways. XPJYF improved behaviors and repressed astrocyte activation in depression rats. XPJYF elevated 2-DG uptake, ATP, glucose-1-phosphate, and brain-derived neurotrophic factor (BDNF), and inhibited cytokines and oxidative stress in LPS-induced astrocyte. CONCLUSION XPJYF treatment targets inflammation, activation, and glycometabolim in astrocyte via gut microbiota modulation, thereby improve animal behaviors, HPA axis dysfunction, and neurotransmitter synthesis in depression rats.
Collapse
Affiliation(s)
- Yannan Li
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Lixuan Yang
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Junnan Li
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Wei Gao
- Department of Mental HealthTsinghua University Yuquan HospitalBeijingChina
| | - Zhonghui Zhao
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Kaiqiang Dong
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Wenzhe Duan
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Baoan Dai
- Second Clinical Medical CollegeBeijing University of Chinese MedicineBeijingChina,Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| | - Rongjuan Guo
- Department of NeurologyDongfang Hospital Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
13
|
White matter changes following electroconvulsive therapy for depression: a multicenter ComBat harmonization approach. Transl Psychiatry 2022; 12:517. [PMID: 36526624 PMCID: PMC9758171 DOI: 10.1038/s41398-022-02284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
ECT is proposed to exert a therapeutic effect on WM microstructure, but the limited power of previous studies made it difficult to highlight consistent patterns of change in diffusion metrics. We initiated a multicenter analysis and sought to address whether changes in WM microstructure occur following ECT. Diffusion tensor imaging (DTI) data (n = 58) from 4 different sites were harmonized before pooling them by using ComBat, a batch-effect correction tool that removes inter-site technical variability, preserves inter-site biological variability, and maximizes statistical power. Downstream statistical analyses aimed to quantify changes in Fractional Anisotropy (FA), Mean Diffusivity (MD), Radial Diffusivity (RD) and Axial Diffusivity (AD), by employing whole-brain, tract-based spatial statistics (TBSS). ECT increased FA in the right splenium of the corpus callosum and the left cortico-spinal tract. AD in the left superior longitudinal fasciculus and the right inferior fronto-occipital fasciculus was raised. Increases in MD and RD could be observed in overlapping white matter structures of both hemispheres. At baseline, responders showed significantly smaller FA values in the left forceps major and smaller AD values in the right uncinate fasciculus compared with non-responders. By harmonizing multicenter data, we demonstrate that ECT modulates altered WM microstructure in important brain circuits that are implicated in the pathophysiology of depression. Furthermore, responders appear to present a more decreased WM integrity at baseline which could point toward a specific subtype of patients, characterized by a more altered neuroplasticity, who are especially sensitive to the potent neuroplastic effects of ECT.
Collapse
|
14
|
Dogaru IA, Puiu MG, Manea M, Dionisie V. Current Perspectives on Pharmacological and Non-Pharmacological Interventions for the Inflammatory Mechanism of Unipolar Depression. Brain Sci 2022; 12:brainsci12101403. [PMID: 36291336 PMCID: PMC9599138 DOI: 10.3390/brainsci12101403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/25/2022] Open
Abstract
Since depression remains a major public health issue there is a constant need for new and more efficient therapeutic strategies based on the mechanisms involved in the aetiology of depression. Thus, the pathogenic link between depression and inflammation is considered to play a potential key role in the development of such therapies. This review summarizes the results of various pharmacological (non-steroidal anti-inflammatory drugs, aspirin, cyclooxygenase inhibitors, cytokine inhibitors, corticosteroids, statins, minocycline, N-acetyl cysteine, omega-3 fatty acids and probiotics) and non-pharmacological interventions (electroconvulsive therapy, physical exercise and psychological therapy) and outlines their efficacy and discusses potential challenges. Both conventional and non-conventional anti-inflammatory drugs showed promising results according to the specific group of patients. The pre-existing pro-inflammatory status was, in most cases, a predictor for clinical efficacy and, in some cases, a correlation between clinical improvement and changes in various biomarkers was found. Some of the non-pharmacological interventions (physical exercise and electroconvulsive therapy) have also showed beneficial effects for depressive patients with elevated inflammatory markers. Treatments with anti-inflammatory action may improve clinical outcomes in depression, at least for some categories of patients, thus opening the way for a future personalised approach to patients with unipolar depression regarding the inflammation-related mechanism.
Collapse
Affiliation(s)
- Ioana-Alexandra Dogaru
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Maria Gabriela Puiu
- Department of Psychiatry and Psychology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence:
| | - Mirela Manea
- Department of Psychiatry and Psychology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vlad Dionisie
- Department of Psychiatry and Psychology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
15
|
Ousdal OT, Brancati GE, Kessler U, Erchinger V, Dale AM, Abbott C, Oltedal L. The Neurobiological Effects of Electroconvulsive Therapy Studied Through Magnetic Resonance: What Have We Learned, and Where Do We Go? Biol Psychiatry 2022; 91:540-549. [PMID: 34274106 PMCID: PMC8630079 DOI: 10.1016/j.biopsych.2021.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022]
Abstract
Electroconvulsive therapy (ECT) is an established treatment choice for severe, treatment-resistant depression, yet its mechanisms of action remain elusive. Magnetic resonance imaging (MRI) of the human brain before and after treatment has been crucial to aid our comprehension of the ECT neurobiological effects. However, to date, a majority of MRI studies have been underpowered and have used heterogeneous patient samples as well as different methodological approaches, altogether causing mixed results and poor clinical translation. Hence, an association between MRI markers and therapeutic response remains to be established. Recently, the availability of large datasets through a global collaboration has provided the statistical power needed to characterize whole-brain structural and functional brain changes after ECT. In addition, MRI technological developments allow new aspects of brain function and structure to be investigated. Finally, more recent studies have also investigated immediate and long-term effects of ECT, which may aid in the separation of the therapeutically relevant effects from epiphenomena. The goal of this review is to outline MRI studies (T1, diffusion-weighted imaging, proton magnetic resonance spectroscopy) of ECT in depression to advance our understanding of the ECT neurobiological effects. Based on the reviewed literature, we suggest a model whereby the neurobiological effects can be understood within a framework of disruption, neuroplasticity, and rewiring of neural circuits. An improved characterization of the neurobiological effects of ECT may increase our understanding of ECT's therapeutic effects, ultimately leading to improved patient care.
Collapse
Affiliation(s)
- Olga Therese Ousdal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Centre for Crisis Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway.
| | - Giulio E Brancati
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ute Kessler
- NORMENT, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Vera Erchinger
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Christopher Abbott
- Department of Psychiatry, University of New Mexico, Albuquerque, New Mexico
| | - Leif Oltedal
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Belge JB, Diermen LV, Sabbe B, Morrens M, Coppens V, de Timary P, Constant E, Sienaert P, Schrijvers D. Inflammatory Markers May Inform the Effects of Electroconvulsive Therapy on Cognition in Patients with Depression. Neuropsychobiology 2022; 80:493-501. [PMID: 33910216 DOI: 10.1159/000515931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The neurobiological mechanisms underlying the acute cognitive effects of electroconvulsive therapy (ECT) remain poorly understood. Prior research has shown that proinflammatory cytokines such as IL-6, TNF-α, IL1-β, and IL-10 may interfere with cognitive functioning. Interestingly, immunomodulation is one of the proposed modes of action of ECT. This study investigates whether changes of peripheral levels of IL-6, TNF-α, IL1-β, and IL-10 are related to changes in cognitive functioning following ECT. METHODS In the week before and 1 week after an acute course of ECT, 62 patients suffering from depression underwent a neuropsychological evaluation to assess their processing speed using the Symbol Digit Substitution Test (SDST), verbal episodic memory using the Hopkins Verbal Learning Test-Revised (HVLT-R), and their retrospective autobiographic memory using the Autobiographical Memory Interview (AMI) with the peripheral inflammatory markers being measured at the same 2 time points. RESULTS Patients improved drastically following ECT, while their main performance on both the HVLT-R and AMI declined and their SDST scores remained stable. The levels of IL-6 and IL1-β had both decreased, where the decrease in IL-6 was related to the decrease in HVLT-R scores. Higher baseline IL-10 levels were associated with a more limited decrease of the HVLT-R scores. CONCLUSION Our findings tentatively suggest that the effects of ECT on verbal episodic memory may be related to the treatment's immunomodulatory properties, most notably due to decreased IL-6 levels. Moreover, baseline IL-10 appears to be a potential biomarker to predict the effects of ECT on verbal episodic memory. Whilst compelling, the results of this study should be interpreted with caution as, due to its exploratory nature, no correction for multiple comparisons was made. Further, a replication in larger cohorts is warranted.
Collapse
Affiliation(s)
- Jan-Baptist Belge
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Linda Van Diermen
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Psychiatric Center Bethanië, Zoersel, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Manuel Morrens
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Violette Coppens
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Philippe de Timary
- Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Eric Constant
- Adult Psychiatry Department and Institute of Neuroscience, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Kortenberg, Belgium
| | - Didier Schrijvers
- Department of Psychiatry, University Psychiatric Center Duffel, Duffel, Belgium.,Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
17
|
Desfossés CY, Peredo R, Chabot A, Carmel JP, Tremblay PM, Mérette C, Picher G, Lachance I, Patry S, Lemasson M. The Pattern of Change in Depressive Symptoms and Inflammatory Markers After Electroconvulsive Therapy: A Systematic Review. J ECT 2021; 37:291-297. [PMID: 34294652 DOI: 10.1097/yct.0000000000000782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Depression is a major mental health disorder, and its pathophysiology is still largely unknown, as is the action mechanism of electroconvulsive therapy (ECT). Some evidence suggests that inflammation might play a role in depression, and several studies have attempted to demonstrate a link between ECT and cytokines. This systematic review used a qualitative analysis to assess the effect of ECT on inflammatory markers as it relates to the clinical response of depressive symptoms in major depressive disorders. The bibliographic search engines CINAHL, Embase, PsychInfo, and PubMed were used to identify articles published up to July 2020. Search terms related to depression, ECT, and inflammation were used. Descriptive statistical analyses were performed to relate changes in inflammatory markers to clinical response to ECT. Twenty-five studies were included in the analysis. No systematic increases or decreases were found in a given inflammatory marker over the ECT; however, we observed that tumor necrosis factor α and interleukin-6 (IL-6) were more often found to be decreased after ECT, whereas IL-8 and IL-10 were more often found to be increased after treatment. No trend in correlation was found between the degree of clinical improvement of depressive symptoms and the variation of any inflammatory markers, despite positive clinical response to ECT. Great heterogeneity with regard to methodology used and lack of power of the studies included in this review could explain the lack of systematic change and correlation found in this study. Future research conducted on this subject should take into account these methodological limitations to allow subsequent meta-analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabelle Lachance
- Department of Psychiatry, Institut universitaire en santé mentale de Québec, CIUSSS de la Capitale Nationale, Québec
| | | | | |
Collapse
|
18
|
Carlier A, Rhebergen D, Schilder F, Bouckaert F, Sienaert P, Veerhuis R, Hoogendoorn AW, Eikelenboom P, Stek ML, Dols A, van Exel E. The pattern of inflammatory markers during electroconvulsive therapy in older depressed patients. World J Biol Psychiatry 2021; 22:770-777. [PMID: 33821774 DOI: 10.1080/15622975.2021.1907718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES An association is found between changes in cytokine levels and antidepressant treatment outcome. Also, a proinflammatory profile is associated with a favourable electroconvulsive therapy (ECT) outcome. This paper investigates the pattern of inflammatory markers during a course of ECT in older depressed patients and whether this pattern is associated with ECT outcome. We hypothesised that ECT has an anti-inflammatory effect. METHODS The pattern of CRP, IL-6, IL-10, and TNF-α during a course of ECT was examined using longitudinal mixed model analyses. Serum samples were collected in 99 older depressed patients (mean age: 72.8 ± 8.3 years, MADRS score 33.8 ± 9.0). RESULTS After Bonferroni correction, there were no statistically significant alterations in levels of inflammatory markers during and after ECT. Effect sizes (Cohen's d) were -0.29 for CRP, -0.13 for IL-6, -0.06 for IL-10, and -0.07 for TNF-α. Changes in CRP or cytokine levels did not differ between remitters and non-remitters. Median baseline levels of CRP were significantly higher in remitters. CONCLUSIONS A small to medium effect size towards decreased CRP and IL-6 levels was observed. An anti-inflammatory effect of ECT could not be confirmed. However, the findings may suggest that patients with an inflammatory profile benefit more from ECT than other patients. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Angela Carlier
- Department of Old Age Psychiatry, Pro Persona Mental Health Institute, Nijmegen, The Netherlands.,Department of Old Age Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health research institute and Neuroscience Amsterdam, Amsterdam, The Netherlands
| | - Didi Rhebergen
- Department of Old Age Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health research institute and Neuroscience Amsterdam, Amsterdam, The Netherlands.,Mental Health Care Institute GGZ Centraal, Amersfoort, The Netherlands
| | - Frank Schilder
- Department of Old Age Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
| | - Filip Bouckaert
- Department of Old Age Psychiatry, KU Leuven, University Psychiatric Center KU Leuven, Kortenberg, Belgium.,KU Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation, Kortenberg, Belgium
| | - Pascal Sienaert
- KU Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation, Kortenberg, Belgium
| | - Robert Veerhuis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health research institute and Neuroscience Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adriaan W Hoogendoorn
- Department of Old Age Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health research institute and Neuroscience Amsterdam, Amsterdam, The Netherlands
| | - Piet Eikelenboom
- Department of Old Age Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health research institute and Neuroscience Amsterdam, Amsterdam, The Netherlands
| | - Max L Stek
- Department of Old Age Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health research institute and Neuroscience Amsterdam, Amsterdam, The Netherlands
| | - Annemiek Dols
- Department of Old Age Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health research institute and Neuroscience Amsterdam, Amsterdam, The Netherlands
| | - Eric van Exel
- Department of Old Age Psychiatry, GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Amsterdam Public Health research institute and Neuroscience Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Pisanu C, Vitali E, Meloni A, Congiu D, Severino G, Ardau R, Chillotti C, Trabucchi L, Bortolomasi M, Gennarelli M, Minelli A, Squassina A. Investigating the Role of Leukocyte Telomere Length in Treatment-Resistant Depression and in Response to Electroconvulsive Therapy. J Pers Med 2021; 11:jpm11111100. [PMID: 34834452 PMCID: PMC8622097 DOI: 10.3390/jpm11111100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Psychiatric disorders seem to be characterized by premature cell senescence. However, controversial results have also been reported. In addition, the relationship between accelerated aging and treatment-resistance has scarcely been investigated. In the current study, we measured leukocyte telomere length (LTL) in 148 patients with treatment-resistant depression (TRD, 125 with major depressive disorder, MDD, and 23 with bipolar disorder, BD) treated with electroconvulsive therapy (ECT) and analyzed whether LTL was associated with different response profiles. We also compared LTL between patients with TRD and 335 non-psychiatric controls. For 107 patients for which genome-wide association data were available, we evaluated whether a significant overlap among genetic variants or genes associated with LTL and with response to ECT could be observed. LTL was negatively correlated with age (Spearman’s correlation coefficient = −0.25, p < 0.0001) and significantly shorter in patients with treatment-resistant MDD (Quade’s F = 35.18, p < 0.0001) or BD (Quade’s F = 20.84, p < 0.0001) compared to controls. Conversely, baseline LTL was not associated with response to ECT or remission. We did not detect any significant overlap between genetic variants or genes associated with LTL and response to ECT. Our results support previous findings suggesting premature cell senescence in patients with severe psychiatric disorders and suggest that LTL could not be a predictive biomarker of response to ECT.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Erika Vitali
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Anna Meloni
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Donatella Congiu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Giovanni Severino
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, 09123 Cagliari, Italy; (R.A.); (C.C.)
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, 09123 Cagliari, Italy; (R.A.); (C.C.)
| | - Luigi Trabucchi
- Psychiatric Hospital “Villa Santa Chiara”, 37142 Verona, Italy; (L.T.); (M.B.)
| | - Marco Bortolomasi
- Psychiatric Hospital “Villa Santa Chiara”, 37142 Verona, Italy; (L.T.); (M.B.)
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessio Squassina
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
- Correspondence: ; Tel.: +39-070-675-4323
| |
Collapse
|
20
|
Han KM, Ham BJ. How Inflammation Affects the Brain in Depression: A Review of Functional and Structural MRI Studies. J Clin Neurol 2021; 17:503-515. [PMID: 34595858 PMCID: PMC8490908 DOI: 10.3988/jcn.2021.17.4.503] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
This narrative review discusses how peripheral and central inflammation processes affect brain function and structure in depression, and reports on recent peripheral inflammatory marker-based functional and structural magnetic resonance imaging (MRI) studies from the perspective of neural-circuit dysfunction in depression. Chronic stress stimulates the activity of microglial cells, which increases the production of pro-inflammatory cytokines in the brain. In addition, microglial activation promotes a shift from the synthesis of serotonin to the synthesis of neurotoxic metabolites of the kynurenine pathway, which induces glutamate-mediated excitotoxicity in neurons. Furthermore, the region specificity of microglial activation is hypothesized to contribute to the vulnerability of specific brain regions in the depression-related neural circuits to inflammation-mediated brain injury. MRI studies are increasingly investigating how the blood levels of inflammatory markers such as C-reactive protein, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α are associated with functional and structural neuroimaging markers in depression. Functional MRI studies have found that peripheral inflammatory markers are associated with aberrant activation patterns and altered functional connectivity in neural circuits involved in emotion regulation, reward processing, and cognitive control in depression. Structural MRI studies have suggested that peripheral inflammatory markers are related to reduced cortical gray matter and subcortical volumes, cortical thinning, and decreased integrity of white matter tracts within depression-related neural circuits. These neuroimaging findings may improve our understanding of the relationships between neuroinflammatory processes at the molecular level and macroscale in vivo neuralcircuit dysfunction in depression.
Collapse
Affiliation(s)
- Kyu Man Han
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Byung Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Yu WS, Kwon SH, Agadagba SK, Chan LLH, Wong KH, Lim LW. Neuroprotective Effects and Therapeutic Potential of Transcorneal Electrical Stimulation for Depression. Cells 2021; 10:cells10092492. [PMID: 34572141 PMCID: PMC8466154 DOI: 10.3390/cells10092492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Transcorneal electrical stimulation (TES) has emerged as a non-invasive neuromodulation approach that exerts neuroprotection via diverse mechanisms, including neurotrophic, neuroplastic, anti-inflammatory, anti-apoptotic, anti-glutamatergic, and vasodilation mechanisms. Although current studies of TES have mainly focused on its applications in ophthalmology, several lines of evidence point towards its putative use in treating depression. Apart from stimulating visual-related structures and promoting visual restoration, TES has also been shown to activate brain regions that are involved in mood alterations and can induce antidepressant-like behaviour in animals. The beneficial effects of TES in depression were further supported by its shared mechanisms with FDA-approved antidepressant treatments, including its neuroprotective properties against apoptosis and inflammation, and its ability to enhance the neurotrophic expression. This article critically reviews the current findings on the neuroprotective effects of TES and provides evidence to support our hypothesis that TES possesses antidepressant effects.
Collapse
Affiliation(s)
- Wing-Shan Yu
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (W.-S.Y.); (S.-H.K.); (K.-H.W.)
| | - So-Hyun Kwon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (W.-S.Y.); (S.-H.K.); (K.-H.W.)
| | - Stephen Kugbere Agadagba
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.K.A.); (L.-L.-H.C.)
| | - Leanne-Lai-Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China; (S.K.A.); (L.-L.-H.C.)
| | - Kah-Hui Wong
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (W.-S.Y.); (S.-H.K.); (K.-H.W.)
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lee-Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (W.-S.Y.); (S.-H.K.); (K.-H.W.)
- Correspondence:
| |
Collapse
|
22
|
Atagun Mİ, Atay OC, Balaban OD, Ipekcioglu D, Alpugan B, Yalcin S, Senat A, Karamustafalioglu N, Ilnem MC, Erel O. Serum nitric oxide levels are depleted in depressed patients treated with electroconvulsive therapy. Indian J Psychiatry 2021; 63:456-461. [PMID: 34789933 PMCID: PMC8522622 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_1441_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/05/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is an endogenous substance which has several endocrine functions and may act as neurotransmitter in the brain. High levels of NO may provoke nitrosative stress. AIM It was aimed to examine serum levels of NO in patients with depressive episodes who were treated with electroconvulsive therapy (ECT) in this study. METHODS The design was a case-control, follow-up study. Patients with depressive episodes (n = 23) and a healthy control group (n = 21) were enrolled. Three serum samples were obtained from the patient group (before ECT, after first and seventh sessions). NO, nitrite, and nitrate levels were examined. STATISTICAL ANALYSIS Differences between groups were examined with t-test or Mann-Whitney U-test. Longitudinal data were evaluated with Panel Regression Analysis and Kruskal-Wallis Test. RESULTS Serum levels of NO and nitrite decreased significantly after the seventh session of ECT administration compared to the baseline and first session. Nitrate levels did not differ between the assessments. CONCLUSIONS Reduction of the serum NO and nitrite levels might be a contributing factor for hypertension during the sessions. These findings are reflect the circulating NO levels. Further studies may dissect NO physiology in the brain in mental disorders and potential external effects.
Collapse
Affiliation(s)
- Murat İlhan Atagun
- Department of Psychiatry, Izmir Bakircay University Faculty of Medicine, Izmir, Turkey
| | - Ozge Canbek Atay
- Department of Psychiatry, Istanbul Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Ozlem D Balaban
- Department of Psychiatry, Istanbul Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Derya Ipekcioglu
- Department of Psychiatry, Istanbul Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Baris Alpugan
- Department of Psychiatry, Istanbul Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Suat Yalcin
- Department of Psychiatry, Istanbul Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Almila Senat
- Department of Biochemistry, Ankara Yildirim Beyazit University Medical Faculty, Ankara, Turkey
| | - Nesrin Karamustafalioglu
- Department of Psychiatry, Istanbul Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Mehmet C Ilnem
- Department of Psychiatry, Istanbul Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Ankara Yildirim Beyazit University Medical Faculty, Ankara, Turkey
| |
Collapse
|
23
|
Qigong exercise enhances cognitive functions in the elderly via an interleukin-6-hippocampus pathway: A randomized active-controlled trial. Brain Behav Immun 2021; 95:381-390. [PMID: 33872709 PMCID: PMC9758881 DOI: 10.1016/j.bbi.2021.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Evidence has suggested that exercise protects against cognitive decline in aging, but the recent lockdown measures associated with the COVID-19 pandemic have limited the opportunity for outdoor exercise. Herein we tested the effects of an indoor exercise, Qigong, on neurocognitive functioning as well as its potential neuro-immune pathway. METHODS We conducted a 12-week randomized active-controlled trial with two study arms in cognitively healthy older people. We applied Wu Xing Ping Heng Gong (Qigong), which was designed by an experienced Daoist Qigong master, to the experimental group, whereas we applied the physical stretching exercise to the control group. The Qigong exercise consisted of a range of movements involving the stretching of arms and legs, the turning of the torso, and relaxing, which would follow the fundamental principles of Daoism and traditional Chinese medicine (e.g., Qi). We measured aging-sensitive neurocognitive abilities, serum interleukin-6 (IL-6) levels, and brain structural volumes in the experimental (Qigong, n = 22) and control groups (stretching, n = 26) before and after the 12-week training. RESULTS We observed that Qigong caused significant improvement in processing speed (t (46) = 2.03, p = 0.048) and sustained attention (t (46) = -2.34, p = 0.023), increased hippocampal volume (t (41) = 3.94, p < 0.001), and reduced peripheral IL-6 levels (t (46) = -3.17, p = 0.003). Moreover, following Qigong training, greater reduction of peripheral IL-6 levels was associated with a greater increase of processing speed performance (bootstrapping CI: [0.16, 3.30]) and a more significant training-induced effect of hippocampal volume on the improvement in sustained attention (bootstrapping CI: [-0.35, -0.004]). CONCLUSION Overall, these findings offer significant insight into the mechanistic role of peripheral IL-6-and its intricate interplay with neural processes-in the beneficial neurocognitive effects of Qigong. The findings have profound implications for early identification and intervention of older individuals vulnerable to cognitive decline, focusing on the neuro-immune pathway. The trial was registered at clinicaltrials.gov (identifier: NCT04641429).
Collapse
|
24
|
Gryglewski G, Lanzenberger R, Silberbauer LR, Pacher D, Kasper S, Rupprecht R, Frey R, Baldinger-Melich P. Meta-analysis of brain structural changes after electroconvulsive therapy in depression. Brain Stimul 2021; 14:927-937. [PMID: 34119669 DOI: 10.1016/j.brs.2021.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Increases in the volume of the amygdala and hippocampus after electroconvulsive therapy (ECT) are among the most robust effects known to the brain-imaging field. Recent advances in the segmentation of substructures of these regions allow for novel insights on the relationship between brain structure and clinical outcomes of ECT. OBJECTIVE We aimed to provide a comprehensive synthesis of evidence available on changes in brain structure after ECT, including recently published data on hippocampal subfields. METHODS A meta-analysis of published studies was carried out using random-effects models of standardized mean change of regional brain volumes measured with longitudinal magnetic resonance imaging of depressive patients before and after a series of ECT. RESULTS Data from 21 studies (543 depressed patients) were analysed, including 6 studies (118 patients) on hippocampal subfields. Meta-analyses could be carried out for seven brain regions for which data from at least three published studies was available. We observed increases in left and right hippocampi, amygdalae, cornua ammonis (CA) 1, CA 2/3, dentate gyri (DG) and subicula with standardized mean change scores ranging between 0.34 and 1.15. The model did not reveal significant volume increases in the caudate. Meta-regression indicated a negative relationship between the reported increases in the DG and relative symptom improvement (-0.27 (SE: 0.09) per 10%). CONCLUSIONS ECT is accompanied by significant volume increases in the bilateral hippocampus and amygdala that are not associated with treatment outcome. Among hippocampal subfields, the most robust volume increases after ECT were measured in the dentate gyrus. The indicated negative correlation of this effect with antidepressant efficacy warrants replication in data of individual patients.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Leo R Silberbauer
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Daniel Pacher
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Center for Brain Research, Medical University of Vienna, Austria
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Germany
| | - Richard Frey
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Austria.
| |
Collapse
|
25
|
Zahr NM, Pohl KM, Kwong AJ, Sullivan EV, Pfefferbaum A. Preliminary Evidence for a Relationship between Elevated Plasma TNFα and Smaller Subcortical White Matter Volume in HCV Infection Irrespective of HIV or AUD Comorbidity. Int J Mol Sci 2021; 22:ijms22094953. [PMID: 34067023 PMCID: PMC8124321 DOI: 10.3390/ijms22094953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023] Open
Abstract
Classical inflammation in response to bacterial, parasitic, or viral infections such as HIV includes local recruitment of neutrophils and macrophages and the production of proinflammatory cytokines and chemokines. Proposed biomarkers of organ integrity in Alcohol Use Disorders (AUD) include elevations in peripheral plasma levels of proinflammatory proteins. In testing this proposal, previous work included a group of human immunodeficiency virus (HIV)-infected individuals as positive controls and identified elevations in the soluble proteins TNFα and IP10; these cytokines were only elevated in AUD individuals seropositive for hepatitis C infection (HCV). The current observational, cross-sectional study evaluated whether higher levels of these proinflammatory cytokines would be associated with compromised brain integrity. Soluble protein levels were quantified in 86 healthy controls, 132 individuals with AUD, 54 individuals seropositive for HIV, and 49 individuals with AUD and HIV. Among the patient groups, HCV was present in 24 of the individuals with AUD, 13 individuals with HIV, and 20 of the individuals in the comorbid AUD and HIV group. Soluble protein levels were correlated to regional brain volumes as quantified with structural magnetic resonance imaging (MRI). In addition to higher levels of TNFα and IP10 in the 2 HIV groups and the HCV-seropositive AUD group, this study identified lower levels of IL1β in the 3 patient groups relative to the control group. Only TNFα, however, showed a relationship with brain integrity: in HCV or HIV infection, higher peripheral levels of TNFα correlated with smaller subcortical white matter volume. These preliminary results highlight the privileged status of TNFα on brain integrity in the context of infection.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; (K.M.P.); (A.P.)
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA;
- Correspondence: ; Tel.: +1-650-859-5243
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; (K.M.P.); (A.P.)
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA;
| | - Allison J. Kwong
- Gastroenterology and Hepatology Medicine, Stanford University School of Medicine, Stanford, CA 94350, USA;
| | | | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; (K.M.P.); (A.P.)
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA;
| |
Collapse
|
26
|
Improvement of psychomotor retardation after electroconvulsive therapy is related to decreased IL-6 levels. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110146. [PMID: 33091545 DOI: 10.1016/j.pnpbp.2020.110146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prior studies suggest that IL-6 may be involved in the pathophysiology of psychomotor symptoms in depression. Electroconvulsive therapy (ECT), as yet the most effective biological treatment of severe depression, is known to improve psychomotor functioning, while recent studies have shown a decrease in the elevated IL-6 levels of depressed patients following ECT. OBJECTIVES This study investigates whether the improvement in psychomotor functions in patients with depression after ECT is related to changes in IL-6 levels. METHODS Peripheral IL-6 was quantified and the severity of psychomotor agitation and retardation determined using the CORE assessment of psychomotor symptoms in 62 patients with a (unipolar or bipolar) depressive episode within one week before and within one week after their course of ECT. RESULTS IL-6 levels had decreased significantly following ECT and both psychomotor retardation and agitation had improved. The decrease in IL-6 levels was related to the improvement of psychomotor retardation, with post-hoc analysis revealing that higher baseline IL-6 levels positively correlated with higher psychomotor retardation scores. CONCLUSION With this study, we provide the first evidence that the improvement of psychomotor retardation after ECT for depression is related to the immunomodulatory properties of the treatment, most specifically the decrease in IL-6 levels.
Collapse
|
27
|
Bian Z, Li H, Liu Y, Cao Y, Kang Y, Yu Y, Zhang F, Li C, Kang Y, Wang F. The Association Between Hypoxia Improvement and Electroconvulsive Therapy for Major Depressive Disorder. Neuropsychiatr Dis Treat 2021; 17:2987-2994. [PMID: 34588778 PMCID: PMC8473930 DOI: 10.2147/ndt.s318919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The occurrence of depression was related with a state of mild hypoxia for a long time. Hypoxia-inducible factor-2α (HIF-2α) modulates the process from acute to chronic hypoxia, consequently regulating changes in inducible nitric oxide synthase (iNOS). Increasing levels of iNOS combined with major depressive disorder (MDD) have been associated with the concentration of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which increase the severity of depression. OBJECTIVE The aim was to investigate whether depressive symptoms might be improved by regulating HIF-2α levels to decrease the degree of oxidative stress and inflammation using electroconvulsive therapy (ECT). METHODS In this observational study, 49 MDD patients were divided into the ECT group (n=32) and control group (n=17). The Hamilton Depression Rating Scale (HAMD) was used to evaluate depressive symptoms of patients at enrollment and after 2 weeks of treatment. The levels of HIF-2α, NOS, IL-6, and TNF-α in plasma were analyzed accordingly. RESULTS The total score in each dimension of HAMD decreased more efficiently in the ECT group than in the control group (p < 0.05). The plasma levels of IL-6 in the ECT group were notably decreased after the 2-week treatment (t = 3.596, p = 0.001). The decreased trend to statistical significance of HIF-2α was observed after treatment in the ECT group (p = 0.091). CONCLUSION The present study demonstrated that the therapeutic effects of long-term ECT therapy for MDD may further benefit from and contribute to the improvement of MDD-associated chronic hypoxia.
Collapse
Affiliation(s)
- Zhida Bian
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, 010110, People's Republic of China.,Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, People's Republic of China
| | - Hui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, People's Republic of China.,Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital, Urumqi, 830063, People's Republic of China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Yanjun Cao
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, People's Republic of China
| | - Yanxia Kang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, People's Republic of China
| | - Yongjun Yu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, People's Republic of China
| | - Feng Zhang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, 010110, People's Republic of China.,Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, People's Republic of China
| | - Cunbao Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, 010110, People's Republic of China
| | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, 010110, People's Republic of China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, People's Republic of China.,Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital, Urumqi, 830063, People's Republic of China
| |
Collapse
|