1
|
Rani A. RAR-related orphan receptor alpha and the staggerer mice: a fine molecular story. Front Endocrinol (Lausanne) 2024; 14:1300729. [PMID: 38766309 PMCID: PMC11099308 DOI: 10.3389/fendo.2023.1300729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024] Open
Abstract
The retinoic acid-related orphan receptor alpha (RORα) protein first came into the limelight due to a set of staggerer mice, discovered at the Jackson Laboratories in the United States of America by Sidman, Lane, and Dickie (1962) and genetically deciphered by Hamilton et al. in 1996. These staggerer mice exhibited cerebellar defects, an ataxic gait, a stagger along with several other developmental abnormalities, compensatory mechanisms, and, most importantly, a deletion of 160 kilobases (kb), encompassing the RORα ligand binding domain (LBD). The discovery of the staggerer mice and the subsequent discovery of a loss of the LBD within the RORα gene of these mice at the genetic level clearly indicated that RORα's LBD played a crucial role in patterning during embryogenesis. Moreover, a chance study by Roffler-Tarlov and Sidman (1978) noted reduced concentrations of glutamic acid levels in the staggerer mice, indicating a possible role for the essence of a nutritionally balanced diet. The sequential organisation of the building blocks of intact genes, requires the nucleotide bases of deoxyribonucleic acid (DNA): purines and pyrimidines, both of which are synthesized, upon a constant supply of glutamine, an amino acid fortified in a balanced diet and a byproduct of the carbohydrate and lipid metabolic pathways. A nutritionally balanced diet, along with a metabolic "enzymatic machinery" devoid of mutations/aberrations, was essential in the uninterrupted transcription of RORα during embryogenesis. In addition to the above, following translation, a ligand-responsive RORα acts as a "molecular circadian regulator" during embryogenesis and not only is expressed selectively and differentially, but also promotes differential activity depending on the anatomical and pathological site of its expression. RORα is highly expressed in the central nervous system (CNS) and the endocrine organs. Additionally, RORα and the clock genes are core components of the circadian rhythmicity, with the expression of RORα fluctuating in a night-day-night sigmoidal pattern and undoubtedly serves as an endocrine-like, albeit "molecular-circadian regulator". Melatonin, a circadian hormone, along with tri-iodothyronine and some steroid hormones are known to regulate RORα-mediated molecular activity, with each of these hormones themselves being regulated rhythmically by the hypothalamic-pituitary axis (HPA). The HPA regulates the circadian rhythm and cyclical release of hormones, in a self-regulatory feedback loop. Irregular sleep-wake patterns affect circadian rhythmicity and the ability of the immune system to withstand infections. The staggerer mice with their thinner bones, an altered skeletal musculature, an aberrant metabolic profile, the ataxic gait and an underdeveloped cerebellar cortex; exhibited compensatory mechanisms, that not only allowed the survival of the staggerer mice, but also enhanced protection from microbial invasions and resistance to high-fat-diet induced obesity. This review has been compiled in its present form, more than 14 years later after a chromatin immunoprecipitation (ChIP) cloning and sequencing methodology helped me identify signal transducer and activator of transcription 5 (STAT5) target sequences, one of which was mapped to the first intron of the RORα gene. The 599-base-long sequence containing one consensus TTCNNNGAA (TTCN3GAA) gamma-activated sequence (GAS) and five other non-consensus TTN5AA sequences had been identified from the clones isolated from the STAT5 target sites (fragments) in human phytohemagglutinin-activated CD8+ T lymphocytes, during my doctoral studies between 2006 and 2009. Most importantly, preliminary studies noted a unique RORα expression profile, during a time-course study on the ribonucleic acid (RNA), extracted from human phytohemagglutinin (PHA) activated CD8+ T lymphocytes stimulated with interleukin-2 (IL-2). This review mainly focuses on the "staggerer mice" with one of its first roles materialising during embryogenesis, a molecular-endocrine mediated circadian-like regulatory process.
Collapse
Affiliation(s)
- Aradhana Rani
- Medical Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
- Human Resource Development and Management, Indian Institute of Technology (IIT) Kharagpur, West Bengal, India
- Immunology, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Li M, Olotu J, Buxo-Martinez CJ, Mossey PA, Anand D, Busch T, Alade A, Gowans LJJ, Eshete M, Adeyemo WL, Naicker T, Awotoye WO, Gupta S, Adeleke C, Bravo V, Huang S, Adamson OO, Toraño AM, Bello CA, Soto M, Soto M, Ledesma R, Marquez M, Cordero JF, Lopez-Del Valle LM, Salcedo MI, Debs N, Petrin A, Malloy H, Elhadi K, James O, Ogunlewe MO, Abate F, Hailu A, Mohammed I, Gravem P, Deribew M, Gesses M, Hassan M, Pape J, Obiri-Yeboah S, Arthur FKN, Oti AA, Donkor P, Marazita ML, Lachke SA, Adeyemo AA, Murray JC, Butali A. Variant analyses of candidate genes in orofacial clefts in multi-ethnic populations. Oral Dis 2022; 28:1921-1935. [PMID: 34061439 PMCID: PMC9733635 DOI: 10.1111/odi.13932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cleft lip with/without cleft palate and cleft palate only is congenital birth defects where the upper lip and/or palate fail to fuse properly during embryonic facial development. Affecting ~1.2/1000 live births worldwide, these orofacial clefts impose significant social and financial burdens on affected individuals and their families. Orofacial clefts have a complex etiology resulting from genetic variants combined with environmental covariates. Recent genome-wide association studies and whole-exome sequencing for orofacial clefts identified significant genetic associations and variants in several genes. Of these, we investigated the role of common/rare variants in SHH, RORA, MRPL53, ACVR1, and GDF11. MATERIALS AND METHODS We sequenced these five genes in 1255 multi-ethnic cleft lip with/without palate and cleft palate only samples in order to find variants that may provide potential explanations for the missing heritability of orofacial clefts. Rare and novel variants were further analyzed using in silico predictive tools. RESULTS Ninteen total variants of interest were found, with variant types including stop-gain, missense, synonymous, intronic, and splice-site variants. Of these, 3 novel missense variants were found, one in SHH, one in RORA, and one in GDF11. CONCLUSION This study provides evidence that variants in SHH, RORA, MRPL53, ACVR1, and GDF11 may contribute to risk of orofacial clefts in various populations.
Collapse
Affiliation(s)
- Mary Li
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Joy Olotu
- Department of Anatomy, University of Health Sciences, University of Port Harcourt, Choba, Nigeria
| | - Carmen J Buxo-Martinez
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Peter A Mossey
- Department of Orthodontics, University of Dundee, Dundee, UK
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Tamara Busch
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Azeez Alade
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Lord J J Gowans
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mekonen Eshete
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wasiu L Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Thirona Naicker
- Genetics, Department of Pediatrics, University of KwaZulu-Natal, Durban, South Africa
| | - Waheed O Awotoye
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Sagar Gupta
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Chinyere Adeleke
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Valeria Bravo
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Siyong Huang
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olatunbosun O Adamson
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | | | - Mairim Soto
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Marilyn Soto
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Ricardo Ledesma
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Myrellis Marquez
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Jose F Cordero
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Lydia M Lopez-Del Valle
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Maria I Salcedo
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Natalio Debs
- Dental and Craniofacial Genomics Core, University of Puerto Rico School of Dental Medicine, San Juan, PR, USA
| | - Aline Petrin
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Hannah Malloy
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Khalid Elhadi
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Olutayo James
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Mobolanle O Ogunlewe
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Fekir Abate
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abiye Hailu
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ibrahim Mohammed
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Paul Gravem
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Milliard Deribew
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulualem Gesses
- College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohaned Hassan
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - John Pape
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Solomon Obiri-Yeboah
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fareed K N Arthur
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander A Oti
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Peter Donkor
- Komfo Anokye Teaching Hospital and Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Departments of Oral Biology and Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Adebowale A Adeyemo
- Department of Orthodontics, University of Dundee, Dundee, UK
- National Human Genomic Research Institute, Bethesda, MD, USA
| | - Jeffrey C Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Matsuoka H, Michihara A. Identification of the RORα Transcriptional Network Contributes to the Search for Therapeutic Targets in Atherosclerosis. Biol Pharm Bull 2021; 44:1607-1616. [PMID: 34719639 DOI: 10.1248/bpb.b21-00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The retinoic acid receptor-related orphan receptor α (RORα) is involved in the regulation of several physiological processes, including development, metabolism, and circadian rhythm. RORα-deficient mice display profound atherosclerosis, in which hypoalphalipoproteinemia is reportedly associated with decreased plasma levels of high-density lipoprotein, increased levels of inflammatory cytokines, and ischemia/reperfusion-induced damage. The recent characterization of endogenous ligands (including cholesterol, oxysterols, provitamin D3, and their derivatives), mediators, and initiation complexes associated with the transcriptional regulation of these orphan nuclear receptors has facilitated the development of synthetic ligands. These findings have also highlighted the potential of application of RORα as a therapeutic target for several diseases, including diabetes, dyslipidemia, and atherosclerosis. In this review, the current literature related to the structure and function of RORα, its genetic inter-individual differences, and its potential as a therapeutic target in atherosclerosis is discussed.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Akihiro Michihara
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
4
|
Taneera J, Mohammed AK, Dhaiban S, Hamad M, Prasad RB, Sulaiman N, Salehi A. RORB and RORC associate with human islet dysfunction and inhibit insulin secretion in INS-1 cells. Islets 2019; 11:10-20. [PMID: 30762474 PMCID: PMC6389281 DOI: 10.1080/19382014.2019.1566684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Little is known about the expression and function of Retinoic acid-related orphan receptors (RORA, B, and C) in pancreatic β cells. Here in, we utilized cDNA microarray and RNA sequencing approaches to investigate the expression pattern of ROR receptors in normal and diabetic human pancreatic islets. Possible correlations between RORs expression and HbA1c levels as well as insulin secretory capacity in isolated human islets were evaluated. The impact of RORB and RORC expression on insulin secretion in INS-1 (832/13) cells was validated as well. While RORA was the highest expressed gene among the three RORs in human islet cells, RORC was the highest expressed in INS-1 cells (832/13) and while RORB was the lowest expressed gene in human islet cells, RORA was the highest expressed in INS-1 cells (832/13). The expression of RORB and RORC was significantly lower in diabetic/hyperglycemic donors as compared with non-diabetic counterparts. Furthermore, while the expression of RORB correlated positively with insulin secretion and negatively with HbA1c, that of RORC correlated negatively with HbA1c. The expression pattern of RORA did not correlate with either of the two parameters. siRNA silencing of RORB or RORC in INS-1 (832/13) cells resulted in a significant downregulation of insulin mRNA expression and insulin secretion. These findings suggest that RORB and RORC are part of the molecular cascade that regulates insulin secretion in pancreatic β cells; and insight that provides for further work on the potential therapeutic utility of RORB and RORC genes in β cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
- CONTACT Jalal Taneera Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | | | - Sarah Dhaiban
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Rashmi B. Prasad
- Department of Clinical Science, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| | - Nabil Sulaiman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Albert Salehi
- Department of Clinical Science, Division of Islet Cell Physiology, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Su X, Kong Y, Peng DQ. New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients. Lipids Health Dis 2018; 17:174. [PMID: 30053818 PMCID: PMC6064078 DOI: 10.1186/s12944-018-0833-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein A5 (apoA5) has been identified to play an important role in lipid metabolism, specifically in triglyceride (TG) and TG-rich lipoproteins (TRLs) metabolism. Numerous evidence has demonstrated for an association between apoA5 and the increased risk of obesity and metabolic syndrome, but the mechanism remains to be fully elucidated. Recently, several studies verified that apoA5 could significantly reduce plasma TG level by stimulating lipoprotein lipase (LPL) activity, and the intracellular role of apoA5 has also been proved since apoA5 is associated with cytoplasmic lipid droplets (LDs) and affects intrahepatic TG accumulation. Furthermore, since adipocytes provide the largest storage depot for TG and play a crucial role in the development of obesity, we could infer that apoA5 also acts as a novel regulator to modulate TG storage in adipocytes. In this review, we focus on the association of gene and protein of apoA5 with obesity and metabolic syndrome, and provide new insights into the physiological role of apoA5 in humans, giving a potential therapeutic target for obesity and associated disorders.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yi Kong
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Dao-Quan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Zhu J, Xu K, Zhang X, Cao J, Jia Z, Yang R, Ma C, Chen C, Zhang T, Yan Z. Studies on the regulation of lipid metabolism and its mechanism of the iridoids rich fraction in Valeriana jatamansi Jones. Biomed Pharmacother 2016; 84:1891-1898. [PMID: 27832992 DOI: 10.1016/j.biopha.2016.10.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/27/2022] Open
Abstract
Valeriana jatamansi Jones, a plant with heart-shaped leaves in the Valeriana genus of Valerianaceae, is widely used in Chinese folk medicine. Iridoid is an important constituent of V. jatamansi that contributes to the pharmacological efficacy of the herb. This study aims to investigate the regulation of lipid metabolism and its mechanism of the iridoids rich fraction in V. jatamansi (IRFV). A high fat diet was used to establish the hyperlipidemia rat model, with 2mg/kg/d of simvastatin as a positive control, fed with 7.5, 15, and 30mg/kg/d of IRFV for 20days to investigate the lipid regulation activity and mechanism of IRFV. Body weight, liver index, total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in both serum and liver, as well as total bile acid (TBA), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in serum were measured. The lipoprotein lipase (LPL) and hepatic lipase (HL) activities and the apoprotein A5 (ApoA5), peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding proteins (SREBP-1c), and liver X receptor α (LXR-α) protein expressions were observed. Liver pathology was described through hematoxylin-eosin (HE) staining. Compared with the model group, three different IRFV dosages can slow down the weight gain of rats, reduce the contents of TG, and increase the contents of HDL-C in serum. Low IRFV dosage can significantly reduce the AST and ALT contents in serum, liver index, and the TG contents in liver, enhance LPL activity. Medium IRFV dosage can significantly decrease the TG and LDL-C contents in liver. High IRFV dosage can significantly reduce LDL-C, TBA, AST, and ALT contents in serum, and enhance HL activity. Three different IRFV dosages can significantly increase the ApoA5 and PPAR-α protein expression and decrease the SREBP-1c protein expression. Furthermore, the LXR-α protein expression decreased in low- and high-dose groups. Liver tissue pathological observation showed that IRFV can improve cell degeneration to a certain extent. These results strongly suggest that IRFV play significant roles in regulating lipid metabolism, the mechanism may be related to the increased ApoA5 protein expression.
Collapse
Affiliation(s)
- Jiali Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Keke Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xuemei Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Jiahong Cao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zhanrong Jia
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ruocong Yang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chaoying Ma
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Tiane Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine,Chengdu 611137, PR China.
| | - Zhiyong Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
7
|
Zhang Y, Liu Y, Liu Y, Zhang Y, Su Z. Genetic Variants of Retinoic Acid Receptor-Related Orphan Receptor Alpha Determine Susceptibility to Type 2 Diabetes Mellitus in Han Chinese. Genes (Basel) 2016; 7:genes7080054. [PMID: 27556492 PMCID: PMC4999842 DOI: 10.3390/genes7080054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/31/2016] [Accepted: 08/11/2016] [Indexed: 02/05/2023] Open
Abstract
Retinoic acid receptor-related orphan receptor alpha (RORA) plays a key role in the regulation of lipid and glucose metabolism and insulin expression that are implicated in the development of type 2 diabetes mellitus (T2DM). However, the effects of genetic variants in the RORA gene on the susceptibility to T2DM remain unknown. Nine tagging single-nucleotide polymorphisms (SNPs) were screened by using the SNaPshot method in 427 patients with T2DM and 408 normal controls. Association between genotypes and haplotypes derived from these SNPs with T2DM was analyzed using different genetic models. Allele and genotype frequencies at rs10851685 were significantly different between T2DM patients and control subjects (allele: p = 0.009, Odds ratios (OR) = 1.36 [95% Confidence intervals (CI) = 1.08-1.72]; genotype: p = 0.029). The minor allele T, at rs10851685, was potentially associated with an increased risk of T2DM in the dominant model, displaying OR of 1.38 (95% CI: 1.04-1.82, p = 0.025) in subjects with genotypes TA+TT vs. AA. In haplotype analysis, we observed that haplotypes GGTGTAACT, GGTGTAACC, and GATATAACT were significantly associated with increased risk of T2DM, while haplotypes GATGAAGTT, AGTGAAGTT, and AATGAAATT were protective against T2DM. These data suggest that the genetic variation in RORA might determine a Chinese Han individual's susceptibility to T2DM.
Collapse
Affiliation(s)
- Yuwei Zhang
- Division of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yulan Liu
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Yin Liu
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Yanjie Zhang
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Abstract
Apolipoprotein A5 (apoA5) is a potent regulator of triglyceride (TG) metabolism and therefore may contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD), a disease characterised by excessive TG-rich lipid droplets in hepatocytes. To test this hypothesis, we examined the mRNA expression of apoA5 in paediatric NAFLD livers in comparison to healthy controls. According to microarray and quantitative real-time PCR, human NAFLD livers exhibited elevated apoA5 expression compared to healthy controls. The apoA5 expression levels were positively correlated with hepatic TG storage and a marker for lipid droplets (perilipin), but were not correlated with plasma TG levels. These observations were confirmed with a NAFLD rat model. Interestingly, apoA5 expression was not altered in cultured fat-laden HepG2 cells, demonstrating that fat storage does not induce apoA5 in NAFLD livers. Therefore, the correlation between apoA5 and intracellular fat storage is likely explained by the potent effect of apoA5 in promoting intracellular fat storage. Our NAFLD patients and rats had elevated insulin resistance, which may have a role in elevating apoA5 expression in NAFLD livers. Our data support the hypothesis that apoA5 promotes hepatic TG storage and therefore contributes to the pathogenesis of NAFLD, and may represent a potential target for therapeutic intervention.
Collapse
|
9
|
Bavachalcone Enhances RORα Expression, Controls Bmal1 Circadian Transcription, and Depresses Cellular Senescence in Human Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26199639 PMCID: PMC4493309 DOI: 10.1155/2015/920431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The circadian clock regulates many aspects of (patho)physiology in the central nervous system and in the peripheral tissues. RAR-related orphan receptor α (RORα), an orphan nuclear receptor, is involved in circadian rhythm regulation, including regulation of cardiovascular function. Bavachalcone, a prenylchalcone, is a major bioactive chalcone isolated from Psoralea corylifolia. This natural ingredient activated RORα1 luciferase reporter activity on drug screening. In addition, bavachalcone induced RORα1 expression in mRNA and protein levels in a dose-dependent manner and enhanced the circadian amplitude of Bmal1 mRNA expression after serum shock. Moreover, bavachalcone suppressed senescence in human endothelial cells and mRNA expression of p16(ink4a) (a marker of replicative senescence) and IL-1α (a proinflammatory cytokine of the senescence-associated secretory phenotype). These inhibitory effects were partially reversed by the RORα inhibitor VPR-66. Our results demonstrate that bavachalcone, as a natural medicine ingredient, has a pharmacological function in regulating RORα1.
Collapse
|
10
|
RORγt-specific transcriptional interactomic inhibition suppresses autoimmunity associated with TH17 cells. Proc Natl Acad Sci U S A 2014; 111:18673-8. [PMID: 25527718 DOI: 10.1073/pnas.1413687112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nuclear hormone receptor retinoic acid-related orphan receptor gamma t (RORγt) is a transcription factor (TF) specific to TH17 cells that produce interleukin (IL)-17 and have been implicated in a wide range of autoimmunity. Here, we developed a novel therapeutic strategy to modulate the functions of RORγt using cell-transducible form of transcription modulation domain of RORγt (tRORγt-TMD), which can be delivered effectively into the nucleus of cells and into the central nerve system (CNS). tRORγt-TMD specifically inhibited TH17-related cytokines induced by RORγt, thereby suppressing the differentiation of naïve T cells into TH17, but not into TH1, TH2, or Treg cells. tRORγt-TMD injected into experimental autoimmune encephalomyelitis (EAE) animal model can be delivered effectively in the splenic CD4(+) T cells and spinal cord-infiltrating CD4(+) T cells, and suppress the functions of TH17 cells. The clinical severity and incidence of EAE were ameliorated by tRORγt-TMD in preventive and therapeutic manner, and significant reduction of both infiltrating CD4(+) IL-17(+) T cells and inflammatory cells into the CNS was observed. As a result, the number of spinal cord demyelination was also reduced after tRORγt-TMD treatment. With the same proof of concept, tTbet-TMD specifically blocking TH1 differentiation improved the clinical incidence of rheumatoid arthritis (RA). Therefore, tRORγt-TMD and tTbet-TMD can be novel therapeutic reagents with the natural specificity for the treatment of inflammatory diseases associated with TH17 or TH1. This strategy can be applied to treat various diseases where a specific transcription factor has a key role in pathogenesis.
Collapse
|
11
|
Guardiola M, Oliva I, Guillaumet A, Martín-Trujillo Á, Rosales R, Vallvé JC, Sabench F, Del Castillo D, Zaina S, Monk D, Ribalta J. Tissue-specific DNA methylation profiles regulate liver-specific expression of the APOA1/C3/A4/A5 cluster and can be manipulated with demethylating agents on intestinal cells. Atherosclerosis 2014; 237:528-35. [PMID: 25463085 DOI: 10.1016/j.atherosclerosis.2014.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The tissue-specific expression profiles of genes within the APOA1/C3/A4/A5 cluster play an important role in lipid metabolism regulation. We hypothesize that the tissue-specific expression of the APOA1/C3/A4/A5 gene cluster will show an inverse pattern with DNA methylation, and that repression in non- or low-expressing tissue, such as the intestine, can be reversed using epigenetic drugs. METHODS AND RESULTS We analyzed DNA samples from different human adult tissues (liver, intestine, leukocytes, brain, kidney, pancreas, muscle and sperm) using the Infinium HumanMethyation450 BeadChip array. DNA methylation profiles in APOA1/C3/A4/A5 gene cluster were confirmed by bisulfite PCR and pyrosequencing. To determine whether the observed tissue-specific methylation was associated with the expression profile we exposed intestinal TC7/Caco-2 cells to the demethylating agent 5-Aza-2'-deoxycytidine and monitored intestinal APOA1/C3/A4/A5 transcript re-expression by RT-qPCR. The promoters of APOA1, APOC3 and APOA5 genes were less methylated in liver compared to other tissues, and APOA4 gene was highly methylated in most tissues and partially methylated in liver and intestine. In TC7/Caco-2 cells, 5-Aza-2'-deoxycytidine treatment induced a decrease between 37 and 24% in the methylation levels of APOA1/C3/A4/A5 genes and a concomitant re-expression mainly in APOA1, APOA4 and APOA5 genes ranging from 22 to 600%. CONCLUSIONS We have determined the methylation patterns of the APOA1/C3/A4/A5 cluster that may be directly involved in the transcriptional regulation of this cluster. DNA demethylation of intestinal cells increases the RNA levels especially of APOA1, APOA4 and APOA5 genes.
Collapse
Affiliation(s)
- Montse Guardiola
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Iris Oliva
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Amy Guillaumet
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Álex Martín-Trujillo
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Roser Rosales
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Joan Carles Vallvé
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Fàtima Sabench
- Unitat de Recerca en Cirurgia, Universitat Rovira i Virgili, IISPV, Spain.
| | | | - Silvio Zaina
- Cancer Epigenetics Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Mexico.
| | - David Monk
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| |
Collapse
|
12
|
Increased risk of obesity related to total energy intake with the APOA5-1131T > C polymorphism in Korean premenopausal women. Nutr Res 2014; 34:827-36. [PMID: 25263629 DOI: 10.1016/j.nutres.2014.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 01/29/2023]
Abstract
We hypothesized that triglyceride-raising apolipoprotein A5 (APOA5)-1131T > C may contribute to the increased risk of obesity associated with dietary intake in Korean premenopausal women whose minor allele frequency is higher than that in Western people. Genetically unrelated Korean premenopausal women (approximately 20-59 years, n = 1128) were genotyped for APOA5-1131T > C. Anthropometric, metabolic parameters and dietary intakes were analyzed. Odds ratios (ORs) for obesity risk (body mass index, ≥25.0 kg/m(2)) were calculated. Genotype distribution of APOA5-1131T > C of study subjects were like TT: 49.9%, TC: 40.8%, and CC: 9.3%. We found a significant interaction between APOA5-1131T > C and total energy intake (TEI) for obesity after adjusted for age, cigarette smoking, and alcohol consumption (P < .001). The risk of obesity in CC homozygotes compared with T carriers (TT + TC) was significantly increased, when the subjects consume higher TEI (≥2001 kcal/d (8372 kJ/d), median value of the population) (OR, 2.495; 95% confidence intervals, 1.325-4.696; P = .005), particularly, when they maintain negative balance between total energy expenditure and TEI (total energy expenditure/TEI, <1) (OR, 2.917; 95% confidence intervals, 1.451-5.864; P = .003). The contributions of APOA5-1131CC homozygotes to obesity risk in those who consume higher TEI were all significantly high regardless of percentage of energy intake from dietary macronutrients. Whereas, no significant association was observed in those who consume lower TEI (<2001 kcal/d). In addition, serum levels of triglyceride, high-density lipoprotein-cholesterol, and apolipoprotein A5 were associated with APOA5-1131T > C and TEI. These findings suggest that APOA5-1131CC homozygotes may influence the susceptibility of the individual to obesity, particularly, when they consume higher TEI, but the genetic effect may be attenuated, when people maintain low or adequate energy intake.
Collapse
|
13
|
Yuan Y, Hou X, Zhang J, Chen Y, Feng Y, Su Z. Genetic variations in RORα are associated with chronic obstructive pulmonary disease. J Hum Genet 2014; 59:430-6. [PMID: 24943193 DOI: 10.1038/jhg.2014.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 02/05/2023]
Abstract
Retinoic acid receptor-related orphan receptor-α (RORα) plays a key role in the regulation of lipid and cholesterol metabolism that has been implicated in the development of chronic obstructive pulmonary disease (COPD). The aim of this study was to determine the frequencies of single-nucleotide polymorphisms (SNPs) in RORα gene in a Chinese population and their possible association with COPD susceptibility. Nine tagging SNPs, including rs17270181, rs1898413, rs17270216, rs8033552, rs8036966, rs7169364, rs340002, rs340023 and rs11630262, were screened in 279 COPD patients and 367 controls by the SNaPshot method. Association analysis of genotypes and haplotypes constructed from these loci with COPD was conducted under different genetic models. Alleles or genotypes of rs8033552 distributed significantly differently in COPD patients and controls (allele: P=0.0001, false discovery rate (FDR) Q=0.004, odds ratios (OR): 1.62 and 95% confidence interval (CI): 1.27-2.07; genotype: P=0.0005, FDR Q=0.008). The allele A at rs8033552 was potentially associated with an increased risk of COPD in additive model, displaying ORs of 1.62 (95% CI: 1.17-2.26, P=0.004, FDR Q=0.019) in subjects with genotypes AG vs GG and 2.69 (95% CI: 1.47-4.93, P=0.001, FDR Q=0.011) in subjects with genotypes AA vs GG, respectively. In haplotype analysis, we observed haplotypes GGAGATGTG and GGAGCTGTG had protective effects, whereas haplotypes GGAGATACA and GGAGATACG were significantly associated with the increased risk of COPD. These data suggest that RORα may be a potential risk gene for COPD.
Collapse
Affiliation(s)
- Yiming Yuan
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jinlong Zhang
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yulin Feng
- Department of Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Amerindian-specific regions under positive selection harbour new lipid variants in Latinos. Nat Commun 2014; 5:3983. [PMID: 24886709 PMCID: PMC4062071 DOI: 10.1038/ncomms4983] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022] Open
Abstract
Dyslipidemia and obesity are especially prevalent in populations with Amerindian
backgrounds, such as Mexican–Americans, which predispose these populations to
cardiovascular disease. Here we design an approach, known as the cross-population allele
screen (CPAS), which we conduct prior to a genome-wide association study (GWAS) in 19,273
Europeans and Mexicans, in order to identify Amerindian risk genes in Mexicans. Utilizing
CPAS to restrict the GWAS input variants to only those differing in frequency between the
two populations, we identify novel Amerindian lipid genes, receptor-related orphan receptor alpha (RORA) and salt-inducible kinase
3 (SIK3), and three
loci previously unassociated with dyslipidemia or obesity. We also detect lipoprotein lipase (LPL) and apolipoprotein
A5 (APOA5)
harbouring specific Amerindian signatures of risk variants and haplotypes. Notably, we
observe that SIK3 and one novel
lipid locus underwent positive selection in Mexicans. Furthermore, after a high-fat meal,
the SIK3 risk variant carriers
display high triglyceride levels. These findings suggest that Amerindian-specific genetic
architecture leads to a higher incidence of dyslipidemia and obesity in modern Mexicans. Dyslipidemia and obesity have a high prevalence in populations with
Amerindian backgrounds, such as Mexican–Americans. Here, the authors design an approach
to identify Amerindian risk genes in Mexicans and identify five genomic loci, which include
RORA and SIK3 that may contribute to the risk of dyslipidemia and obesity in
Amerindian populations.
Collapse
|
15
|
Kuang J, Hou X, Zhang J, Chen Y, Su Z. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene. FEBS Lett 2014; 588:1071-9. [PMID: 24583012 DOI: 10.1016/j.febslet.2014.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/27/2014] [Accepted: 02/14/2014] [Indexed: 02/05/2023]
Abstract
Insulin plays an important role in regulation of lipid and glucose metabolism. Retinoic acid receptor-related orphan receptor α (RORα) modulates physiopathological processes such as dyslipidemia and diabetes. In this study, we found overexpression of RORα in INS1 cells resulted in increased expression and secretion of insulin. Suppression of endogenous RORα caused a decrease of insulin expression. Luciferase and electrophoretic mobility shift assay (EMSA) assays demonstrated that RORα activated insulin transcription via direct binding to its promoter. RORα was also observed to regulate BETA2 expression, which is one of the insulin active transfactors. In vivo analyses showed that the insulin transcription is increased by the synthetic RORα agonist SR1078. These findings identify RORα as a transcriptional activator of insulin and suggest novel therapeutic opportunities for management of the disease.
Collapse
Affiliation(s)
- Jiangying Kuang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Identification and characterization of cyclic AMP response element-binding protein H response element in the human apolipoprotein A5 gene promoter. BIOMED RESEARCH INTERNATIONAL 2013; 2013:892491. [PMID: 23957007 PMCID: PMC3730137 DOI: 10.1155/2013/892491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/03/2013] [Accepted: 06/27/2013] [Indexed: 12/14/2022]
Abstract
The cyclic AMP response element-binding protein H (CREBH) plays important roles in hepatic lipogenesis, fatty acid oxidation, and lipolysis under metabolic stress. Here, we report CREBH as a novel regulator of human APOA5. Knockdown of endogenous CREBH expression via small interfering RNA resulted in the downregulation of human APOA5 mRNA expression in human hepatoma cells, HepG2. Sequence analysis suggested that putative CREBH response element (CREBHRE) is located in the human APOA5 promoter region and is highly conserved in both human and rodent. To clarify whether the human APOA5 promoter is regulated by CREBH, we analyzed the human APOA5 promoter region using a transient transfection assay and determined that transfection of CREBH induced human APOA5 promoter activity. Moreover, it was shown that CREBH directly regulated human APOA5 gene expression by binding to a unique CREBHRE located in the proximal human APOA5 promoter region, using 5′-deletion and mutagenesis of human APOA5 promoter analysis and chromatin immunoprecipitation assay. Taken together, our results demonstrated that human APOA5 is directly regulated by CREBH via CREBHRE and provided a new insight into the role of this liver-specific bZIP transcription factor in lipoprotein metabolism and triglyceride homeostasis.
Collapse
|
17
|
van den Berg SAA, Heemskerk MM, Geerling JJ, van Klinken JB, Schaap FG, Bijland S, Berbée JFP, van Harmelen VJA, Pronk ACM, Schreurs M, Havekes LM, Rensen PCN, van Dijk KW. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake. FASEB J 2013; 27:3354-62. [PMID: 23650188 DOI: 10.1096/fj.12-225367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutations in apolipoprotein A5 (APOA5) have been associated with hypertriglyceridemia in humans and mice. This has been attributed to a stimulating role for APOA5 in lipoprotein lipase-mediated triglyceride hydrolysis and hepatic clearance of lipoprotein remnant particles. However, because of the low APOA5 plasma abundance, we investigated an additional signaling role for APOA5 in high-fat diet (HFD)-induced obesity. Wild-type (WT) and Apoa5(-/-) mice fed a chow diet showed no difference in body weight or 24-h food intake (Apoa5(-/-), 4.5±0.6 g; WT, 4.2±0.5 g), while Apoa5(-/-) mice fed an HFD ate more in 24 h (Apoa5(-/-), 2.8±0.4 g; WT, 2.5±0.3 g, P<0.05) and became more obese than WT mice. Also, intravenous injection of APOA5-loaded VLDL-like particles lowered food intake (VLDL control, 0.26±0.04 g; VLDL+APOA5, 0.11±0.07 g, P<0.01). In addition, the HFD-induced hyperphagia of Apoa5(-/-) mice was prevented by adenovirus-mediated hepatic overexpression of APOA5. Finally, intracerebroventricular injection of APOA5 reduced food intake compared to injection of the same mouse with artificial cerebral spinal fluid (0.40±0.11 g; APOA5, 0.23±0.08 g, P<0.01). These data indicate that the increased HFD-induced obesity of Apoa5(-/-) mice as compared to WT mice is at least partly explained by hyperphagia and that APOA5 plays a role in the central regulation of food intake.
Collapse
|
18
|
Zheng XY, Zhao SP, Yan H. The role of apolipoprotein A5 in obesity and the metabolic syndrome. Biol Rev Camb Philos Soc 2012; 88:490-8. [PMID: 23279260 DOI: 10.1111/brv.12005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/10/2012] [Accepted: 11/20/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Xiao-Yan Zheng
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| | - Shui-Ping Zhao
- Department of Cardiology; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| | - Hu Yan
- Institute of Mental Health; The Second Xiangya Hospital, Central South University; Changsha; 410011; China
| |
Collapse
|
19
|
Fitzsimmons RL, Lau P, Muscat GEO. Retinoid-related orphan receptor alpha and the regulation of lipid homeostasis. J Steroid Biochem Mol Biol 2012; 130:159-68. [PMID: 21723946 DOI: 10.1016/j.jsbmb.2011.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Many nuclear hormone receptors (NRs) control lipid, glucose and energy homeostasis in an organ specific manner. Concordantly, dysfunctional NR signalling results in metabolic disease. The Retinoic acid receptor-related orphan receptor alpha (RORα), a member of the NR1F subgroup, is expressed in metabolic tissues. Previous studies identified the role of this NR in dyslipidemia, apo-lipoprotein metabolism and atherosclerosis. Recent data is underscoring the significant role of this orphan NR in the regulation of phase I/II metabolism (bile acids, xenobiotics, steroids etc.), adiposity, insulin signalling, and glucose tolerance. Moreover, oxygenated sterols, have been demonstrated to function as native ligands and inverse agonists. This review focuses on the rapidly emerging and evolving role of RORα in the control of lipid and glucose homeostasis in major mass metabolic tissues. Article from the special issue orphan receptors.
Collapse
Affiliation(s)
- Rebecca L Fitzsimmons
- Obesity Research Centre, Institute for Molecular Bioscience, University of Queensland, Services Rd St. Lucia, Queensland, 4072 Australia
| | | | | |
Collapse
|
20
|
Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011; 219:15-21. [DOI: 10.1016/j.atherosclerosis.2011.07.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/03/2011] [Accepted: 07/04/2011] [Indexed: 11/21/2022]
|
21
|
Raichur S, Fitzsimmons RL, Myers SA, Pearen MA, Lau P, Eriksson N, Wang SM, Muscat GEO. Identification and validation of the pathways and functions regulated by the orphan nuclear receptor, ROR alpha1, in skeletal muscle. Nucleic Acids Res 2010; 38:4296-312. [PMID: 20338882 PMCID: PMC2910057 DOI: 10.1093/nar/gkq180] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The retinoic acid receptor-related orphan receptor (ROR) alpha has been demonstrated to regulate lipid metabolism. We were interested in the RORα1 dependent physiological functions in skeletal muscle. This major mass organ accounts for ∼40% of the total body mass and significant levels of lipid catabolism, glucose disposal and energy expenditure. We utilized the strategy of targeted muscle-specific expression of a truncated (dominant negative) RORα1ΔDE in transgenic mice to investigate RORα1 signaling in this tissue. Expression profiling and pathway analysis indicated that RORα influenced genes involved in: (i) lipid and carbohydrate metabolism, cardiovascular and metabolic disease; (ii) LXR nuclear receptor signaling and (iii) Akt and AMPK signaling. This analysis was validated by quantitative PCR analysis using TaqMan low-density arrays, coupled to statistical analysis (with Empirical Bayes and Benjamini–Hochberg). Moreover, westerns and metabolic profiling were utilized to validate the genes, proteins and pathways (lipogenic, Akt, AMPK and fatty acid oxidation) involved in the regulation of metabolism by RORα1. The identified genes and pathways were in concordance with the demonstration of hyperglycemia, glucose intolerance, attenuated insulin-stimulated phosphorylation of Akt and impaired glucose uptake in the transgenic heterozygous Tg-RORα1ΔDE animals. In conclusion, we propose that RORα1 is involved in regulating the Akt2-AMPK signaling pathways in the context of lipid homeostasis in skeletal muscle.
Collapse
Affiliation(s)
- S Raichur
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Song KH. Orphan nuclear receptor Nur77 participates in human apolipoprotein A5 gene expression. Biochem Biophys Res Commun 2010; 392:63-6. [DOI: 10.1016/j.bbrc.2009.12.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/28/2009] [Indexed: 11/25/2022]
|
23
|
Prieur X, Lesnik P, Moreau M, Rodríguez JC, Doucet C, Chapman MJ, Huby T. Differential regulation of the human versus the mouse apolipoprotein AV gene by PPARalpha. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:764-71. [DOI: 10.1016/j.bbalip.2009.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 03/11/2009] [Accepted: 03/30/2009] [Indexed: 12/01/2022]
|
24
|
Duez H, Duhem C, Laitinen S, Patole PS, Abdelkarim M, Bois-Joyeux B, Danan JL, Staels B. Inhibition of adipocyte differentiation by RORalpha. FEBS Lett 2009; 583:2031-6. [PMID: 19450581 DOI: 10.1016/j.febslet.2009.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 04/27/2009] [Accepted: 05/08/2009] [Indexed: 01/27/2023]
Abstract
Here we show that gene expression of the nuclear receptor RORalpha is induced during adipogenesis, with RORalpha4 being the most abundantly expressed isoform in human and murine adipose tissue. Over-expression of RORalpha4 in 3T3-L1 cells impairs adipogenesis as shown by the decreased expression of adipogenic markers and lipid accumulation, accompanied by decreased free fatty acid and glucose uptake. By contrast, mouse embryonic fibroblasts from staggerer mice, which carry a mutation in the RORalpha gene, differentiate more efficiently into mature adipocytes compared to wild-type cells, a phenotype which is reversed by ectopic RORalpha4 restoration.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipocytes/cytology
- Adipocytes/metabolism
- Adipogenesis/genetics
- Adipogenesis/physiology
- Adult
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Fatty Acids, Nonesterified/metabolism
- Gene Expression
- Glucose/metabolism
- Humans
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Neurologic Mutants
- Nuclear Receptor Subfamily 1, Group F, Member 1
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/deficiency
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Hélène Duez
- Institut Pasteur de Lille, Département d'Athérosclérose, Lille F-59019, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. NUCLEAR RECEPTOR SIGNALING 2009; 7:e003. [PMID: 19381306 PMCID: PMC2670432 DOI: 10.1621/nrs.07003] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/18/2009] [Indexed: 12/11/2022]
Abstract
The last few years have witnessed a rapid increase in our knowledge of the retinoid-related orphan receptors RORα, -β, and -γ (NR1F1-3), their mechanism of action, physiological functions, and their potential role in several pathologies. The characterization of ROR-deficient mice and gene expression profiling in particular have provided great insights into the critical functions of RORs in the regulation of a variety of physiological processes. These studies revealed that RORα plays a critical role in the development of the cerebellum, that both RORα and RORβ are required for the maturation of photoreceptors in the retina, and that RORγ is essential for the development of several secondary lymphoid tissues, including lymph nodes. RORs have been further implicated in the regulation of various metabolic pathways, energy homeostasis, and thymopoiesis. Recent studies identified a critical role for RORγ in lineage specification of uncommitted CD4+ T helper cells into Th17 cells. In addition, RORs regulate the expression of several components of the circadian clock and may play a role in integrating the circadian clock and the rhythmic pattern of expression of downstream (metabolic) genes. Study of ROR target genes has provided insights into the mechanisms by which RORs control these processes. Moreover, several reports have presented evidence for a potential role of RORs in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, and obesity, and raised the possibility that RORs may serve as potential targets for chemotherapeutic intervention. This prospect was strengthened by recent evidence showing that RORs can function as ligand-dependent transcription factors.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
26
|
Chen Y, Coulter S, Jetten AM, Goldstein JA. Identification of human CYP2C8 as a retinoid-related orphan nuclear receptor target gene. J Pharmacol Exp Ther 2009; 329:192-201. [PMID: 19164466 DOI: 10.1124/jpet.108.148916] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Retinoid-related orphan nuclear receptors (RORs) alpha and gamma (NR1F1, -3) are highly expressed in liver, adipose tissue, thymus, and brain and are involved in many physiological processes, such as circadian rhythm and immune function. Enzymes in the cytochrome P450 2C subfamily metabolize many clinically important drugs and endogenous compounds, such as the anticancer drug paclitaxel and arachidonic acid, and are highly expressed in liver. Here, we present the first evidence that RORs regulate the transcription of human CYP2C8. Overexpression of RORalpha and RORgamma in HepG2 cells significantly enhanced the activity of the CYP2C8 promoter but not that of the CYP2C9 or CYP2C19 promoters. Computer analyses, promoter deletion studies, gel shift assays, and mutational analysis identified an essential ROR-responsive element at -2045 base pairs in the CYP2C8 promoter that mediates ROR transactivation. Adenoviral overexpression of RORalpha and -gamma significantly induced endogenous CYP2C8 transcripts in both HepG2 cells and human primary hepatocytes. Knockdown of endogenous RORalpha and -gamma expression in HepG2 cells by RNA interference decreased the expression of endogenous CYP2C8 mRNA by approximately 50%. These data indicate that RORs transcriptionally up-regulate CYP2C8 in human liver and, therefore, may be important modulators of the metabolism of drugs and physiologically active endogenous compounds by this enzyme in liver and possibly extrahepatic tissues where RORs are expressed.
Collapse
Affiliation(s)
- Yuping Chen
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
27
|
Li YJ, Wei YS, Fu XH, Hao DL, Xue Z, Gong H, Zhang ZQ, Liu DP, Liang CC. The apolipoprotein CIII enhancer regulates both extensive histone modification and intergenic transcription of human apolipoprotein AI/CIII/AIV genes but not apolipoprotein AV. J Biol Chem 2008; 283:28436-44. [PMID: 18678879 DOI: 10.1074/jbc.m710289200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The apolipoprotein (apo) AI/CIII/AIV/AV cluster genes are expressed at different levels in the liver and intestine. The apoCIII enhancer, a common regulatory element, regulates the tissue-specific expression of apoAI, apoCIII, and apoAIV but not apoAV. To study this regulation at the chromatin level, the histone modifications and intergenic transcription in the human apoAI/CIII/AIV/AV cluster were investigated in HepG2 and Caco-2 cells and in the livers of transgenic mice carrying the human gene cluster constructs with or without the apoCIII enhancer. We found that both the promoters and the intergenic regions of the apoAI/CIII/AIV genes were hyperacetylated and formed an open subdomain that did not include the apoAV gene. Hepatic and intestinal intergenic transcripts were identified to transcribe bidirectionally with strand preferences along the cluster. The deletion of the apoCIII enhancer influenced both histone modification and intergenic transcription in the apoAI/CIII/AIV gene region. These results demonstrate that the apoCIII enhancer contributes to the maintenance of an active chromatin subdomain of the apoAI/CIII/AIV genes, but not apoAV.
Collapse
Affiliation(s)
- Ya-Jun Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Prieur X, Huby T, Rodríguez JC, Couvert P, Chapman MJ. Apolipoprotein AV: gene expression, physiological role in lipid metabolism and clinical relevance. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.4.371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Glucose Regulates the Expression of the Apolipoprotein A5 Gene. J Mol Biol 2008; 380:789-98. [DOI: 10.1016/j.jmb.2008.04.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 11/23/2022]
|
30
|
Meissburger B, Wolfrum C. The role of retinoids and their receptors in metabolic disorders. EUR J LIPID SCI TECH 2008. [DOI: 10.1002/ejlt.200700291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Apolipoprotein A5 gene C56G variant confers risk for the development of large-vessel associated ischemic stroke. J Neurol 2008; 255:649-54. [DOI: 10.1007/s00415-008-0768-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/18/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
|
32
|
Ruiz-Narváez EA, Campos H. Evolutionary rate heterogeneity of Alu repeats upstream of the APOA5 gene: do they regulate APOA5 expression? J Hum Genet 2008; 53:247-253. [DOI: 10.1007/s10038-008-0245-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 12/22/2007] [Indexed: 10/22/2022]
|
33
|
Upregulating APOAV expression by statins via PPAR-α activated pathway possibly contributes to their triglyceride-lowering effect. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.bihy.2008.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Apolipoprotein A5 T-1131C variant confers risk for metabolic syndrome. Pathol Oncol Res 2007; 13:243-7. [PMID: 17922054 DOI: 10.1007/bf02893505] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 08/10/2007] [Indexed: 10/21/2022]
Abstract
The -1131C is a naturally occurring variant of the apolipoprotein A5 (ApoA5) gene, which has been shown to associate with increased triglyceride levels. This variant has also been shown to confer risk for development of ischemic heart disease and stroke. The gene is in linkage disequilibrium with factors known to correlate with impaired glucose homeostasis. These observations prompted us to study the prevalence of the ApoA5 -1131C allele in patients with metabolic syndrome. A total of 201 metabolic syndrome patients and 210 controls were studied. In both groups the triglyceride levels of patients with -1131C allele were significantly increased compared to the subjects with -1131T allele (3.22+/-0.43 mmol/l vs. 2.24+/-0.12 mmol/l, p<0.01 in the metabolic syndrome patients; 2.10+/-0.19 mmol/l vs. 1.22+/-0.05 mmol/l, p<0.01 in the controls). In metabolic syndrome patients the prevalence of the ApoA5 -1131C variant was increased compared to the healthy controls (11% vs. 6.20%). Multiplex regression analysis model adjusted for age, gender, serum total cholesterol levels, acute myocardial infarction and stroke events revealed that the examined ApoA5 variant confers risk for the development of metabolic syndrome: the odds ratio at 95% confidence interval was 3.622 (1.200-10.936), p=0.02. Our findings strongly suggest that this variant is a risk factor for the development of hypertriglyceridemia and metabolic syndrome.
Collapse
|
35
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2007; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang J, Yin L, Lazar MA. The orphan nuclear receptor Rev-erb alpha regulates circadian expression of plasminogen activator inhibitor type 1. J Biol Chem 2006; 281:33842-8. [PMID: 16968709 DOI: 10.1074/jbc.m607873200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor type 1 (PAI-1) is a major physiologic regulator of the fibrinolytic system and has recently gained recognition as a modulator of inflammation and atherosclerosis. PAI-1 exhibits circadian rhythmicity in its expression, peaking in the early morning, which is associated with increased risk for cardiovascular events. However, the mechanisms that determine PAI-1 circadian rhythmicity remain poorly understood. We discovered that the orphan nuclear receptor Rev-erb alpha, a core component of the circadian loop, represses human PAI-1 gene expression through two Rev-erb alpha binding sites in the PAI-1 promoter. Mutations of these sites, as well as RNA interference targeting endogenous Rev-erb alpha and its corepressors, led to increased expression of the PAI-1 gene. Furthermore, glycogen synthase kinase 3beta (GSK3beta) contributes to pai-1 repression by phosphorylating and stabilizing Rev-erb alpha protein, which can be blocked by lithium. Interestingly, serum shock generated circadian oscillations in PAI-1 mRNA in NIH3T3 cells, suggesting that PAI-1 is a direct output gene of the circadian loop. Ectopic expression of a stabilized form of Rev-erb alpha that mimics GSK3beta phosphorylation dramatically dampened PAI-1 circadian oscillations. Thus, our results suggest that Rev-erb alpha is a major determinant of the circadian PAI-1 expression and a potential modulator of the morning susceptibility to myocardial infarction.
Collapse
MESH Headings
- Animals
- Binding Sites
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cells, Cultured
- Chromatin Immunoprecipitation
- Circadian Rhythm/physiology
- DNA-Binding Proteins/physiology
- Gene Expression Regulation
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Humans
- Immunoblotting
- Kidney/cytology
- Kidney/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- NIH 3T3 Cells
- Nuclear Receptor Subfamily 1, Group D, Member 1
- Phosphorylation
- Plasminogen Activator Inhibitor 1/genetics
- Plasminogen Activator Inhibitor 1/metabolism
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Regulatory Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Serine Proteinase Inhibitors/genetics
- Serine Proteinase Inhibitors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Jing Wang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | |
Collapse
|
37
|
Zhao SP, Hu S, Li J, Hu M, Liu Q, Wu LJ, Zhang T. Association of human serum apolipoprotein A5 with lipid profiles affected by gender. Clin Chim Acta 2006; 376:68-71. [PMID: 16962087 DOI: 10.1016/j.cca.2006.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 07/09/2006] [Accepted: 07/10/2006] [Indexed: 11/23/2022]
Abstract
BACKGROUND Apolipoprotein A5 (ApoA5) is present in human serum at a very low concentration. We developed a new method to determine ApoA5 concentration in human serum, and to investigate the correlation between serum ApoA5 and the lipid profiles in healthy subjects, and to analyze whether the correlation was affected by gender. METHODS All the subjects (total 92, male 50, female 42) were healthy subjects without any medication. Lipids were measured enzymatically. An ELISA performed by a couple of monoclonal antibodies was used to measure serum ApoA5. RESULTS The average ApoA5 concentration was 182.7+/-104.7 ng/ml ranging from 5.4 to 455.6 ng/ml. Serum ApoA5 concentration was negatively correlated with TG in female (r=-0.496, P=0.001). In all subjects, ApoA5 concentration was positively correlated to HDL-C (r=0.453, P<0.001). This correlation was more predominant in female (r=0.617, P<0.001) than in male (r=0.289, P=0.042). ApoA5 concentration was negatively correlated to body mass index (BMI) with more significance in female than in male (r=-0.345, P=0.001 for all; r=-0.456, P=0.002 for female; r=-0.198, P=0.167 for male). CONCLUSIONS The serum concentration of ApoA5 was very low. The concentration of ApoA5 was negatively correlated with TG and BMI, but positively correlated with HDL-C. The correlations were affected by gender.
Collapse
Affiliation(s)
- Shui-Ping Zhao
- Department of Cardiology, the Second XiangYa Hospital, Central South University, Changsha, Hunan, 410011, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Dorfmeister B, Brandlhofer S, Schaap FG, Hermann M, Fürnsinn C, Hagerty BP, Stangl H, Patsch W, Strobl W. Apolipoprotein AV does not contribute to hypertriglyceridaemia or triglyceride lowering by dietary fish oil and rosiglitazone in obese Zucker rats. Diabetologia 2006; 49:1324-32. [PMID: 16570166 DOI: 10.1007/s00125-006-0171-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 12/14/2005] [Indexed: 12/01/2022]
Abstract
AIMS/HYPOTHESIS Apolipoprotein AV (apoAV) is a recently discovered apolipoprotein with a triglyceride-lowering effect in genetically modified mice. Transcription of the human gene encoding apoAV (APOA5) is suppressed by insulin and stimulated by fibrates. Our goal was to study the expression of Apoa5, in comparison with Apoa4 and Apoc3, in hypertriglyceridaemic, obese and insulin-resistant Zucker rats receiving the insulin sensitiser rosiglitazone and/or a fish oil diet to lower triglycerides. METHODS Hepatic Apoa5, Apoa4 and Apo3 mRNA and liver and plasma apoAV were measured in lean and obese Zucker rats receiving rosiglitazone while on a coconut oil or fish oil diet. RESULTS Basal hepatic Apoa5 expression was similar in obese and lean Zucker rats. Unexpectedly, obese Zucker rats tended to have higher plasma apoAV levels despite their hypertriglyceridaemic state. Both rosiglitazone and the fish oil diet significantly increased Apoa5 mRNA, by about 70%, but tended to lower liver and plasma apoAV. Rosiglitazone had no effect on Apoa5 mRNA in cultured rat hepatocytes. No intact PPAR (peroxisome proliferator-activated receptor) response element was identified in the rat Apoa5 promoter. CONCLUSIONS/INTERPRETATION Our data indicate that apoAV does not contribute to the hypertriglyceridaemia of obese Zucker rats or to the hypolipidaemic effect of rosiglitazone or a fish oil diet. The divergent changes of Apoa5 mRNA and apoAV levels suggest co- or post-translational regulation. The increase in Apoa5 mRNA induced by rosiglitazone is not directly mediated by peroxisome proliferator-activated receptor gamma.
Collapse
Affiliation(s)
- B Dorfmeister
- Department of Medical Chemistry, Center of Physiology and Pathophysiology, Medical University of Vienna, Währinger Strasse 9, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chan DC, Watts GF, Nguyen MN, Barrett PHR. Apolipoproteins C-III and A-V as predictors of very-low-density lipoprotein triglyceride and apolipoprotein B-100 kinetics. Arterioscler Thromb Vasc Biol 2006; 26:590-6. [PMID: 16410456 DOI: 10.1161/01.atv.0000203519.25116.54] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated the associations between plasma very-low-density lipoprotein (VLDL)-apolipoprotein (apo)C-III and apoA-V concentrations and the kinetics of VLDL-apoB-100 and VLDL triglycerides in 15 men. We also explored the relationship between these parameters of VLDL metabolism and VLDL-apoC-III kinetics. METHODS AND RESULTS ApoC-III, apoB, and triglyceride kinetics in VLDL were determined using stable isotopes and multicompartmental modeling to estimate production rate (PR) and fractional catabolic rate (FCR). Plasma VLDL-apoC-III concentration was significantly and inversely associated with the FCRs of VLDL triglycerides (r=-0.610) and VLDL-apoB (r=-0.791), and positively correlated with the PR of VLDL-apoC-III (r=0.842). However, apoA-V concentration was not significantly associated with any of the kinetic variables. There was a significant association (P<0.01) between the PRs of VLDL triglycerides and VLDL-apoB (r=0.641), and between the FCRs of VLDL triglycerides and VLDL-apoB (r=0.737). In multiple regression analysis, plasma VLDL-apoC-III concentration was a significant predictor of VLDL triglyceride FCR (beta-coefficient=-0.575) and VLDL-apoB FCR (beta-coefficient=-0.839). CONCLUSIONS Our findings suggest that increased VLDL-apoC-III concentrations resulting from an overproduction of VLDL-apoC-III are strongly associated with the delayed catabolism of triglycerides and apoB in VLDL. We also demonstrated that the kinetics of VLDL triglycerides and apoB are closely coupled. Our data do not support a role for plasma apoA-V in regulating VLDL kinetics.
Collapse
Affiliation(s)
- Dick C Chan
- Metabolic Research Center, School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
40
|
Jakel H, Nowak M, Helleboid-Chapman A, Fruchart-Najib J, Fruchart JC. Is apolipoprotein A5 a novel regulator of triglyceride-rich lipoproteins? Ann Med 2006; 38:2-10. [PMID: 16448983 DOI: 10.1080/07853890500407488] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hypertriglyceridemia is an independent risk factor for the development of cardiovascular disease and is often associated with diabetes, inflammation and the metabolic syndrome. Recently, apolipoprotein A5 (APOA5) was identified as a novel member of the APOA1/C3/A4 gene cluster. Data from mice over-expressing or lacking APOA5 provide direct evidence that this apolipoprotein plays a role in triglyceride metabolism. Moreover, plasma triglyceride levels were found to be strongly associated with APOA5 polymorphisms. The human APOA5 gene is regulated by transcription factors known to affect triglyceride metabolism such as PPARa, RORa, LXR and SREBP-1c and this supports its function. Insulin and interleukins regulate APOA5 gene expression and provide novel clues for the role of this apolipoprotein. To date, the triglyceride lowering action of apoA-V is attributed to the activation of lipoprotein lipase and an acceleration of very low density lipoprotein catabolism. Recent findings indicate that APOA5 could also influence cholesterol homeostasis and probably play a role in hypertriglyceridemia associated with diabetes and inflammation. This review aims to give a comprehensive summary of the current literature and supports the view that APOA5 plays a relevant role in lipid metabolism.
Collapse
Affiliation(s)
- Heidelinde Jakel
- Département d'Athérosclérose, UR545 INSERM, Université de Lille II, Loos, France
| | | | | | | | | |
Collapse
|
41
|
Jetten AM, Joo JH. Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development. ADVANCES IN DEVELOPMENTAL BIOLOGY (AMSTERDAM, NETHERLANDS) 2006; 16:313-355. [PMID: 18418469 DOI: 10.1016/s1574-3349(06)16010-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retinoid-related orphan receptors RORalpha, -beta, and -gamma are transcription factors belonging to the steroid hormone receptor superfamily. During embryonic development RORs are expressed in a spatial and temporal manner and are critical in the regulation of cellular differentiation and the development of several tissues. RORalpha plays a key role in the development of the cerebellum particularly in the regulation of the maturation and survival of Purkinje cells. In RORalpha-deficient mice, the reduced production of sonic hedgehog by these cells appears to be the major cause of the decreased proliferation of granule cell precursors and the observed cerebellar atrophy. RORalpha has been implicated in the regulation of a number of other physiological processes, including bone formation. RORbeta expression is largely restricted to several regions of the brain, the retina, and pineal gland. Mice deficient in RORbeta develop retinal degeneration that results in blindness. RORgamma is essential for lymph node organogenesis. In the intestine RORgamma is required for the formation of several other lymphoid tissues: Peyer's patches, cryptopatches, and isolated lymphoid follicles. RORgamma plays a key role in the generation of lymphoid tissue inducer (LTi) cells that are essential for the development of these lymphoid tissues. In addition, RORgamma is a critical regulator of thymopoiesis. It controls the differentiation of immature single-positive thymocytes into double-positive thymocytes and promotes the survival of double-positive thymocytes by inducing the expression of the anti-apoptotic gene Bcl-X(L). Interestingly, all three ROR receptors appear to play a role in the control of circadian rhythms. RORalpha positively regulates the expression of Bmal1, a transcription factor that is critical in the control of the circadian clock. This review intends to provide an overview of the current status of the functions RORs have in these biological processes.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | | |
Collapse
|
42
|
|
43
|
Becker S, Schomburg L, Renko K, Tölle M, van der Giet M, Tietge UJF. Altered apolipoprotein A-V expression during the acute phase response is independent of plasma triglyceride levels in mice and humans. Biochem Biophys Res Commun 2005; 339:833-9. [PMID: 16325772 DOI: 10.1016/j.bbrc.2005.11.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 11/10/2005] [Indexed: 12/12/2022]
Abstract
Plasma triglyceride (TG) levels are altered during the acute phase response (APR). Plasma levels of the recently discovered apolipoprotein A-V (apoA-V) are inversely associated with plasma TG. The aim of this study was to investigate the change of apoA-V plasma levels and hepatic apoA-V expression during the APR in relation to plasma TG. During human APR plasma apoA-V was decreased as were plasma TG (each P<0.01). Also early in the course of the murine APR plasma apoA-V levels and hepatic apoA-V expression were decreased and changed in the same direction as plasma TG. Treatment of HepG2 cells with TNF-alpha and IL-1beta decreased apoA-V mRNA levels early by 42% and 55%, respectively (each P<0.001). However, in promoter/reporter assays the human apoA-V promoter was unresponsive to proinflammatory cytokines. Instead, we demonstrate that a significant decrease in apoA-V mRNA stability in response to treatment with TNF-alpha and IL-1beta is the underlying basis of decreased apoA-V expression during the APR (P<0.05). These data demonstrate that (i) apoA-V expression decreases early during the APR due to changes in mRNA stability, and (ii) during the APR apoA-V is not inversely related to plasma TG levels in mice and humans, thereby identifying a relevant pathophysiological setting, in which the previously reported close inverse association between these parameters does not hold true.
Collapse
Affiliation(s)
- Steffi Becker
- Department of Medicine, Charité Campus Mitte, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Ruiz-Narváez EA, Yang Y, Nakanishi Y, Kirchdorfer J, Campos H. APOC3/A5 haplotypes, lipid levels, and risk of myocardial infarction in the Central Valley of Costa Rica. J Lipid Res 2005; 46:2605-13. [PMID: 16192625 DOI: 10.1194/jlr.m500040-jlr200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic variation in the APOC3 and APOA5 genes has been associated with plasma triglyceride concentrations and may affect the risk of myocardial infarction (MI). To assess whether APOC3/A5 haplotypes are associated with risk of MI, we examined three single-nucleotide polymorphisms (SNPs) in APOC3 (3238C>G, -455T>C, and -482C>T) and six SNPs in the APOA5 gene (-1131T>C, c.-3A>G, c.56C>G, IVS3+476G>A, c.553G>T, and c.1259T>C) in incident cases (n = 1,703) of a first nonfatal MI matched for gender, age, and area of residence with population-based controls (n = 1,703). Conditional logistic regression models, adjusted for potential environmental confounders, were used for analysis. The common APOC3*222 haplotype was more frequent in cases than in controls (17.4% and 13.7%, respectively, P < 0.001) and was associated with increased risk of MI [odds ratio (OR) = 1.27; 95% confidence interval (95% CI), 1.09, 1.48] compared with APOC3*111 wild-type haplotype. This association was independent of the APOA5 SNPs. Although the APOC3 3238G, APOA5 -1131C, APOA5 c.-3G, and APOA5 c.1259C alleles were associated with higher triglyceride plasma concentrations, these effects could not explain the associations with MI in this population. In summary, this study supports the hypothesis that haplotypes in the APOC3 gene but not in the APOA5 gene increase susceptibility to MI.
Collapse
|