1
|
Dedemadi AG, Sevdali E, Georgiadou D, Valanti EK, Neofotistou-Themeli E, Chanis T, Goutakoli P, Thymiakou E, Drakos E, Christopoulou G, Bournazos S, Constantoulakis P, Verginis P, Kardassis D, Stratikos E, Sidiropoulos P, Chroni A. Dantrolene is an HDL-associated paraoxonase-1 activator with immunosuppressive and atheroprotective properties. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159596. [PMID: 39842506 DOI: 10.1016/j.bbalip.2025.159596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Human paraoxonase 1 (PON1), an enzyme bound to high-density lipoprotein (HDL), hydrolyzes oxidized lipids and contributes to HDL atheroprotective functions. Decreased serum paraoxonase and arylesterase activities of PON1 have been reported in patients at increased atherosclerosis risk, such as rheumatoid arthritis patients, and associated with arthritis severity and cardiovascular risk. Agents that can modulate PON1 activity and HDL-mediated effects have not been discovered. Aiming to discover chemical tools that enhance PON1 activity, we screened a library of marketed drugs (956 compounds) to identify small molecules that can increase HDL-associated PON1 activity. Screening was performed by a kinetic absorbance assay using human HDL as a source of PON1, and paraoxon and phenyl acetate as substrates to measure paraoxonase and arylesterase activities, respectively. Screening identified the drug dantrolene as a potential PON1 activator, which was confirmed by enzymatic kinetic assays using recombinant wild-type PON1, as well as the PON1[L55M] variant displaying decreased enzyme activity in humans. Furthermore, we used the collagen-induced arthritis (CIA) mouse model to examine the effect of dantrolene on HDL properties and arthritis in vivo. Administration of dantrolene in CIA mice increased paraoxonase and arylesterase activities of PON1, as well as the antioxidant capacity of HDL, and reduced arthritis severity by inhibition of naïve CD4+ T cell differentiation to effector memory cells and generation of Th1 cells. Collectively, our in vitro and in vivo findings indicate using small molecules to enhance HDL-associated PON1 activity is a tractable approach that could lead to novel therapeutics targeting immune responses and atherosclerosis.
Collapse
Affiliation(s)
- Anastasia-Georgia Dedemadi
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece; Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens, Greece
| | - Eirini Sevdali
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece
| | - Daphne Georgiadou
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Eftaxia-Konstantina Valanti
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Elpida Neofotistou-Themeli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece
| | - Theodoros Chanis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece
| | - Panagiota Goutakoli
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece
| | - Efstathia Thymiakou
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Greece
| | - Elias Drakos
- Department of Pathology, Medical School, University of Crete, Heraklion, Greece
| | | | | | | | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Efstratios Stratikos
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, Medical School, University of Crete, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece.
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
2
|
Dornas W, Silva M. Modulation of the antioxidant enzyme paraoxonase-1 for protection against cardiovascular diseases. Nutr Metab Cardiovasc Dis 2024; 34:2611-2622. [PMID: 39277536 DOI: 10.1016/j.numecd.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 09/17/2024]
Abstract
AIM The enzyme paraoxonase 1 (PON1) bound to high-density lipoprotein has received special attention for its protective role against stress-mediated damage and use as a potential regulatory target in atherosclerosis and related vascular diseases. DATA SYNTHESIS We present an overview of the literature on PON1 activity and mRNA levels by investigating its modulation for clinical translations. Specifically, the expression of PON1 and its regulated activity can be modified in different ways with natural substances, drugs, and lifestyle factors thar affect the development of atherosclerosis. CONCLUSIONS The endothelial contribution of PON1 to overcome differences considering an individual's disease development risk is supported by polymorphism interaction data and the susceptibility to modify PON1 responses in chronic events composed by biological and environmental factors.
Collapse
Affiliation(s)
- Waleska Dornas
- Course Superior of Technology in Radiology, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Maisa Silva
- Department of Basic Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares, MG, Brazil
| |
Collapse
|
3
|
Passamonti MM, Milanesi M, Cattaneo L, Ramirez-Diaz J, Stella A, Barbato M, Braz CU, Negrini R, Giannuzzi D, Pegolo S, Cecchinato A, Trevisi E, Williams JL, Ajmone Marsan P. Unraveling metabolic stress response in dairy cows: Genetic control of plasma biomarkers throughout lactation and the transition period. J Dairy Sci 2024; 107:9602-9614. [PMID: 38945260 DOI: 10.3168/jds.2023-24630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Breeding animals able to effectively respond to stress could be a long-term, sustainable, and affordable strategy to improve resilience and welfare in livestock systems. In the present study, the concentrations of 29 plasma biomarkers were used as candidate endophenotypes for metabolic stress response in single-SNP, gene- and haplotype-based GWAS using 739 healthy lactating Italian Holstein cows and 88,271 variants. Significant genetic associations were found in all the 3 GWAS approaches for plasma γ-glutamyl transferase concentration on BTA17, for paraoxonase on BTA4, and for alkaline phosphatase and zinc on BTA2. On these chromosomes, single-SNP and gene-based chromosome-wide association studies were performed, confirming GWAS findings. The signals identified for paraoxonase, γ-glutamyl transferase, and alkaline phosphatase were in proximity to the genes coding for them. The heritability of these 4 biomarkers ranged from moderate to high (from 0.39 to 0.54). Plasma biomarkers are known to undergo large changes in concentration during metabolic stress in the transition period, with an interindividual variability in the rate of change and recovery time. Genetics may account in part for these differences. To assess this, we studied a subset of 139 periparturient cows homozygous at 3 SNPs known to be respectively associated with concentration of plasma ceruloplasmin, paraoxonase, and γ-glutamyl transferase. We compared the immune-metabolic profile measured in plasma at -7, +5, and +30 d relative to calving between groups of opposite homozygotes. A significant effect of the genotype was found on paraoxonase and γ-glutamyl transferase plasma concentration at all the 3 time points. No evidence for genotype effect was detected for ceruloplasmin. Understanding the genetic control underlying metabolic stress response may suggest new approaches to foster resilience in dairy cows.
Collapse
Affiliation(s)
- M M Passamonti
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Milanesi
- Department for Innovation in Biological, Agro-food and Forest Systems-DIBAF, Università della Tuscia, 01100 Viterbo, Italy
| | - L Cattaneo
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J Ramirez-Diaz
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, 26900 Lodi, Italy
| | - A Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, 26900 Lodi, Italy
| | - M Barbato
- Department of Veterinary Sciences, Università degli Studi di Messina, 98168 Messina, Italy
| | - C U Braz
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - R Negrini
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center on Sustainable Dairy Production-CREI, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J L Williams
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - P Ajmone Marsan
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center on Sustainable Dairy Production-CREI, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
4
|
Jakubowski H. The Molecular Bases of Anti-Oxidative and Anti-Inflammatory Properties of Paraoxonase 1. Antioxidants (Basel) 2024; 13:1292. [PMID: 39594433 PMCID: PMC11591180 DOI: 10.3390/antiox13111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The anti-oxidative and anti-inflammatory properties of high-density lipoprotein (HDL) are thought to be mediated by paraoxonase 1 (PON1), a calcium-dependent hydrolytic enzyme carried on a subfraction of HDL that also carries other anti-oxidative and anti-inflammatory proteins. In humans and mice, low PON1 activity is associated with elevated oxidized lipids and homocysteine (Hcy)-thiolactone, as well as proteins that are modified by these metabolites, which can cause oxidative stress and inflammation. PON1-dependent metabolic changes can lead to atherothrombotic cardiovascular disease, Alzheimer's disease, and cancer. The molecular bases underlying these associations are not fully understood. Biochemical, proteomic, and metabolic studies have significantly expanded our understanding of the mechanisms by which low PON1 leads to disease and high PON1 is protective. The studies discussed in this review highlight the changes in gene expression affecting proteostasis as a cause of the pro-oxidative and pro-inflammatory phenotypes associated with attenuated PON1 activity. Accumulating evidence supports the conclusion that PON1 regulates the expression of anti-oxidative and anti-inflammatory proteins, and that the disruption of these processes leads to disease.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +1-973-972-8733; Fax: 973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Durrington P, Soran H. Paraoxonase 1: evolution of the enzyme and of its role in protecting against atherosclerosis. Curr Opin Lipidol 2024; 35:171-178. [PMID: 38887979 PMCID: PMC11224571 DOI: 10.1097/mol.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW To review the discoveries which led to the concept that serum paraoxonase 1 (PON1) is inversely related to atherosclerotic cardiovascular disease (ASCVD) incidence, how this association came to be regarded as causal and how such a role might have evolved. RECENT FINDINGS Animal models suggest a causal link between PON1 present on HDL and atherosclerosis. Serum PON1 activity predicts ASCVD with a similar reliability to HDL cholesterol, but at the extremes of high and low HDL cholesterol, there is discordance with PON1 being potentially more accurate. The paraoxonase gene family has its origins in the earliest life forms. Its greatest hydrolytic activity is towards lactones and organophosphates, both of which can be generated in the natural environment. It is active towards a wide range of substrates and thus its conservation may have resulted from improved survival of species facing a variety of evolutionary challenges. SUMMARY Protection against ASCVD is likely to be the consequence of some promiscuous activity of PON1, but nonetheless has the potential for exploitation to improve risk prediction and prevention of ASCVD.
Collapse
Affiliation(s)
- Paul Durrington
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester
| | - Handrean Soran
- NIHR/Wellcome Trust Clinical Research Facility & Department of Diabetes, Metabolism and Endocrinology, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Abstract
Epidemiologic studies detected an inverse relationship between HDL (high-density lipoprotein) cholesterol (HDL-C) levels and atherosclerotic cardiovascular disease (ASCVD), identifying HDL-C as a major risk factor for ASCVD and suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for ASCVD has been called into question by the failure of HDL-C-raising drugs to reduce cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of HDL particles in terms of their protein, lipid, and small RNA composition has contributed to the realization that HDL-C levels do not necessarily reflect HDL function. The most examined atheroprotective function of HDL is reverse cholesterol transport, whereby HDL removes cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and excretion into bile. Indeed, in several studies, HDL has shown inverse associations between HDL cholesterol efflux capacity and ASCVD in humans. Inflammation plays a key role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental function of HDL is suppression of inflammatory signaling in macrophages and other cells. Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications of LDL (low-density lipoprotein) and cellular inflammation. HDL and its proteins including apoAI (apolipoprotein AI) and PON1 (paraoxonase 1) prevent cellular oxidative stress and LDL modifications. Importantly, HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde and isolevuglandins, dramatically impairs the antiatherogenic functions of HDL. Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls improves HDL function and reduces systemic inflammation, atherosclerosis development, and features of plaque instability. Here, we discuss the HDL antiatherogenic functions in relation to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic approach for ASCVD.
Collapse
Affiliation(s)
- MacRae F. Linton
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Patricia G. Yancey
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Huan Tao
- 1. Department of Medicine, Division of Cardiovascular Medicine, Atherosclerosis Research Unit, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sean S. Davies
- 2. Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
7
|
Jakubowski H. Proteomic Exploration of Paraoxonase 1 Function in Health and Disease. Int J Mol Sci 2023; 24:7764. [PMID: 37175471 PMCID: PMC10178420 DOI: 10.3390/ijms24097764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
High-density lipoprotein (HDL) exhibits cardio- and neuro-protective properties, which are thought to be promoted by paraoxonase 1 (PON1), a hydrolytic enzyme associated with an HDL subfraction also enriched with an anticoagulant protein (PROS1) and amyloid beta-transport protein clusterin (CLU, APOJ). Reduced levels of PON1 activity, characterized biochemically by elevated levels of homocysteine (Hcy)-thiolactone, oxidized lipids, and proteins modified by these metabolites in humans and mice, are associated with pathological abnormalities affecting the cardiovascular system (atherothrombosis) and the central nervous system (cognitive impairment, Alzheimer's disease). The molecular bases of these abnormalities have been largely unknown. Proteomic and metabolic studies over the past decade have significantly contributed to our understanding of PON1 function and the mechanisms by which PON1 deficiency can lead to disease. Recent studies discussed in this review highlight the involvement of dysregulated proteostasis in the pro-oxidative, pro-atherothrombotic, and pro-amyloidogenic phenotypes associated with low PON1 activity.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Wang Y, Huang X, Yang D, He J, Chen Z, Li K, Liu J, Zhang W. A green-inspired method to prepare non-split high-density lipoprotein (HDL) carrier with anti-dysfunctional activities superior to reconstituted HDL. Eur J Pharm Biopharm 2023; 182:115-127. [PMID: 36529255 DOI: 10.1016/j.ejpb.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Numerous studies have demonstrated that dysfunctional high-density lipoprotein (HDL), especially oxidized HDL (OxHDL), could generate multifaceted in vivo proatherogenic effects that run counter to the antiatherogenic activities of HDL. It thereby reminded us that the in vitro reconstituted HDL (rHDL) might encountered with oxidation-induced dysfunction. Accordingly, a green-inspired method was employed to recycle non-split HDL from human plasma fraction IV. Then it was compared with rHDL formulated by an ethanol-injection method in terms of physicochemical properties and anti-dysfunctional activities. Results exhibited that rHDL oxidation extent exceeded that of non-split HDL evidenced by higher malondialdehy content, weaker inhibition on low-density lipoprotein (LDL) oxidation and more superoxide anion. The reserved paraoxonase-1 activity on non-split HDL could partially explain for above experimental results. In the targeted transport mechanism experiment, upon SR-BI receptor inhibition and/or CD36 receptor blockage, the almost unchanged non-split HDL uptake in lipid-laden macrophage indicated its negligible oxidation modification profile with regard to rHDL again. Furthermore, compared to rHDL, better macrophage biofunctions were observed for non-split HDL as illustrated by accelerated cholesterol efflux, inhibited oxidized LDL uptake and lessened cellular lipid accumulation. Along with decreased ROS secretion, obviously weakened oxidative stress damage was also detected under treatment with non-split HDL. More importantly, foam cells with non-split HDL-intervention inspired an enhanced inflammation repression and apoptosis inhibition effect. Collectively, the anti-dysfunctional activities of non-split HDL make it suitable as a potential nanocarrier platform for cardiovascular drug payload and delivery.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Danni Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Zhaoan Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Kexuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
9
|
Durrington PN, Bashir B, Soran H. Paraoxonase 1 and atherosclerosis. Front Cardiovasc Med 2023; 10:1065967. [PMID: 36873390 PMCID: PMC9977831 DOI: 10.3389/fcvm.2023.1065967] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Paraoxonase 1 (PON1), residing almost exclusively on HDL, was discovered because of its hydrolytic activity towards organophosphates. Subsequently, it was also found to hydrolyse a wide range of substrates, including lactones and lipid hydroperoxides. PON1 is critical for the capacity of HDL to protect LDL and outer cell membranes against harmful oxidative modification, but this activity depends on its location within the hydrophobic lipid domains of HDL. It does not prevent conjugated diene formation, but directs lipid peroxidation products derived from these to become harmless carboxylic acids rather than aldehydes which might adduct to apolipoprotein B. Serum PON1 is inversely related to the incidence of new atherosclerotic cardiovascular disease (ASCVD) events, particularly in diabetes and established ASCVD. Its serum activity is frequently discordant with that of HDL cholesterol. PON1 activity is diminished in dyslipidaemia, diabetes, and inflammatory disease. Polymorphisms, most notably Q192R, can affect activity towards some substrates, but not towards phenyl acetate. Gene ablation or over-expression of human PON1 in rodent models is associated with increased and decreased atherosclerosis susceptibility respectively. PON1 antioxidant activity is enhanced by apolipoprotein AI and lecithin:cholesterol acyl transferase and diminished by apolipoprotein AII, serum amyloid A, and myeloperoxidase. PON1 loses this activity when separated from its lipid environment. Information about its structure has been obtained from water soluble mutants created by directed evolution. Such recombinant PON1 may, however, lose the capacity to hydrolyse non-polar substrates. Whilst nutrition and pre-existing lipid modifying drugs can influence PON1 activity there is a cogent need for more specific PON1-raising medication to be developed.
Collapse
Affiliation(s)
- Paul N Durrington
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Bilal Bashir
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
10
|
Najm RA, Alghanimi YK. L55M PON1 polymorphism and risk of type 2 diabetes in relation to gender and smoking status. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021 2023. [DOI: 10.1063/5.0114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Role of Oxidative Stress in the Pathogenesis of Atherothrombotic Diseases. Antioxidants (Basel) 2022; 11:antiox11071408. [PMID: 35883899 PMCID: PMC9312358 DOI: 10.3390/antiox11071408] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress is generated by the imbalance between reactive oxygen species (ROS) formation and antioxidant scavenger system’s activity. Increased ROS, such as superoxide anion, hydrogen peroxide, hydroxyl radical and peroxynitrite, likely contribute to the development and complications of atherosclerotic cardiovascular diseases (ASCVD). In genetically modified mouse models of atherosclerosis, the overexpression of ROS-generating enzymes and uncontrolled ROS formation appear to be associated with accelerated atherosclerosis. Conversely, the overexpression of ROS scavenger systems reduces or stabilizes atherosclerotic lesions, depending on the genetic background of the mouse model. In humans, higher levels of circulating biomarkers derived from the oxidation of lipids (8-epi-prostaglandin F2α, and malondialdehyde), as well as proteins (oxidized low-density lipoprotein, nitrotyrosine, protein carbonyls, advanced glycation end-products), are increased in conditions of high cardiovascular risk or overt ASCVD, and some oxidation biomarkers have been reported as independent predictors of ASCVD in large observational cohorts. In animal models, antioxidant supplementation with melatonin, resveratrol, Vitamin E, stevioside, acacetin and n-polyunsaturated fatty acids reduced ROS and attenuated atherosclerotic lesions. However, in humans, evidence from large, placebo-controlled, randomized trials or prospective studies failed to show any athero-protective effect of antioxidant supplementation with different compounds in different CV settings. However, the chronic consumption of diets known to be rich in antioxidant compounds (e.g., Mediterranean and high-fish diet), has shown to reduce ASCVD over decades. Future studies are needed to fill the gap between the data and targets derived from studies in animals and their pathogenetic and therapeutic significance in human ASCVD.
Collapse
|
12
|
Otocka-Kmiecik A. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression. Nutrients 2022; 14:nu14142842. [PMID: 35889799 PMCID: PMC9318174 DOI: 10.3390/nu14142842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme attached to HDL with an anti-atherogenic potential. It protects LDL and HDL from lipid peroxidation. The enzyme is sensitive to various modulating factors, such as genetic polymorphisms as well as pharmacological, dietary (including carotenoids), and lifestyle interventions. Carotenoids are nutritional pigments with antioxidant activity. The aim of this review was to gather evidence on their effect on the modulation of PON1 activity and gene expression. Carotenoids administered as naturally occurring nutritional mixtures may present a synergistic beneficial effect on PON1 status. The effect of carotenoids on the enzyme depends on age, ethnicity, gender, diet, and PON1 genetic variation. Carotenoids, especially astaxanthin, β-carotene, and lycopene, increase PON1 activity. This effect may be explained by their ability to quench singlet oxygen and scavenge free radicals. β-carotene and lycopene were additionally shown to upregulate PON1 gene expression. The putative mechanisms of such regulation involve PON1 CpG-rich region methylation, Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway induction, and upregulation via steroid regulatory element-binding protein-2 (SREBP-2). More detailed and extensive research on the mechanisms of PON1 modulation by carotenoids may lead to the development of new targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Aneta Otocka-Kmiecik
- Department of Experimental Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
13
|
S-Nitrosylation of Paraxonase 1 (PON1) Elevates Its Hydrolytic and Antioxidant Activities. Biomolecules 2022; 12:biom12030414. [PMID: 35327606 PMCID: PMC8946601 DOI: 10.3390/biom12030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Covalent binding between nitric oxide (NO) and a protein’s free thiol group (SH) is termed protein S-nitrosylation. Protein S-nitrosylation is involved in cellular regulation mechanisms that underlie a wide range of critical functions, such as apoptosis, alteration of enzyme activities, and transcription-factor stability. Impaired protein S-nitrosylation is associated with a growing list of pathophysiological conditions, such as cardiovascular disease, multiple sclerosis, pulmonary hypertension, and sickle cell disease. The enzyme paraoxonase 1 (PON1) binds to high-density lipoprotein to provide many of its antiatherogenic properties. The enzyme has a strong antioxidant capacity, which protects fats, lipids, and lipoproteins from oxidation, in addition to breaking down oxidized fats. We investigated the effect of S-S transnitrosylation on PON1 activities. Incubation of recombinant PON1 (rePON1) with nitrosylated human serum albumin (HSA-NO) resulted in S-nitrosylation of about 70% of the rePON1, as measured by Q-TOF LC/MS. S-nitrosylation significantly increased rePON1 hydrolytic activities. It also increased rePON1’s ability to inhibit low-density lipoprotein oxidation induced by Cu2+. Finally, it increased the enzyme’s penetration into macrophage cells by 31%. Our findings suggest that S-nitrosylation of rePON1 improves its biological functions which may positively affect atherosclerosis disease progression.
Collapse
|
14
|
Zhao XJ, Liu LC, Guo C, Shen WW, Cao J, Du F, Wu DF, Yu H. Hepatic paraoxonase 1 ameliorates dysfunctional high-density lipoprotein and atherosclerosis in scavenger receptor class B type I deficient mice. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1063. [PMID: 34422975 PMCID: PMC8339862 DOI: 10.21037/atm-21-682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 12/31/2022]
Abstract
Background High-density lipoprotein (HDL) plays an antiatherogenic role by mediating reverse cholesterol transport (RCT), antioxidation, anti-inflammation, and endothelial cell protection. Recently, series of evidence have shown that HDL can also convert to proatherogenic HDL under certain circumstances. Plasma paraoxonase 1 (PON1) as an HDL-bound esterase, is responsible for most of the antioxidant properties of HDL. However, whether PON1 can serve as a therapeutic target of dysfunctional HDL-related atherosclerosis remains unclear. Methods In this study, scavenger receptor class B type I deficient (Scarb1−/−) mice were used as the animal model with dysfunctional HDL and increased atherosclerotic susceptibility. Hepatic PON1 overexpression and secretion into circulation were achieved by lentivirus injection through the tail vein. We monitored plasma lipids levels and lipoprotein profiles in Scarb1−/− mice, and measured the levels and activities of proteins associated with HDL function. Meanwhile, lipid deposition in the liver and atherosclerotic lesions was quantified. Hepatic genes relevant to HDL metabolism and inflammation were analyzed. Results The results showed the relative levels of PON1 in liver and plasma were increased by 1.1-fold and 1.6-fold, respectively, and mean plasma PON1 activity was increased by 63%. High-level PON1 increased the antioxidative and anti-inflammatory properties, promoted HDL maturation and macrophage cholesterol efflux through increasing HDL functional proteins components apolipoprotein A1 (APOA1), apolipoprotein E (APOE), and lecithin-cholesterol acyltransferase (LCAT), while decreased inflammatory protein markers, such as serum amyloid A (SAA), apolipoprotein A4 (APOA4) and alpha 1 antitrypsin (A1AT). Furthermore, hepatic PON1 overexpression linked the effects of antioxidation and anti-inflammation with HDL metabolism regulation mainly through up-regulating liver X receptor alpha (LXRα) and its downstream genes. The pleiotropic effects involved promoting HDL biogenesis by raising the level of APOA1, increasing cholesterol uptake by the liver through the APOE-low density lipoprotein receptor (LDLR) pathway, and increasing cholesterol excretion into the bile, thereby reducing hepatic steatosis and aorta atherosclerosis in Western diet-fed mice. Conclusions Our study reveals that high-level PON1 improved dysfunctional HDL and alleviated the development of atherosclerosis in Scarb1−/− mice. It is suggested that PON1 represents a promising target of HDL-based therapeutic strategy for HDL-related atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Xiao-Jie Zhao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Liang-Chen Liu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cui Guo
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Wen-Wen Shen
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jia Cao
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Fen Du
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Dong-Fang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Yu
- Department of Biochemistry and Molecular Biology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
15
|
Myeloperoxidase-induced modification of HDL by isolevuglandins inhibits paraoxonase-1 activity. J Biol Chem 2021; 297:101019. [PMID: 34331945 PMCID: PMC8390528 DOI: 10.1016/j.jbc.2021.101019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
Reduced activity of paraoxonase 1 (PON1), a high-density lipoprotein (HDL)-associated enzyme, has been implicated in the development of atherosclerosis. Post-translational modifications of PON1 may represent important mechanisms leading to reduced PON1 activity. Under atherosclerotic conditions, myeloperoxidase (MPO) is known to associate with HDL. MPO generates the oxidants hypochlorous acid and nitrogen dioxide, which can lead to post-translational modification of PON1, including tyrosine modifications that inhibit PON1 activity. Nitrogen dioxide also drives lipid peroxidation, leading to the formation of reactive lipid dicarbonyls such as malondialdehyde and isolevuglandins, which modify HDL and could inhibit PON1 activity. Because isolevuglandins are more reactive than malondialdehyde, we used in vitro models containing HDL, PON1, and MPO to test the hypothesis that IsoLG formation by MPO and its subsequent modification of HDL contributes to MPO-mediated reductions in PON1 activity. Incubation of MPO with HDL led to modification of HDL proteins, including PON1, by IsoLG. Incubation of HDL with IsoLG reduced PON1 lactonase and antiperoxidation activities. IsoLG modification of recombinant PON1 markedly inhibited its activity, while irreversible IsoLG modification of HDL before adding recombinant PON1 only slightly inhibited the ability of HDL to enhance the catalytic activity of recombinant PON1. Together, these studies support the notion that association of MPO with HDL leads to lower PON1 activity in part via IsoLG-mediated modification of PON1, so that IsoLG modification of PON1 could contribute to increased risk for atherosclerosis, and blocking this modification might prove beneficial to reduce atherosclerosis.
Collapse
|
16
|
Trakaki A, Marsche G. Current Understanding of the Immunomodulatory Activities of High-Density Lipoproteins. Biomedicines 2021; 9:biomedicines9060587. [PMID: 34064071 PMCID: PMC8224331 DOI: 10.3390/biomedicines9060587] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Lipoproteins interact with immune cells, macrophages and endothelial cells - key players of the innate and adaptive immune system. High-density lipoprotein (HDL) particles seem to have evolved as part of the innate immune system since certain HDL subspecies contain combinations of apolipoproteins with immune regulatory functions. HDL is enriched in anti-inflammatory lipids, such as sphingosine-1-phosphate and certain saturated lysophospholipids. HDL reduces inflammation and protects against infection by modulating immune cell function, vasodilation and endothelial barrier function. HDL suppresses immune cell activation at least in part by modulating the cholesterol content in cholesterol/sphingolipid-rich membrane domains (lipid rafts), which play a critical role in the compartmentalization of signaling pathways. Acute infections, inflammation or autoimmune diseases lower HDL cholesterol levels and significantly alter HDL metabolism, composition and function. Such alterations could have a major impact on disease progression and may affect the risk for infections and cardiovascular disease. This review article aims to provide a comprehensive overview of the immune cell modulatory activities of HDL. We focus on newly discovered activities of HDL-associated apolipoproteins, enzymes, lipids, and HDL mimetic peptides.
Collapse
|
17
|
Complex Coronary Instent Chronic Total Occlusion Lesions: Oxidative Stress, Inflammation, and Coronary Stent Lengths. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8815048. [PMID: 33936387 PMCID: PMC8062172 DOI: 10.1155/2021/8815048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 04/12/2021] [Indexed: 12/28/2022]
Abstract
The oxidative stress and inflammation played the key roles in the development of atherosclerotic coronary plaques. However, the relationships between pro/antioxidant, pro/anti-inflammatory status, and complex coronary instent chronic total occlusion lesions were not clear in the elderly patients with very long stent implantations. We tried to evaluate the roles of pro/antioxidant and pro/anti-inflammatory biomarkers in the diagnosis of complex reocclusion lesions in elderly patients after coronary stenting. We evaluated the expression levels of acrolein (ACR), malondialdehyde (MDA), high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), superoxide dismutase 3 (SOD3), paraoxonase-1 (PON-1), endothelial nitric oxide synthase (eNOS), and stromal cell-derived factor-1α (SDF-1α) in the elderly patients with very long stent implantations and complex reocclusion lesions. Levels of ACR, MDA, hs-CRP, and TNF-α were remarkably increased (P < 0.001), and levels of SOD3, PON-1, eNOS, and SDF-1α were decreased significantly (P < 0.001) in the elderly patients with very long stents and complex reocclusion lesions. The prooxidant and proinflammatory biomarkers were remarkably increased, as well as antioxidant and anti-inflammatory biomarkers were decreased significantly in the elderly patients with very long stent implantations and complex reocclusion lesions after coronary stenting. In conclusion, these findings indicated that the imbalance between prooxidant/proinflammatory and antioxidant/anti-inflammatory status was associated with complex reocclusion lesions, suggesting that oxidative stress and inflammation played the key roles in progression of complex reocclusion lesions in the elderly patients with very long stent implantations.
Collapse
|
18
|
Flavonoids-Macromolecules Interactions in Human Diseases with Focus on Alzheimer, Atherosclerosis and Cancer. Antioxidants (Basel) 2021; 10:antiox10030423. [PMID: 33802084 PMCID: PMC7999194 DOI: 10.3390/antiox10030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Flavonoids, a class of polyphenols, consumed daily in our diet, are associated with a reduced risk for oxidative stress (OS)-related chronic diseases, such as cardiovascular disease, neurodegenerative diseases, cancer, and inflammation. The involvement of flavonoids with OS-related chronic diseases have been traditionally attributed to their antioxidant activity. However, evidence from recent studies indicate that flavonoids' beneficial impact may be assigned to their interaction with cellular macromolecules, rather than exerting a direct antioxidant effect. This review provides an overview of the recent evolving research on interactions between the flavonoids and lipoproteins, proteins, chromatin, DNA, and cell-signaling molecules that are involved in the OS-related chronic diseases; it focuses on the mechanisms by which flavonoids attenuate the development of the aforementioned chronic diseases via direct and indirect effects on gene expression and cellular functions. The current review summarizes data from the literature and from our recent research and then compares specific flavonoids' interactions with their targets, focusing on flavonoid structure-activity relationships. In addition, the various methods of evaluating flavonoid-protein and flavonoid-DNA interactions are presented. Our aim is to shed light on flavonoids action in the body, beyond their well-established, direct antioxidant activity, and to provide insights into the mechanisms by which these small molecules, consumed daily, influence cellular functions.
Collapse
|
19
|
Schilcher I, Stadler JT, Lechleitner M, Hrzenjak A, Berghold A, Pregartner G, Lhomme M, Holzer M, Korbelius M, Reichmann F, Springer A, Wadsack C, Madl T, Kratky D, Kontush A, Marsche G, Frank S. Endothelial Lipase Modulates Paraoxonase 1 Content and Arylesterase Activity of HDL. Int J Mol Sci 2021; 22:E719. [PMID: 33450841 PMCID: PMC7828365 DOI: 10.3390/ijms22020719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/26/2023] Open
Abstract
Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cells decreased HDL size, PON1 content, and AE activity. The EL modification of HDL did not diminish the capacity of HDL to associate with PON1 when EL-modified HDL was incubated with PON1-overexpressing cells. The overexpression of EL in mice significantly decreased HDL serum levels but unexpectedly increased HDL PON1 content and HDL AE activity. Enzymatically inactive EL had no effect on the PON1 content of HDL in mice. In healthy subjects, EL serum levels were not significantly correlated with HDL levels. However, HDL PON1 content was positively associated with EL serum levels. The EL-induced changes in the HDL-lipid composition were not linked to the HDL PON1 content. We conclude that primarily, the interaction of enzymatically active EL with HDL, rather than EL-induced alterations in HDL size and composition, causes PON1 displacement from HDL in vitro. In vivo, the EL-mediated reduction of HDL serum levels and the consequently increased PON1-to-HDL ratio in serum increase HDL PON1 content and AE activity in mice. In humans, additional mechanisms appear to underlie the association of EL serum levels and HDL PON1 content.
Collapse
Affiliation(s)
- Irene Schilcher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Margarete Lechleitner
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 16, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Marie Lhomme
- ICANalytics Lipidomics, Institute of Cardiometabolism and Nutrition, 75013 Paris, France;
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Anna Springer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Anatol Kontush
- INSERM Research Unit 1166—ICAN, Sorbonne University, 75013 Paris, France;
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
20
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
21
|
Plasma paraoxonase1 activity in rats treated with monocrotophos: a study of the effect of duration of exposure. Interdiscip Toxicol 2020; 12:129-135. [PMID: 32210701 PMCID: PMC7085301 DOI: 10.2478/intox-2019-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/22/2019] [Indexed: 11/20/2022] Open
Abstract
We have earlier demonstrated the potential of monocrotophos (MCP), a highly toxic organophosphorus insecticide (OPI), to elicit insulin resistance in rats after chronic exposure. Given the understanding of role of paraoxonase1 (PON1) in OPI toxicity and diabetes pathology, this study was envisaged to understand the effect of duration of exposure to MCP on plasma PON1 activity in rats. Rats were administered MCP per os at 1/20 and 1/10th LD50 as daily doses for 180 days. Interim blood samples were collected at 15, 30, 45, 90 and 180 d for analysis of plasma parameters. Exposure to MCP for 45 resulted in persistent trend of hyperinsulinemia, while significant increase in fasting glucose levels was observed after 180 days. MCP caused suppression of plasma cholinesterase activity though the study period, albeit extent of inhibition was more severe during the early phase of the study. Exposure to MCP for 180 d resulted in hypertriglyceridemia and marginal decrease in HDL-C levels. MCP failed to modulate PON1 activity in plasma during the early phase of the study (up to 45 d). However, prolonged exposure resulted in significant increase in the plasma PON1 activity. This suggests that manifestation of insulin resistance in rats subjected to chronic exposure to MCP is associated with increase in PON1 activity. Our work provides rationale for studying whether the increase in PON1 activity observed in the present study serves to counter the deleterious effect of long term exposure to organophosphorus insecticides on metabolic homeostasis.
Collapse
|
22
|
Pan X, Liang P, Teng L, Ren Y, Peng J, Liu W, Yang Y. Study on molecular mechanisms of nattokinase in pharmacological action based on label-free liquid chromatography-tandem mass spectrometry. Food Sci Nutr 2019; 7:3185-3193. [PMID: 31660132 PMCID: PMC6804763 DOI: 10.1002/fsn3.1157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of premature death and disability in people around the world. Therefore, the prevention and treatment of CVDs has become an important subject. In this study, we verified the thrombolytic activities of a nattokinase-like protease named NK-01 in vivo. Label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique was used in our study. NK-01 could inhibit the activity of coagulation factors though the up-regulation of proteinase C inhibitors and protein S. NK-01 also could inhibit the angiotensinogen conversion to AngII and promote the degradation of kininogen to reduce the blood pressure. In addition, NK-01 could increase the content of paraoxonase 1, which could prevent atherosclerosis. In our study, we found that NK-01 cloud effect some key proteins which participant in CVDs associated metabolic processes such as coagulation system, blood pressure, and atherosclerosis. Taken together, the underlying molecular mechanisms for the biological beneficial of NK-01 were investigated. Our proteomic study will provide further theoretical basis for application of NK in prevention or adjuvant treatment in biomedicine areas.
Collapse
Affiliation(s)
- Xia Pan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Pengyu Liang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Luyao Teng
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Yuhao Ren
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Jixian Peng
- Shandong Ruiying Pioneer Pharmaceutical Co., LtdHezeChina
| | - Weizhi Liu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Yan Yang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life SciencesOcean University of ChinaQingdaoChina
| |
Collapse
|
23
|
Song J, Zheng Q, Ma X, Zhang Q, Xu Z, Zou C, Wang Z. Expression levels of paraoxonase-1 in aortic valve tissue are associated with the progression of calcific aortic valve stenosis. J Thorac Dis 2019; 11:2890-2898. [PMID: 31463118 DOI: 10.21037/jtd.2019.07.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Paraoxonase-1 (PON1) participates in several vital steps of lipid metabolism, which is associated with calcific aortic valve stenosis (CAVS). Although a few studies have suggested that PON1 in blood could inhibit aortic valve calcification, they did not provide detailed descriptions. In this study, we hypothesized that PON1 is expressed in the aortic valve and that the PON1 level is related to the severity of CAVS. Methods A total of 118 consecutive patients with CAVS were enrolled in the study; 35 individuals without aortic valve calcification were included in the control group. Aortic valve tissue was obtained from postoperative pathologic specimens. PON1 was detected qualitatively using immunohistochemistry and quantitatively using an enzyme-linked immunosorbent assay. The severity of aortic stenosis was evaluated using echocardiography. Results We detected PON1 in the aortic valve and noticed that the PON1 level was significantly lower in the case group than in the control group (P<0.001). Furthermore, we found no significant difference between the mild and moderate stenosis groups (P=0.395). However, the PON1 levels were obviously higher in both the mild and moderate stenosis groups than in the severe stenosis group (both P<0.001). We also detected a significant negative correlation between PON1 level and the maximum aortic valve gradient in the case group. Conclusions We detected PON1 in the aortic valve for the first time, and our results suggest that the PON1 level in aortic valve tissue decreases with increasing severity of aortic valve stenosis.
Collapse
Affiliation(s)
- Jian Song
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, China
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, China
| | - Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, China
| | - Zhenqiang Xu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250000, China
| |
Collapse
|
24
|
Circulating Oxidative Stress Biomarkers in Clinical Studies on Type 2 Diabetes and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5953685. [PMID: 31214280 PMCID: PMC6535859 DOI: 10.1155/2019/5953685] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2DM) and its complications constitute a major worldwide public health problem, with high rates of morbidity and mortality. Biomarkers for predicting the occurrence and development of the disease may therefore offer benefits in terms of early diagnosis and intervention. This review provides an overview of human studies on circulating biomarkers of oxidative stress and antioxidant defence systems and discusses their usefulness from a clinical perspective. Most case-control studies documented an increase in biomarkers of oxidative lipid, protein, and nucleic acid damage in patients with prediabetes and in those with a diagnosis of T2DM compared to controls, and similar findings were reported in T2DM with micro- and macrovascular complications compared to those without. The inconsistence of the results regarding antioxidant defence systems renders difficulty to draw a general conclusion. The clinical relevance of biomarkers of oxidative lipid and protein damage for T2DM progression is uncertain, but prospective studies suggest that markers of oxidative nucleic acid damage such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxyguanosine are promising for predicting macrovascular complications of T2DM. Emerging evidence also points out the relationship between serum PON1 and serum HO1 in T2DM and its complications. Overall, enhanced oxidative damage represents an underlying mechanism of glucose toxicity in T2DM and its related micro- and macrovascular complications suggesting that it may be considered as a potential additional target for pharmacotherapy. Therefore, further studies are needed to understand whether targeting oxidative stress may yield clinical benefits. In this view, the measurement of oxidative stress biomarkers in clinical trials deserves to be considered as an additional tool to currently used parameters to facilitate a more individualized treatment of T2DM in terms of drug choice and patient selection.
Collapse
|
25
|
Levy D, Reichert CO, Bydlowski SP. Paraoxonases Activities and Polymorphisms in Elderly and Old-Age Diseases: An Overview. Antioxidants (Basel) 2019; 8:antiox8050118. [PMID: 31052559 PMCID: PMC6562914 DOI: 10.3390/antiox8050118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. There is much evidence linking the involvement of oxidative stress in the pathogenesis of aging. With increasing age, susceptibility to the development of diseases related to lipid peroxidation and tissue injury increases, due to chronic inflammatory processes, and production of reactive oxygen species (ROS) and free radicals. The paraoxonase (PON) gene family is composed of three members (PON1, PON2, PON3) that share considerable structural homology and are located adjacently on chromosome 7 in humans. The most studied member product is PON1, a protein associated with high-density lipoprotein with paraoxonase/esterase activity. Nevertheless, all the three proteins prevent oxidative stress. The major aim of this review is to highlight the importance of the role of PON enzymes in the aging process, and in the development of the main diseases present in the elderly: cardiovascular disease, diabetes mellitus, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Débora Levy
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
| | - Sérgio Paulo Bydlowski
- Genetic and Molecular Hematology Laboratory (LIM31), Hospital das Clínicas, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Center of Innovation and Translacional Medicine (CIMTRA), Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo 05419-000, SP, Brazil.
- Instituto Nacional de Ciencia e Tecnologia em Medicina Regenerativa (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
26
|
van den Berg EH, Gruppen EG, James RW, Bakker SJL, Dullaart RPF. Serum paraoxonase 1 activity is paradoxically maintained in nonalcoholic fatty liver disease despite low HDL cholesterol. J Lipid Res 2019; 60:168-175. [PMID: 30455362 PMCID: PMC6314263 DOI: 10.1194/jlr.p088997] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by low HDL cholesterol, but the activity of the HDL-associated antioxidative enzyme paraoxonase-1 (PON-1) remains unclear. To determine the association of PON-1 with suspected NAFLD, we measured serum enzyme activity in 7,622 participants of the Prevention of Renal and Vascular End-Stage Disease cohort. A fatty liver index (FLI) ≥60, a proxy of NAFLD, was present in 2,083 participants (27.3%) and coincided with increased prevalence of T2D, metabolic syndrome (MetS), (central) obesity, elevated triglycerides, and low HDL cholesterol (all P < 0.001). In men and women combined, serum PON-1 activity did not vary according to elevated FLI (P = 0.98), whereas in men with elevated FLI PON-1 activity was increased (P = 0.016). In multivariable linear regression analyses (adjusted for age, sex, T2D, MetS, alcohol use, and smoking), PON-1 activity was unexpectedly associated with elevated FLI (β = 0.083; P < 0.001). In a sensitivity analysis (n = 5,126) that excluded subjects with positive cardiovascular history, impaired estimated glomerular filtration rate, elevated urinary albumin excretion, and drug use, PON-1 activity was also independently associated with elevated FLI (β = 0.045; P = 0.017). These results indicate that PON-1 is paradoxically maintained and may even be increased in NAFLD despite inverse associations with metabolic disorders and low HDL cholesterol.
Collapse
Affiliation(s)
- Eline H van den Berg
- Departments of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Departments of Gastroenterology and Hepatology University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eke G Gruppen
- Departments of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Departments of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard W James
- Departments of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Departments of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robin P F Dullaart
- Departments of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Rom O, Volkova N, Jeries H, Grajeda-Iglesias C, Aviram M. Exogenous (Pomegranate Juice) or Endogenous (Paraoxonase1) Antioxidants Decrease Triacylglycerol Accumulation in Mouse Cardiovascular Disease-Related Tissues. Lipids 2018; 53:1031-1041. [PMID: 30560569 DOI: 10.1002/lipd.12112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/27/2022]
Abstract
The polyphenol-rich pomegranate juice (PJ) and the high-density lipoprotein (HDL)-associated paraoxonase1 (PON1) are known as potent atheroprotective antioxidants, but their effects on other tissues related to cardiovascular disease (CVD) remain unknown. The current study aimed to investigate the effects of treating mice with PJ or recombinant PON1 (rePON1) on the oxidation and lipid status of CVD-related tissues: serum, aorta, heart, liver, kidney, visceral, and subcutaneous adipose tissues (VAT and SAT). Both PJ consumption and rePON1 injection decreased the serum levels of thiobarbituric acid-reactive substances (16% and 19%) and triacylglycerols (TAG, 24% and 27%), while only rePON1 increased the levels of thiol groups (35%) and decreased serum cholesterol (15%). Both PJ and rePON1 significantly decreased aortic cholesterol (38% and 32%) and TAG (62% and 58%) contents in association with downregulation of the key TAG biosynthetic enzyme diacylglycerol O-acyltransferase 1 (DGAT1, 71% and 65%), while only PJ decreased aortic lipid peroxides (47%). Substantial TAG-lowering effects of both PJ and rePON1 were observed also in the heart (31% and 42%), liver (34% and 42%), and kidney (42% and 57%). In both VAT and SAT, rePON1 decreased the levels of lipid peroxides (28% and 25%), while PJ decreased the TAG content (22% and 18%). Ex vivo incubation of SAT with serum derived from mice that consumed PJ or injected with rePON1 decreased SAT lipid peroxides (35% or 28%) and TAG mass (12% or 10%). These novel findings highlight potent TAG-lowering properties of exogenous (PJ) and endogenous (PON1) antioxidants in tissues associated with CVD.
Collapse
Affiliation(s)
- Oren Rom
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, 2800 Plymouth Rd. Ann Arbor, MI 48109
| | - Nina Volkova
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St. Haifa, Israel 31096
| | - Helana Jeries
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St. Haifa, Israel 31096.,Department of Internal Medicine E, Rambam Health Care Campus, 8 HaAliya HaShniya St., Haifa, Israel 35254
| | - Claudia Grajeda-Iglesias
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St. Haifa, Israel 31096
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St. Haifa, Israel 31096
| |
Collapse
|
28
|
Gruppen EG, Bakker SJL, James RW, Dullaart RPF. Serum paraoxonase-1 activity is associated with light to moderate alcohol consumption: the PREVEND cohort study. Am J Clin Nutr 2018; 108:1283-1290. [PMID: 30376039 DOI: 10.1093/ajcn/nqy217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
Background Paraoxonase-1 (PON-1) is a high-density lipoprotein (HDL)-associated enzyme with antioxidative properties, which may protect against the development of cardiovascular disease. Alcohol consumption increases HDL cholesterol, but the extent to which alcohol consumption gives rise to higher serum PON-1 activity is uncertain. Objective In a population-based study, we determined the relation of serum PON-1 activity with alcohol consumption when taking account of HDL cholesterol and apolipoprotein A-I (apoA-I), its major apolipoprotein. Design A cross-sectional study was performed in 8224 participants of the Prevention of Renal and Vascular End-Stage Disease (PREVEND) cohort. Alcohol consumption was categorized as 1) no/rarely (25.3%); 2) 0.1-10 g/d (49.3%); 3) 10-30 g/d (20.1%); and 4) >30 g/d (5.2%) with 1 drink equivalent to 10 g alcohol. Serum PON-1 activity was measured as its arylesterase activity (phenyl acetate as substrate). Results Median serum PON-1 activity was 50.8, 53.1, 54.4, and 55.7 U/L in the 4 categories of alcohol consumption, respectively (P < 0.001). Its increase paralleled the increments in HDL cholesterol and apoA-I. Notably, there was no further increase in PON-1 activity, HDL cholesterol, and apoA-I when alcohol consumption was increased from 10-30 g/d to >30 g/d. Multivariable linear regression analysis demonstrated that PON-1 activity was related to alcohol consumption independently from clinical covariates, high sensitivity C-reactive protein, and lipid concentrations, including HDL cholesterol (P < 0.001 for each category of alcohol consumption with no alcohol consumption as the reference category). Notably, as inferred from standardized β-coefficients, there was no difference in PON-1 activity between 10-30 g alcohol/d and >30 g alcohol/d. Conclusions Alcohol consumption is associated with an increase in serum PON-1 activity, but its effect seems to reach a plateau with alcohol consumption of 10-30 g/d.
Collapse
Affiliation(s)
- Eke G Gruppen
- Departments of Endocrinology.,Nephrology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Stephan J L Bakker
- Nephrology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Richard W James
- Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
29
|
Swertfeger DK, Rebholz S, Li H, Shah AS, Davidson WS, Lu LJ. Feasibility of a plasma bioassay to assess oxidative protection of low-density lipoproteins by high-density lipoproteins. J Clin Lipidol 2018; 12:1539-1548. [PMID: 30244943 PMCID: PMC6437770 DOI: 10.1016/j.jacl.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Traditionally, the impact of lipoproteins on vascular disease has been evaluated in light of their quantity, that is, cholesterol content, in plasma. However, recent studies of high-density lipoproteins (HDLs) have focused on functionality with regard to atheroprotection. For example, bioassays have emerged to assess the ability of HDL, in its near native plasma environment, to promote cholesterol removal (efflux) from cells. As a result, attention has focused on developing plasma-based assays for other putative HDL protective functions including protecting low-density lipoproteins (LDLs) from oxidative damage. OBJECTIVE To determine the feasibility of such an assay in a complex sample such as plasma, we evaluated the contribution of HDL vs other plasma factors in preventing LDL oxidation. METHODS We separated normolipidemic human plasma by gel filtration chromatography and assessed each fraction for its ability to prevent LDL modification by water soluble radical and copper-initiated oxidation mechanisms. RESULTS Using proteomics and selective precipitation methods, we identified major antioxidative contributions for fibrinogen, immunoglobulin G, albumin, and small soluble molecules like uric acid and ascorbate, with albumin being especially dominant in copper-initiated mechanisms. HDL particles were minor contributors (∼1%-2%) to the antioxidant capacity of plasma, irrespective of oxidation mechanism. CONCLUSIONS Given the overwhelming background of antioxidant capacity inherent to highly abundant plasma proteins, specific bioassays of HDL antioxidative function will likely require its complete separation from plasma.
Collapse
Affiliation(s)
- Debi K Swertfeger
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Sandra Rebholz
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA; Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH, USA
| | - Hailong Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Amy S Shah
- Division of Endocrinology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - William Sean Davidson
- Department of Pathology and Laboratory Medicine, Center for Lipid and Arteriosclerosis Science, University of Cincinnati, Cincinnati, OH, USA.
| | - Long J Lu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, USA
| |
Collapse
|
30
|
Gordon SM, Chung JH, Playford MP, Dey AK, Sviridov D, Seifuddin F, Chen YC, Pirooznia M, Chen MY, Mehta NN, Remaley AT. High density lipoprotein proteome is associated with cardiovascular risk factors and atherosclerosis burden as evaluated by coronary CT angiography. Atherosclerosis 2018; 278:278-285. [PMID: 30347343 PMCID: PMC6263790 DOI: 10.1016/j.atherosclerosis.2018.09.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/24/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS High density lipoprotein cholesterol (HDL-C) is associated with risk of cardiovascular disease (CVD); however, therapeutic manipulations of HDL-C have failed to reduce CVD events. This suggests that HDL-C and the atheroprotective capacity of HDL are not directly linked. The goal of this study was to evaluate the relationships between HDL-bound proteins and measures of atherosclerosis burden and HDL function. METHODS The HDL proteome was analyzed using mass spectrometry in 126 human subjects, who had undergone coronary computed tomography angiography (CCTA) to quantify calcified (CB) and non-calcified (NCB) atherosclerosis burden. Partial least squares regression analysis was used to evaluate associations between HDL-bound proteins and CB, NCB, or cholesterol efflux capacity (CEC). RESULTS Significant overlap was found among proteins associated with NCB and CEC. Proteins that were associated with NCB displayed an inverse relationship with CEC, supporting a link between this protective function of HDL and clinical plaque burden. CB was associated with a set of proteins mostly distinct from NCB and CEC. When CVD risk factors were evaluated, BMI had a stronger influence on important HDL proteins than gender, age, or HDL-C. Most HDL proteins associated with function or atherosclerosis burden were not significantly correlated with HDL-C. CONCLUSIONS These findings indicate that the HDL proteome contains information not captured by HDL- C and, therefore, has potential for future development as a biomarker for CVD risk. Additionally, the proteome effects detected in this study may provide HDL compositional goals for evaluating new and existing HDL-modification therapies.
Collapse
Affiliation(s)
- Scott M. Gordon
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jonathan H. Chung
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Amit K. Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Denis Sviridov
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Yun-Ching Chen
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Marcus Y. Chen
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
31
|
A. El-Laithy N, M.E. Mahdy E, R. Youness E, Shafee N, S.S. Mowafy M, M. Mabrouk M. Effect of Co Enzyme Q10 Alone or in Combination with Vitamin C on Lipopolysaccharide-Induced Brain Injury in Rats. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bpj/1483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our was to determine the impact of CoenzymeQ10 (Co Q10) and vitamin C alone or in combination on oxidative stress in brain tissue of rats during endotoxemia induced by single intraperitoneal dose of Lipopolysaccharide (LPS), 500µg/kg. Both CoQ10&vitamin C were given orally to rats with doses (200&100 mg/kg) respectively for 7successive days prior induction of endotoxemia .LPS injected, with Co Q10 with doses (100 &200 mg/kg) &vit. C (50&100 mg/kg).In addition CoQ10 and vitamin C together in doses (100&50 mg/kg) & (200&100 mg/kg) respectively were added to LPS-treated rats. Then euthanized 4 hours later. Histopathological assessment of brain tissue was done. Results: LPS injection induced oxidative stress in brain tissue, resulting in marked increase in malondiadehyde (MDA), nitrite (NO) and Amyloid beta (Aβ), while decreasing reduced glutathione (GSH), paraoxonase-1 (PON1) and brain derived neurotrophic factor (BDNF).CoQ10 and vit.C administration with doses(200&100 mg/ kg) before endotoxemia result in reduction of brain MDA, NO and Aβ, while increasing levels of GSH, PON1 and BDNF compared to controls. The addition of both Co Q10 &vit.C to LPS- treated rats lead to decrease of brain NO, MDA and Aβ, also increase of GSH, PON1 and BDNF. This effect was more obviouswith high doses, this due to the ameliorating effect of both CoQ10 and vit.C on oxidative stress of brain tissue during endotoxemia.This consisted with the histopathological results. Conclusion: this work focuses on the possible role of CoQ10 &vit.C as antioxidants in protecting brain tissue.
Collapse
Affiliation(s)
| | - Elsayed M.E. Mahdy
- Department of Chemistry , Faculty of Science, Helwan University, Helwan, Egypt
| | - Eman R. Youness
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| | - Nermeen Shafee
- Department of Pathology, National Research Centre, Cairo, Egypt
| | | | - Mahmoud M. Mabrouk
- Department of Medical Biochemistry, National Research Centre, Cairo, Egypt
| |
Collapse
|
32
|
Yao C, Chen G, Song C, Keefe J, Mendelson M, Huan T, Sun BB, Laser A, Maranville JC, Wu H, Ho JE, Courchesne P, Lyass A, Larson MG, Gieger C, Graumann J, Johnson AD, Danesh J, Runz H, Hwang SJ, Liu C, Butterworth AS, Suhre K, Levy D. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. Nat Commun 2018; 9:3268. [PMID: 30111768 PMCID: PMC6093935 DOI: 10.1038/s41467-018-05512-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/09/2018] [Indexed: 01/17/2023] Open
Abstract
Identifying genetic variants associated with circulating protein concentrations (protein quantitative trait loci; pQTLs) and integrating them with variants from genome-wide association studies (GWAS) may illuminate the proteome's causal role in disease and bridge a knowledge gap regarding SNP-disease associations. We provide the results of GWAS of 71 high-value cardiovascular disease proteins in 6861 Framingham Heart Study participants and independent external replication. We report the mapping of over 16,000 pQTL variants and their functional relevance. We provide an integrated plasma protein-QTL database. Thirteen proteins harbor pQTL variants that match coronary disease-risk variants from GWAS or test causal for coronary disease by Mendelian randomization. Eight of these proteins predict new-onset cardiovascular disease events in Framingham participants. We demonstrate that identifying pQTLs, integrating them with GWAS results, employing Mendelian randomization, and prospectively testing protein-trait associations holds potential for elucidating causal genes, proteins, and pathways for cardiovascular disease and may identify targets for its prevention and treatment.
Collapse
Affiliation(s)
- Chen Yao
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - George Chen
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Ci Song
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
- Department of Medical Sciences, Uppsala University, 75105, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, 75105, Uppsala, Sweden
| | - Joshua Keefe
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Michael Mendelson
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
- Department of Cardiology, Boston Children's Hospital, Boston, 02115, MA, USA
| | - Tianxiao Huan
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Benjamin B Sun
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Annika Laser
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | | | - Hongsheng Wu
- Computer Science and Networking, Wentworth Institute of Technology, Boston, 02115, MA, USA
| | - Jennifer E Ho
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Paul Courchesne
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Asya Lyass
- Framingham Heart Study, Framingham, 01702, MA, USA
- Department of Mathematics and Statistics, Boston University, Boston, 02115, MA, USA
| | - Martin G Larson
- Framingham Heart Study, Framingham, 01702, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, 02118, MA, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Johannes Graumann
- Scientific Service Group Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Ludwigstr. 43, D-61231, Bad Nauheim, Germany
| | - Andrew D Johnson
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- British Heart Foundation Cambridge Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1RQ, UK
| | - Heiko Runz
- MRL, Merck & Co., Inc, Kenilworth, 07033, NJ, USA
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Chunyu Liu
- Framingham Heart Study, Framingham, 01702, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, PO 24144, Doha, Qatar
| | - Daniel Levy
- Framingham Heart Study, Framingham, 01702, MA, USA.
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, MD, USA.
| |
Collapse
|
33
|
Atrahimovich D, Samson AO, Khattib A, Vaya J, Khatib S. Punicalagin Decreases Serum Glucose Levels and Increases PON1 Activity and HDL Anti-Inflammatory Values in Balb/c Mice Fed a High-Fat Diet. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2673076. [PMID: 30151068 PMCID: PMC6091419 DOI: 10.1155/2018/2673076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022]
Abstract
Polyphenols are consumed daily in the human diet and are associated with reduced risk of a number of chronic diseases, including cancer, cardiovascular disease, and diabetes. Traditionally, the health benefits of polyphenols have been attributed to their antioxidant activity, but many studies might be hampered by oral administration and insignificant bioavailability. Rather than exerting a direct antioxidant effect, the mechanisms by which polyphenols express their beneficial effect seem to involve their interaction with proteins. The present study is aimed at broadening and confirming our recently published in vitro results showing that polyphenols may reduce atherosclerosis risk via interaction with proteins and lipoproteins related to atherosclerosis. The biological functions of punicalagin and quercetin in relation to glucose and lipid levels, paraoxonase 1 (PON1) activity, and inflammation were examined in vivo. Mice were fed a high-fat diet (HFD) for 12 weeks, and during the last 4 weeks, they received subcutaneous treatments via implanted minipumps, which released physiological concentrations of punicalagin, quercetin, or atorvastatin (as a positive control) daily into the serum. The HFD reduced serum PON1 activity, whereas punicalagin administration restored PON1 activity to the level of mice fed a normal diet. In addition, punicalagin significantly reduced glucose levels in HFD mice and improved HDL anti-inflammatory properties. In conclusion, beyond antioxidant activity, the mechanisms by which polyphenols exert their beneficial properties appear to involve their interaction with serum proteins that mediate HDL function and lipid-glucose state in the circulation.
Collapse
Affiliation(s)
- Dana Atrahimovich
- Department of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, 11016 Kiryat Shmona, Israel
- Tel-Hai College, 12208 Upper Galilee, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Abraham O. Samson
- Faculty of Medicine in the Galilee, Bar-Ilan University, 1311502 Safed, Israel
| | - Ali Khattib
- Department of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, 11016 Kiryat Shmona, Israel
- Tel-Hai College, 12208 Upper Galilee, Israel
| | - Jacob Vaya
- Department of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, 11016 Kiryat Shmona, Israel
- Tel-Hai College, 12208 Upper Galilee, Israel
| | - Soliman Khatib
- Department of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, 11016 Kiryat Shmona, Israel
- Tel-Hai College, 12208 Upper Galilee, Israel
| |
Collapse
|
34
|
Singh K, Singh R, Chandra S, Tyagi S. Paraoxonase-1 is a better indicator than HDL of Atherosclerosis - A pilot study in North Indian population. Diabetes Metab Syndr 2018; 12:275-278. [PMID: 29254890 DOI: 10.1016/j.dsx.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The present study aims to evaluate the levels of HDL and Paraoxonase-1 (PON1) and their correlation in atherosclerotic patients with and without diabetic mellitus (DM) as well as in control subjects in Northern Indian population. MATERIALS AND METHODS We analyzed lipid profiles and Serum PON1 levels by automated analyzer and ELISA, respectively. Study subjects (N = 150) were divided in three groups; Group I: Atherosclerotic patients without DM (N = 50), Group II: Atherosclerotic patients with DM (N = 50); Group III: Controls (N = 50). RESULTS We found a significantly (p < 0.0001) low levels of HDL-C in Group I (32.2 ± 7.3) and Group II (36.9 ± 11.5) as compared to Group III (41.0 ± 7.1). PON-1 levels were also significantly lower in Group I (60.1 ± 10.5) and Group II (50.0 ± 13.9) when compared to Group III (95.0 ± 12.0). We observed a significant correlation (r = 0.59, p < 0.001) between the levels of PON1 and HDL-C in study subjects. CONCLUSIONS The reduced levels of HDL and PON-1 and their significant correlation in CAD patients may be associated with the pathogenesis of this disease. Considering HDL as a dependent variable, Paraoxonase-1 is the most important parameter contributing to the total variation in HDL in CAD.
Collapse
Affiliation(s)
- Kamna Singh
- Department of Biochemistry, Lady Hardinge Medical College, New Delhi, 110001, India
| | - Ritu Singh
- Department of Biochemistry, Lady Hardinge Medical College, New Delhi, 110001, India
| | - Sudhir Chandra
- Department of Biochemistry, Lady Hardinge Medical College, New Delhi, 110001, India.
| | - Sanjay Tyagi
- Department of Cardiology, G.B. Pant Hospital, New Delhi, 110002, India
| |
Collapse
|
35
|
Falconer D, Papageorgiou N, Antoniades C, Tousoulis D. Gene Therapy. Coron Artery Dis 2018. [DOI: 10.1016/b978-0-12-811908-2.00015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem 2017; 440:167-187. [PMID: 28828539 DOI: 10.1007/s11010-017-3165-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
Coronary artery disease, the leading cause of death in the developed and developing countries, is prevalent in diabetes mellitus with 68% cardiovascular disease (CVD)-related mortality. Epidemiological studies suggested inverse correlation between HDL and CVD occurrence. Therefore, low HDL concentration observed in diabetic patients compared to non-diabetic individuals was thought to be one of the primary causes of increased risks of CVD. Efforts to raise HDL level via CETP inhibitors, Torcetrapib and Dalcetrapib, turned out to be disappointing in outcome studies despite substantial increases in HDL-C, suggesting that factors beyond HDL concentration may be responsible for the increased risks of CVD. Therefore, recent studies have focused more on HDL function than on HDL levels. The metabolic environment in diabetes mellitus condition such as hyperglycemia-induced advanced glycation end products, oxidative stress, and inflammation promote HDL dysfunction leading to greater risks of CVD. This review discusses dysfunctional HDL as one of the mechanisms of increased CVD risks in diabetes mellitus through adversely affecting components that support HDL function in cholesterol efflux and LDL oxidation. The dampening of reverse cholesterol transport, a key process that removes cholesterol from lipid-laden macrophages in the arterial wall, leads to increased risks of CVD in diabetic patients. Therapeutic approaches to keep diabetes under control may benefit patients from developing CVD.
Collapse
|
37
|
Beykikhoshk A, Arandjelović O, Phung D, Venkatesh S. Discovering topic structures of a temporally evolving document corpus. Knowl Inf Syst 2017. [DOI: 10.1007/s10115-017-1095-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Lauper K, Gabay C. Cardiovascular risk in patients with rheumatoid arthritis. Semin Immunopathol 2017; 39:447-459. [PMID: 28455580 DOI: 10.1007/s00281-017-0632-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Substantial epidemiologic data have shown an increased risk of cardiovascular (CV) disease in rheumatoid arthritis (RA) patients. Traditional CV risk factors may partly contribute to CV disease in RA; however, current evidence underlines the important role of inflammation in the pathogenesis of atherosclerosis and amplification of CV risk. Interplays between inflammation and lipid metabolism in the development of atherosclerosis have been established by recent scientific advances. Atherosclerosis is currently viewed as an inflammatory disease, and modifications of lipoproteins during inflammation accelerate atherogenesis. The role of inflammation in the increased CV risk in RA has been further demonstrated by the CV protective effect of methotrexate and TNF antagonists, particularly in patients responding to these treatments. The management of CV risk in RA should include the use of effective disease-modifying anti-rheumatic drugs to control disease activity and the treatment of traditional CV risk factors.
Collapse
Affiliation(s)
- Kim Lauper
- Division of Rheumatology, University Hospitals of Geneva, 26 Avenue Beau-Séjour, 1206, Geneva, Switzerland
| | - Cem Gabay
- Division of Rheumatology, University Hospitals of Geneva, 26 Avenue Beau-Séjour, 1206, Geneva, Switzerland.
| |
Collapse
|
39
|
Dynamic changes of paraoxonase 1 activity towards paroxon and phenyl acetate during coronary artery surgery. BMC Cardiovasc Disord 2017; 17:92. [PMID: 28376720 PMCID: PMC5381050 DOI: 10.1186/s12872-017-0528-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/31/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Serum paraoxonase 1 (PON1), an enzyme associated with high - density lipoproteins (HDL) particles, inhibits the oxidation of serum lipoproteins and cell membranes. PON1 activity is lower in patients with atherosclerosis and in inflammatory diseases. The systemic inflammatory response provoked during cardiopulmonary bypass grafting may contribute to the development of postoperative complications. The aim of the present study was to estimate the dynamic changes in paraoxonase 1 (PON1) activity towards paraoxon and phenyl acetate during and after coronary artery surgery. METHODS Twenty six patients with coronary heart disease undergoing coronary artery bypass grafting (CABG) were enrolled into the study. Venous blood samples were obtained preoperatively, after aortic clumping, after the end of operation, at 6, 18, 30 and 48 h after operation. Paraoxonase activity was measured spectrophotometrically in 50 mM glycine/NaOH buffer (pH 10.5) containing 1.0 mM paraoxon, and 1.0 mM CaCl2. Arylesterase activity was measured in 20 mM TrisCl buffer (pH 8.0) containing 1 mM phenyl acetate and 1 mM CaCl2. RESULTS PON1 activity toward paraoxon and phenyl acetate significantly decreased after aorta cross clumping and increased directly after operation. PON1 activity towards paraoxon in preoperative period and PON1 activity towards phenyl acetate in seventh stage of experiment tended to inversely correlate with the occurrence of postoperative complications. CONCLUSION The paraoxonase 1 plasma activity is markedly reduced during CABG surgery.
Collapse
|
40
|
Alim Z, Beydemir Ş. Some Anticancer Agents Act on Human Serum Paraoxonase-1 to Reduce Its Activity. Chem Biol Drug Des 2016; 88:188-96. [PMID: 26873069 DOI: 10.1111/cbdd.12746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Zuhal Alim
- Biochemistry Division; Department of Chemistry; Faculty of Science and Arts; Ahi Evran University; Kırşehir 40000 Turkey
| | - Şükrü Beydemir
- Biochemistry Division; Department of Chemistry; Faculty of Sciences; Atatürk University; Erzurum 25240 Turkey
- Department of Food Sciences; Faculty of Engineering; Iğdır University; Iğdır Turkey
| |
Collapse
|
41
|
Kunutsor SK, Bakker SJ, James RW, Dullaart RP. Serum paraoxonase-1 activity and risk of incident cardiovascular disease: The PREVEND study and meta-analysis of prospective population studies. Atherosclerosis 2016; 245:143-54. [DOI: 10.1016/j.atherosclerosis.2015.12.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
|
42
|
Shen S, Li J, Hilchey S, Shen X, Tu C, Qiu X, Ng A, Ghaemmaghami S, Wu H, Zand MS, Qu J. Ion-Current-Based Temporal Proteomic Profiling of Influenza-A-Virus-Infected Mouse Lungs Revealed Underlying Mechanisms of Altered Integrity of the Lung Microvascular Barrier. J Proteome Res 2016; 15:540-53. [PMID: 26650791 DOI: 10.1021/acs.jproteome.5b00927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.
Collapse
Affiliation(s)
- Shichen Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States.,Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States
| | - Jun Li
- Department of Pharmaceutical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Shannon Hilchey
- Division of Nephrology, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Xiaomeng Shen
- New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States.,Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester , 265 Crittenden Boulevard, Rochester, New York 14642, United States
| | - Andrew Ng
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester , 402 Hutchison Hall, Rochester, New York 14627, United States
| | - Hulin Wu
- Department of Biostatistics, School of Public Health, University of Texas Health Science Center at Houston , 1200 Pressler Street, Houston, Texas 77030, United States
| | - Martin S Zand
- Division of Nephrology, University of Rochester Medical Center , 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, SUNY at Buffalo , South Campus, Buffalo, New York 14214, United States.,New York State Center of Excellence in Bioinformatics & Life Sciences , 701 Ellicott Street, Buffalo, New York 14203, United States
| |
Collapse
|
43
|
Hussein O, Izikson L, Bathish Y, Dabur E, Hanna A, Zidan J. Anti-atherogenic properties of high-density lipoproteins in psychiatric patients before and after two months of atypical anti-psychotic therapy. J Psychopharmacol 2015; 29:1262-70. [PMID: 26253619 DOI: 10.1177/0269881115598320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some of the medications used for the management of schizophrenia are associated with clinically significant increases in weight and adverse alterations in serum lipid levels. The aim of the study was to investigate the effect of short-term (two months) treatment with atypical anti-psychotics on coronary heart disease risk factors, including the functional properties of high-density lipoprotein (HDL), in psychiatric patients. Nineteen patients diagnosed with schizophrenia, schizoaffective, and bipolar disorder and ten healthy volunteers were enrolled in the study. In the present study blood was drawn at baseline and after two months of atypical anti-psychotic treatment. Wilcoxon non-parametric-test was used to examine differences in the psychotic group before and two months after treatment.Waist circumference and oxidative stress in psychiatric patients were higher compared with the control group. Serum-mediated cholesterol efflux capacity was lower in psychotic patients compared to controls. Two months of anti-psychotic therapy was associated with increased abdominal obesity, decreased paraoxonase lactonase activity, but with no further change in serum-mediated cholesterol efflux from macrophages. Psychotic patients have low serum-mediated cholesterol efflux from macrophages as a parameter of HDL functionality. Atypical anti-psychotic treatment for two months increased metabolic derangements in these patients but without further decrement in serum-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Osamah Hussein
- Internal Medicine Department A, Ziv Medical Center, Safed, Israel Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lidia Izikson
- Department of Psychiatry, Ziv Medical Center, Safed, Israel Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yunis Bathish
- Internal Medicine Department A, Ziv Medical Center, Safed, Israel
| | - Enas Dabur
- Internal Medicine Department A, Ziv Medical Center, Safed, Israel
| | - Alaa Hanna
- Internal Medicine Department A, Ziv Medical Center, Safed, Israel
| | - Jamal Zidan
- Department of Oncology, Ziv Medical Center, Safed, Israel Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
44
|
Expression and purification of biologically active recombinant human paraoxonase 1 from inclusion bodies of Escherichia coli. Protein Expr Purif 2015; 115:95-101. [DOI: 10.1016/j.pep.2015.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 11/23/2022]
|
45
|
Shao B, de Boer I, Tang C, Mayer PS, Zelnick L, Afkarian M, Heinecke JW, Himmelfarb J. A Cluster of Proteins Implicated in Kidney Disease Is Increased in High-Density Lipoprotein Isolated from Hemodialysis Subjects. J Proteome Res 2015; 14:2792-806. [PMID: 26011469 DOI: 10.1021/acs.jproteome.5b00060] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiovascular disease is the leading cause of death in end-stage renal disease (ESRD) patients treated with hemodialysis. An important contributor might be a decline in the cardioprotective effects of high-density lipoprotein (HDL). One important factor affecting HDL's cardioprotective properties may involve the alterations of protein composition in HDL. In the current study, we used complementary proteomics approaches to detect and quantify relative levels of proteins in HDL isolated from control and ESRD subjects. Shotgun proteomics analysis of HDL isolated from 20 control and 40 ESRD subjects identified 63 proteins in HDL. Targeted quantitative proteomics by isotope-dilution selective reaction monitoring revealed that 22 proteins were significantly enriched and 6 proteins were significantly decreased in ESRD patients. Strikingly, six proteins implicated in renal disease, including B2M, CST3, and PTGDS, were markedly increased in HDL of uremic subjects. Moreover, several of these proteins (SAA1, apoC-III, PON1, etc.) have been associated with atherosclerosis. Our observations indicate that the HDL proteome is extensively remodeled in uremic subjects. Alterations of the protein cargo of HDL might impact HDL's proposed cardioprotective properties. Quantifying proteins in HDL may be useful in the assessment of cardiovascular risk in patients with ESRD and in assessing response to therapeutic interventions.
Collapse
Affiliation(s)
- Baohai Shao
- †Diabetes and Obesity Center of Excellence and ‡Kidney Research Institute, Department of Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98195, United States
| | - Ian de Boer
- †Diabetes and Obesity Center of Excellence and ‡Kidney Research Institute, Department of Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98195, United States
| | - Chongren Tang
- †Diabetes and Obesity Center of Excellence and ‡Kidney Research Institute, Department of Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98195, United States
| | - Philip S Mayer
- †Diabetes and Obesity Center of Excellence and ‡Kidney Research Institute, Department of Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98195, United States
| | - Leila Zelnick
- †Diabetes and Obesity Center of Excellence and ‡Kidney Research Institute, Department of Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98195, United States
| | - Maryam Afkarian
- †Diabetes and Obesity Center of Excellence and ‡Kidney Research Institute, Department of Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98195, United States
| | - Jay W Heinecke
- †Diabetes and Obesity Center of Excellence and ‡Kidney Research Institute, Department of Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98195, United States
| | - Jonathan Himmelfarb
- †Diabetes and Obesity Center of Excellence and ‡Kidney Research Institute, Department of Medicine, University of Washington, 850 Republican Street, Seattle, Washington 98195, United States
| |
Collapse
|
46
|
Mackness M, Mackness B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 2015; 567:12-21. [PMID: 25965560 DOI: 10.1016/j.gene.2015.04.088] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022]
Abstract
Human PON1 is a HDL-associated lipolactonase capable of preventing LDL and cell membrane oxidation and is therefore considered to be atheroprotective. PON1 contributes to the antioxidative function of HDL and reductions in HDL-PON1 activity, prevalent in a wide variety of diseases with an inflammatory component, are believed to lead to dysfunctional HDL which can promote inflammation and atherosclerosis. However, PON1 is multifunctional and may contribute to other HDL functions such as in innate immunity, preventing infection by quorum sensing gram negative bacteria by destroying acyl lactone mediators of quorum sensing, and putative new roles in cancer development and the promotion of healthy ageing. In this review we explore the physiological roles of PON1 in disease development, as well as PON1 gene and protein structure, promiscuous activities and the roles of SNPs and ethnicity in determining PON1 activity.
Collapse
Affiliation(s)
- Mike Mackness
- Avenida Príncipe D'España, Miami Platja, 43892 Tarragona, Spain.
| | - Bharti Mackness
- Avenida Príncipe D'España, Miami Platja, 43892 Tarragona, Spain
| |
Collapse
|
47
|
E. Abdel-Salam OM, Youness ER, Mohammed NA, Elhamed WAA. Nuclear Factor-Kappa B and Other Oxidative Stress Biomarkers in Serum of Autistic Children. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojmip.2015.51002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Eren E, Yılmaz N, Aydin O, Ellidağ HY. Anticipatory role of high density lipoprotein and endothelial dysfunction: an overview. Open Biochem J 2014; 8:100-6. [PMID: 25598849 PMCID: PMC4293742 DOI: 10.2174/1874091x01408010100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/01/2023] Open
Abstract
High Density Lipoprotein (HDL) has been witnessed to possess a range of different functions that contribute to its atheroprotective effects. These functions are: the promotion of macrophage cholesterol efflux, reverse cholesterol transport, anti-inflammatory, anti-thrombotic, anti-apoptotic, pro-fibrinolytic and anti-oxidative functions. Paraoxonase 1 (PON1) is an HDL associated enzyme esterase/homocysteinethiolactonase that contributes to the anti-oxidant and anti-atherosclerotic capabilities of HDL. PON1 is directly involved in the etiopathogenesis of atherosclerosis through the modulation of nitric oxide (NO) bioavailability. The aim of this review is to summarize the role of HDL on endothelial homeostasis, and also to describe the recently characterized molecular pathways involved.
Collapse
Affiliation(s)
- Esin Eren
- Laboratory of Atatürk Hospital, Antalya/Turkey
| | - Necat Yılmaz
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya/Turkey
| | - Ozgur Aydin
- Laboratory of Batman Maternity and Children's Hospital, Batman/Turkey
| | - Hamit Y Ellidağ
- Central Laboratories of Antalya Education and Research Hospital of Ministry of Health, Antalya/Turkey
| |
Collapse
|
49
|
Ding J, Chen Q, Zhuang X, Feng Z, Xu L, Chen F. Low paraoxonase 1 arylesterase activity and high von Willebrand factor levels are associated with severe coronary atherosclerosis in patients with non-diabetic stable coronary artery disease. Med Sci Monit 2014; 20:2421-9. [PMID: 25420483 PMCID: PMC4254670 DOI: 10.12659/msm.890911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Paraoxonase 1 (PON1) activity and von Willebrand factor (VWF) release are associated with lesion initiation in atherosclerosis. Diabetes can complicate coronary artery disease (CAD) due to the production of advanced glycation end products. This study evaluated PON1 activity and VWF levels in non-post-acute coronary syndrome, stable CAD (SCAD) patients without diabetes. Material/Methods Non-diabetic SCAD patients and patients experiencing acute stress periods were selected (n=130). Forty-seven cases with normal coronary angiography and 50 healthy individuals served as controls. The non-diabetic SCAD group was then stratified into single-vessel lesions, multiple-vessel lesions, and mild or severe luminal stenosis according to the number and the degree of luminal stenoses. Serum PON1 paraoxonase and arylesterase activities, and plasma VWF levels were measured, as well as serum total cholesterol, total triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and apolipoprotein A1. PON1 arylesterase activity was detected with an ordinary chemistry system using a novel phenylacetate derivative. Results Both PON1 paraoxonase and arylesterase were lower in the non-diabetic SCAD group, but VWF levels were higher (versus controls, all P<0.001). PON1 paraoxonase activity (OR=0.991), PON1 arylesterase activity (OR=0.981), and VWF (OR 2.854) influenced SCAD in multiple logistic regression. Decreased PON1 arylesterase activity and increased VWF levels were associated with severe atherosclerosis in non-diabetic SCAD patients. We also observed a slight negative correlation between VWF and PON1 paraoxonase/arylesterase. Conclusions PON1 and VWF are detectable markers that may predict the severity of stenoses, ideally facilitating a non-diabetic SCAD diagnosis before the sudden onset of life-threatening symptoms.
Collapse
Affiliation(s)
- Jieying Ding
- Department of Clinical Laboratories, Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China (mainland)
| | - Qizhi Chen
- Department of Cardiology, Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China (mainland)
| | - Xing Zhuang
- Department of Clinical Laboratories, Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China (mainland)
| | - Zhilei Feng
- Department of Clinical Laboratories, Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China (mainland)
| | - Lili Xu
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China (mainland)
| | - Fuxiang Chen
- Department of Clinical Laboratories, Ninth People's Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
50
|
Cohen E, Aviram M, Khatib S, Artoul F, Rabin A, Mannheim D, Karmeli R, Salamon T, Vaya J. Human carotid plaque phosphatidylcholine specifically interacts with paraoxonase 1, increases its activity, and enhances its uptake by macrophage at the expense of its binding to HDL. Free Radic Biol Med 2014; 76:14-24. [PMID: 25091896 DOI: 10.1016/j.freeradbiomed.2014.07.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Abstract
Human carotid atherosclerotic plaque is in direct contact with circulatory blood components. Thus, plaque and blood components may affect each other. The current study presents the effects of plaque chloroform:methanol (C:M) extract on the HDL-associated enzyme paraoxnase 1 (PON1). This study is part of our investigation on the mutual effects of the interactions between atherosclerotic lesions and blood components. Recombinant PON1 (rePON1) was incubated with the human carotid plaques C:M extract and PON1 activities were analyzed. Lactonase and paraoxonase activities were elevated due to C:M treatment, by 140 and by 69%, respectively. Analytical chemistry analyses revealed specific phosphatidylcholines (PCs) as the plaque active components. Tryptophan fluorescence quenching assay, together with molecular docking, shows that PON1 activity is enhanced in correlation with the level of PC affinity to PON1. Molecular docking revealed that PCs interact specifically with H2-PON1 α-helix, which together with H1 enzyme α-helix links the protein to the HDL surface. These findings are supported by additional results from the PON1 ∆20 mutant that lack its H1-α-helix. Incubation of this mutant with the plaque C:M extract increased PON1 activity by only 20%, much less than the wild-type PON1 that elevated PON1 activity at the same concentration by as much as 95%. Furthermore, as much as the affinity of the enzyme to the PC was augmented, the ability of PON1 to bind to the HDL particle decreased. Finally, PON1 interaction with PC enhance its uptake into the macrophage cytoplasm. In conclusions, Specific lesion phosphatidylcholines (PCs) present in the human carotid plaque significantly enhance PON1 catalytic activities due to their interaction with the enzyme. Such a lesion׳s PC-PON1 interaction, in turn, competes with HDL PCs and enhances PON1 uptake by macrophage at the expense of PON1 binding to the HDL.
Collapse
Affiliation(s)
- Elad Cohen
- Department of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, and Tel Hai College, Israel; Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| | - Michael Aviram
- Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| | - Soliman Khatib
- Department of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, and Tel Hai College, Israel
| | - Fadi Artoul
- Department of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, and Tel Hai College, Israel
| | - Asaf Rabin
- Department of Vascular Surgery, Carmel Medical Center, Haifa, Israel
| | - Dalit Mannheim
- Department of Vascular Surgery, Carmel Medical Center, Haifa, Israel
| | - Ron Karmeli
- Department of Vascular Surgery, Carmel Medical Center, Haifa, Israel
| | - Tal Salamon
- Vascular Surgery Unit, Ziv Medical center, Zefat, Israel
| | - Jacob Vaya
- Department of Oxidative Stress and Human Diseases, MIGAL-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, and Tel Hai College, Israel.
| |
Collapse
|