1
|
Guo Z, Liu Y, Luo Y. Mechanisms of carotenoid intestinal absorption and the regulation of dietary lipids: lipid transporter-mediated transintestinal epithelial pathways. Crit Rev Food Sci Nutr 2022; 64:1791-1816. [PMID: 36069234 DOI: 10.1080/10408398.2022.2119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary lipids are key ingredients during cooking, processing, and seasoning of carotenoid-rich fruits and vegetables, playing vitals in affecting the absorption and utilization of carotenoids for achieving their health benefits. Besides, dietary lipids have also been extensively studied to construct various delivery systems for carotenoids, such as micro/nanoparticles, micro/nanoemulsions, and liposomes. Currently, the efficacies of these techniques on improving carotenoid bioavailability are often evaluated using the micellization rate or "bioaccessibility" based on in vitro models. However, recent studies have found that dietary lipids may also affect the carotenoid uptake via intestinal epithelial cells and the efflux of intracellular chyle particles via lipid transporters. An increasing number of studies reveal the varied impact of different dietary lipids on the absorption of different carotenoids and some lipids may even have an inhibitory effect. Consequently, it is necessary to clarify the relationship between the addition of dietary lipids and the intestinal absorption of carotenoid to fully understand the role of lipids during this process. This paper first introduces the intestinal absorption mechanism of carotenoids, including the effect of bile salts and lipases on mixed micelles, the types and regulation of lipid transporters, intracellular metabolizing enzymes, and the efflux process of chyle particles. Then, the regulatory mechanism of dietary lipids during intestinal carotenoid absorption is further discussed. Finally, the importance of selecting the dietary lipids for the absorption and utilization of different carotenoids and the design of an efficient delivery carrier are emphasized. This review provides suggestions for precise dietary carotenoid supplementation and offere an important reference for constructing efficient transport carriers for liposoluble nutrients.
Collapse
Affiliation(s)
- Zixin Guo
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
2
|
Liu Y, Mihna D, Izem L, Morton RE. Both full length-cholesteryl ester transfer protein and exon 9-deleted cholesteryl ester transfer protein promote triacylglycerol storage in cultured hepatocytes. Lipids 2022; 57:69-79. [PMID: 34866179 PMCID: PMC9060302 DOI: 10.1002/lipd.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
We previously reported that overexpression of full-length cholesteryl ester transfer protein (FL-CETP), but not its exon 9-deleted variant (∆E9-CETP), in an adipose cell line reduces their triacylglycerol (TAG) content. This provided mechanistic insight into several in vivo studies where FL-CETP levels are inversely correlated with adiposity. However, increased FL-CETP is also associated with elevated hepatic lipids, suggesting that the effect of CETP on cellular lipid metabolism may be tissue-specific. Here, we directly investigated the role of FL-CETP and ∆E9-CETP in hepatic lipid metabolism. FL- or ∆E9-CETP was overexpressed in HepG2-C3A by adenovirus transduction. Overexpression of either FL or ∆E9-CETP in hepatocytes increased cellular TAG mass by 25% but reduced TAG secretion. This cellular TAG was contained in larger and more numerous lipid droplets. Analysis of TAG synthetic and catabolic pathways showed that this elevated TAG content was due to increased incorporation of fatty acid into TAG (24%), and higher de novo synthesis of fatty acid (50%) and TAG from acetate (40%). siRNA knockdown of CETP had the opposite effect on TAG synthesis and lipogenesis, and decreased cellular TAG. This novel increase in cellular TAG by FL-CETP overexpression was reproduced in Caco-2 intestinal epithelial cells. We conclude that, unlike that seen in adipocyte cells, overexpression of either CETP isoform in lipoprotein-secreting cells promotes the accumulation of TAG. These data suggest that the in vivo correlation between CETP levels and hepatic steatosis can be explained, in part, by a direct effect of CETP on hepatocyte cellular metabolism.
Collapse
Affiliation(s)
- Yan Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Daniel Mihna
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Nakano T, Inoue I, Takenaka Y, Ito R, Kotani N, Sato S, Nakano Y, Hirasaki M, Shimada A, Murakoshi T. Ezetimibe impairs transcellular lipid trafficking and induces large lipid droplet formation in intestinal absorptive epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158808. [PMID: 32860884 DOI: 10.1016/j.bbalip.2020.158808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 01/26/2023]
Abstract
Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1) protein, which mediates intracellular cholesterol trafficking from the brush border membrane to the endoplasmic reticulum, where chylomicron assembly takes place in enterocytes or in the intestinal absorptive epithelial cells. Cholesterol is a minor lipid constituent of chylomicrons; however, whether or not a shortage of cholesterol attenuates chylomicron assembly is unknown. The aim of this study was to examine the effect of ezetimibe, a potent NPC1L1 inhibitor, on trans-epithelial lipid transport, and chylomicron assembly and secretion in enterocytes. Caco-2 cells, an absorptive epithelial model, grown onto culture inserts were given lipid micelles from the apical side, and chylomicron-like triacylglycerol-rich lipoprotein secreted basolaterally were analyzed after a 24-h incubation period in the presence of ezetimibe up to 50 μM. The secretion of lipoprotein and apolipoprotein B48 were reduced by adding ezetimibe (30% and 34%, respectively). Although ezetimibe allowed the cells to take up cholesterol normally, the esterification was abolished. Meanwhile, oleic acid esterification was unaffected. Moreover, ezetimibe activated sterol regulatory element-binding protein 2 by approximately 1.5-fold. These results suggest that ezetimibe limited cellular cholesterol mobilization required for lipoprotein assembly. In such conditions, large lipid droplet formation in Caco-2 cells and the enterocytes of mice were induced, implying that unprocessed triacylglycerol was sheltered in these compartments. Although ezetimibe did not reduce the post-prandial lipid surge appreciably in triolein-infused mice, the results of the present study indicated that pharmacological actions of ezetimibe may participate in a novel regulatory mechanism for the efficient chylomicron assembly and secretion.
Collapse
Affiliation(s)
- Takanari Nakano
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan.
| | - Ikuo Inoue
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yasuhiro Takenaka
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan; Department of Physiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rina Ito
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Norihiro Kotani
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Sawako Sato
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yuka Nakano
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Masataka Hirasaki
- Division of Developmental Biology, Research Center for Genomic Medicine, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Akira Shimada
- Department of Diabetes and Endocrinology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Takayuki Murakoshi
- Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
4
|
Hu L, Li J, Cai H, Yao W, Xiao J, Li YP, Qiu X, Xia H, Peng T. Avasimibe: A novel hepatitis C virus inhibitor that targets the assembly of infectious viral particles. Antiviral Res 2017; 148:5-14. [PMID: 29074218 DOI: 10.1016/j.antiviral.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/15/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals (DAAs), which target hepatitis C virus (HCV) proteins, have exhibited impressive efficacy in the management of chronic hepatitis C. However, the concerns regarding high costs, drug resistance mutations and subsequent unexpected side effects still call for the development of host-targeting agents (HTAs) that target host factors involved in the viral life cycle and exhibit pan-genotypic antiviral activity. Given the close relationship between lipid metabolism and the HCV life cycle, we investigated the anti-HCV activity of a series of lipid-lowering drugs that have been approved by government administrations or proven safety in clinical trials. Our results showed that avasimibe, an inhibitor of acyl coenzyme A:cholesterol acyltransferase (ACAT), exhibited marked pan-genotypic inhibitory activity and superior inhibition against HCV when combined with DAAs. Moreover, avasimibe significantly impaired the assembly of infectious HCV virions. Mechanistic studies demonstrated that avasimibe induced downregulation of microsomal triglyceride transfer protein expression, resulting in reduced apolipoprotein E and apolipoprotein B secretion. Therefore, the pan-genotypic antiviral activity and clinically proven safety endow avasimibe exceptional potential as a candidate for combination therapy with DAAs. In addition, the discovery of the antiviral properties of ACAT inhibitors also suggests that inhibiting the synthesis of cholesteryl esters might be an additional target for the therapeutic intervention for chronic HCV infection.
Collapse
Affiliation(s)
- Longbo Hu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinqian Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hua Cai
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wenxia Yao
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Ping Li
- Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Huimin Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Ganai AA, Farooqi H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed Pharmacother 2015; 76:30-8. [PMID: 26653547 DOI: 10.1016/j.biopha.2015.10.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/20/2015] [Indexed: 01/06/2023] Open
|
6
|
Mohammadi A, Najar AG, Khoshi A. Effect of urotensin II on apolipoprotein B100 and apolipoprotein A-I expression in HepG2 cell line. Adv Biomed Res 2014; 3:22. [PMID: 24600602 PMCID: PMC3929015 DOI: 10.4103/2277-9175.124661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/19/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Increased apolipoprotein B100 (apo B) and decreased apolipoprotein A-I (apo A-I) production are important risk factors in atherosclerosis. Urotensin II (UII), as the most potent vasoconstrictor in human, is related with hypertension and probably atherosclerosis. Because of the relationship between the hypertension and lipoprotein metabolism in atherosclerosis, the aim of this study was to test the effect of urotensin II on apo B and apo A-I expression in hepatic (HepG2) cell line. MATERIALS AND METHODS HepG2 cells were treated with 10, 50, 100, and 200 nmol/L of urotensin II (n = 6). Relative apo B and apo A-I messenger RNA (mRNA) levels in conditioned media, normalized to glyceraldehyde-3-phosphate dehydrogenase, were measured with quantitative real-time polymerase chain reaction method. In addition, apo B and apo A-I levels were also estimated and compared with the controls using the western blotting method. Data were analyzed statistically by ANOVA and non-parametric tests. RESULTS The apo B mRNA levels were not increased significantly following the treatment with UII. However, apo B protein levels were increased significantly after the treatment with urotensin II, especially at 100 and 200 nmol/L. The apo A-I mRNA and protein levels in conditioned media also were not significantly changed. However, there was a significant decrease in apo A-I mRNA and protein levels at 200 nM UII. CONCLUSIONS UII might increase apo B at protein level probably through participating factors in its synthesis and/ or stability/degradation. In addition, UII may have decreasing effect at more than 200 nM concentrations on apo A-I.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Biochemistry, Physiology Research Center, Kerman, Iran
| | | | - Amirhosein Khoshi
- Department of Biochemistry, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Yu CY, Theusch E, Lo K, Mangravite LM, Naidoo D, Kutilova M, Medina MW. HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism. Hum Mol Genet 2013; 23:319-32. [PMID: 24001602 DOI: 10.1093/hmg/ddt422] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGCR) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway and is inhibited by statins, a class of cholesterol-lowering drugs. Expression of an alternatively spliced HMGCR transcript lacking exon 13, HMGCR13(-), has been implicated in the variation of plasma LDL-cholesterol (LDL-C) and is the single most informative molecular marker of LDL-C response to statins. Given the physiological importance of this transcript, our goal was to identify molecules that regulate HMGCR alternative splicing. We recently reported gene expression changes in 480 lymphoblastoid cell lines (LCLs) after in vitro simvastatin treatment, and identified a number of statin-responsive genes involved in mRNA splicing. Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) was chosen for follow-up since rs3846662, an HMGCR SNP that regulates exon 13 skipping, was predicted to alter an HNRNPA1 binding motif. Here, we not only demonstrate that rs3846662 modulates HNRNPA1 binding, but also that sterol depletion of human hepatoma cell lines reduced HNRNPA1 mRNA levels, an effect that was reversed with sterol add-back. Overexpression of HNRNPA1 increased the ratio of HMGCR13(-) to total HMGCR transcripts by both directly increasing exon 13 skipping in an allele-related manner and specifically stabilizing the HMGCR13(-) transcript. Importantly, HNRNPA1 overexpression also diminished HMGCR enzyme activity, enhanced LDL-C uptake and increased cellular apolipoprotein B (APOB). rs1920045, an SNP associated with HNRNPA1 exon 8 alternative splicing, was also associated with smaller statin-induced reduction in total cholesterol from two independent clinical trials. These results suggest that HNRNPA1 plays a role in the variation of cardiovascular disease risk and statin response.
Collapse
Affiliation(s)
- Chi-Yi Yu
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Assini JM, Mulvihill EE, Sutherland BG, Telford DE, Sawyez CG, Felder SL, Chhoker S, Edwards JY, Gros R, Huff MW. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr⁻/⁻ mice. J Lipid Res 2012; 54:711-724. [PMID: 23269394 DOI: 10.1194/jlr.m032631] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity-associated chronic inflammation contributes to metabolic dysfunction and propagates atherosclerosis. Recent evidence suggests that increased dietary cholesterol exacerbates inflammation in adipose tissue and liver, contributing to the proatherogenic milieu. The ability of the citrus flavonoid naringenin to prevent these cholesterol-induced perturbations is unknown. To assess the ability of naringenin to prevent the amplified inflammatory response and atherosclerosis induced by dietary cholesterol, male Ldlr⁻/⁻ mice were fed either a cholesterol-enriched high-fat or low-fat diet supplemented with 3% naringenin for 12 weeks. Naringenin, through induction of hepatic fatty acid (FA) oxidation and attenuation of FA synthesis, prevented hepatic steatosis, hepatic VLDL overproduction, and hyperlipidemia induced by both cholesterol-rich diets. Naringenin attenuated hepatic macrophage infiltration and inflammation stimulated by dietary cholesterol. Insulin resistance, adipose tissue expansion, and inflammation were alleviated by naringenin. Naringenin attenuated the cholesterol-induced formation of both foam cells and expression of inflammatory markers in peritoneal macrophages. Naringenin significantly decreased atherosclerosis and inhibited the formation of complex lesions, which was associated with normalized aortic lipids and a reversal of aortic inflammation. We demonstrate that in mice fed cholesterol-enriched diets, naringenin attenuates peripheral and systemic inflammation, leading to protection from atherosclerosis. These studies offer a therapeutically relevant alternative for the prevention of cholesterol-induced metabolic dysregulation.
Collapse
Affiliation(s)
- Julia M Assini
- Vascular Biology, Robarts Research Institute; Department of Biochemistry
| | - Erin E Mulvihill
- Vascular Biology, Robarts Research Institute; Department of Biochemistry
| | | | - Dawn E Telford
- Vascular Biology, Robarts Research Institute; Department of Medicine
| | - Cynthia G Sawyez
- Vascular Biology, Robarts Research Institute; Department of Medicine
| | - Sarah L Felder
- Vascular Biology, Robarts Research Institute; Department of Biochemistry
| | - Sanjiv Chhoker
- Vascular Biology, Robarts Research Institute; Department of Biochemistry
| | - Jane Y Edwards
- Vascular Biology, Robarts Research Institute; Department of Medicine
| | - Robert Gros
- Vascular Biology, Robarts Research Institute; Department of Medicine; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Murray W Huff
- Vascular Biology, Robarts Research Institute; Department of Biochemistry; Department of Medicine
| |
Collapse
|
9
|
Lu N, Li Y, Qin H, Zhang YL, Sun CH. Gossypin up-regulates LDL receptor through activation of ERK pathway: a signaling mechanism for the hypocholesterolemic effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11526-11532. [PMID: 19007237 DOI: 10.1021/jf802607x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hypercholesterolemia is one of the major risk factors for the development of cardiovascular disease. This study aims to elucidate the effect of gossypin on cholesterol metabolism in HepG2 cells. Results indicated that gossypin significantly reduced the total cholesterol concentration in a dose-dependent manner. There was a time- and dose-dependent increase in the expression of low-density lipoprotein receptor (LDLR) protein. However, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol synthesis, was not affected by gossypin. Moreover, gossypin had no effect on nuclear sterol regulatory element binding proteins (SREBP)-2 abundance. The activity of gossypin on LDLR expression was inhibited by the extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting analysis revealed that gossypin treatment dose- and time-dependently increased ERK activation and preceded the up-regulation of LDLR expression. Collectively, these new findings identify gossypin as a new hypocholesterolemic agent that up-regulates LDLR expression independent of SREBP-2 but is dependent on ERK activation.
Collapse
Affiliation(s)
- Na Lu
- Department of Nutrition and Food Hygiene, Harbin Medical University, P. R. China
| | | | | | | | | |
Collapse
|
10
|
Hooper AJ, van Bockxmeer FM, Burnett JR. Monogenic Hypocholesterolaemic Lipid Disorders and Apolipoprotein B Metabolism. Crit Rev Clin Lab Sci 2008; 42:515-45. [PMID: 16390683 DOI: 10.1080/10408360500295113] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of human lipoprotein metabolism. Moreover, the assembly and secretion of apoB-containing lipoproteins is a complex process. Increased plasma concentrations of apoB-containing lipoproteins are an important risk factor for the development of atherosclerotic coronary heart disease. In contrast, decreased levels of, but not the absence of, these apoB-containing lipoproteins is associated with resistance to atherosclerosis and potential long life. The study of inherited monogenic dyslipidaemias has been an effective means to elucidate key metabolic steps and biologically relevant mechanisms. Naturally occurring gene mutations in affected families have been useful in identifying important domains of apoB and microsomal triglyceride transfer protein (MTP) governing the metabolism of apoB-containing lipoproteins. Truncation-causing mutations in the APOB gene cause familial hypobetalipoproteinaemia, whereas mutations in MTP result in abetalipoproteinaemia; both rare conditions are characterised by marked hypocholesterolaemia. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the key biochemical, clinical, metabolic and genetic features of the monogenic hypocholesterolaemic lipid disorders affecting apoB metabolism.
Collapse
Affiliation(s)
- Amanda J Hooper
- School of Surgery and Pathology, University of Western Australia, Crawley, Australia
| | | | | |
Collapse
|
11
|
Allister EM, Mulvihill EE, Barrett PHR, Edwards JY, Carter LP, Huff MW. Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor. J Lipid Res 2008; 49:2218-29. [PMID: 18587069 DOI: 10.1194/jlr.m800297-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK(erk)) pathway. In the present study, we determined whether naringenin-induced signaling required the insulin receptor (IR) and sensitized the cell to the effects of insulin, and whether the kinetics of apoB assembly and secretion in cells exposed to naringenin were similar to those of insulin. Immunoblot analysis revealed that insulin stimulated maximal phosphorylation of IR and IR substrate-1 after 10 min, whereas naringenin did not affect either at any time point up to 60 min. The combination of naringenin and submaximal concentrations of insulin potentiated extracellular-regulated kinase 1/2 activation and enhanced upregulation of the LDL receptor, downregulation of microsomal triglyceride transfer protein expression, and inhibition of apoB-100 secretion. Multicompartmental modeling of apoB pulse-chase studies revealed that attenuation of secreted radiolabeled apoB in naringenin- or insulin-treated cells was similar under lipoprotein-deficient or oleate-stimulated conditions. Naringenin and insulin both stimulated intracellular apoB degradation via a kinetically defined rapid pathway. Therefore, naringenin, like insulin, inhibits apoB secretion through activation of both PI3-K and MAPK(erk) signaling, resulting in similar kinetics of apoB secretion. However, the mechanism for naringenin-induced signaling is independent of the IR. Naringenin represents a possible strategy for reduction of hepatic apoB secretion, particularly in the setting of insulin resistance.
Collapse
Affiliation(s)
- Emma M Allister
- Robarts Research Institute, Departments of Medicine and Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Temel RE, Hou L, Rudel LL, Shelness GS. ACAT2 stimulates cholesteryl ester secretion in apoB-containing lipoproteins. J Lipid Res 2007; 48:1618-27. [PMID: 17438337 DOI: 10.1194/jlr.m700109-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies in nonhuman primates revealed a striking positive correlation between liver cholesteryl ester (CE) secretion rate and the development of coronary artery atherosclerosis. CE incorporated into hepatic VLDL is necessarily synthesized by ACAT2, the cholesterol-esterifying enzyme in hepatocytes. We tested the hypothesis that the level of ACAT2 expression, in concert with cellular cholesterol availability, affects the CE content of apolipoprotein B (apoB)-containing lipoproteins. In a model system of lipoprotein secretion using COS cells cotransfected with microsomal triglyceride transfer protein and truncated forms of apoB, ACAT2 expression resulted in a 3-fold increase in microsomal ACAT activity and a 4-fold increase in the radiolabeled CE content of apoB-lipoproteins. After cholesterol-cyclodextrin (Chol-CD) treatment, CE secretion was increased by 27-fold in ACAT2-transfected cells but by only 7-fold in control cells. Chol-CD treatment also caused the percentage of CE in the apoB-lipoproteins to increase from 3% to 33% in control cells and from 16% to 54% in ACAT2-transfected cells. In addition, ACAT2-transfected cells secreted 3-fold more apoB than control cells. These results indicate that under all conditions of cellular cholesterol availability tested, the relative level of ACAT2 expression affects the CE content and, hence, the potential atherogenicity, of nascent apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
13
|
Kitamura A, Imai S, Yabuki M, Komuro S. The new acyl-CoA cholesterol acyltransferase inhibitor SMP-797 does not interact with statins via OATP1B1 in human cryopreserved hepatocytes and oocytes expressing systems. Biopharm Drug Dispos 2007; 28:517-25. [DOI: 10.1002/bdd.581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Miwa Y, Mitsuzumi H, Yamada M, Arai N, Tanabe F, Okada K, Kubota M, Chaen H, Sunayama T, Kibata M. Suppression of apolipoprotein B secretion from HepG2 cells by glucosyl hesperidin. J Nutr Sci Vitaminol (Tokyo) 2006; 52:223-31. [PMID: 16967768 DOI: 10.3177/jnsv.52.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Our previous study has shown that a soluble hesperidin derivative, glucosyl hesperidin (G-hesperidin), preferentially lowers serum triglyceride (TG) level in hypertriglyceridemic subjects through the improvement of very low-density lipoprotein (VLDL) metabolic abnormality. G-Hesperidin has also been found to decrease an elevated serum apolipoprotein B (apo B) level in the hypertriglyceridemic subjects, suggesting a possibility that this compound suppresses excess VLDL secretion in the liver. In the present study, to gain a better understanding of possible mechanisms by which G-hesperidin lowers serum TG, we examined whether this derivative affects apo B secretion from HepG2 human hepatoma cells, a model of hepatic VLDL secretion. As a result, G-hesperidin significantly reduced apo B secretion from the oleate-stimulated HepG2 cells. Furthermore, G-hesperidin significantly suppressed apo B secretion only in the oleate-stimulated cells and failed to act on the cells incubated without oleate. In the oleate-stimulated cells, G-hesperidin significantly decreased cellular cholesteryl ester (CE), although it had no effect on cellular TG or free cholesterol amounts. Moreover, the oleate-stimulated cells had a decrease in cellular apo B amounts by G-hesperidin exposure. These findings indicate that G-hesperidin down-regulates the assembly of apo B-containing lipoproteins via the reduction of CE synthesis augmented with oleate and results in suppressing excess apo B secretion from the cells. This effect is speculated to be associated with the improvement of VLDL metabolic abnormality in hypertriglyceridemic subjects and considered as a mechanism of lowering serum TG.
Collapse
Affiliation(s)
- Yoshikatsu Miwa
- Hayashibara Biochemical Laboratories, Inc., 1-2-3 Shimoishii, Okayama 700-0907, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ramakrishnan R. Studying apolipoprotein turnover with stable isotope tracers: correct analysis is by modeling enrichments. J Lipid Res 2006; 47:2738-53. [PMID: 16951401 PMCID: PMC3276318 DOI: 10.1194/jlr.m600302-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein kinetic parameters are determined from mass spectrometry data after administering mass isotopes of amino acids, which label proteins endogenously. The standard procedure is to model the isotopic content of the labeled precursor amino acid and of proteins of interest as tracer-to-tracee ratio (TTR). It is shown here that even though the administered tracer alters amino acid mass and turnover, apolipoprotein synthesis is unaltered and hence the apolipoprotein system is in a steady state, with the total (labeled plus unlabeled) masses and fluxes remaining constant. The correct model formulation for apolipoprotein kinetics is shown to be in terms of tracer enrichment, not of TTR. The needed mathematical equations are derived. A theoretical error analysis is carried out to calculate the magnitude of error in published results using TTR modeling. It is shown that TTR modeling leads to a consistent underestimation of the fractional synthetic rate. In constant-infusion studies, the bias error percent is shown to equal approximately the plateau enrichment, generally <10%. It is shown that, in bolus studies, the underestimation error can be larger. Thus, for mass isotope studies with endogenous tracers, apolipoproteins are in a steady state and the data should be fitted by modeling enrichments.
Collapse
Affiliation(s)
- Rajasekhar Ramakrishnan
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
16
|
|
17
|
Wu J, Fishelevich R, Rodriguez A, Doshi R. Update on the role of acyl-CoA:cholesterol acyltransferase inhibitors in atherosclerosis. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.11.1655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Vidal R, Hernandez-Vallejo S, Pauquai T, Texier O, Rousset M, Chambaz J, Demignot S, Lacorte JM. Apple procyanidins decrease cholesterol esterification and lipoprotein secretion in Caco-2/TC7 enterocytes. J Lipid Res 2004; 46:258-68. [PMID: 15576849 DOI: 10.1194/jlr.m400209-jlr200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Decrease of plasma lipid levels by polyphenols was linked to impairment of hepatic lipoprotein secretion. However, the intestine is the first epithelium that faces dietary compounds, and it contributes to lipid homeostasis by secreting triglyceride-rich lipoproteins during the postprandial state. The purpose of this study was to examine the effect of apple and wine polyphenol extracts on lipoprotein synthesis and secretion in human Caco-2/TC7 enterocytes apically supplied with complex lipid micelles. Our results clearly demonstrate that apple, but not wine, polyphenol extract dose-dependently decreases the esterification of cholesterol and the enterocyte secretion of lipoproteins. Apple polyphenols decrease apolipoprotein B (apoB) secretion by inhibiting apoB synthesis without increasing the degradation of the newly synthesized protein. Under our conditions, cholesterol uptake, apoB mRNA, and microsomal triglyceride protein activity were not modified by apple polyphenols. The main monomers present in our mixture did not interfere with the intestinal lipid metabolism. By contrast, apple procyanidins reproduced the inhibition of both cholesteryl ester synthesis and lipoprotein secretion. Overall, our results are compatible with a mechanism of action of polyphenols resulting in impaired lipid availability that could induce the inhibition of intestinal lipoprotein secretion and contribute to the hypolipidemic effect of these compounds in vivo.
Collapse
Affiliation(s)
- Romain Vidal
- Unité Mixte de Recherche 505, Institut National de la Santé et de la Recherche Médicale-Université Pierre et Marie Curie/Ecole Pratique des Hautes Etudes, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liang JJ, Oelkers P, Guo C, Chu PC, Dixon JL, Ginsberg HN, Sturley SL. Overexpression of human diacylglycerol acyltransferase 1, acyl-coa:cholesterol acyltransferase 1, or acyl-CoA:cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells. J Biol Chem 2004; 279:44938-44. [PMID: 15308631 DOI: 10.1074/jbc.m408507200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.
Collapse
Affiliation(s)
- John J Liang
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kang SK, Chung TW, Lee JY, Lee YC, Morton RE, Kim CH. The hepatitis B virus X protein inhibits secretion of apolipoprotein B by enhancing the expression of N-acetylglucosaminyltransferase III. J Biol Chem 2004; 279:28106-12. [PMID: 15123606 DOI: 10.1074/jbc.m403176200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The X protein of hepatitis B virus (HBx) plays a major role on hepatocellular carcinoma (HCC). Apolipoprotein B (apoB) in the liver is an important glycoprotein for transportation of very low density lipoproteins and low density lipoproteins. Although lipid accumulation in the liver is known as one of the factors for the HCC, the relationship between HBx and apoB during the HCC development is poorly understood. To better understand the biological significance of HBx in HCC, liver Chang cells that specifically express HBx were established and characterized. In this study we demonstrate that overexpression of HBx significantly up-regulates the expression of UDP-N-acetylglucosamine:beta-d-mannoside-1,4-N-acetylglucosaminyltransferase-III (GnT-III), an enzyme that functions as a bisecting-N-acetylglucosamine (GlcNAc) transferase in apoB, and increases GnT-III promoter activity in a chloramphenicol acetyltransferase assay. GnT-III expression levels of HBx-transfected cells appeared to be higher than that of hepatocarcinoma cells as well as GnT-III-transfected cells, indicating that HBx may has a strong GnT-III promotor-enhancing activity. Intracellular levels of apoBs, which contained the increased bisecting GlcNAc, were accumulated in HBx-transfected liver cells. These cells as well as GnT-III-transfected liver cells revealed the inhibition of apoB secretion and the increased accumulation of intracellular triglyceride and cholesterol compared with vector-transfected cells. Moreover, overexpression of GnT-III and HBx in liver cells was shown to down-regulate the transcriptional level of microsomal triglyceride transfer protein, which regulates the assembly and secretion of apoB. Therefore, our study strongly suggested that the HBx increase in intracellular accumulation of aberrantly glycosylated apoB resulted in inhibition of secretion of apoB as well as intracellular lipid accumulation by elevating the expression of GnT-III.
Collapse
Affiliation(s)
- Sung-Koo Kang
- National Research Laboratory for Glycobiology, and Department of Biochemistry and Molecular Biology, College of Oriental Medicine, Dongguk University, Sukjang-Dong 707, Kyungju City, Kyungbuk 780-714, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Raal FJ, Marais AD, Klepack E, Lovalvo J, McLain R, Heinonen T. Avasimibe, an ACAT inhibitor, enhances the lipid lowering effect of atorvastatin in subjects with homozygous familial hypercholesterolemia. Atherosclerosis 2003; 171:273-9. [PMID: 14644397 DOI: 10.1016/j.atherosclerosis.2003.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study assessed the efficacy and safety of avasimibe (CI-1011), an inhibitor of acyl coenzyme A-cholesterol acyltransferase (ACAT) in subjects with homozygous familial hypercholesterolemia (HoFH). Twenty seven subjects were enrolled in a double-blind, randomized, 3-sequence crossover trial of atorvastatin 80 mg QD, avasimibe 750 mg QD, and the combined treatment of atorvastatin 80 mg QD and avasimibe 750 mg QD after a washout period of 4 weeks. Each treatment period was administered over 6 weeks for a total of 18 weeks. There were no significant lipid changes resulting from the administration of avasimibe monotherapy. Avasimibe in combination with atorvastatin resulted in a significantly better reduction of total cholesterol (TC) as compared to atorvastatin alone (-22% versus -18%) (P < 0.05). All other lipid changes were not statistically significant for combination therapy compared to atorvastatin monotherapy, however there were greater reductions in triglycerides (TG) (-24% versus -13%), low-density lipoprotein cholesterol (LDL-C) (-23% versus -19%), very low-density lipoprotein cholesterol (VLDL-C) (-24% versus -13%) and high-density lipoprotein cholesterol (HDL-C) (-11% versus -6%). Avasimibe may modestly enhance the lipid-reducing effect of atorvastatin by further inhibiting the production of intracellular cholesterol through mechanisms that appear to be compatible in this population.
Collapse
Affiliation(s)
- Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, University of the Witwatersrand, Johannesburg Hospital, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
22
|
Borradaile NM, de Dreu LE, Huff MW. Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 2003; 52:2554-61. [PMID: 14514640 DOI: 10.2337/diabetes.52.10.2554] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The flavonoid naringenin improves hyperlipidemia and hyperglycemia in streptozotocin-treated rats. In HepG2 human hepatoma cells, naringenin inhibits apolipoprotein B (apoB) secretion primarily by inhibiting microsomal triglyceride transfer protein and enhances LDL receptor (LDLr)-mediated apoB-containing lipoprotein uptake. Phosphatidylinositol 3-kinase (PI3K) activation by insulin increases sterol regulatory element-binding protein (SREBP)-1 and LDLr expression and inhibits apoB secretion in hepatocytes. Thus, we determined whether naringenin activates this pathway. Insulin and naringenin induced PI3K-dependent increases in cytosolic and nuclear SREBP-1 and LDLr expression. Similar PI3K-mediated increases in SREBP-1 were observed in McA-RH7777 rat hepatoma cells, which express predominantly SREBP-1c. Reductions in HepG2 cell media apoB with naringenin were partially attenuated by wortmannin, whereas the effect of insulin was completely blocked. Both treatments reduced apoB100 secretion in wild-type and LDLr(-/-) mouse hepatocytes to the same extent. Insulin and naringenin increased HepG2 cell PI3K activity and decreased insulin receptor substrate (IRS)-2 levels. In sharp contrast to insulin, naringenin did not induce tyrosine phosphorylation of IRS-1. We conclude that naringenin increases LDLr expression in HepG2 cells via PI3K-mediated upregulation of SREBP-1, independent of IRS-1 phosphorylation. Although this pathway may not regulate apoB secretion in primary hepatocytes, PI3K activation by this novel mechanism may explain the insulin-like effects of naringenin in vivo.
Collapse
Affiliation(s)
- Nica M Borradaile
- Department of Medicine and the Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
23
|
Higashi Y, Itabe H, Fukase H, Mori M, Fujimoto Y, Takano T. Transmembrane lipid transfer is crucial for providing neutral lipids during very low density lipoprotein assembly in endoplasmic reticulum. J Biol Chem 2003; 278:21450-8. [PMID: 12670935 DOI: 10.1074/jbc.m301376200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.
Collapse
Affiliation(s)
- Yusuke Higashi
- Department of Molecular Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Suarashi, Sagamiko, Tsukui, Kanagawa 199-0195, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Denis M, Bissonnette R, Haidar B, Krimbou L, Bouvier M, Genest J. Expression, regulation, and activity of ABCA1 in human cell lines. Mol Genet Metab 2003; 78:265-74. [PMID: 12706378 DOI: 10.1016/s1096-7192(03)00020-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in the ATP-binding cassette transporter A1 (ABCA1) gene cause familial high-density lipoprotein deficiency and Tangier disease. ABCA1 plays a crucial role in active apolipoprotein A-I (apoA-I) lipidation, a key step in reverse cholesterol transport. We compared ABCA1 transcriptional regulation and cholesterol efflux in human skin fibroblasts, monocyte-derived macrophages and hepatocytes (HepG2). 8-Br-cAMP did not increase ABCA1 transcription in these tissues compared to mouse macrophages. We found that ABCA1 is differentially regulated among tissues. While transcription in HepG2 appears to be constitutive, sterols stimulate ABCA1 transcription in fibroblasts and monocyte-derived macrophages. ApoA-I promoted cholesterol efflux in fibroblasts, macrophages, and HepG2. Cholesterol homeostasis in fibroblasts is tightly regulated, and ABCA1 mRNA closely follows the cellular mass of free cholesterol (dose- and time-dependent manner). To further determine the mechanism used by fibroblasts to maintain sterol balance, we used a competitive inhibition approach with geranylgeranyl pyrophosphate (GGPP) to block the LXR induction pathway. GGPP blocked basal, 22-(R)-hydroxycholesterol- and cholesterol-induced ABCA1 expression. Taken together, these results demonstrate that: (1) ABCA1 expression varies among tissues, and (2) cholesterol conversion to hydroxycholesterol is an important mechanism for the maintenance of cholesterol homeostasis in fibroblasts.
Collapse
Affiliation(s)
- Maxime Denis
- Cardiovascular Genetics Laboratory, McGill University Health Center, Royal Victoria Hospital, 687 Pine Avenue West, Montréal, Quebec, Canada H3A 1A1
| | | | | | | | | | | |
Collapse
|
25
|
Sliskovic DR, Picard JA, Krause BR. ACAT inhibitors: the search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. PROGRESS IN MEDICINAL CHEMISTRY 2003; 39:121-71. [PMID: 12536672 DOI: 10.1016/s0079-6468(08)70070-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Drago R Sliskovic
- Pfizer Global Research and Development, Ann Arbor Laboratories, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
26
|
Heinonen TM. Acyl coenzyme A:cholesterol acyltransferase inhibition: potential atherosclerosis therapy or springboard for other discoveries? Expert Opin Investig Drugs 2002; 11:1519-27. [PMID: 12437499 DOI: 10.1517/13543784.11.11.1519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cholesterol is an essential building block without which humans and other animals could not exist. As with most necessities, under certain conditions, excess can sharply tip the scale and lead to an unfavourable outcome. Excess cholesterol is stored as cholesteryl ester through an esterification process regulated in part by acyl coenzyme A:cholesterol acyltransferase (ACAT). ACAT is found in many tissue types which require the storage of cholesterol. Most notably, for cardiovascular disease ACAT activity is significant in intestinal and hepatic tissue and arterial macrophages. Several ACAT inhibitors have been investigated for their potential to favourably alter serum lipoprotein levels by blocking intestinal absorption, hepatic inhibition and/or slowing the progression of atherosclerosis through a non-lipid arterial inhibition. Recent evaluations of ACAT and ACAT inhibitors have provided some insight into the therapeutic potential and risks of ACAT inhibition as a means of treating atherosclerosis.
Collapse
|
27
|
Borradaile NM, de Dreu LE, Wilcox LJ, Edwards JY, Huff MW. Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HepG2 cells through multiple mechanisms. Biochem J 2002; 366:531-9. [PMID: 12030847 PMCID: PMC1222800 DOI: 10.1042/bj20020046] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 04/18/2002] [Accepted: 05/28/2002] [Indexed: 12/24/2022]
Abstract
Diets containing the soya-derived phytoestrogens, genistein and daidzein, decrease plasma cholesterol in humans and experimental animals. The mechanisms responsible for the hypocholesterolaemic effects of these isoflavones are unknown. The present study was conducted to determine if genistein and daidzein regulate hepatocyte cholesterol metabolism and apolipoprotein (apo) B secretion in cultured human hepatoma (HepG2) cells. ApoB secretion was decreased dose-dependently by up to 63% and 71% by genistein and daidzein (100 microM; P<0.0001) respectively. In contrast, no effect on apoAI secretion was observed. Cellular cholesterol synthesis was inhibited 41% by genistein (100 microM; P<0.005) and 18% by daidzein (100 microM; P<0.05), which was associated with significant increases in 3-hydroxy-3-methylglutaryl-CoA reductase mRNA. Cellular cholesterol esterification was decreased 56% by genistein (100 microM; P<0.04) and 29% by daidzein (100 microM; P<0.04); however, mRNA levels for acyl-CoA:cholesterol acyltransferase (ACAT) 1 and ACAT2 were unaffected. At 100 microM, both isoflavones equally inhibited the activities of both forms of ACAT in cells transfected with either ACAT1 or ACAT2. Genistein (100 microM) and daidzein (100 microM) significantly decreased the activity of microsomal triacylglycerol transfer protein (MTP) by 30% and 24% respectively, and significantly decreased MTP mRNA levels by 35% and 55%. Both isoflavones increased low-density lipoprotein (LDL)-receptor mRNA levels by 3- to 6-fold (100 microM; P<0.03) and significantly increased the binding, uptake and degradation of (125)I-labelled LDL, suggesting that enhanced reuptake of newly secreted apoB-containing lipoproteins contributed to the net decrease in apoB secretion. These results indicate that genistein and daidzein inhibit hepatocyte apoB secretion through several mechanisms, including inhibition of cholesterol synthesis and esterification, inhibition of MTP activity and expression and increased expression of the LDL-receptor.
Collapse
Affiliation(s)
- Nica M Borradaile
- Department of Biochemistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | | | |
Collapse
|
28
|
Borradaile NM, de Dreu LE, Barrett PHR, Huff MW. Inhibition of hepatocyte apoB secretion by naringenin: enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res 2002; 43:1544-54. [PMID: 12235187 DOI: 10.1194/jlr.m200115-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The grapefruit flavonoid, naringenin, is hypocholesterolemic in vivo, and inhibits basal apolipoprotein B (apoB) secretion and the expression and activities of both ACAT and microsomal triglyceride transfer protein (MTP) in human hepatoma cells (HepG2). In this report, we examined the effects of naringenin on apoB kinetics in oleate-stimulated HepG2 cells and determined the contribution of microsomal lumen cholesteryl ester (CE) availability to apoB secretion. Pulse-chase studies of apoB secretion and intracellular degradation were analyzed by multicompartmental modeling. The model for apoB metabolism in HepG2 cells includes an intracellular compartment from which apoB can be either secreted or degraded by both rapid and slow pathways. In the presence of 0.1 mM oleic acid, naringenin (200 micro M) reduced the secretion of newly synthesized apoB by 52%, due to a 56% reduction in the rate constant for secretion. Intracellular degradation was significantly increased due to a selective increase in rapid degradation, while slow degradation was unaffected. Incubation with either N-acetyl-leucinyl-leucinyl-norleucinal (ALLN) or lactacystin showed that degradation via the rapid pathway was largely proteasomal. Although these changes in apoB metabolism were accompanied by significant reductions in CE synthesis and mass, subcellular fractionation experiments comparing naringenin to specific ACAT and HMG-CoA reductase inhibitors revealed that reduced accumulation of newly synthesized CE in the microsomal lumen is not consistently associated with reduced apoB secretion. However, naringenin, unlike the ACAT and HMG-CoA reductase inhibitors, significantly reduced lumenal TG accumulation. We conclude that naringenin inhibits apoB secretion in oleate-stimulated HepG2 cells and selectively increases intracellular degradation via a largely proteasomal, rapid kinetic pathway. Although naringenin inhibits ACAT, CE availability in the endoplasmic reticulum (ER) lumen does not appear to regulate apoB secretion in HepG2 cells. Rather, inhibition of TG accumulation in the ER lumen via inhibition of MTP is the primary mechanism blocking apoB secretion.
Collapse
Affiliation(s)
- Nica M Borradaile
- Department of Medicine and Biochemistry, John P. Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Burnett JR, Barrett PHR. Apolipoprotein B metabolism: tracer kinetics, models, and metabolic studies. Crit Rev Clin Lab Sci 2002; 39:89-137. [PMID: 12014529 DOI: 10.1080/10408360208951113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study of apolipoprotein (apo) B metabolism is central to our understanding of lipoprotein metabolism. However, the assembly and secretion of apoB-containing lipoproteins is a complex process. Specialized techniques, developed and applied to in vitro and in vivo studies of apoB metabolism, have provided insights into the mechanisms involved in the regulation of this process. Moreover, these studies have important implications for understanding both the pathophysiology as well as the therapeutic options for the dyslipidemias. The purpose of this review is to examine the role of apoB in lipoprotein metabolism and to explore the applications of kinetic analysis and multicompartmental modeling to the study of apoB metabolism. New developments and significant advances over the last decade are discussed.
Collapse
Affiliation(s)
- John R Burnett
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital, University of Western Australia, Australia.
| | | |
Collapse
|
30
|
Taghibiglou C, Van Iderstine SC, Kulinski A, Rudy D, Adeli K. Intracellular mechanisms mediating the inhibition of apoB-containing lipoprotein synthesis and secretion in HepG2 cells by avasimibe (CI-1011), a novel acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor. Biochem Pharmacol 2002; 63:349-60. [PMID: 11853686 DOI: 10.1016/s0006-2952(01)00918-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have studied the cellular and molecular mechanisms involved in the suppression of apoB secretion from HepG2 cells following incubation with avasimibe (CI-1011), a novel inhibitor of acyl-coenzyme A: cholesterol acyltransferase (ACAT). Cellular lipid analysis revealed that avasimibe significantly decreased the synthesis of cholesterol and cholesteryl ester, and, at higher doses, of triglyceride. Time-course trypsin protection assays revealed that avasimibe induced the accumulation of translocationally arrested apoB intracellularly. Pulse-chase studies showed that the treatment with avasimibe induced a >75% decrease in apoB secretion relative to control, but initially enhanced the protein stability and cellular accumulation of apoB. Subcellular fractionation of microsomes further confirmed the accumulation of secretion-incompetent apoB-lipoproteins in the endoplasmic reticulum (ER) and Golgi compartments of avasimibe-treated HepG2 cells. Although incubation of drug-treated cells with carbobenzoxyl-leucinyl-leucinyl-leucinal (MG132), a potent proteasome inhibitor, increased cellular apoB (70%), it failed to increase apoB secretion. Drug treatment induced an accumulation of secretion-incompetent apoB-containing lipoprotein particles, the majority of which demonstrated a density in a range similar to that of high-density lipoprotein. However, studies in permeabilized cells demonstrated that, at longer chase times, intracellularly accumulated apoB was eventually degraded, indicating that the inhibition of degradation may be transient. Oleate treatment of avasimibe-treated cells partially restored apoB secretion but not to the levels seen in control cells. In summary, we hypothesize that avasimibe acutely blocks the secretion of apoB and its associated lipoproteins from HepG2 cells, transiently enhancing its membrane association and cellular accumulation with eventual intracellular degradation of accumulated apoB.
Collapse
Affiliation(s)
- Changiz Taghibiglou
- Division of Clinical Biochemistry, Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
31
|
Abstract
The benefits of lipid lowering therapy on coronary heart disease have been clearly established in many clinical trials on primary and secondary prevention. Despite the availability of potent lipid lowering drugs, many patients do not reach the current treatment goals. This paper reviews new therapeutic approaches in lipid lowering drugs focusing on compounds which lower cholesterol absorption. The role of plant sterols and stanols, new acyl-CoA:cholesterol O-acyl transferase (ACAT) inhibitors, microsomal triglyceride transfer protein (MTP) inhibitors, and ezetimibe are summarised. Although the lipid lowering effect of plant sterols and plant stanols is only moderate, their use as functional foods is beneficial for patients with mild hypercholesterolaemia and is able to enhance the lipid lowering effect of HMG-CoA reductase inhibitors (statins). The role of ACAT inhibitors that might also inhibit cholesterol absorption remains unclear. Avasimibe, the first oral bioavailable ACAT inhibitor, has entered phase III trials. However, the presently available data in humans do not indicate a clear clinical benefit. The role of MTP inhibitors, which exhibit remarkable effects on all plasma lipids, also remains unclear, as safety concerns must first be addressed. Ezetimibe, the first available 2-azetidinone, succeeded in phase III trials showing remarkable effects in inhibition of cholesterol absorption as well as cholesterol lowering. The synergistic effect of co-administration of ezetimibe with statins seemingly offers a new approach in reaching the therapeutic goals.
Collapse
Affiliation(s)
- Thomas Sudhop
- Department of Clinical Pharmacology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
32
|
Heinonen TM. Inhibition of acyl coenzyme A-cholesterol acyltransferase: a possible treatment of atherosclerosis? Curr Atheroscler Rep 2002; 4:65-70. [PMID: 11772425 DOI: 10.1007/s11883-002-0064-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our full understanding of atherosclerosis and our ability to prevent its sequellae are incomplete. As a result, further investigation of novel antiatherosclerotic mechanisms and agents continues. Acyl coenzyme A-cholesterol acyltransferase (ACAT) inhibition has been evaluated as a potential mechanism by which the current treatment arsenal may be expanded. ACAT is present in a variety of tissues and is responsible for catalyzing the conversion of free cholesterol to the more readily stored cholesteryl esters. Impressive lipid effects demonstrated in animals have not generally been demonstrated in human clinical trials. Partial ACAT inhibition with specific agents has resulted in lesion regression and decreased progression, whereas complete ACAT inhibition via genetic alterations has led to an exacerbation of cholesterol deposition in tissues in animal models. No ACAT inhibitor has yet been fully evaluated in human clinical trials for its impact on atherosclerotic disease progression. Several hurdles, such as sample size requirements needed to detect effect over background therapy and lack of sensitive surrogate efficacy markers, have served as a deterrent to the development of this class of investigational drug. However, with recent technologic advancements, more sensitive methods of measuring disease progression may be available. Human clinical trials are currently underway, with several agents reported in Phase II clinical trials. Within the next few years, results from these trials may determine whether or not ACAT inhibitors will be added to the list of treatment options for the prevention of atherosclerotic disease progression.
Collapse
|
33
|
Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31634-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Rudel LL, Lee RG, Cockman TL. Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr Opin Lipidol 2001; 12:121-7. [PMID: 11264983 DOI: 10.1097/00041433-200104000-00005] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two enzymes are responsible for cholesterol ester formation in tissues, acyl coenzyme A:cholesterol acyltransferase types 1 and 2 (ACAT1 and ACAT2). The available evidence suggests different cell locations, membrane orientations, and metabolic functions for each enzyme. ACAT1 and ACAT2 gene disruption experiments in mice have shown complementary results, with ACAT1 being responsible for cholesterol homeostasis in the brain, skin, adrenal, and macrophages. ACAT1 -/- mice have less atherosclerosis than their ACAT1 +/+ counterparts, presumably because of the decreased ACAT activity in the macrophages. By contrast, ACAT2 -/- mice have limited cholesterol absorption in the intestine, and decreased cholesterol ester content in the liver and plasma lipoproteins. Almost no cholesterol esterification was found when liver and intestinal microsomes from ACAT2 -/- mice were assayed. Studies in non-human primates have shown the presence of ACAT1 primarily in the Kupffer cells of the liver, in non-mucosal cell types in the intestine, and in kidney and adrenal cortical cells, whereas ACAT2 is present only in hepatocytes and in intestinal mucosal cells. The membrane topology for ACAT1 and ACAT2 is also apparently different, with ACAT1 having a serine essential for activity on the cytoplasmic side of the endoplasmic reticulum membrane, whereas the analogous serine is present on the lumenal side of the endoplasmic reticulum for ACAT2. Taken together, the data suggest that cholesterol ester formation by ACAT1 supports separate functions compared with cholesterol esterification by ACAT2. The latter enzyme appears to be responsible for cholesterol ester formation and secretion in lipoproteins, whereas ACAT1 appears to function to maintain appropriate cholesterol availability in cell membranes.
Collapse
Affiliation(s)
- L L Rudel
- Arteriosclerosis Research Program, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
35
|
Joyce CW, Shelness GS, Davis MA, Lee RG, Skinner K, Anderson RA, Rudel LL. ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell 2000; 11:3675-87. [PMID: 11071899 PMCID: PMC15029 DOI: 10.1091/mbc.11.11.3675] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A second form of the enzyme acyl-CoA:cholesterol acyltransferase, ACAT2, has been identified. To explore the hypothesis that the two ACAT enzymes have separate functions, the membrane topologies of ACAT1 and ACAT2 were examined. A glycosylation reporter and FLAG epitope tag sequence was appended to a series of ACAT cDNAs truncated after each predicted transmembrane domain. Fusion constructs were assembled into microsomal membranes, in vitro, and topologies were determined based on glycosylation site use and accessibility to exogenous protease. The accessibility of the C-terminal FLAG epitope in constructs was determined by immunofluorescence microscopy of permeabilized transfected cells. Both ACAT1 and ACAT2 span the membrane five times with their N termini in the cytosol and C termini in the ER lumen. The fourth transmembrane domain is located in a different region for each protein, placing the putative active site ACAT1 serine (Ser(269)) in the cytosol and the analogous residue in ACAT2 (Ser(249)) in the ER lumen. Mutation of these serines inactivated the ACAT enzymes. The outcome is consistent with the hypothesis that cholesterol ester formation by ACAT2 may be coupled to lipoprotein particle assembly and secretion, whereas ACAT1 may function primarily to maintain the balance of free and esterified cholesterol intracellularly.
Collapse
Affiliation(s)
- C W Joyce
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Spady DK, Willard MN, Meidell RS. Role of Acyl-Coenzyme A:Cholesterol Acyltransferase-1 in the Control of Hepatic Very Low Density Lipoprotein Secretion and Low Density Lipoprotein Receptor Expression in the Mouse and Hamster. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61472-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
37
|
Abstract
The new therapeutic options available to clinicians treating dyslipidaemia in the last decade have enabled effective treatment for many patients. The development of the HMG-CoA reductase inhibitors (statins) have been a major advance in that they possess multiple pharmacological effects (pleiotropic effects) resulting in potent reductions of low density lipoproteins (LDL) and prevention of the atherosclerotic process. More recently, the newer fibric acid derivatives have also reduced LDL to levels comparable to those achieved with statins, have reduced triglycerides, and gemfibrozil has been shown to increase high density lipoprotein (HDL) levels. Nicotinic acid has been made tolerable with sustained-release formulations, and is still considered an excellent choice in elevating HDL cholesterol and is potentially effective in reducing lipoprotein(a) [Lp(a)] levels, an emerging risk factor for coronary heart disease (CHD). Furthermore, recent studies have reported positive lipid-lowering effects from estrogen and/or progestogen in postmenopausal women but there are still conflicting reports on the use of these agents in dyslipidaemia and in females at risk for CHD. In addition to lowering lipid levels, these antihyperlipidaemic agents may have directly or indirectly targeted thrombogenic, fibrinolytic and atherosclerotic processes which may have been unaccounted for in their overall success in clinical trials. Although LDL cholesterol is still the major target for therapy, it is likely that over the next several years other lipid/lipoprotein and nonlipid parameters will become more generally accepted targets for specific therapeutic interventions. Some important emerging lipid/lipoprotein parameters that have been associated with CHD include elevated triglyceride, oxidised LDL cholesterol and Lp(a) levels, and low HDL levels. The nonlipid parameters include elevated homocysteine and fibrinogen, and decreased endothelial-derived nitric oxide production. Among the new investigational agents are inhibitors of squalene synthetase, acylCoA: cholesterol acyltransferase, cholesteryl ester transfer protein, monocyte-macrophages and LDL cholesterol oxidation. Future applications may include thyromimetic therapy, cholesterol vaccination, somatic gene therapy, and recombinant proteins, in particular, apolipoproteins A-I and E. Non-LDL-related targets such as peroxisome proliferator-activating receptors, matrix metalloproteinases and scavenger receptor class B type I may also have clinical significance in the treatment of atherosclerosis in the near future. Before lipid-lowering therapy, dietary and lifestyle modification is and should be the first therapeutic intervention in the management of dyslipidaemia. Although current recommendations from the US and Europe are slightly different, adherence to these recommendations is essential to lower the risk of atherosclerotic vascular disease, more specifically CHD. New guidelines that are expected in the near future will encompass global opinions from the expert scientific community addressing the issue of target LDL goal (aggressive versus moderate lowering) and the application of therapy for newer emerging CHD risk factors.
Collapse
Affiliation(s)
- P H Chong
- College of Pharmacy, University of Illinois, and Cook County Hospital, Chicago 60612-3785, USA.
| | | |
Collapse
|
38
|
Burnett JR, Wilcox LJ, Huff MW. Acyl coenzyme A: cholesterol acyltransferase inhibition and hepatic apolipoprotein B secretion. Clin Chim Acta 1999; 286:231-42. [PMID: 10511295 DOI: 10.1016/s0009-8981(99)00104-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acyl coenzyme A: cholesterol acyltransferase (ACAT) is postulated to play a role in hepatic and intestinal lipoprotein secretion. There is accumulating evidence, both in vitro and in vivo, that cholesterol and/or cholesteryl ester availability can regulate hepatic VLDL secretion. How ACAT inhibition regulates the assembly and secretion of apolipoprotein (apo) B containing lipoproteins within the hepatocyte has not been clearly established. ApoB kinetic studies performed in animals indicate that reduction in VLDL apoB secretion is an important mechanism whereby ACAT inhibitors decrease the plasma concentrations of these lipoproteins. However, in cultured hepatocytes, the effect of ACAT inhibition on apoB secretion has been inconsistent. Recent evidence has suggested the existence of more than one ACAT enzyme in mammals, which has culminated in the recent cloning of ACAT2. ACAT1 and ACAT2 respond differently to ACAT inhibitors of differing structures and classes. ACAT2 is present in the liver and intestine, the sites of apoB containing lipoprotein secretion and may represent the enzyme responsible for generating cholesteryl esters destined for lipoprotein assembly and secretion.
Collapse
Affiliation(s)
- J R Burnett
- Department of Medicine, and The John P. Robarts Research Institute, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
39
|
Burnett JR, Wilcox LJ, Telford DE, Kleinstiver SJ, Barrett PHR, Newton RS, Huff MW. Inhibition of ACAT by avasimibe decreases both VLDL and LDL apolipoprotein B production in miniature pigs. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33494-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Borradaile NM, Carroll KK, Kurowska EM. Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperetin and naringenin. Lipids 1999; 34:591-8. [PMID: 10405973 DOI: 10.1007/s11745-999-0403-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our previous studies showed that replacing the drinking water of rabbits fed a casein-containing diet with either orange juice or grapefruit juice reduced serum low density lipoprotein cholesterol and hepatic cholesteryl ester concentrations. To determine whether the changes observed in rabbits were due to flavonoids present in the juices acting directly on the liver, the effects of hesperetin and naringenin on net apolipoprotein B (apoB) secretion by HepG2 cells were investigated. These flavanones dose-dependently reduced net apoB secretion by up to 81% after a 24 h incubation, while doses of 60 micrograms/mL reduced net apoB secretion by 50% after 4 h. Coincubation with the proteasome inhibitor, MG-132, did not alter the ability of the flavonoids to reduce net apoB secretion over 4 h, suggesting that the flavonoid-induced changes in apoB metabolism were not due to a direct increase in proteasomal activity. However, the flavonoids were unable to reduce net apoB secretion after 4 h in the presence of oleate, suggesting that these compounds may interfere with the availability of neutral lipids for lipoprotein assembly. Furthermore, our 14C-acetate-labeling studies showed a 50% reduction in cholesteryl ester synthesis in the presence of either flavonoid, which could account for the reduction in net apoB secretion caused by incubation with these compounds. These in vitro studies suggest that hesperetin and naringenin may, in part, reduce net apoB secretion by HepG2 cells by inhibiting cholesteryl ester synthesis and that these compounds are good candidates for further in vivo studies to determine whether they are responsible for the cholesterol-lowering properties of dietary citrus juices.
Collapse
Affiliation(s)
- N M Borradaile
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | |
Collapse
|