1
|
Popescu SS, Duta AI, Jacob FJ, Kuck KH, Tilz RR. Aortic Displacement of a Pulmonary Stent: Multidisciplinary Approach to Treat a Rare Complication. JACC Case Rep 2025; 30:103394. [PMID: 40185604 DOI: 10.1016/j.jaccas.2025.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 01/09/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pulmonary vein (PV) stenosis is a rare complication of radiofrequency-based pulmonary vein isolation (PVI). Its therapy consists of PV stenting. CASE SUMMARY A 67-year-old woman underwent a thoracic computed tomography scan after left PV stenting for stenosis after PVI. The scan revealed the stent missing in the left inferior PV and worsening high-grade stenosis. An abdominal computed tomography scan identified the displaced stent in the aorta, just above the aortoiliac bifurcation. Digital subtraction angiography also revealed moderate stenosis in the right common iliac artery. A double stenting procedure of the aortoiliac bifurcation using the kissing stents technique was performed, securing the PV stent and treating the common iliac artery stenosis. Follow-up on the displaced stent was favorable. DISCUSSION AND TAKE-HOME MESSAGE PV stent systemic displacement is a rare but life-threatening complication of PV stenting. Kissing stents technique is effective to secure the displaced stent in the aortoiliac bifurcation.
Collapse
Affiliation(s)
- Sorin S Popescu
- University Heart Center Lübeck, Department of Rhythmology, University Hospital Schleswig-Holstein, Lübeck, Germany.
| | - Alexandru I Duta
- University Heart Center Lübeck, Department of Rhythmology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Fabian J Jacob
- Institute for Interventional Radiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Karl H Kuck
- University Heart Center Lübeck, Department of Rhythmology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Roland R Tilz
- University Heart Center Lübeck, Department of Rhythmology, University Hospital Schleswig-Holstein, Lübeck, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Pašara V, Sattin T, De Asmundis C, Chierchia GB, Bala G. Pulsed field ablation for atrial fibrillation. Expert Rev Med Devices 2025; 22:311-320. [PMID: 40040341 DOI: 10.1080/17434440.2025.2475239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
INTRODUCTION Atrial fibrillation is the most common sustained arrhythmia, associated with substantial morbidity and a reduced quality of life. The current standard of care, transcatheter pulmonary vein isolation using thermal ablation techniques, provides symptom relief but carries a risk of collateral tissue damage. In recent years, pulsed field ablation, a nonthermal technique based on irreversible electroporation, has emerged as a promising alternative to conventional thermal ablation methods. AREAS COVERED This review provides an overview of pulsed field ablation, a novel nonthermal ablation technique. We briefly explain its biophysical principles and general technical aspects, describe currently available technologies, and summarize findings from clinical studies. Additionally, we discuss its safety profile, unresolved issues, and limitations, while also exploring future perspectives. EXPERT OPINION Pulsed field ablation offers distinct advantages over traditional thermal ablation methods, such as shorter procedure times and a favorable safety profile due to precise tissue targeting. Future improvements in ablation device design, energy delivery settings, integration with mapping systems, workflow efficiency, ablation protocols, and patient selection criteria are expected to further enhance clinical outcomes.
Collapse
Affiliation(s)
- Vedran Pašara
- Heart Rhythm Management Centre, European Reference Networks Guard-Heart, Universitair Ziekenhuis Brussel Heart Rhythm Research Brussels, Postgraduate Program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Cardiovascular Diseases, University Hospital Center Zagreb, Zagreb, Croatia
| | - Tommaso Sattin
- Heart Rhythm Management Centre, European Reference Networks Guard-Heart, Universitair Ziekenhuis Brussel Heart Rhythm Research Brussels, Postgraduate Program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlo De Asmundis
- Heart Rhythm Management Centre, European Reference Networks Guard-Heart, Universitair Ziekenhuis Brussel Heart Rhythm Research Brussels, Postgraduate Program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gian-Battista Chierchia
- Heart Rhythm Management Centre, European Reference Networks Guard-Heart, Universitair Ziekenhuis Brussel Heart Rhythm Research Brussels, Postgraduate Program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gezim Bala
- Heart Rhythm Management Centre, European Reference Networks Guard-Heart, Universitair Ziekenhuis Brussel Heart Rhythm Research Brussels, Postgraduate Program in Cardiac Electrophysiology and Pacing, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Peruzza F, Candelora A, Angheben C, Maines M, Laurente M, Catanzariti D, Del Greco M, Madaffari A. Catheter Ablation of Atrial Fibrillation: Technique and Future Perspectives. J Clin Med 2025; 14:1788. [PMID: 40142600 PMCID: PMC11943125 DOI: 10.3390/jcm14061788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia with a significant impact on quality of life in terms of symptoms and reduction of functional status. Also, it is associated with an increased risk of mortality, stroke, and peripheral embolism. Catheter ablation for atrial fibrillation has become a well-established treatment, improving arrhythmia outcomes without increasing the risk of serious adverse events compared to antiarrhythmic drug therapy. The field has undergone significant advancements in recent years, yet pulmonary vein isolation continues to be the cornerstone of any atrial fibrillation ablation procedure. The purpose of this review is to provide an overview of the current techniques, emerging technologies, and future directions.
Collapse
Affiliation(s)
- Francesco Peruzza
- Department of Cardiology, Santa Maria del Carmine Hospital, Corso Verona 4, 38068 Rovereto, Italy; (F.P.); (M.M.); (M.L.); (M.D.G.)
- Azienda Provinciale per i Servizi Socio Sanitari–APSS, 38123 Trento, Italy
| | - Andrea Candelora
- Department of Cardiology, Santa Maria del Carmine Hospital, Corso Verona 4, 38068 Rovereto, Italy; (F.P.); (M.M.); (M.L.); (M.D.G.)
- Azienda Provinciale per i Servizi Socio Sanitari–APSS, 38123 Trento, Italy
| | - Carlo Angheben
- Department of Cardiology, Santa Maria del Carmine Hospital, Corso Verona 4, 38068 Rovereto, Italy; (F.P.); (M.M.); (M.L.); (M.D.G.)
- Azienda Provinciale per i Servizi Socio Sanitari–APSS, 38123 Trento, Italy
| | - Massimiliano Maines
- Department of Cardiology, Santa Maria del Carmine Hospital, Corso Verona 4, 38068 Rovereto, Italy; (F.P.); (M.M.); (M.L.); (M.D.G.)
- Azienda Provinciale per i Servizi Socio Sanitari–APSS, 38123 Trento, Italy
| | - Mauro Laurente
- Department of Cardiology, Santa Maria del Carmine Hospital, Corso Verona 4, 38068 Rovereto, Italy; (F.P.); (M.M.); (M.L.); (M.D.G.)
- Azienda Provinciale per i Servizi Socio Sanitari–APSS, 38123 Trento, Italy
| | - Domenico Catanzariti
- Department of Cardiology, Santa Maria del Carmine Hospital, Corso Verona 4, 38068 Rovereto, Italy; (F.P.); (M.M.); (M.L.); (M.D.G.)
- Azienda Provinciale per i Servizi Socio Sanitari–APSS, 38123 Trento, Italy
| | - Maurizio Del Greco
- Department of Cardiology, Santa Maria del Carmine Hospital, Corso Verona 4, 38068 Rovereto, Italy; (F.P.); (M.M.); (M.L.); (M.D.G.)
- Azienda Provinciale per i Servizi Socio Sanitari–APSS, 38123 Trento, Italy
| | - Antonio Madaffari
- Department of Cardiology, Santa Maria del Carmine Hospital, Corso Verona 4, 38068 Rovereto, Italy; (F.P.); (M.M.); (M.L.); (M.D.G.)
- Azienda Provinciale per i Servizi Socio Sanitari–APSS, 38123 Trento, Italy
| |
Collapse
|
4
|
Hasegawa K, Tada H. Coronary Artery Injury Related to Catheter Ablation for Cardiac Arrhythmias - A Systematic Review. Circ J 2025:CJ-24-0859. [PMID: 39779223 DOI: 10.1253/circj.cj-24-0859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Catheter ablation is a widely used treatment modality for various cardiac tachyarrhythmias, including atrial and ventricular arrhythmias. Although it is generally considered safe, the procedure carries potential complications, with coronary artery injury being one of the most significant. The aim of this systematic review was to assess the incidence, mechanisms, contributing factors, diagnostic strategies, and preventive measures related to coronary artery injury in patients undergoing catheter ablation, including radiofrequency catheter ablation, cryoablation, and pulsed-field ablation.
Collapse
Affiliation(s)
- Kanae Hasegawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui
| |
Collapse
|
5
|
Oraii A, Chaumont C, Rodriguez-Queralto O, Wasiak M, Thind M, Peters CJ, Zado E, Hanumanthu BKJ, Markman TM, Hyman MC, Tschabrunn CM, Guandalini G, Enriquez A, Shivamurthy P, Kumareswaran R, Riley MP, Lin D, Schaller RD, Nazarian S, Callans DJ, Supple GE, Garcia FC, Frankel DS, Dixit S, Marchlinski FE. Preprocedural Screening Tool to Guide Nonpulmonary Vein Trigger Testing in First-Time Atrial Fibrillation Ablation. Circ Arrhythm Electrophysiol 2025; 18:e013351. [PMID: 39704068 DOI: 10.1161/circep.124.013351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Patients undergoing first-time atrial fibrillation (AF) ablation can benefit from targeting non-pulmonary vein (PV) triggers. Preprocedural identification of high-risk individuals can guide planning of ablation strategy. This study aimed to create a preprocedural screening tool to identify patients at risk of non-PV triggers during first-time AF ablation. METHODS All patients who underwent first-time AF ablation at the Hospital of the University of Pennsylvania between 2018 and 2022 were identified. Those who underwent non-PV trigger provocative maneuvers or had spontaneous non-PV trigger firing were included. Non-PV triggers were defined as non-PV ectopic beats triggering AF or sustained focal atrial tachycardia that occurred spontaneously, after AF cardioversion, or after standard provocative maneuvers. The provocative maneuvers included incremental isoproterenol infusion (3, 6, 12, and 20-30 µg/min) and an atrial burst pacing protocol. Risk factors associated with non-PV triggers in a stepwise multivariable logistic regression model with backward elimination were used to create a risk score. RESULTS A total of 163 (8.0%) of 2038 patients had non-PV triggers during first-time AF ablation. Based on the multivariable model, we created a risk score using female sex (1 point; odds ratio [OR], 1.90 [95% CI, 1.36-2.67]), sinus node dysfunction (1 point; OR, 1.84 [95% CI, 1.04-3.24]), prior cardiac surgery (1 point; OR, 2.26 [95% CI, 1.45-3.53]), moderate to severe left atrial enlargement (2 points; OR, 3.43 [95% CI, 2.46-4.79]), and cardiac sarcoidosis/amyloidosis (4 points; OR, 7.24 [95% CI, 3.03-17.33]). Internal validation using bootstrap resampling showed an optimism-adjusted C statistic of 0.715 (95% CI, 0.678-0.751). Among all first-time AF ablations, 68.1% of procedures were low-risk for non-PV triggers (scores 0-1, 4.3% risk), 17.8% were intermediate-risk (score 2, 10.5% risk), and 14.1% were high-risk (score ≥3, 22.6% risk). CONCLUSIONS A preprocedural screening tool can classify patients based on their risk of non-PV triggers during first-time AF ablation. This risk score can guide operators to identify patients who would benefit most from adjunctive non-PV trigger testing. However, further validation is needed to confirm these findings.
Collapse
Affiliation(s)
- Alireza Oraii
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Corentin Chaumont
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Oriol Rodriguez-Queralto
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Michal Wasiak
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Munveer Thind
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Carli J Peters
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Erica Zado
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Balaram Krishna J Hanumanthu
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Timothy M Markman
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Matthew C Hyman
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Cory M Tschabrunn
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Gustavo Guandalini
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Andres Enriquez
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Poojita Shivamurthy
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Ramanan Kumareswaran
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Michael P Riley
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - David Lin
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Robert D Schaller
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - David J Callans
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Gregory E Supple
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Fermin C Garcia
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - David S Frankel
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sanjay Dixit
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Francis E Marchlinski
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Bautista JAL, Liu CM, Ibrahim AE, Lo LW, Chung FP, Hu YF, Chang SL, Lin YJ, Lin CY, Chang TY, Kuo L, Liu SH, Cheng WH, Chen WT, Kao PH, Kuo MJ, Nguyen-Khac TC, Li GY, Lin CH, Huang YS, Wu SJ, Siow YK, Son Nguyen ND, Tran DC, Chen SA. Impact of proximity of left atrium to descending aorta on left inferior pulmonary vein triggers or drivers of atrial fibrillation: A risk score model. Heart Rhythm 2025; 22:49-56. [PMID: 38997056 DOI: 10.1016/j.hrthm.2024.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Prior studies have investigated cardiac anatomy and clinical parameters as predictors for pulmonary vein and non-pulmonary vein triggers. OBJECTIVE We aimed to assess the link between the descending aorta to left inferior pulmonary vein (Dao-LIPV) distance and the occurrence of triggers and drivers in atrial fibrillation (AF) ablation procedures. METHODS Drug-refractory AF patients who underwent first-time index catheter ablation from January 2010 to December 2019 were retrospectively assembled. The Dao-LIPV distance was measured from preablation pulmonary vein computed tomography. Patients were assigned to groups on the basis of the presence of LIPV triggers or drivers. Multivariate logistic regression was used to identify risk factors. RESULTS A total of 886 consecutive patients with drug-refractory AF were studied, and 63 (7.1%) patients were identified to have LIPV triggers or drivers. The Dao-LIPV distance had a better predictive performance (area under the curve, 0.70) compared with persistent AF (area under the curve, 0.57). Multivariate logistic regression analysis showed that Dao-LIPV distance ≤2.5 mm (odds ratio, 3.96; 95% CI, 2.15-7.29; P < .001) and persistent AF (odds ratio, 1.73; 95% CI, 1.02-2.94]; P = .044) were independent predictors for the presence of LIPV triggers or drivers. A risk score model was established to predict the probability of LIPV triggers or drivers with persistent AF (10.2%), Dao-LIPV distance ≤2.5 mm (11.4%), and both (15.0%). CONCLUSION The proximity of the Dao-LIPV was correlated to the presence of LIPV triggers or drivers. We developed a risk score model indicating that persistent AF and Dao-LIPV distances ≤2.5 mm significantly increase the risk of LIPV triggers or drivers, aiding electrophysiologists in preparing for and performing catheter ablation more effectively.
Collapse
Affiliation(s)
- Jose Antonio L Bautista
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Section of Clinical Cardiac Electrophysiology, Heart Institute, St Luke's Medical Center-Global City, Taguig City, Philippines
| | - Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ahliah E Ibrahim
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Section of Clinical Cardiac Electrophysiology, Heart Institute, St Luke's Medical Center-Global City, Taguig City, Philippines
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Han Cheng
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Tso Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Heng Kao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Jen Kuo
- Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Thien-Chuong Nguyen-Khac
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Guan-Yi Li
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Hsien Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shan Huang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shang-Ju Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yoon Kee Siow
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Cardiology, Serdang Hospital, Selangor, Malaysia
| | - Ngoc Dinh Son Nguyen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; University Medical Center, Ho Chi Minh City, Vietnam
| | - Dat Cao Tran
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan; National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Banduc T, Azzolin L, Manninger M, Scherr D, Plank G, Pezzuto S, Sahli Costabal F. Simulation-free prediction of atrial fibrillation inducibility with the fibrotic kernel signature. Med Image Anal 2025; 99:103375. [PMID: 39476470 DOI: 10.1016/j.media.2024.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 12/02/2024]
Abstract
Computational models of atrial fibrillation (AF) can help improve success rates of interventions, such as ablation. However, evaluating the efficacy of different treatments requires performing multiple costly simulations by pacing at different points and checking whether AF has been induced or not, hindering the clinical application of these models. In this work, we propose a classification method that can predict AF inducibility in patient-specific cardiac models without running additional simulations. Our methodology does not require re-training when changing atrial anatomy or fibrotic patterns. To achieve this, we develop a set of features given by a variant of the heat kernel signature that incorporates fibrotic pattern information and fiber orientations: the fibrotic kernel signature (FKS). The FKS is faster to compute than a single AF simulation, and when paired with machine learning classifiers, it can predict AF inducibility in the entire domain. To learn the relationship between the FKS and AF inducibility, we performed 2371 AF simulations comprising 6 different anatomies and various fibrotic patterns, which we split into training and a testing set. We obtain a median F1 score of 85.2% in test set and we can predict the overall inducibility with a mean absolute error of 2.76 percent points, which is lower than alternative methods. We think our method can significantly speed-up the calculations of AF inducibility, which is crucial to optimize therapies for AF within clinical timelines. An example of the FKS for an open source model is provided in https://github.com/tbanduc/FKS_AtrialModel_Ferrer.git.
Collapse
Affiliation(s)
- Tomás Banduc
- Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | | | - Martin Manninger
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel Scherr
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center - Division of Biophysics, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Simone Pezzuto
- Laboratory of Mathematics for Biology and Medicine, Department of Mathematics, Università di Trento, Trento, Italy; Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland.
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering and Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Chile.
| |
Collapse
|
8
|
Alijanzadeh D, Moghim S, Zarand P, Akbarzadeh MA, Zarinfar Y, Khaheshi I. Reassessing Ivabradine: Potential Benefits and Risks in Atrial Fibrillation Therapy. Cardiovasc Drugs Ther 2024. [DOI: 10.1007/s10557-024-07652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 01/03/2025]
|
9
|
Namekata I, Seki M, Saito T, Odaka R, Hamaguchi S, Tanaka H. Automaticity of the Pulmonary Vein Myocardium and the Effect of Class I Antiarrhythmic Drugs. Int J Mol Sci 2024; 25:12367. [PMID: 39596432 PMCID: PMC11595185 DOI: 10.3390/ijms252212367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The pulmonary vein wall contains a myocardial layer whose ectopic automaticity is the major cause of atrial fibrillation. This review summarizes the results obtained in isolated pulmonary vein myocardium from small experimental animals, focusing on the studies with the guinea pig. The diversity in the action potential waveform reflects the difference in the repolarizing potassium channel currents involved. The diastolic depolarization, the trigger of automatic action potentials, is caused by multiple membrane currents, including the Na+-Ca2+ exchanger current and late INa. The action potential waveform and automaticity are affected differentially by α- and β-adrenoceptor stimulation. Class I antiarrhythmic drugs block the propagation of ectopic electrical activity of the pulmonary vein myocardium through blockade of the peak INa. Some of the class I antiarrhythmic drugs block the late INa and inhibit pulmonary vein automaticity. The negative inotropic and chronotropic effects of class I antiarrhythmic drugs could be largely attributed to their blocking effect on the Ca2+ channel rather than the Na+ channel. Such a comprehensive understanding of pulmonary vein automaticity and class I antiarrhythmic drugs would lead to an improvement in pharmacotherapy and the development of novel therapeutic agents for atrial fibrillation.
Collapse
Affiliation(s)
| | | | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan; (I.N.); (M.S.); (T.S.); (R.O.); (S.H.)
| |
Collapse
|
10
|
Chen Q, Huang JJ, Jiang L, Makota P, Wu MQ, Yang ZP, Liao XW, Peng YM, Chen JQ, Zhang JC. Relationship between left atrial isolated surface area and early-term recurrence in patients with persistent atrial fibrillation after cryoballoon ablation. Eur J Med Res 2024; 29:478. [PMID: 39354546 PMCID: PMC11443768 DOI: 10.1186/s40001-024-02045-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVE To investigate the effect of pulmonary vein antrum enlargement combined with left atrial roof cryoballoon ablation in patients with persistent atrial fibrillation (PeAF) by analyzing the relationship between left atrial isolation area surface area (ISA) and early postoperative recurrence. METHODS 93 patients with PeAF were classified into recurrence and non-recurrence groups according to the results of the 1-year follow-up. Three-dimensional electroanatomical labeling map was constructed and merged with that of the left atrial pulmonary vein CTA, and the ISA and the left atrial surface area (LASA) were measured and analyzed to determine the relationship between ISA/LASA in relation to early postoperative recurrence. RESULTS 93 patients were included and followed up for 1 year with AF-free recurrence rate of 75.3%. The ISA of the recurrence group was lower than that of the non-recurrence group. Left atrial internal diameter (LAD), left common pulmonary vein, the ISA, the ISA/LASA and early-term recurrence had statistical significance in both groups. The factors that significantly predicted early-term recurrence were left common pulmonary vein and the ISA/LASA. ISA/LASA (HR 0, 95% CI 0-0.005, P = 0.008) and left common pulmonary vein trunk (HR 7.754, 95% CI 2.256-25.651, P = 0.001) were the independent risk factors for early recurrence. ROC curve analysis showed that ISA/LASA predicted the best early recurrence after operation with a cut-off value of 15.2%. CONCLUSION A greater ISA/LASA reduces early recurrence after cryoablation in patients with PeAF. An ISA/LASA of 15.2% may be the best cut-off value for predicting early recurrence after cryoablation for PeAF.
Collapse
Affiliation(s)
- Qian Chen
- Department of Critical Care Medicine Division Four, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Jin-Jin Huang
- Shengli Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Ling Jiang
- Department of Cardiology, The First Hospital of Nanping City, Fujian Medical University, No. 317 Zhongshan Road, Nanping, 353000, Fujian, People's Republic of China
| | - Panashe Makota
- Shengli Clinical Medicine College of Fujian Medical University, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Mei-Qiong Wu
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Zhi-Ping Yang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Xue-Wen Liao
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Yi-Ming Peng
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China
| | - Jian-Quan Chen
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China.
| | - Jian-Cheng Zhang
- Department of Cardiology, Fujian Provincial Hospital, Shengli Clinical Medicine College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134 East Street, Gulou District, Fuzhou, 350000, Fujian, People's Republic of China.
| |
Collapse
|
11
|
Chen J, Yang G, Cui C, Ju W, Liu H, Li M, Chen H, Gu K, Wang Z, Chen M. Understanding electrical pulmonary vein antrum for paroxysmal atrial fibrillation: Further look into superhigh-density electroanatomic mapping of the left atrium. Heart Rhythm 2024:S1547-5271(24)03304-6. [PMID: 39271089 DOI: 10.1016/j.hrthm.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND An isolation line placed at the pulmonary vein antrum (PVA) area is superior to ostium level in atrial fibrillation (AF) control. However, less is known about the electrophysiologic characteristics of the PVA. OBJECTIVE The aim of this study was to describe the electrophysiologic properties of the PVA. METHODS High-density mapping of the left atrium was performed in 18 paroxysmal AF (PAF) patients and 9 age- and sex-matched paroxysmal supraventricular tachycardia (PSVT) patients. Each PVA was divided into 8 segments, and the pulmonary vein (PV) was divided into 4 segments. The electrophysiologic properties included slow conduction, complex fractionated electrograms, and effective refractory period (ERP). RESULTS Slow conduction was more prevalent at the PVA (43.2% ± 19.5% vs 14.7% ± 13.0%; P = .001) and PV (61.9% ± 16.4% vs 9.1% ± 9.0%; P < .001) in PAF patients than in PSVT patients during sinus rhythm. Similarly, the area with complex fractionated electrograms was significantly larger at the PVA (133.8 [61.6-233.2] mm2 vs 0.0 [0.0-41.4] mm2; P = .011) in PAF patients during sinus rhythm. The ERP of the PVA was longer in PAF patients than in control at the drive length of 600 ms (260 [230-280] ms vs 220 [190-250] ms; P = .001) and 400 ms (230 [205-250] ms vs 200 [190-220] ms; P = .007). The ERP net difference between the PV and PVA is larger in PAF patients than in control both at 600-ms pacing (40 [20-70] ms vs 10 [10-30] ms; P < .001) and at 400-ms pacing (40 [20-60] ms vs 20 [10-30] ms; P < .001). CONCLUSION PAF patients have the PVA electrical substrate including slow conduction, complex fractionated electrograms, and ERP dispersion.
Collapse
Affiliation(s)
- Jingcheng Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Division of Cardiology, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Gang Yang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weizhu Ju
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingfang Li
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwu Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Gu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zidun Wang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
13
|
Saito T, Suzuki M, Ohba A, Hamaguchi S, Namekata I, Tanaka H. Enhanced Late I Na Induces Intracellular Ion Disturbances and Automatic Activity in the Guinea Pig Pulmonary Vein Cardiomyocytes. Int J Mol Sci 2024; 25:8688. [PMID: 39201376 PMCID: PMC11354854 DOI: 10.3390/ijms25168688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
The effects of enhanced late INa, a persistent component of the Na+ channel current, on the intracellular ion dynamics and the automaticity of the pulmonary vein cardiomyocytes were studied with fluorescent microscopy. Anemonia viridis toxin II (ATX- II), an enhancer of late INa, caused increases in the basal Na+ and Ca2+ concentrations, increases in the number of Ca2+ sparks and Ca2+ waves, and the generation of repetitive Ca2+ transients. These phenomena were inhibited by eleclazine, a blocker of the late INa; SEA0400, an inhibitor of the Na+/Ca2+ exchanger (NCX); H89, a protein kinase A (PKA) inhibitor; and KN-93, a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results suggest that enhancement of late INa in the pulmonary vein cardiomyocytes causes disturbance of the intracellular ion environment through activation of the NCX and Ca2+-dependent enzymes. Such mechanisms are probably involved in the ectopic electrical activity of the pulmonary vein myocardium.
Collapse
Affiliation(s)
| | | | | | | | - Iyuki Namekata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan; (T.S.); (M.S.); (A.O.); (S.H.); (H.T.)
| | | |
Collapse
|
14
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
15
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
16
|
Oraii A, Chaumont C, Rodriguez-Queralto O, Petzl A, Zado E, Markman TM, Hyman MC, Tschabrunn CM, Enriquez A, Shivamurthy P, Kumareswaran R, Riley MP, Lin D, Supple GE, Garcia FC, Schaller RD, Nazarian S, Frankel DS, Dixit S, Callans DJ, Marchlinski FE. Incremental Benefit of Stepwise Nonpulmonary Vein Trigger Provocation During Catheter Ablation of Atrial Fibrillation. JACC Clin Electrophysiol 2024; 10:1648-1659. [PMID: 39084740 DOI: 10.1016/j.jacep.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The importance of nonpulmonary vein (PV) triggers for the initiation/recurrence of atrial fibrillation (AF) is well established. OBJECTIVES This study sought to assess the incremental benefit of provocative maneuvers for identifying non-PV triggers. METHODS We included consecutive patients undergoing first-time AF ablation between 2020 and 2022. The provocation protocol included step 1, identification of spontaneous non-PV triggers after cardioversion of AF and/or during sinus rhythm; step 2, isoproterenol infusion (3, 6, 12, and 20-30 μg/min); and step 3, atrial burst pacing to induce AF followed by cardioversion during residual or low-dose isoproterenol infusion or induce focal atrial tachycardia. Non-PV triggers were defined as non-PV ectopic beats triggering AF or sustained focal atrial tachycardia. RESULTS Of 1,372 patients included, 883 (64.4%) underwent the complete stepwise provocation protocol with isoproterenol infusion and burst pacing, 334 (24.3%) isoproterenol infusion only, 77 (5.6%) burst pacing only, and 78 (5.7%) no provocative maneuvers (only step 1). Overall, 161 non-PV triggers were found in 135 (9.8%) patients. Of these, 51 (31.7%) non-PV triggers occurred spontaneously, and the remaining 110 (68.3%) required provocative maneuvers for induction. Among those receiving the complete stepwise provocation protocol, there was a 2.2-fold increase in the number of patients with non-PV triggers after isoproterenol infusion, and the addition of burst pacing after isoproterenol infusion led to a total increase of 3.6-fold with the complete stepwise provocation protocol. CONCLUSIONS The majority of non-PV triggers require provocative maneuvers for induction. A stepwise provocation protocol consisting of isoproterenol infusion followed by burst pacing identifies a 3.6-fold higher number of patients with non-PV triggers.
Collapse
Affiliation(s)
- Alireza Oraii
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Corentin Chaumont
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Oriol Rodriguez-Queralto
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adrian Petzl
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica Zado
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy M Markman
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew C Hyman
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cory M Tschabrunn
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andres Enriquez
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Poojita Shivamurthy
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramanan Kumareswaran
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael P Riley
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Lin
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory E Supple
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fermin C Garcia
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert D Schaller
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David S Frankel
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjay Dixit
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David J Callans
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francis E Marchlinski
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
17
|
Kuo MJ, Lo LW, Lin YJ, Kim S, Chen SA. The novel automated peak frequency annotation algorithm for identifying high frequency electrogram activity following pulmonary vein isolation in atrial fibrillation ablation. Europace 2024; 26:euae114. [PMID: 38708526 DOI: 10.1093/europace/euae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Affiliation(s)
- Ming-Jen Kuo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou, Taipei, 11217 Taiwan, R.O.C
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, No. 155, Sec. 2, Linong Street, 112 Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, 407219 Taiwan, R.O.C
| | - Li-Wei Lo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou, Taipei, 11217 Taiwan, R.O.C
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, No. 155, Sec. 2, Linong Street, 112 Taipei, Taiwan
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou, Taipei, 11217 Taiwan, R.O.C
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, No. 155, Sec. 2, Linong Street, 112 Taipei, Taiwan
| | - Steven Kim
- Advanced Applications Department, Abbott, Plymouth, MN, USA
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou, Taipei, 11217 Taiwan, R.O.C
- Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, No. 155, Sec. 2, Linong Street, 112 Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung, 407219 Taiwan, R.O.C
- National Chung Hsing University, 145 Xingda Rd., South Dist., 402 Taichung, Taiwan
| |
Collapse
|
18
|
Pierucci N, Mariani MV, Laviola D, Silvetti G, Cipollone P, Vernile A, Trivigno S, La Fazia VM, Piro A, Miraldi F, Vizza CD, Lavalle C. Pulsed Field Energy in Atrial Fibrillation Ablation: From Physical Principles to Clinical Applications. J Clin Med 2024; 13:2980. [PMID: 38792520 PMCID: PMC11121906 DOI: 10.3390/jcm13102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Atrial fibrillation, representing the most prevalent sustained cardiac arrhythmia, significantly impacts stroke risk and cardiovascular mortality. Historically managed with antiarrhythmic drugs with limited efficacy, and more recently, catheter ablation, the interventional approach field is still evolving with technological advances. This review highlights pulsed field ablation (PFA), a revolutionary technique gaining prominence in interventional electrophysiology because of its efficacy and safety. PFA employs non-thermal electric fields to create irreversible electroporation, disrupting cell membranes selectively within myocardial tissue, thus preventing the non-selective damage associated with traditional thermal ablation methods like radiofrequency or cryoablation. Clinical studies have consistently shown PFA's ability to achieve pulmonary vein isolation-a cornerstone of AF treatment-rapidly and with minimal complications. Notably, PFA reduces procedure times and has shown a lower incidence of esophageal and phrenic nerve damage, two common concerns with thermal techniques. Emerging from oncological applications, the principles of electroporation provide a unique tissue-selective ablation method that minimizes collateral damage. This review synthesizes findings from foundational animal studies through to recent clinical trials, such as the MANIFEST-PF and ADVENT trials, demonstrating PFA's effectiveness and safety. Future perspectives point towards expanding indications and refinement of techniques that promise to improve AF management outcomes further. PFA represents a paradigm shift in AF ablation, offering a safer, faster, and equally effective alternative to conventional methods. This synthesis of its development and clinical application outlines its potential to become the new standard in AF treatment protocols.
Collapse
Affiliation(s)
- Nicola Pierucci
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Domenico Laviola
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Giacomo Silvetti
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Pietro Cipollone
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Antonio Vernile
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Sara Trivigno
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | | | - Agostino Piro
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Fabio Miraldi
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Carmine Dario Vizza
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| | - Carlo Lavalle
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza”, University of Rome, 00161 Rome, Italy; (N.P.); (M.V.M.); (D.L.); (G.S.); (P.C.); (A.V.); (S.T.); (A.P.); (F.M.); (C.D.V.)
| |
Collapse
|
19
|
Masuda M, Matsuda Y, Uematsu H, Nishijima M, Okamoto S, Ishihara T, Nanto K, Tsujimura T, Hata Y, Mano T. Impact of wall thickness on the tissue cooling effect of cryoballoon ablation. Europace 2024; 26:euae135. [PMID: 38767127 PMCID: PMC11137751 DOI: 10.1093/europace/euae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
AIMS Understanding of the tissue cooling properties of cryoballoon ablation during pulmonary vein (PV) isolation is lacking. The purpose of this study was to delineate the depth of the tissue cooling effect during cryoballoon freezing at the pulmonary venous ostium. METHODS AND RESULTS A left atrial-PV model was constructed using a three-dimensional printer with data from a patient to which porcine thigh muscle of various thicknesses could be affixed. The model was placed in a 37°C water tank with a PV water flow at a rate that mimicked biological blood flow. Cryofreezing at the PV ostium was performed five times each for sliced porcine thigh muscle of 2, 4, and 6 mm thickness, and sliced muscle cooling on the side opposite the balloon was monitored. The cooling effect was assessed using the average temperature of 12 evenly distributed thermocouples covering the roof region of the left superior PV. Tissue cooling effects were in the order of the 2, 4, and 6 mm thicknesses, with an average temperature of -41.4 ± 4.2°C for 2 mm, -33.0 ± 4.0°C for 4 mm, and 8.0 ± 8.7°C for 6 mm at 180 s (P for trend <0.0001). In addition, tissue temperature drops were steeper in thin muscle (maximum temperature drop per 5 s: 5.2 ± 0.9°C, 3.9 ± 0.7°C, and 1.3 ± 0.7°C, P for trend <0.0001). CONCLUSION The cooling effect of cryoballoon freezing is weaker in the deeper layers. Cryoballoon ablation should be performed with consideration to myocardial thickness.
Collapse
Affiliation(s)
- Masaharu Masuda
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Yasuhiro Matsuda
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Hiroyuki Uematsu
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Mizuki Nishijima
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Shin Okamoto
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Takayuki Ishihara
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Kiyonori Nanto
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Takuya Tsujimura
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Yosuke Hata
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| | - Toshiaki Mano
- Kansai Rosai Hospital Cardiovascular Center, 3-1-69 Inabaso, Amagasaki, Hyogo 660-8511, Japan
| |
Collapse
|
20
|
Liu CM, Chen WS, Chang SL, Hsieh YC, Hsu YH, Chang HX, Lin YJ, Lo LW, Hu YF, Chung FP, Chao TF, Tuan TC, Liao JN, Lin CY, Chang TY, Kuo L, Wu CI, Wu MH, Chen CK, Chang YY, Shiu YC, Lu HHS, Chen SA. Use of artificial intelligence and I-Score for prediction of recurrence before catheter ablation of atrial fibrillation. Int J Cardiol 2024; 402:131851. [PMID: 38360099 DOI: 10.1016/j.ijcard.2024.131851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/14/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Based solely on pre-ablation characteristics, previous risk scores have demonstrated variable predictive performance. This study aimed to predict the recurrence of AF after catheter ablation by using artificial intelligence (AI)-enabled pre-ablation computed tomography (PVCT) images and pre-ablation clinical data. METHODS A total of 638 drug-refractory paroxysmal atrial fibrillation (AF) patients undergone ablation were recruited. For model training, we used left atria (LA) acquired from pre-ablation PVCT slices (126,288 images). A total of 29 clinical variables were collected before ablation, including baseline characteristics, medical histories, laboratory results, transthoracic echocardiographic parameters, and 3D reconstructed LA volumes. The I-Score was applied to select variables for model training. For the prediction of one-year AF recurrence, PVCT deep-learning and clinical variable machine-learning models were developed. We then applied machine learning to ensemble the PVCT and clinical variable models. RESULTS The PVCT model achieved an AUC of 0.63 in the test set. Various combinations of clinical variables selected by I-Score can yield an AUC of 0.72, which is significantly better than all variables or features selected by nonparametric statistics (AUCs of 0.66 to 0.69). The ensemble model (PVCT images and clinical variables) significantly improved predictive performance up to an AUC of 0.76 (sensitivity of 86.7% and specificity of 51.0%). CONCLUSIONS Before ablation, AI-enabled PVCT combined with I-Score features was applicable in predicting recurrence in paroxysmal AF patients. Based on all possible predictors, the I-Score is capable of identifying the most influential combination.
Collapse
Affiliation(s)
- Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Shiang Chen
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Cheng Hsieh
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yuan-Heng Hsu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hao-Xiang Chang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Han Wu
- Department of Medical Imaging, Diagnostic Radiology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chun-Ku Chen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ying-Yueh Chang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yang-Che Shiu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
| | - Henry Horng-Shing Lu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Statistics and Data Science, Cornell University, Ithaca, New York, USA.
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan; National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
21
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
22
|
Yang H, Majumder JA, Huang Z, Saluja D, Laurita K, Rollins AM, Hendon CP. Robust, high-density lesion mapping in the left atrium with near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:028001. [PMID: 38419756 PMCID: PMC10901242 DOI: 10.1117/1.jbo.29.2.028001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Significance Radiofrequency ablation (RFA) procedures for atrial fibrillation frequently fail to prevent recurrence, partially due to limitations in assessing extent of ablation. Optical spectroscopy shows promise in assessing RFA lesion formation but has not been validated in conditions resembling those in vivo. Aim Catheter-based near-infrared spectroscopy (NIRS) was applied to porcine hearts to demonstrate that spectrally derived optical indices remain accurate in blood and at oblique incidence angles. Approach Porcine left atria were ablated and mapped using a custom-fabricated NIRS catheter. Each atrium was mapped first in phosphate-buffered saline (PBS) then in porcine blood. Results NIRS measurements showed little angle dependence up to 60 deg. A trained random forest model predicted lesions with a sensitivity of 81.7%, a specificity of 86.1%, and a receiver operating characteristic curve area of 0.921. Predicted lesion maps achieved a mean structural similarity index of 0.749 and a mean normalized inner product of 0.867 when comparing maps obtained in PBS and blood. Conclusions Catheter-based NIRS can precisely detect RFA lesions on left atria submerged in blood. Optical parameters are reliable in blood and without perpendicular contact, confirming their ability to provide useful feedback during in vivo RFA procedures.
Collapse
Affiliation(s)
- Haiqiu Yang
- Columbia University, Department of Electrical Engineering, New York, United States
| | - Jonah A. Majumder
- Columbia University, Department of Biomedical Engineering, New York, United States
| | - Ziyi Huang
- Columbia University, Department of Electrical Engineering, New York, United States
| | - Deepak Saluja
- Columbia University Irving Medical Center, Cardiology Division, Department of Medicine, New York, United States
| | - Kenneth Laurita
- MetroHealth Hospital, Cardiology Division, Department of Medicine, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Andrew M. Rollins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Christine P. Hendon
- Columbia University, Department of Electrical Engineering, New York, United States
| |
Collapse
|
23
|
Mansourian M, Teimouri-jervekani Z, Soleimani A, Nouri R, Marateb H, Mansourian M. Changes in Heart Rate Variability Parameters Following Radiofrequency Ablation in Patients with Atrial Fibrillation: A Systematic Review and Meta-Analysis. Cardiovasc Drugs Ther 2024. [DOI: 10.1007/s10557-024-07549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 10/14/2024]
|
24
|
Siow YK, Lin CY, Chung FP, Lin YJ, Chang SL, Lo LW, Hu YF, Liao JN, Chang TY, Tuan TC, Kuo L, Wu CI, Liu CM, Liu SH, Li GY, Kuo MJ, Wu SJ, Bautista JA, Huang YS, Nguyen DSN, Chen SA. Catheter ablation in patients with atrial fibrillation and dilated cardiomyopathy. Front Cardiovasc Med 2024; 11:1305485. [PMID: 38292242 PMCID: PMC10825578 DOI: 10.3389/fcvm.2024.1305485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Introduction Catheter ablation is an effective and safe strategy for treating atrial fibrillation patients. Nevertheless, studies on the long-term outcomes of catheter ablation in patients with dilated cardiomyopathy are limited. This study aimed to assess the electrophysiological characteristics of atrial fibrillation patients with dilated cardiomyopathy and compare the long-term clinical outcomes between patients undergoing catheter ablation and medical therapy. Method Patient baseline characteristics and electrophysiological parameters were examined to identify the predictors of atrial fibrillation recurrence following catheter ablation. The clinical outcomes of catheter ablation and medical therapy were compared using the propensity score matched method. Results A total of 343 patients were enrolled, with 46 in the catheter ablation group and 297 in the medical therapy group. Among the catheter ablation group, 58.7% (n = 27) had persistent atrial fibrillation. The recurrence rate of atrial arrhythmia was 30.4% (n = 14) after an average follow-up duration of 7.7 years following catheter ablation. The only predictive factor for atrial fibrillation recurrence after catheter ablation was the left atrial diameter. When compared to medical therapy, catheter ablation demonstrated significantly better outcomes in terms of overall survival, freedom from heart failure hospitalization, improvement in left ventricular ejection fraction, and a greater reduction in left ventricular diameter and left atrial diameter after propensity score matching. Conclusions Therefore, catheter ablation proves to be effective in providing long-term control of atrial fibrillation in patients with dilated cardiomyopathy. In addition to standard heart failure care, catheter ablation significantly enhanced both morbidity and mortality outcomes and reversed structural remodeling when compared to heart failure medication alone.
Collapse
Affiliation(s)
- Yoon-Kee Siow
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Cardiology, Serdang Hospital, Selangor, Malaysia
| | - Chin-Yu Lin
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Guan-Yi Li
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Jen Kuo
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shang-Ju Wu
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Yu-Shan Huang
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
Kjeldsen ST, Nissen SD, Saljic A, Hesselkilde EM, Carstensen H, Sattler SM, Jespersen T, Linz D, Hopster-Iversen C, Kutieleh R, Sanders P, Buhl R. Structural and electro-anatomical characterization of the equine pulmonary veins: implications for atrial fibrillation. J Vet Cardiol 2024; 52:1-13. [PMID: 38290222 DOI: 10.1016/j.jvc.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
INTRODUCTION/OBJECTIVES Spontaneous pulmonary vein (PV) activity triggers atrial fibrillation (AF) in humans. Although AF frequently occurs in horses, the origin remains unknown. This study investigated the structural and electro-anatomical properties of equine PVs to determine the potential presence of an arrhythmogenic substrate. ANIMALS, MATERIALS AND METHODS Endocardial three-dimensional electro-anatomical mapping (EnSite Precision) using high-density (HD) catheters was performed in 13 sedated horses in sinus rhythm. Left atrium (LA) access was obtained retrogradely through the carotid artery. Post-mortem, tissue was harvested from the LA, right atrium (RA), and PVs for histological characterization and quantification of ion channel expression using immunohistochemical analysis. RESULTS Geometry, activation maps, and voltage maps of the PVs were created and a median of four ostia were identified. Areas of reduced conduction were found at the veno-atrial junction. The mean myocardial sleeve length varied from 28 ± 13 to 49 ± 22 mm. The PV voltage was 1.2 ± 1.4 mV and lower than the LA (3.4 ± 0.9 mV, P < 0.001). The fibrosis percentage was higher in PV myocardium (26.1 ± 6.6 %) than LA (14.5 ± 5.0 %, P = 0.003). L-type calcium channel (CaV1.2) expression was higher in PVs than LA (P = 0.001). T-type calcium channels (CaV3.3), connexin-43, ryanodine receptor-2, and small conductance calcium-activated potassium channel-3 was expressed in PVs. CONCLUSIONS The veno-atrial junction had lower voltages, increased structural heterogeneity and areas of slower conduction. Myocardial sleeves had variable lengths, and a different ion channel expression compared to the atria. Heterogeneous properties of the PVs interacting with the adjacent LA likely provide the milieu for re-entry and AF initiation.
Collapse
Affiliation(s)
- S T Kjeldsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark.
| | - S D Nissen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - A Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - E M Hesselkilde
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - H Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - S M Sattler
- Department of Cardiology, Herlev and Gentofte University Hospital, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark
| | - T Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - D Linz
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 632, 6229 ER Maastricht, Netherlands
| | - C Hopster-Iversen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| | - R Kutieleh
- Abbott Medical, 214 Greenhill Road, SA 5063, Australia
| | - P Sanders
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital and University of Adelaide, Port Rd, SA 5000, Australia
| | - R Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Agrovej 8, 2630 Taastrup, Denmark
| |
Collapse
|
26
|
Wu SJ, Lo LW, Chung FP, Lin YJ, Chang SL, Hu YF, Hsieh YC, Li CH, Tuan TC, Chao TF, Liao JN, Lin CY, Chang TY, Kuo L, Liu CM, Liu SH, Wu CI, Weng CJ, Kuo MJ, Li GY, Huang YS, Bautista JA, Siow YK, Ngoc NDS, Chen SA. Comparison of Long-Term Clinical Outcomes Between Segmental and Circumferential Pulmonary Vein Isolation in Patients Undergoing Repeat Atrial Fibrillation Ablation. Circ J 2023; 87:1750-1756. [PMID: 37866912 DOI: 10.1253/circj.cj-23-0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Circumferential pulmonary vein isolation (CPVI) has supplanted segmental PVI (SPVI) as standard procedure for atrial fibrillation (AF). However, there is limited evidence examining the efficacy of these strategies in redo ablations. In this study, we investigated the difference in recurrence rates between SPVI and CPVI in redo ablations for PV reconnection. METHODS AND RESULTS This study retrospectively enrolled 543 patients who had undergone AF ablation between 2015 and 2017. Among them, 167 patients (30.8%, including 128 male patients and 100 patients with paroxysmal AF) underwent redo ablation for recurrent AF. Excluding 26 patients without PV reconnection, 141 patients [90 patients of SPVI (Group 1) and 51 patients of CPVI (Group 2)] were included. The AF-free survival rates were 53.3% and 56.9% in Group 1 and Group 2, respectively (P=0.700). The atrial flutter (AFL)-free survival rates were 90% and 100% in Group 1 and Group 2, respectively (P=0.036). The ablation time was similar between groups, and there no major complications were observed. CONCLUSIONS For redo AF ablation procedures, SPVI and CPVI showed similar outcomes, except for a higher AFL recurrence rate for SPVI after long-term follow-up (>2 years). This may be due to a higher probability of residual PV gaps causing reentrant AFL.
Collapse
Affiliation(s)
- Shang-Ju Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Cardiovascular Center, Taichung Veterans General Hospital
| | - Li-Wei Lo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Fa-Po Chung
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Yenn-Jiang Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Shih-Lin Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Yu-Feng Hu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Yu-Cheng Hsieh
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Cardiovascular Center, Taichung Veterans General Hospital
- College of Medicine, National Chung Hsing University
| | - Cheng-Hung Li
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Cardiovascular Center, Taichung Veterans General Hospital
| | - Ta-Chuan Tuan
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Tze-Fan Chao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Jo-Nan Liao
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Chin-Yu Lin
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Ting-Yung Chang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Ling Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Chih-Min Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Shin-Huei Liu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Cheng-I Wu
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
| | - Chi-Jen Weng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Cardiovascular Center, Taichung Veterans General Hospital
| | - Ming-Jen Kuo
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Cardiovascular Center, Taichung Veterans General Hospital
| | - Guan-Yi Li
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
| | - Yu-Shan Huang
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
| | - Jose Antonio Bautista
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Yoon-Kee Siow
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Nguyen Dinh Son Ngoc
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Cardiovascular Center, Taichung Veterans General Hospital
- Institute of Cardiovascular Research, National Yang Ming Chiao Tung University
- College of Medicine, National Chung Hsing University
| |
Collapse
|
27
|
Nakahara S. Current Balloon Ablation Systems and Iatrogenic Pulmonary Vein Stenosis. Circ J 2023; 87:1720-1721. [PMID: 37380435 DOI: 10.1253/circj.cj-23-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Shiro Nakahara
- Department of Cardiology, Dokkyo Medical University Saitama Medical Center
| |
Collapse
|
28
|
Bautista JAL, Lin CY, Lu CT, Lo LW, Lin YJ, Chang SL, Hu YF, Chung FP, Tuan TC, Chao TF, Liao JN, Chang TY, Kuo L, Liu CM, Liu SH, Wu CI, Kuo MJ, Li GY, Huang YS, Wu SJ, Siow YK, Son NND, Tran DC, Chen SA. Clinical significance of substrate characteristics and ablation outcomes in patients with atrial fibrillation and significant functional mitral regurgitation. Front Cardiovasc Med 2023; 10:1265890. [PMID: 37953760 PMCID: PMC10634397 DOI: 10.3389/fcvm.2023.1265890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background Atrial fibrillation (AF) and mitral regurgitation (MR) have a complex interplay. Catheter ablation (CA) of AF may be a potential method to improve the severity of MR in AF patients. Methods Patients with symptomatic AF and moderate to severe MR who underwent catheter ablation from 2011 to 2021 were retrospectively included in the study. Patients' baseline characteristics and electrophysiological features were examined. These patients were classified as group 1 with improved MR and group 2 with refractory MR after CA. Results Fifty patients (age 60.2 ± 11.6 years, 29 males) were included in the study (32 in group 1 and 18 in group 2). Group 1 patients had a lower CHA2DS2-VASc score (1.7 ± 1.5 vs. 2.7 ± 1.5, P = 0.005) and had a lower incidence of hypertension (28.1% vs. 66.7%, P = 0.007) and diabetes mellitus (3.1% vs. 22.2%, P = 0.031) as compared to group 2 patients. Electroanatomic three-dimensional (3D) mapping showed that group 1 patients demonstrated less scars on the posterior bottom of the left atrium compared to group 2 patients (12.5% vs. 66.7%, P < 0.001). AF recurrence was not different between the two groups. After multivariate logistic regression analysis, a posterior bottom scar in the left atrium independently predicted refractory MR despite successful AF ablation. Conclusion Most patients with AF and MR showed improvement of MR after AF ablation. A scar involving the posterior bottom of the left atrium is associated with poor recovery of MR.
Collapse
Affiliation(s)
- Jose Antonio L. Bautista
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Section of Clinical Cardiac Electrophysiology, Heart Institute, St. Luke’s Medical Center – Global City, Taguig City, Philippines
| | - Chin-Yu Lin
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chi-Ting Lu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Li-Wei Lo
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Shih-Lin Chang
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Fa-Po Chung
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Ta-Chuan Tuan
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Jo-Nan Liao
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Ting-Yung Chang
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Ling Kuo
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chih-Min Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Shin-Huei Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Cheng-I Wu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Ming-Jen Kuo
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Cardiology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Guan-Yi Li
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Yu-Shan Huang
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Shang-Ju Wu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Cardiology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yoon Kee Siow
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Cardiology, Serdang Hospital, Selangor, Malaysia
| | - Ngoc Nguyen Dinh Son
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, University Medical Center, Ho Chi Minh City, Vietnam
| | - Dat Cao Tran
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taipei City, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Cardiology, Taichung Veterans General Hospital, Taichung City, Taiwan
- Department of Medicine, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
29
|
Verhovceva V, Zvaigzne L, Lācis R, Kalējs O. The Impact of Pulmonary Vein Anatomy on P-Wave Appearance during Sinus Rhythm: Cardiac Computed Tomography Study. Diagnostics (Basel) 2023; 13:2911. [PMID: 37761279 PMCID: PMC10530108 DOI: 10.3390/diagnostics13182911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Electrocardigraphy remains a first-line evaluation method for cardiac electrical activity, recorded from the body surface. Since atrial activation is seen on the ECG as a P-wave, several factors are known to impact the appearance of the P-wave, such as the direction of electric impulse, conduction abnormalities, and anatomical characteristics of the atria. This retrospective study aimed to find statistically significant associations between the anatomy of pulmonary veins (PVs) observed in cardiac computed tomography (CT) and P-wave appearance during sinus rhythm on resting ECG. For each patient, a resting 12-lead ECG was recorded, and the field of analysis was P-wave-its duration, morphology, and axis. The evaluation of the CT scan recordings was performed by creating 3D models of the left atrium and analyzing the anatomy of the PVs and left atrial appendages (LAA). Noteworthy correlations were found: anatomy of the left PVs showed an association with LAA volume, LAA morphology, and P-wave notching in lead II. The right PVs demonstrated a relation with the P-wave axis and amplitude. Although these correlations cannot be classified as strong, the results not only expand understanding about discussed variables but also suggest the presence of a subtle and complex relationship, that warrants further exploration.
Collapse
Affiliation(s)
- Viktorija Verhovceva
- Department of Internal Diseases, Pauls Stradins Clinical University Hospital, 13 Pilsoņu Str., LV-1002 Rīga, Latvia; (L.Z.); (R.L.); (O.K.)
- Department of Internal Diseases, Faculty of Medicine, Rīga Stradins University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| | - Ligita Zvaigzne
- Department of Internal Diseases, Pauls Stradins Clinical University Hospital, 13 Pilsoņu Str., LV-1002 Rīga, Latvia; (L.Z.); (R.L.); (O.K.)
| | - Romans Lācis
- Department of Internal Diseases, Pauls Stradins Clinical University Hospital, 13 Pilsoņu Str., LV-1002 Rīga, Latvia; (L.Z.); (R.L.); (O.K.)
- Department of Internal Diseases, Faculty of Medicine, Rīga Stradins University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| | - Oskars Kalējs
- Department of Internal Diseases, Pauls Stradins Clinical University Hospital, 13 Pilsoņu Str., LV-1002 Rīga, Latvia; (L.Z.); (R.L.); (O.K.)
- Department of Internal Diseases, Faculty of Medicine, Rīga Stradins University, 16 Dzirciema Str., LV-1007 Rīga, Latvia
| |
Collapse
|
30
|
Ferreira M, Laranjo S, Cunha P, Geraldes V, Oliveira M, Rocha I. Orthostatic Stress and Baroreflex Sensitivity: A Window into Autonomic Dysfunction in Lone Paroxysmal Atrial Fibrillation. J Clin Med 2023; 12:5857. [PMID: 37762798 PMCID: PMC10532155 DOI: 10.3390/jcm12185857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The abnormal neural control of atria has been considered one of the mechanisms of paroxysmal atrial fibrillation (PAF) pathogenesis. The baroreceptor reflex has an important role in cardiovascular regulation and may serve as an index of autonomic function. This study aimed to analyze the baroreceptor reflex's role in heart rate regulation during upright tilt (HUT) in patients with lone PAF. The study included 68 patients with lone PAF and 34 healthy individuals who underwent baroreflex assessment. Parameters such as baroreflex sensitivity (BRS), number of systolic blood pressure (BP) ramps, and the baroreflex effectiveness index (BEI) were evaluated. The study found that PAF patients had comparable resting BPs and heart rates (HRs) to healthy individuals. However, unlike healthy individuals, PAF patients showed a sustained increase in BP with an upright posture followed by the delayed activation of the baroreceptor function with a blunted HR response and lower BEI values. This indicates a pronounced baroreflex impairment in PAF patients, even at rest. Our data suggest that together with BRS, BEI could be used as a marker of autonomic dysfunction in PAF patients, making it important to further investigate its relationship with AF recurrence after ablation and its involvement in cardiovascular autonomic remodeling.
Collapse
Affiliation(s)
- Mónica Ferreira
- Faculdade de Medicina and Centro Cardiovascular da Universidade de Lisboa—CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.)
| | - Sérgio Laranjo
- Arrhythmology, Pacing and Electrophysiology Unit, Serviço de Cardiologia, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central—CHULC, 1150-199 Lisbon, Portugal; (S.L.); (P.C.); (M.O.)
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Pedro Cunha
- Arrhythmology, Pacing and Electrophysiology Unit, Serviço de Cardiologia, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central—CHULC, 1150-199 Lisbon, Portugal; (S.L.); (P.C.); (M.O.)
| | - Vera Geraldes
- Faculdade de Medicina and Centro Cardiovascular da Universidade de Lisboa—CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.)
| | - Mário Oliveira
- Arrhythmology, Pacing and Electrophysiology Unit, Serviço de Cardiologia, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central—CHULC, 1150-199 Lisbon, Portugal; (S.L.); (P.C.); (M.O.)
| | - Isabel Rocha
- Faculdade de Medicina and Centro Cardiovascular da Universidade de Lisboa—CCUL, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (M.F.); (V.G.)
| |
Collapse
|
31
|
Chan CS, Lin FJ, Chen YC, Lin YK, Higa S, Chen SA, Chen YJ. Glucagon-like Peptide-1 Receptor Activation Reduces Pulmonary Vein Arrhythmogenesis and Regulates Calcium Homeostasis. Int J Mol Sci 2023; 24:13100. [PMID: 37685906 PMCID: PMC10488086 DOI: 10.3390/ijms241713100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are associated with reduced atrial fibrillation risk, but the mechanisms underlying this association remain unclear. The GLP-1 receptor agonist directly impacts cardiac Ca2+ homeostasis, which is crucial in pulmonary vein (PV, the initiator of atrial fibrillation) arrhythmogenesis. This study investigated the effects of the GLP-1 receptor agonist on PV electrophysiology and Ca2+ homeostasis and elucidated the potential underlying mechanisms. Conventional microelectrodes and whole-cell patch clamp techniques were employed in rabbit PV tissues and single PV cardiomyocytes before and after GLP-1 (7-36) amide, a GLP-1 receptor agonist. Evaluations were conducted both with and without pretreatment with H89 (10 μM, an inhibitor of protein kinase A, PKA), KN93 (1 μM, an inhibitor of Ca2+/calmodulin-dependent protein kinase II, CaMKII), and KB-R7943 (10 μM, an inhibitor of Na+/Ca2+ exchanger, NCX). Results showed that GLP-1 (7-36) amide (at concentrations of 1, 10, and 100 nM) reduced PV spontaneous activity in a concentration-dependent manner without affecting sinoatrial node electrical activity. In single-cell experiments, GLP-1 (7-36) amide (at 10 nM) reduced L-type Ca2+ current, NCX current, and late Na+ current in PV cardiomyocytes without altering Na+ current. Additionally, GLP-1 (7-36) amide (at 10 nM) increased sarcoplasmic reticulum Ca2+ content in PV cardiomyocytes. Furthermore, the antiarrhythmic effects of GLP-1 (7-36) amide on PV automaticity were diminished when pretreated with H89, KN93, or KB-R7943. This suggests that the GLP-1 receptor agonist may exert its antiarrhythmic potential by regulating PKA, CaMKII, and NCX activity, as well as modulating intracellular Ca2+ homeostasis, thereby reducing PV arrhythmogenesis.
Collapse
Affiliation(s)
- Chao-Shun Chan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-S.C.); (Y.-K.L.)
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Fong-Jhih Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-S.C.); (Y.-K.L.)
- Division of Cardiology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 9012131, Japan;
| | - Shih-Ann Chen
- Heart Rhythm Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Institute of Clinical Medicine and Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Yi-Jen Chen
- Division of Cardiology, Department of Internal Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| |
Collapse
|
32
|
Jaroonpipatkul S, Trongtorsak A, Kewcharoen J, Thangjui S, Pokawattana A, Navaravong L. High sensitivity C reactive protein levels and atrial fibrillation recurrence after catheter ablation for atrial fibrillation: A systematic review and meta-analysis. J Arrhythm 2023; 39:515-522. [PMID: 37560294 PMCID: PMC10407178 DOI: 10.1002/joa3.12895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023] Open
Abstract
Background Atrial fibrillation (AF) recurrence after AF ablation is not uncommon. High sensitivity C reactive protein (hs-CRP) is a widely used inflammatory marker with a potential property to predict AF recurrence. We conducted a systematic review and a meta-analysis to find an association between hs-CRP levels and AF recurrence after ablation. Methods We searched PubMed, Embase, and Wiley-Cochrane Library from inception to January 2022 for studies that reported hs-CRP levels in patients who underwent AF ablation. Weighted mean difference (WMD) was used to evaluate the difference between hs-CRP levels in post-ablation AF recurrent and non-recurrent group. Also, the difference between hs-CRP levels in pre- and post-ablation was determined. Results We identified 10 studies, and a total of 789 patients were included (299 recurrent vs. 490 non-recurrent patients). The mean age was 57.7 years (76.4% male). There was no difference in baseline hs-CRP levels between AF recurrent and non-recurrent group (WMD = 0.05, 95% CI = -0.04 to 0.15, p = 0.045). However, higher hs-CRP levels post-ablation were found in AF recurrent group (WMD = 0.09, 95% CI = 0.03-0.15, p < 0.001). Conclusion There is no significant difference in baseline hs-CRP levels between AF recurrent and non-recurrent patients after AF ablation. However, higher post-ablation hs-CRP level was found in AF recurrent group. High Sensitivity C reactive protein may play a role as a predictor of AF recurrence.
Collapse
Affiliation(s)
- Surachat Jaroonpipatkul
- Division of Cardiology, Rajavithi HospitalCollage of Medicine Rangsit UniversityBangkokThailand
| | - Angkawipa Trongtorsak
- Department of Cardiovascular MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jakrin Kewcharoen
- Division of Cardiovascular MedicineLoma Linda University HealthLoma LindaCaliforniaUSA
| | - Sittinun Thangjui
- Internal Medicine Residency Program, Bassett Healthcare NetworkCooperstownNew YorkUSA
| | - Apichai Pokawattana
- Division of Cardiology, Rajavithi HospitalCollage of Medicine Rangsit UniversityBangkokThailand
| | | |
Collapse
|
33
|
Jain A, Chen CC, Chang SL, Lin YJ, Lo LW, Hu YF, Chung FP, Lin CY, Chang TY, Tuan TC, Chao TF, Liao JN, Liu CM, Wu CI, Chin CG, Cheng WH, Liu SH, Chou CY, Lugtu IC, Chen SA. Comparison of efficacy of pulmonary vein isolation between cryoballoon ablation and high-power short-duration ablation. Indian Pacing Electrophysiol J 2023; 23:110-115. [PMID: 37044211 PMCID: PMC10323182 DOI: 10.1016/j.ipej.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND High-power short-duration (HPSD) and cryoballoon ablation (CBA) has been used for pulmonary vein isolation (PVI). OBJECTIVE We aimed to compare the efficacy of PVI between CBA and HPSD ablation in patients with paroxysmal atrial fibrillation (PAF). METHODS We retrospectively analyzed 251 consecutive PAF patients from January 2018 to July 2020. Of them, 124 patients (mean age 57.2 ± 10.1 year) received HPSD and 127 patients (mean age 59.6 ± 9.4 year) received CBA. In HPSD group, the radiofrequency energy was set as 50 W/10 s at anterior wall and 40 W/10 s at posterior wall. In CBA group, 28 mm s generation cryoballoon was used for PVI according the guidelines. RESULTS There was no significant difference in baseline characteristics between these 2 groups. The time to achieve PVI was significantly shorter in cryoballoon ablation group than in HPSD group (20.6 ± 1.7 min vs 51.8 ± 36.3, P = 0.001). The 6-month overall recurrence for atrial tachyarrhythmias was not significantly different between the two groups (HPSD:14.50% vs CBA:11.0%, P = 0.40). There were different types of recurrent atrial tachyarrhythmia between these 2 groups. Recurrence as atrial flutter was significantly more common in CBA group compared to HPSD group (57.1% vs 12.5%, P = 0.04). CONCLUSION In PAF patients, CBA and HPSD had a favourable and comparable outcome. The recurrence pattern was different between CBA and HPSD groups.
Collapse
Affiliation(s)
- Ankit Jain
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Vardhman Mahavir, Medical College and Safdarjung Hospital, New Delhi, India
| | - Chun-Chao Chen
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yenn-Jiang Lin
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chye-Gen Chin
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Han Cheng
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Yao Chou
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Shin Kong Wu Ho Su Memorial Hospital, Taipei, Taiwan
| | - Isaiah C Lugtu
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Centre and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Centre, Taichung Veterans General Hospital, Taichung, Taiwan; College of Medicine, Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
34
|
Trohman RG, Huang HD, Sharma PS. Atrial fibrillation: primary prevention, secondary prevention, and prevention of thromboembolic complications: part 1. Front Cardiovasc Med 2023; 10:1060030. [PMID: 37396596 PMCID: PMC10311453 DOI: 10.3389/fcvm.2023.1060030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/14/2023] [Indexed: 07/04/2023] Open
Abstract
Atrial fibrillation (AF), is the most common sustained cardiac arrhythmia. It was once thought to be benign as long as the ventricular rate was controlled, however, AF is associated with significant cardiac morbidity and mortality. Increasing life expectancy driven by improved health care and decreased fertility rates has, in most of the world, resulted in the population aged ≥65 years growing more rapidly than the overall population. As the population ages, projections suggest that the burden of AF may increase more than 60% by 2050. Although considerable progress has been made in the treatment and management of AF, primary prevention, secondary prevention, and prevention of thromboembolic complications remain a work in progress. This narrative review was facilitated by a MEDLINE search to identify peer-reviewed clinical trials, randomized controlled trials, meta-analyses, and other clinically relevant studies. The search was limited to English-language reports published between 1950 and 2021. Atrial fibrillation was searched via the terms primary prevention, hyperthyroidism, Wolff-Parkinson-White syndrome, catheter ablation, surgical ablation, hybrid ablation, stroke prevention, anticoagulation, left atrial occlusion and atrial excision. Google and Google scholar as well as bibliographies of identified articles were reviewed for additional references. In these two manuscripts, we discuss the current strategies available to prevent AF, then compare noninvasive and invasive treatment strategies to diminish AF recurrence. In addition, we examine the pharmacological, percutaneous device and surgical approaches to prevent stroke as well as other types of thromboembolic events.
Collapse
Affiliation(s)
- Richard G. Trohman
- Section of Electrophysiology, Division of Cardiology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | | | | |
Collapse
|
35
|
Ogbomo-Harmitt S, Muffoletto M, Zeidan A, Qureshi A, King AP, Aslanidi O. Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation. Front Physiol 2023; 14:1054401. [PMID: 36998987 PMCID: PMC10043207 DOI: 10.3389/fphys.2023.1054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Background: Radiofrequency catheter ablation (RFCA) therapy is the first-line treatment for atrial fibrillation (AF), the most common type of cardiac arrhythmia globally. However, the procedure currently has low success rates in dealing with persistent AF, with a reoccurrence rate of ∼50% post-ablation. Therefore, deep learning (DL) has increasingly been applied to improve RFCA treatment for AF. However, for a clinician to trust the prediction of a DL model, its decision process needs to be interpretable and have biomedical relevance. Aim: This study explores interpretability in DL prediction of successful RFCA therapy for AF and evaluates if pro-arrhythmogenic regions in the left atrium (LA) were used in its decision process. Methods: AF and its termination by RFCA have been simulated in MRI-derived 2D LA tissue models with segmented fibrotic regions (n = 187). Three ablation strategies were applied for each LA model: pulmonary vein isolation (PVI), fibrosis-based ablation (FIBRO) and a rotor-based ablation (ROTOR). The DL model was trained to predict the success of each RFCA strategy for each LA model. Three feature attribution (FA) map methods were then used to investigate interpretability of the DL model: GradCAM, Occlusions and LIME. Results: The developed DL model had an AUC (area under the receiver operating characteristic curve) of 0.78 ± 0.04 for predicting the success of the PVI strategy, 0.92 ± 0.02 for FIBRO and 0.77 ± 0.02 for ROTOR. GradCAM had the highest percentage of informative regions in the FA maps (62% for FIBRO and 71% for ROTOR) that coincided with the successful RFCA lesions known from the 2D LA simulations, but unseen by the DL model. Moreover, GradCAM had the smallest coincidence of informative regions of the FA maps with non-arrhythmogenic regions (25% for FIBRO and 27% for ROTOR). Conclusion: The most informative regions of the FA maps coincided with pro-arrhythmogenic regions, suggesting that the DL model leveraged structural features of MRI images to identify such regions and make its prediction. In the future, this technique could provide a clinician with a trustworthy decision support tool.
Collapse
Affiliation(s)
| | | | | | | | | | - Oleg Aslanidi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
36
|
Yang SY, Cha MJ, Oh HJ, Cho MS, Kim J, Nam GB, Choi KJ. Role of non-pulmonary vein triggers in persistent atrial fibrillation. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2023. [DOI: 10.1186/s42444-023-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
AbstractPulmonary vein isolation is an well-established treatment strategy for atrial fibrillation (AF), and it is especially effective for patients with paroxysmal AF. However, the success rate is limited for patients with persistent AF, because non-pulmonary vein triggers which increase AF recurrence are frequently found in these patients. The major non-pulmonary vein triggers are from the left atrial posterior wall, left atrial appendage, ligament of Marshall, coronary sinus, superior vena cava, and crista terminalis, but other atrial sites can also generate AF triggers. All these sites have been known to contain atrial myocytes with potential arrhythmogenic electrical activity. The prevalence and clinical characteristics of these non-pulmonary vein triggers are well studied; however, the clinical outcome of catheter ablation for persistent AF is still unclear. Here, we reviewed the current ablation strategies for persistent AF and the clinical implications of major non-pulmonary vein triggers.
Collapse
|
37
|
Kuo MJ, Ton ANK, Lo LW, Lin YJ, Chang SL, Hu YF, Chung FP, Tuan TC, Chao TF, Liao JN, Chang TY, Lin CY, Kuo L, Wu CI, Liu CM, Cheng WH, Liu SH, Chhay C, Kao PH, Chen WT, Hsu CY, Chen SA. Abnormal Conduction Zone Detected by Isochronal Late Activation Mapping Accurately Identifies the Potential Atrial Substrate and Predicts the Atrial Fibrillation Ablation Outcome After Pulmonary Vein Isolation. Circ Arrhythm Electrophysiol 2023; 16:e011149. [PMID: 36688314 DOI: 10.1161/circep.122.011149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND The presence of abnormal substrate of left atrium is a predictor of atrial fibrillation (AF) recurrence after pulmonary vein isolation. We aimed to investigate the isochronal late activation mapping to access the abnormal conduction velocity for predicting AF ablation outcome. METHODS Forty-five paroxysmal AF patients (30 males, 57.8±8.7 years old) who underwent pulmonary vein isolation were enrolled. Isochronal late activation mapping was retrospectively constructed with 2 different windows of interest: from onset of P wave to onset of QRS wave on surface electrocardiography (W1) and 74 ms tracking back from the end of P wave (W2). Deceleration zone was defined as regions with 3 isochrones (DZa) or ≥4 isochrones (DZb) within a 1 cm radius on the isochronal late activation mapping, and the estimated conduction velocity (ECV) are 0.27 m/s and <0.20 m/s for DZa and DZb, respectively in W2. The distribution of deceleration zone was compared with the location of low-voltage zone (bipolar voltage ≤0.5 mV). Any recurrence of atrial arrhythmias was defined as the primary end point during follow ups after a 3-month blanking period. RESULTS Pulmonary vein isolation was performed in all patients, and there were 2 patients (4.4%) received additional extrapulmonary vein ablation. After a mean follow-up of 12.7±4.5 months, recurrence of AF occurred in 14 patients (31.1%). Patients with the presence of DZb in W2 had higher AF recurrence (Kaplan-Meier event rate estimates: HR, 9.41 [95% CI, 2.61-33.90]; log-rank P<0.0001). There were 52.6% of the DZb locations in W2 comparable to the distributions of low-voltage zone and 47.4% DZb were distributed in the area without low-voltage zone. CONCLUSIONS Deceleration zone detected by isochronal late activation mapping represents a critical AF substrate, it accurately predicts the AF recurrence following ablation in patients with paroxysmal AF.
Collapse
Affiliation(s)
- Ming-Jen Kuo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.).,Cardiovascular Center, Taichung Veterans General Hospital (M.-J.K., S.-A.C.)
| | - An Nu-Khanh Ton
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Tam Duc Heart hospital, Vietnam (A.N.-K.T.)
| | - Li-Wei Lo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Shih-Lin Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Fa-Po Chung
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Ta-Chuan Tuan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Jo-Nan Liao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Ting-Yung Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Chin-Yu Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Ling Kuo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Cheng-I Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Chih-Min Liu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Wen-Han Cheng
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Shin-Huei Liu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Chheng Chhay
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Pei-Heng Kao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Wei-Tso Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Chu-Yu Hsu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.)
| | - Shih-Ann Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital (M.-J.K., A.N.-K.T., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., C.C., P.-H.K., W.-T.C., C.-Y.H., S.-A.C.).,Institute of Clinical Medicine and Cardiovascular Research Institute, National Yang-Ming Chiao-Tung University, Taipei (M.-J.K., L.-W.L., Y.-J.L., S.-L.C., Y.-F.H., F.-P.C., T.-C.T., T.-F.C., J.-N.L., T.-Y.C., C.-Y.L., L.K., C.-I.W., C.-M.L., W.-H.C., S.-H.L., S.-A.C.).,Cardiovascular Center, Taichung Veterans General Hospital (M.-J.K., S.-A.C.).,National Chung Hsing University, Taichung, Taiwan (S.-A.C.)
| |
Collapse
|
38
|
Zenger B, Rizzi S, Steinberg BA, Ranjan R, Bunch TJ. This is Your Brain, and This is Your Brain on Atrial Fibrillation: The Roles of Cardiac Malperfusion Events and Vascular Dysfunction in Cognitive Impairment. Arrhythm Electrophysiol Rev 2023; 12:e01. [PMID: 36845168 PMCID: PMC9945461 DOI: 10.15420/aer.2022.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 02/03/2023] Open
Abstract
AF is an independent and strong predictor of long-term cognitive decline. However, the mechanism for this cognitive decline is difficult to define and likely multifactorial, leading to many different hypotheses. Examples include macro- or microvascular stroke events, biochemical changes to the blood-brain barrier related to anticoagulation, or hypo-hyperperfusion events. This review explores and discusses the hypothesis that AF contributes to cognitive decline and dementia through hypo-hyperperfusion events occurring during cardiac arrhythmias. We briefly explain several brain perfusion imaging techniques and further examine the novel findings associated with changes in brain perfusion in patients with AF. Finally, we discuss the implications and areas requiring more research to further understand and treat patients with cognitive decline related to AF.
Collapse
Affiliation(s)
- Brian Zenger
- School of Medicine, University of Utah, Salt Lake City, UT, US
| | - Scott Rizzi
- Department of Internal Medicine, University of Utah Health Sciences, Salt Lake City, UT, US
| | - Benjamin A Steinberg
- School of Medicine, University of Utah, Salt Lake City, UT, US
- Division of Cardiovascular Medicine, University of Utah Health Sciences, Salt Lake City, UT, US
| | - Ravi Ranjan
- Division of Cardiovascular Medicine, University of Utah Health Sciences, Salt Lake City, UT, US
| | - T Jared Bunch
- School of Medicine, University of Utah, Salt Lake City, UT, US
- Division of Cardiovascular Medicine, University of Utah Health Sciences, Salt Lake City, UT, US
| |
Collapse
|
39
|
Chin CG, Elimam AM, Lin FJ, Chen YC, Lin YK, Lu YY, Higa S, Chen SA, Hsieh MH, Chen YJ. Effects of Adrenomedullin on Atrial Electrophysiology and Pulmonary Vein Arrhythmogenesis. Int J Mol Sci 2022; 23:ijms232214064. [PMID: 36430541 PMCID: PMC9696567 DOI: 10.3390/ijms232214064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenomedullin, a peptide with vasodilatory, natriuretic, and diuretic effects, may be a novel agent for treating heart failure. Heart failure is associated with an increased risk of atrial fibrillation (AF), but the effects of adrenomedullin on atrial arrhythmogenesis remain unclear. This study investigated whether adrenomedullin modulates the electrophysiology of the atria (AF substrate) or pulmonary vein (PV; AF trigger) arrhythmogenesis. Conventional microelectrode or whole-cell patch clamps were used to study the effects of adrenomedullin (10, 30, and 100 pg/mL) on the electrical activity, mechanical response, and ionic currents of isolated rabbit PV and sinoatrial node tissue preparations and single PV cardiomyocytes. At 30 and 100 pg/mL, adrenomedullin significantly reduced the spontaneous beating rate of the PVs from 2.0 ± 0.4 to 1.3 ± 0.5 and 1.1 ± 0.5 Hz (reductions of 32.9% ± 7.1% and 44.9 ± 8.4%), respectively, and reduced PV diastolic tension by 12.8% ± 4.1% and 14.5% ± 4.1%, respectively. By contrast, adrenomedullin did not affect sinoatrial node beating. In the presence of L-NAME (a nitric oxide synthesis inhibitor, 100 μM), adrenomedullin (30 pg/mL) did not affect the spontaneous beating rate or diastolic tension of the PVs. In the single-cell experiments, adrenomedullin (30 pg/mL) significantly reduced the L-type calcium current (ICa-L) and reverse-mode current of the sodium-calcium exchanger (NCX). Adrenomedullin reduces spontaneous PV activity and PV diastolic tension by reducing ICa-L and NCX current and thus may be useful for treating atrial tachyarrhythmia.
Collapse
Affiliation(s)
- Chye-Gen Chin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
| | - Ahmed Moustafa Elimam
- Division of Cardiovascular Medicine, Department of Internal Medicine, Mansoura International Hospital, Mansoura 35511, Egypt
| | - Fong-Jhih Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yen-Yu Lu
- Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Shih-Ann Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Ming-Hsiung Hsieh
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Correspondence: (M.-H.H.); (Y.-J.C.); Tel.: +886-0970746502 (Y.-J.C.); Fax: +886-2-2933-9378 (Y.-J.C.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Sec. 3, Taipei 11696, Taiwan
- Correspondence: (M.-H.H.); (Y.-J.C.); Tel.: +886-0970746502 (Y.-J.C.); Fax: +886-2-2933-9378 (Y.-J.C.)
| |
Collapse
|
40
|
Tore D, Faletti R, Biondo A, Carisio A, Giorgino F, Landolfi I, Rocco K, Salto S, Santonocito A, Ullo F, Anselmino M, Fonio P, Gatti M. Role of Cardiovascular Magnetic Resonance in the Management of Atrial Fibrillation: A Review. J Imaging 2022; 8:300. [PMID: 36354873 PMCID: PMC9696856 DOI: 10.3390/jimaging8110300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 08/30/2023] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia, and its prevalence is growing with time. Since the introduction of catheter ablation procedures for the treatment of AF, cardiovascular magnetic resonance (CMR) has had an increasingly important role for the treatment of this pathology both in clinical practice and as a research tool to provide insight into the arrhythmic substrate. The most common applications of CMR for AF catheter ablation are the angiographic study of the pulmonary veins, the sizing of the left atrium (LA), and the evaluation of the left atrial appendage (LAA) for stroke risk assessment. Moreover, CMR may provide useful information about esophageal anatomical relationship to LA to prevent thermal injuries during ablation procedures. The use of late gadolinium enhancement (LGE) imaging allows to evaluate the burden of atrial fibrosis before the ablation procedure and to assess procedural induced scarring. Recently, the possibility to assess atrial function, strain, and the burden of cardiac adipose tissue with CMR has provided more elements for risk stratification and clinical decision making in the setting of catheter ablation planning of AF. The purpose of this review is to provide a comprehensive overview of the potential applications of CMR in the workup of ablation procedures for atrial fibrillation.
Collapse
Affiliation(s)
- Davide Tore
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Andrea Biondo
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Andrea Carisio
- Department of Radiology, Humanitas Gradenigo Hospital, 10126 Turin, Italy
| | - Fabio Giorgino
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Ilenia Landolfi
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Katia Rocco
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Sara Salto
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Ambra Santonocito
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Federica Ullo
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Matteo Anselmino
- Division of Cardiology, Department of Medical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Paolo Fonio
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, Azienda Ospedaliero Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
41
|
Namekata I, Hiiro H, Odaka R, Saito T, Hamaguchi S, Tsukamoto T, Ishikawa R, Katayama Y, Kondo Y, Tanaka H. Inhibitory Effect of a Late Sodium Current Blocker, NCC-3902, on the Automaticity of the Guinea Pig Pulmonary Vein Myocardium. Biol Pharm Bull 2022; 45:1644-1652. [DOI: 10.1248/bpb.b22-00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Iyuki Namekata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Haruhito Hiiro
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Ryosuke Odaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Taro Saito
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Shogo Hamaguchi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| | - Tadaaki Tsukamoto
- Pharmacologicals Group, Medicinal Research Department, Biological Research Laboratories, Nissan Chemical Corporation
| | - Ryutaro Ishikawa
- Pharmacologicals Group, Medicinal Research Department, Biological Research Laboratories, Nissan Chemical Corporation
| | - Yoshimi Katayama
- Pharmacologicals Group, Medicinal Research Department, Biological Research Laboratories, Nissan Chemical Corporation
| | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
42
|
O'Neill L, Sim I, O'Hare D, Whitaker J, Mukherjee RK, Niederer S, Wright M, Ezzat V, Rosenthal E, Jones MI, Frigiola A, O'Neill MD, Williams SE. Provocation and localization of atrial ectopy in patients with atrial septal defects. J Interv Card Electrophysiol 2022; 65:227-237. [PMID: 35737208 PMCID: PMC9550781 DOI: 10.1007/s10840-022-01273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is associated with atrial septal defects (ASDs), but the mechanism of arrhythmia in these patients is poorly understood. We hypothesised that right-sided atrial ectopy may predominate in this cohort. Here, we aimed to localise the origin of spontaneous and provoked atrial ectopy in ASD patients. METHODS Following invasive calibration of P-wave axes, 24-h Holter monitoring was used to determine the chamber of origin of spontaneous atrial ectopy. Simultaneous electrogram recording from multiple intra-cardiac catheters was used to determine the chamber of origin of isoprenaline-provoked ectopy. Comparison was made to a group of non-congenital heart disease AF patients. RESULTS Amongst ASD patients, a right-sided origin for spontaneous atrial ectopy was significantly more prevalent than a left-sided origin (24/30 patients with right-sided ectopy vs. 14/30 with left-sided ectopy, P = 0.015). Amongst AF patients, there was no difference in the prevalence of spontaneous right vs. left-sided ectopy. For isoprenaline-provoked ectopy, there was no significant difference in the proportions of patients with right-sided or left-sided ectopy in either group. CONCLUSIONS When spontaneous atrial ectopy occurs in ASD patients, it is significantly more prevalent from a right-sided than left-sided origin. Isoprenaline infusion did not reveal the predilection for right-sided ectopy during electrophysiology study.
Collapse
Affiliation(s)
- Louisa O'Neill
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Iain Sim
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Daniel O'Hare
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - John Whitaker
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Rahul K Mukherjee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Steven Niederer
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Matthew Wright
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | | | | | | | | | - Mark D O'Neill
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Steven E Williams
- Division of Imaging Sciences and Biomedical Engineering, King's College London, 4thFloor North Wing, St. Thomas' Hospital, London, SE1 7EH, UK
- The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
43
|
Abstract
The global burden caused by cardiovascular disease is substantial, with heart disease representing the most common cause of death around the world. There remains a need to develop better mechanistic models of cardiac function in order to combat this health concern. Heart rhythm disorders, or arrhythmias, are one particular type of disease which has been amenable to quantitative investigation. Here we review the application of quantitative methodologies to explore dynamical questions pertaining to arrhythmias. We begin by describing single-cell models of cardiac myocytes, from which two and three dimensional models can be constructed. Special focus is placed on results relating to pattern formation across these spatially-distributed systems, especially the formation of spiral waves of activation. Next, we discuss mechanisms which can lead to the initiation of arrhythmias, focusing on the dynamical state of spatially discordant alternans, and outline proposed mechanisms perpetuating arrhythmias such as fibrillation. We then review experimental and clinical results related to the spatio-temporal mapping of heart rhythm disorders. Finally, we describe treatment options for heart rhythm disorders and demonstrate how statistical physics tools can provide insights into the dynamics of heart rhythm disorders.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
44
|
Alteration of Skin Sympathetic Nerve Activity after Pulmonary Vein Isolation in Patients with Paroxysmal Atrial Fibrillation. J Pers Med 2022; 12:jpm12081286. [PMID: 36013235 PMCID: PMC9409853 DOI: 10.3390/jpm12081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Autonomic system plays a pivotal role in the pathogenesis of paroxysmal atrial fibrillation (AF). Skin sympathetic nerve activity (SKNA) is a noninvasive tool for assessing sympathetic tone. However, data on changes in SKNA after ablation are limited. Here, we retrospectively enrolled 37 patients with symptomatic drug-refractory paroxysmal AF who underwent pulmonary vein isolation (PVI) with radiofrequency ablation (RFA) or cryoablation (CBA). SKNA was measured from the chest and right arm 1 day prior to ablation, as well as 1 day and 3 months after ablation. One day after ablation, the SKNA-Arm increased from 517.1 µV (first and third quartiles, 396.0 and 728.0, respectively) to 1226.2 µV (first and third quartiles, 555.2 and 2281.0), with an increase of 179.8% (125% and 376.0%) (p < 0.001); the SKNA-Chest increased from 538.2 µV (first and third quartiles, 432.9 and 663.9) to 640.0 µV (first and third quartiles, 474.2 and 925.6), with an increase of 108.3% (95.6% and 167.9%) (p = 0.004), respectively. In those without recurrence, there was a significant increase in SKNA 1 day after ablation as compared with those before ablation. Twelve patients received SKNA measurement 3 months after ablation; both SKNA-Arm (p = 0.31) and SKNA-Chest (p = 0.27) were similar to those before ablation, respectively. Among patients with symptomatic drug-refractory paroxysmal AF receiving PVI, increased SKNA was observed 1 day after ablation and returned to the baseline 3 months after ablation. Elevation of SKNA was associated with lower early and late recurrences following ablation.
Collapse
|
45
|
Segan L, Prabhu S, Kalman JM, Kistler PM. Atrial Fibrillation and Stress: A 2-Way Street? JACC Clin Electrophysiol 2022; 8:1051-1059. [PMID: 35981797 DOI: 10.1016/j.jacep.2021.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023]
Abstract
The accumulating literature linking stress with negative health outcomes, including cardiovascular disease (CVD), is extensively reported yet poorly defined. Stress is associated with a higher risk of hypertension, acute myocardial infarction, arrhythmogenesis, and heart failure. Stress mediates its effect through direct neuronal, endocrine, autonomic, and immune processes and indirectly by modifying lifestyle behaviors that promote CVD progression. Stress occurs when an individual perceives that internal or external demands exceed the capacity for an adaptive response. Psychologic stress is increasingly recognized in the atrial fibrillation (AF) population, although the pathophysiology remains unclear. There appears to be a bidirectional relationship between AF and stress with a complex interplay between the 2 entities. Stress modulates the immune and autonomic nervous systems, key drivers in AF initiation and potentiation. AF leads to increasing anxiety, psychologic distress, and suicidal ideation. Recently, lifestyle modification has emerged as the fourth pillar of AF management, with stress reduction a potential reversible risk factor and future target for intervention. This review examines proposed mechanisms linking AF and stress and explores stress reduction as an adjunct to the AF management armamentarium.
Collapse
Affiliation(s)
- Louise Segan
- The Alfred Hospital, Melbourne, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Sandeep Prabhu
- The Alfred Hospital, Melbourne, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia
| | - Jonathan M Kalman
- University of Melbourne, Melbourne, Australia; Royal Melbourne Hospital, Melbourne, Australia
| | - Peter M Kistler
- The Alfred Hospital, Melbourne, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Australia; University of Melbourne, Melbourne, Australia; Monash University, Melbourne, Australia.
| |
Collapse
|
46
|
Welzel G, Schuster S. Electric catfish hearts are not intrinsically immune to electric shocks. J Exp Biol 2022; 225:276258. [PMID: 35946177 DOI: 10.1242/jeb.244307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
Abstract
High voltage electric shocks cause life threatening cardiac injuries such as sudden cardiac standstill or severe myocardial injury. Here, we analysed the physiology of the heart of the strongly electric catfish (Malapterurus beninensis) that stuns prey with high-voltage shocks but is immune to its own, as well as external, high-voltage shocks. Neither a detailed analysis of the electrocardiogram nor the structure of the heart indicated a specialized cardiac conduction system. Using a suitable perfusion system, we discovered that, despite its immunity in vivo, the explanted heart of electric catfish can readily be activated by external electrical currents and is equally sensitive to electric shock-induced arrhythmias as similar-sized goldfish hearts. The surprise thus is that the electric catfish has a vulnerable heart that requires to be protected by highly efficient but presently unknown means.
Collapse
Affiliation(s)
- Georg Welzel
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| |
Collapse
|
47
|
Local Impedance Drop Predicts Durable Conduction Block in Patients With Paroxysmal Atrial Fibrillation. JACC Clin Electrophysiol 2022; 8:595-604. [PMID: 35589172 DOI: 10.1016/j.jacep.2022.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This analysis was performed to evaluate the transition of local impedance (LI) drop during pulmonary vein isolation (PVI) to durable block and mature lesion formation based on 3-month mapping procedures. BACKGROUND A radiofrequency catheter measuring LI has been shown to be effective for performing PVI in patients with paroxysmal atrial fibrillation. Previous analysis has demonstrated LI drop to be predictive of pulmonary vein segment conduction block during an atrial fibrillation ablation procedure. METHODS Fifty-eight patients who had undergone LI-blinded de novo PVI returned for a 3-month mapping procedure. PVI ablation circles were divided into 16 anatomic segments for classification (durable block or gap), and the median LI drop within segments with an interlesion distance of ≤6 mm was compared. A total of 51 data sets met the criteria for segmental analysis of LI performance. RESULTS At the 3-month procedure, PV connection was confirmed in at least 1 PV segment in 35 of the included patients. LI drop outperformed generator impedance drop as a predictor of durable conduction block (area under the receiver-operating characteristic curve: 0.79 vs 0.68; P = 0.003). Optimal LI drops were identified by left atrial region (anterior/superior: 16.9 Ω [sensitivity: 69.1%; specificity: 85.0%; positive predictive value for durable conduction block: 97.7%]; posterior/inferior:14.2 Ω [sensitivity: 73.8%; specificity: 78.3%; positive predictive value: 96.9%]). Starting LI before radiofrequency (RF) application was significantly different among healthy, gap, and mature scar tissue and was also a contributing factor to achieving an optimal LI drop (85.2% of RF applications with a starting LI of ≥110 Ω achieved the optimal regional drop or greater). CONCLUSIONS LI drop is predictive of durable PV segment isolation. Preablation starting LI is associated with the magnitude of LI drop. These findings suggest that a regional approach to RF ablation guided by LI combined with careful interlesion distance control may be beneficial in patients with paroxysmal atrial fibrillation (Electrical Coupling Information From the Rhythmia HDx System and DirectSense Technology in Subjects With Paroxysmal Atrial Fibrillation [LOCALIZE]; NCT03232645).
Collapse
|
48
|
Ikenouchi T, Nitta J, Inaba O, Kono T, Murata K, Takamiya T, Inamura Y, Sato A, Matsumura Y, Takahashi Y, Goya M, Sasano T. Effect of isolation feasibility of non-pulmonary vein foci on efficacy of ablation for atrial fibrillation: comparison of the isolation and focal ablation methods. J Interv Card Electrophysiol 2022; 65:441-451. [PMID: 35445888 DOI: 10.1007/s10840-022-01217-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Atrial fibrillation (AF) mainly originates from the pulmonary vein (PV). However, some AF triggers originate from other sites, namely non-PV foci, which are related to recurrence after AF ablation. This study aimed to evaluate the effects of isolation feasibility (isolability) of non-PV foci on the efficacy of AF ablation. METHODS Overall, 1855 patients with AF (age, 64.6 ± 10.9 years; 82% paroxysmal) underwent PV isolation, followed by induction and ablation of non-PV foci. Among them, 545 (29%) patients had non-PV foci; these patients were categorized into those with isolable non-PV foci (n = 196, 36%) and those with non-isolable non-PV foci (n = 349, 64%). RESULTS During a mean follow-up of 31.2 ± 15.6 months, recurrence was higher in the non-isolable group than in the isolable group (34% vs. 19%, P < 0.01). Kaplan-Meier analyses revealed a significantly better 1-year clinical outcome in the isolable group than in the non-isolable group (88.0% vs. 78.4%, P < 0.001; hazard ratio (HR), 0.56; 95% confidence interval (CI), 0.39-0.81). This outcome was not inferior to that of patients without non-PV foci (88.3% vs. 90.8%, P = 0.81). The non-isolable group showed poorer clinical outcomes than patients without non-PV foci (78.4% vs. 90.8%, P < 0.001; HR, 1.37; 95% CI, 1.22-1.53). Cox regression analysis revealed that isolability (HR, 0.56; 95% CI, 0.36-0.89) and unmappability (HR, 2.89; 95% CI, 1.55-5.37) of non-PV foci were significant predictors of arrhythmia recurrence. CONCLUSION The isolability of non-PV foci was a significant factor affecting the achievement of better clinical outcomes following AF ablation in patients with non-PV foci.
Collapse
Affiliation(s)
- Takashi Ikenouchi
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo To, 113-8510, Japan.
| | - Junichi Nitta
- Department of Cardiology, Sakakibara Heart Institute, 3-16-1 Asahicho, Fuchu-shi, Tokyo To, 183-0003, Japan
| | - Osamu Inaba
- Department of Cardiology, Japanese Red Cross Saitama Hospital, 1-5 Shintoshin, Chuo-kuSaitama Prefecture, Saitama City, 330-8553, Japan
| | - Toshikazu Kono
- Department of Cardiology, Japanese Red Cross Saitama Hospital, 1-5 Shintoshin, Chuo-kuSaitama Prefecture, Saitama City, 330-8553, Japan
| | - Kazuya Murata
- Department of Cardiology, Japanese Red Cross Saitama Hospital, 1-5 Shintoshin, Chuo-kuSaitama Prefecture, Saitama City, 330-8553, Japan
| | - Tomomasa Takamiya
- Department of Cardiology, Japanese Red Cross Saitama Hospital, 1-5 Shintoshin, Chuo-kuSaitama Prefecture, Saitama City, 330-8553, Japan
| | - Yukihiro Inamura
- Department of Cardiology, Japanese Red Cross Saitama Hospital, 1-5 Shintoshin, Chuo-kuSaitama Prefecture, Saitama City, 330-8553, Japan
| | - Akira Sato
- Department of Cardiology, Japanese Red Cross Saitama Hospital, 1-5 Shintoshin, Chuo-kuSaitama Prefecture, Saitama City, 330-8553, Japan
| | - Yutaka Matsumura
- Department of Cardiology, Japanese Red Cross Saitama Hospital, 1-5 Shintoshin, Chuo-kuSaitama Prefecture, Saitama City, 330-8553, Japan
| | - Yoshihide Takahashi
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo To, 113-8510, Japan
| | - Masahiko Goya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo To, 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo To, 113-8510, Japan
| |
Collapse
|
49
|
Park SY, Yang H, Marboe C, Ziv O, Laurita K, Rollins A, Saluja D, Hendon CP. Cardiac endocardial left atrial substrate and lesion depth mapping using near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1801-1819. [PMID: 35519253 PMCID: PMC9045901 DOI: 10.1364/boe.451547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Atrial fibrillation (AF) is a rapid irregular electrical activity in the upper chamber and the most common sustained cardiac arrhythmia. Many patients require radiofrequency ablation (RFA) therapy to restore sinus rhythm. Pulmonary vein isolation requires distinguishing normal atrial wall from the pulmonary vein tissue, and atrial substrate ablation requires differentiating scar tissue, fibrosis, and adipose tissue. However, current anatomical mapping methods for strategically locating ablation sites by identifying structural substrates in real-time are limited. An intraoperative tool that accurately provides detailed structural information and classifies endocardial substrates could help improve RF guidance during RF ablation therapy. In this work, we propose a 7F NIRS integrated ablation catheter and demonstrate endocardial mapping on ex vivo swine (n = 12) and human (n = 5) left atrium (LA). First, pulmonary vein (PV) sleeve, fibrosis and ablation lesions were identified with NIRS-derived contrast indices. Based on these key spectral features, classification algorithms identified endocardial substrates with high accuracy (<11% error). Then, a predictive model for lesion depth was evaluated on classified lesions. Model predictions correlated well with histological measurements of lesion dimensions (R = 0.984). Classified endocardial substrates and lesion depth were represented in 2D spatial maps. These results suggest NIRS integrated mapping catheters can serve as a complementary tool to the current electroanatomical mapping system to improve treatment efficacy.
Collapse
Affiliation(s)
- Soo Young Park
- Department of Electrical Engineering, Columbia University, New York, USA
| | - Haiqiu Yang
- Department of Electrical Engineering, Columbia University, New York, USA
| | - Charles Marboe
- Department of Cell Biology and Pathology, Columbia University Irving Medical Center, New York, USA
| | - Ohad Ziv
- Department of Medicine, Cardiology Division, MetroHealth Hospital, Ohio, USA
| | - Kenneth Laurita
- Department of Medicine, Cardiology Division, MetroHealth Hospital, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, USA
| | - Andrew Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Ohio, USA
| | - Deepak Saluja
- Department of Medicine, Cardiology Division, Columbia University Irving Medical Center, New York, USA
| | | |
Collapse
|
50
|
Gander L, Pezzuto S, Gharaviri A, Krause R, Perdikaris P, Sahli Costabal F. Fast Characterization of Inducible Regions of Atrial Fibrillation Models With Multi-Fidelity Gaussian Process Classification. Front Physiol 2022; 13:757159. [PMID: 35330935 PMCID: PMC8940533 DOI: 10.3389/fphys.2022.757159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Computational models of atrial fibrillation have successfully been used to predict optimal ablation sites. A critical step to assess the effect of an ablation pattern is to pace the model from different, potentially random, locations to determine whether arrhythmias can be induced in the atria. In this work, we propose to use multi-fidelity Gaussian process classification on Riemannian manifolds to efficiently determine the regions in the atria where arrhythmias are inducible. We build a probabilistic classifier that operates directly on the atrial surface. We take advantage of lower resolution models to explore the atrial surface and combine seamlessly with high-resolution models to identify regions of inducibility. We test our methodology in 9 different cases, with different levels of fibrosis and ablation treatments, totalling 1,800 high resolution and 900 low resolution simulations of atrial fibrillation. When trained with 40 samples, our multi-fidelity classifier that combines low and high resolution models, shows a balanced accuracy that is, on average, 5.7% higher than a nearest neighbor classifier. We hope that this new technique will allow faster and more precise clinical applications of computational models for atrial fibrillation. All data and code accompanying this manuscript will be made publicly available at: https://github.com/fsahli/AtrialMFclass.
Collapse
Affiliation(s)
- Lia Gander
- Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Simone Pezzuto
- Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Ali Gharaviri
- Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Rolf Krause
- Center for Computational Medicine in Cardiology, Euler Institute, Università della Svizzera italiana, Lugano, Switzerland
| | - Paris Perdikaris
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, United States
| | - Francisco Sahli Costabal
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
| |
Collapse
|