1
|
McGettrick P, Tinago W, O'Brien J, Miles S, Lawler L, Garcia-Leon A, Mahon N, Lambert J, Sheehan G, Landay A, Sabin CA, Cotter AG, Mallon PWG. Distinct Inflammatory Phenotypes Are Associated With Subclinical and Clinical Cardiovascular Disease in People With Human Immunodeficiency Virus. J Infect Dis 2024; 230:e616-e621. [PMID: 38214571 PMCID: PMC11420771 DOI: 10.1093/infdis/jiae007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
Despite inflammation being implicated in cardiovascular disease (CVD) in people with human immunodeficiency virus (PWH), considerable heterogeneity within populations of PWH exists. Stratifying CVD risk based on inflammatory phenotype could play an important role. Using principal component analyses and unsupervised hierarchical clustering, we examined 38 biomarkers to identify inflammatory phenotypes in 2 independent cohorts of PWH. We identified 3 distinct inflammatory clusters present in both cohorts that were associated with altered risk of both subclinical CVD (cohort 1) and prevalent clinical CVD (cohort 2) after adjusting for CVD risk factors. These data support precision medicine approaches to enhance CVD risk assessment in PWH.
Collapse
Affiliation(s)
- Padraig McGettrick
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Willard Tinago
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Julie O'Brien
- Department of Radiology, University Hospital Limerick, Limerick, Ireland
| | - Sarah Miles
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Leo Lawler
- Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Alejandro Garcia-Leon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Niall Mahon
- Department of Cardiology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - John Lambert
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Gerard Sheehan
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Caroline A Sabin
- Institute for Global Health, University College London, London, United Kingdom
| | - Aoife G Cotter
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Patrick W G Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
2
|
Liu S, Ni S, Wang C, Yang K, Yang Y, Li L, Liu J, Wang Y, Qin Y, Zhang M. Association of serum cytokines with coronary chronic total occlusion and their role in predicting procedural outcomes. Hellenic J Cardiol 2024; 78:25-35. [PMID: 37652147 DOI: 10.1016/j.hjc.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cytokines are strongly associated with coronary artery disease (CAD); however, few studies have explored the relevance of cytokines in coronary chronic total occlusion (CTO). This study aimed to clarify the association of cytokines with CTO and its procedural outcomes. METHODS A total of 526 patients with suspected CAD but not acute myocardial infarction were enrolled and divided into CTO (n = 122) and non-CTO (n = 404) groups based on coronary angiography. Furthermore, serum levels of 12 cytokines [Interleukin-1β (IL-1β), IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, tumor necrosis factor-α (TNF-α), interferon-α (IFN-α), and IFN-γ] were measured for each patient. RESULTS Patients with CTO had higher rates of male (P = 0.001), smoking (P = 0.014), and diabetes (P = 0.008); higher levels of IL-6 (P < 0.001), total triglycerides (P = 0.020), serum creatine (P = 0.001), and high-sensitivity troponin I (P = 0.001); and lower IL-4 (P < 0.001), total cholesterol (P = 0.027), and high-density lipoprotein cholesterol (HDL-C) (P < 0.001) levels compared to those without CTO. IL-4 (OR = 0.216, 95%CI:0.135-0.345, P < 0.001), IL-6 (OR = 1.248, 95%CI:1.165-1.337, P < 0.001), and HDL-C (OR = 0.047, 95%CI:0.010-0.221, P < 0.001) were identified as independent predictors of CTO. And good predictive performance (AUC = 0.876) for CTO, with a sensitivity of 81.96% and specificity of 81.19%, could be achieved by combining these three predictors. Furthermore, patients with procedural success had younger age (P = 0.004) and lower serum IL-6 levels (P = 0.039) compared to those with procedural failure, and IL-6 levels (OR = 0.962, 95%CI: 0.931-0.995, P = 0.023) were associated with procedural success. CONCLUSION IL-4, IL-6, and HDL-C levels were strongly associated with CTO, and IL-6 also linked to procedural outcomes of CTO.
Collapse
Affiliation(s)
- Sheng Liu
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Siyao Ni
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengyang Wang
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kexin Yang
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yunxiao Yang
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Surgical Center of Structural Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| | - Jinkai Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Wang
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanwen Qin
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zhang
- Center for Coronary Heart Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Hwang J, You H, Kwon DH, Son Y, Lee GY, Han SN. Transcriptome analysis of T cells from Ldlr -/- mice and effects of in vitro vitamin D treatment. J Nutr Biochem 2023; 124:109510. [PMID: 39492429 DOI: 10.1016/j.jnutbio.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Vitamin D is known for its immunosuppressive effects on T cells, suppressing Th1 and Th17 and promoting Treg differentiation. Th1 cells contribute to inflammatory responses such as inflammatory cytokine production and macrophage activation, which accelerate the progression of atherosclerosis. However, the mechanisms underlying the modulation of T cell functions by vitamin D in atherosclerosis have not been investigated. This study analyzed the gene expression profiles of T cells, using RNA-seq transcriptome analysis, to investigate the effects of in vitro vitamin D treatment on T cell differentiation and signal transduction pathways in Ldlr knock-out (Ldlr-/-) mice. C57BL/6 mice were randomly assigned to two groups and fed a control diet (CON) or a Western diet (WD) for 16 weeks, while Ldlr-/- mice (LDLR-/-) were fed a Western diet. Splenic T cells were isolated and stimulated with anti-CD3e and anti-CD28 mAb for 48 hours with or without 10 nM 1,25(OH)2D3. RNA sequencing was performed, followed by KEGG and GO enrichment analyses. Populations of T cell subsets and cytokine production were measured to assess T cell lineage differentiation. The JAK-STAT, HIF-1, and calcium signaling pathways of Ldlr-/- mice significantly differed from those of control mice, and 1,25(OH)2D3 treatment affected MAPKKK binding molecular function of Ldlr-/- mice. Percentages of Th1 cells and IL-17 production were significantly reduced by 1,25(OH)2D3 treatment in all three mouse groups. These results suggest that 1,25(OH)2D3 has anti-inflammatory effects in atherosclerosis and is involved in cell signaling pathways that could prevent disease progression by regulating T cell differentiation and effector functions.
Collapse
Affiliation(s)
- Jungwon Hwang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - Hyeyoung You
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - Deok Hoon Kwon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - YeKyoung Son
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea, 08826.
| |
Collapse
|
4
|
Yu J, Xu W, Dong Q, Ji Q, Cheng M, Hu D, Cai Y, Zeng Q, Yu K. Latency-associated peptide (LAP) +CD4 + regulatory T cells prevent atherosclerosis by modulating macrophage polarization. Clin Immunol 2023; 255:109767. [PMID: 37689092 DOI: 10.1016/j.clim.2023.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
RATIONALE A persistent autoimmune and inflammatory response plays a critical role in the progression of atherosclerosis. The transcription factor forkhead box P3 (Foxp3)+CD4+ regulatory T cells (Foxp3+ Tregs) attenuate atherosclerosis. Latency-associated peptide (LAP)+CD4+ T cells are a new class of Tregs whose role in atherosclerosis is unknown. OBJECTIVE To investigate the function of CD4+LAP+ Tregs in inhibiting inflammation and preventing atherosclerosis. METHODS AND RESULTS Depletion of CD4+LAP+ Tregs results in aggravated inflammation and atherosclerotic lesions. Mechanistically, CD4+LAP+ Treg depletion was associated with decreased M2-like macrophages and increased Th1 and Th17 cells, characterized by increased unstable plaque promotion and decreased expression of inflammation-resolving factors in both arteries and immune organs. In contrast, adoptive transfer of CD4+LAP+ Tregs to ApoE-/- mice or CD4-/-ApoE-/- mice led to decreased atherosclerotic lesions. Compared with control animals, adoptive transfer of CD4+LAP+ Tregs induced M2-like macrophage differentiation within the atherosclerotic lesion and spleen, associated with increased collagen and α-SMA in plaques and decreased expression of MMP-2 and MMP-9. Mechanistic studies reveal that isolated CD4+LAP+ Tregs exhibit a tolerance phenotype, with increased expression of inhibitory cytokines and coinhibitory molecules. After coculture with CD4+LAP+ Tregs, monocytes/macrophages display typical features of M2 macrophages, including upregulated expression of CD206 and Arg-1 and decreased production of MCP-1, IL-6, IL-1β and TNF-α, which was almost abrogated by transwell and partially TGF-β1 neutralization. RNA-seq analysis showed different gene expression profiles between CD4+LAP+ Tregs and LAP-CD4+ T cells and between CD4+LAP+ Tregs of ApoE-/- mice and CD4+LAP+ Tregs of C57BL/6 mice, of which Fancd2 and IL4i1 may contribute to the powerful inhibitory properties of CD4+LAP+ Tregs. Furthermore, the number and the suppressive properties of CD4+LAP+ Tregs were impaired by oxLDL. CONCLUSIONS Our data indicate that the remaining CD4+LAP+ Tregs play a protective role in atherosclerosis by modulating monocyte/macrophage differentiation and regulatory factors, which may partly explain the protective effect of T cells tolerance in atherosclerosis. Moreover, adoptive transfer of CD4+LAP+ Tregs constitutes a novel approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Wenbin Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
5
|
Cimmino G, Muscoli S, De Rosa S, Cesaro A, Perrone MA, Selvaggio S, Selvaggio G, Aimo A, Pedrinelli R, Mercuro G, Romeo F, Perrone Filardi P, Indolfi C, Coronelli M. Evolving concepts in the pathophysiology of atherosclerosis: from endothelial dysfunction to thrombus formation through multiple shades of inflammation. J Cardiovasc Med (Hagerstown) 2023; 24:e156-e167. [PMID: 37186566 DOI: 10.2459/jcm.0000000000001450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Atherosclerosis is the anatomo-pathological substrate of most cardio, cerebro and vascular diseases such as acute and chronic coronary syndromes, stroke and peripheral artery diseases. The pathophysiology of atherosclerotic plaque and its complications are under continuous investigation. In the last 2 decades our understanding on the formation, progression and complication of the atherosclerotic lesion has greatly improved and the role of immunity and inflammation is now well documented and accepted. The conventional risk factors modulate endothelial function determining the switch to a proatherosclerotic phenotype. From this point, lipid accumulation with an imbalance from cholesterol influx and efflux, foam cells formation, T-cell activation, cytokines release and matrix-degrading enzymes production occur. Lesions with high inflammatory rate become vulnerable and prone to rupture. Once complicated, the intraplaque thrombogenic material, such as the tissue factor, is exposed to the flowing blood, thus inducing coagulation cascade activation, platelets aggregation and finally intravascular thrombus formation that leads to clinical manifestations of this disease. Nonconventional risk factors, such as gut microbiome, are emerging novel markers of atherosclerosis. Several data indicate that gut microbiota may play a causative role in formation, progression and complication of atherosclerotic lesions. The gut dysbiosis-related inflammation and gut microbiota-derived metabolites have been proposed as the main working hypothesis in contributing to disease formation and progression. The current evidence suggest that the conventional and nonconventional risk factors may modulate the degree of inflammation of the atherosclerotic lesion, thus influencing its final fate. Based on this hypothesis, targeting inflammation seems to be a promising approach to further improve our management of atherosclerotic-related diseases.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
| | | | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Marco A Perrone
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome
| | | | | | - Alberto Aimo
- Fondazione Toscana Gabriele Monasterio
- Institute of Life Sciences, Scuola Superiore Sant'Anna
| | - Roberto Pedrinelli
- Critical Care Medicine-Cardiology Division, Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa
| | - Giuseppe Mercuro
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi, Cagliari
| | | | - Pasquale Perrone Filardi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli 'Federico II', Napoli
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro
| | - Maurizio Coronelli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Tattersall MC, Dasiewicz AS, McClelland RL, Jarjour NN, Korcarz CE, Mitchell CC, Esnault S, Szklo M, Stein JH. Persistent Asthma Is Associated With Carotid Plaque in MESA. J Am Heart Assoc 2022; 11:e026644. [PMID: 36416156 PMCID: PMC9851438 DOI: 10.1161/jaha.122.026644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Background Asthma and atherosclerotic cardiovascular disease share an underlying inflammatory pathophysiology. We hypothesized that persistent asthma is associated with carotid plaque burden, a strong predictor of atherosclerotic cardiovascular disease events. Methods and Results The MESA (Multi-Ethnic Study of Atherosclerosis) enrolled adults free of known atherosclerotic cardiovascular disease at baseline. Subtype of asthma was determined at examination 1. Persistent asthma was defined as asthma requiring use of controller medications, and intermittent asthma was defined as asthma without controller medications. B-mode carotid ultrasound was performed to detect carotid plaques (total plaque score [TPS], range 0-12). Multivariable regression modeling with robust variances evaluated the association of asthma subtype and carotid plaque burden. The 5029 participants were a mean (SD) age of 61.6 (10.0) years (53% were women, 26% were Black individuals, 23% were Hispanic individuals, and 12% were Chinese individuals). Carotid plaque was present in 50.5% of participants without asthma (TPS, 1.29 [1.80]), 49.5% of participants with intermittent asthma (TPS, 1.25 [1.76]), and 67% of participants with persistent asthma (TPS, 2.08 [2.35]) (P≤0.003). Participants with persistent asthma had higher interleukin-6 (1.89 [1.61] pg/mL) than participants without asthma (1.52 [1.21] pg/mL; P=0.02). In fully adjusted models, persistent asthma was associated with carotid plaque presence (odds ratio, 1.83 [95% confidence interval, 1.21-2.76]; P<0.001) and TPS (β=0.66; P<0.01), without attenuation after adjustment for baseline interleukin-6 (P=0.02) or CRP (C-reactive protein) (P=0.01). Conclusions Participants with persistent asthma had higher carotid plaque burden and higher levels of inflammatory biomarkers, compared with participants without asthma. Adjustment for baseline inflammatory biomarkers did not attenuate the association between carotid plaque and asthma subtype, highlighting the increased atherosclerotic cardiovascular disease risk among those with persistent asthma may be multifactorial.
Collapse
Affiliation(s)
- Matthew C. Tattersall
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI
| | - Alison S. Dasiewicz
- Centre for Global Child HealthHospital for Sick ChildrenTorontoOntarioCanada
| | | | - Nizar N. Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineBaltimoreMD
| | - Claudia E. Korcarz
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI
| | - Carol C. Mitchell
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI
| | - Stephane Esnault
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care MedicineBaltimoreMD
| | - Moyses Szklo
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public HealthBaltimoreMD
| | - James H. Stein
- Department of Medicine, Division of Cardiovascular MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWI
| |
Collapse
|
7
|
Fernández-Gallego N, Castillo-González R, Méndez-Barbero N, López-Sanz C, Obeso D, Villaseñor A, Escribese MM, López-Melgar B, Salamanca J, Benedicto-Buendía A, Jiménez-Borreguero LJ, Ibañez B, Sastre J, Belver MT, Vega F, Blanco C, Barber D, Sánchez-Madrid F, de la Fuente H, Martín P, Esteban V, Jiménez-Saiz R. The impact of type 2 immunity and allergic diseases in atherosclerosis. Allergy 2022; 77:3249-3266. [PMID: 35781885 DOI: 10.1111/all.15426] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Raquel Castillo-González
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pathology, Hospital 12 de Octubre, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia López-Sanz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - David Obeso
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Chemistry and Biochemistry, Faculty of Pharmacy, Centre for Metabolomics and Bioanalysis (CEMBIO), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María M Escribese
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz López-Melgar
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Jorge Salamanca
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Amparo Benedicto-Buendía
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Borja Ibañez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Cardiology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joaquín Sastre
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Belver
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Francisco Vega
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Carlos Blanco
- Department of Allergy, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Madrid, Spain
| | - Domingo Barber
- Department of Basic Medical Sciences, Faculty of Medicine, Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Martín
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Rodrigo Jiménez-Saiz
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria (UFV), Madrid, Spain
- Department of Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Liu X, Su J, Zhou H, Zeng Z, Li Z, Xiao Z, Zhao M. Collagen VI antibody reduces atherosclerosis by activating monocyte/macrophage polarization in ApoE -/- mice. Int Immunopharmacol 2022; 111:109100. [PMID: 35932614 DOI: 10.1016/j.intimp.2022.109100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 12/20/2022]
Abstract
Atherosclerosis (AS) has been regarded as an autoimmune disease. However, studies on immunotherapy against AS are limited. We previously found that IgG in AS patients serum binding to alpha 5 and 6 chain of collagen VI (COL6A5 or COL6A6) was significantly higher than that in healthy subjects, here we tried to identify whether they are AS-protective, and tried to develop human antibodies against them. ApoE-/- mice were immunized with COL6A5 or COL6A6 and COL6A6 was found a protective antigen against atherosclerosis. A phage display human single-chain antibody (scFv) library was constructed and COL6A6-specific scFv was obtained, and cloned into a modified pcDNA3 vector to express full-length human antibodies. ApoE-/- mice were fed a high-fat diet (HFD) for 20 weeks and administered three weekly injections of CVI monoclonal antibody (mAb) or isotype control antibody, CVI mAb was found to be able to reduce plaque area by 45 % via aorta oil red O staining. Flowcytometry method predicted that CVI mAb induced monocyte/macrophage polarization from M1 to M2. Furthermore, CVI mAb induced decreases of pro-inflammatory cytokines of MCP-1and IL-1β, and increases of IL-4 and IL-10 levels in animal serum by using theLuminexassay. Overall, we found a novel atherosclero-related antigen - Collagen VI, and its protective fragment - Collagen VI alpha 6 chain (COL6A6) and proved that humanized antibody against COL6A6 therapy regresses atherosclerosis and induces monocyte/macrophage polarization from M1 to M2 in ApoE-/- mice animal model.
Collapse
Affiliation(s)
- Xianyan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China
| | - Jinyu Su
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China
| | - Hui Zhou
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China; Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, PR China
| | - Zhiyun Zeng
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China
| | - Zhonghao Li
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China
| | - Zhi Xiao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China; Tengzhou Central People's Hospital, Tengzhou 277500, PR China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
9
|
Howard FHN, Kwan A, Winder N, Mughal A, Collado-Rojas C, Muthana M. Understanding Immune Responses to Viruses-Do Underlying Th1/Th2 Cell Biases Predict Outcome? Viruses 2022; 14:1493. [PMID: 35891472 PMCID: PMC9324514 DOI: 10.3390/v14071493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging and re-emerging viral diseases have increased in number and geographical extent during the last decades. Examples include the current COVID-19 pandemic and the recent epidemics of the Chikungunya, Ebola, and Zika viruses. Immune responses to viruses have been well-characterised within the innate and adaptive immunity pathways with the outcome following viral infection predominantly attributed to properties of the virus and circumstances of the infection. Perhaps the belief that the immune system is often considered as a reactive component of host defence, springing into action when a threat is detected, has contributed to a poorer understanding of the inherent differences in an individual's immune system in the absence of any pathology. In this review, we focus on how these host factors (age, ethnicity, underlying pathologies) may skew the T helper cell response, thereby influencing the outcome following viral infection but also whether we can use these inherent biases to predict patients at risk of a deviant response and apply strategies to avoid or overcome them.
Collapse
Affiliation(s)
- Faith H. N. Howard
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK; (A.K.); (N.W.); (A.M.); (C.C.-R.); (M.M.)
| | | | | | | | | | | |
Collapse
|
10
|
Cimmino G, Di Serafino L, Cirillo P. Pathophysiology and mechanisms of Acute Coronary Syndromes: atherothrombosis, immune-inflammation, and beyond. Expert Rev Cardiovasc Ther 2022; 20:351-362. [PMID: 35510629 DOI: 10.1080/14779072.2022.2074836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The pathophysiology of atherosclerosis and its acute complications, such as the Acute Coronary Syndromes (ACS), is continuously under investigation. Immunity and inflammation seem to play a pivotal role in promoting formation and grow of atherosclerotic plaques. At the same time, plaque rupture followed by both platelets' activation and coagulation cascade induction lead to intracoronary thrombus formation. Although these phenomena might be considered responsible of about 90% of ACS, in up to 5-10% of acute syndromes, a non-obstructive coronary artery disease (MINOCA) might be documented. This paper gives an overview on atherothrombosis and immuno-inflammation processes involved in ACS pathophysiology, also emphasizing the pathological mechanisms potentially involved in MINOCA. AREAS COVERED The relationship between immuno-inflammation and atherothrombosis is continuously updated by recent findings. At the same time, pathophysiology of MINOCA still remains a partially unexplored field, stimulating the research of potential links between these two aspects of ACS pathophysiology. EXPERT OPINION Pathophysiology of ACS has been extensively investigated; however, several gray areas still remain. MINOCA represents one of these areas. At the same time, many aspects of immune-inflammation processes are still unknown. Thus, research should be continued to shed a brighter light on both these sides of "ACS" moon.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi Di Serafino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
van Duijn J, de Jong MJM, Benne N, Leboux RJT, van Ooijen ME, Kruit N, Foks AC, Jiskoot W, Bot I, Kuiper J, Slütter B. Tc17 CD8+ T cells accumulate in murine atherosclerotic lesions, but do not contribute to early atherosclerosis development. Cardiovasc Res 2021; 117:2755-2766. [PMID: 33063097 PMCID: PMC8683708 DOI: 10.1093/cvr/cvaa286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/04/2020] [Accepted: 09/30/2020] [Indexed: 01/09/2023] Open
Abstract
AIMS CD8+ T cells can differentiate into subpopulations that are characterized by a specific cytokine profile, such as the Tc17 population that produces interleukin-17. The role of this CD8+ T-cell subset in atherosclerosis remains elusive. In this study, we therefore investigated the contribution of Tc17 cells to the development of atherosclerosis. METHODS AND RESULTS Flow cytometry analysis of atherosclerotic lesions from apolipoprotein E-deficient mice revealed a pronounced increase in RORγt+CD8+ T cells compared to the spleen, indicating a lesion-specific increase in Tc17 cells. To study whether and how the Tc17 subset affects atherosclerosis, we performed an adoptive transfer of Tc17 cells or undifferentiated Tc0 cells into CD8-/- low-density lipoprotein receptor-deficient mice fed a Western-type diet. Using flow cytometry, we showed that Tc17 cells retained a high level of interleukin-17A production in vivo. Moreover, Tc17 cells produced lower levels of interferon-γ than their Tc0 counterparts. Analysis of the aortic root revealed that the transfer of Tc17 cells did not increase atherosclerotic lesion size, in contrast to Tc0-treated mice. CONCLUSION These findings demonstrate a lesion-localized increase in Tc17 cells in an atherosclerotic mouse model. Tc17 cells appeared to be non-atherogenic, in contrast to their Tc0 counterpart.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Aorta/immunology
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/genetics
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cell Differentiation
- Cells, Cultured
- Disease Models, Animal
- Interferon-gamma/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Nuclear Receptor Subfamily 1, Group F, Member 3/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phenotype
- Plaque, Atherosclerotic
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Maaike J M de Jong
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Naomi Benne
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Romain J T Leboux
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Marieke E van Ooijen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Nicky Kruit
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Amanda C Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Room EE1.17, 2333 CC Leiden, The Netherlands
| |
Collapse
|
12
|
Pakzad B, Rajae E, Shahrabi S, Mansournezhad S, Davari N, Azizidoost S, Saki N. T-Cell Molecular Modulation Responses in Atherosclerosis Anergy. Lab Med 2021; 51:557-565. [PMID: 32106301 DOI: 10.1093/labmed/lmaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis continues to be a major cause of death in patients with cardiovascular diseases. The cooperative role of immunity has been recently considered in atherosclerotic plaque inflammation, especially adaptive immune response by T cells. In this review, we examine the possible role of T cells in atherosclerosis-mediated inflammation and conceivable therapeutic strategies that can ameliorate complications of atherosclerosis. The cytokines secreted by T-lymphocyte subsets, different pathophysiological profiles of microRNAs (miRs), and the growth factor/receptor axis have diverse effects on the inflammatory cycle of atherosclerosis. Manipulation of miRNA expression and prominent growth factor receptors involved in inflammatory cytokine secretion in atherosclerosis can be considered diagnostic biomarkers in the induction of anergy and blockade of atherosclerotic development. This manuscript reviews immunomodulation of T cells responses in atherosclerosis anergy.
Collapse
Affiliation(s)
- Bahram Pakzad
- Internal Medicine Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Rajae
- Department of Rheumatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- -Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Somayeh Mansournezhad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shirin Azizidoost
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Naderi N, Farshidi N, Farshidi H, Montazerghaem H, Rahimzadeh M. Lack of association between serum IL-25 levels and acute coronary syndrome: a preliminary study. ACTA ACUST UNITED AC 2021; 61:60-65. [PMID: 33998410 DOI: 10.18087/cardio.2021.4.n1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 03/06/2021] [Indexed: 11/18/2022]
Abstract
Purpose Here, for the first time, the possible association between IL-25 and the risk of acute coronary syndrome (ACS) in Iranian patients was investigated.Material and methods In this study, serum IL-25 concentrations were measured with an enzyme-linked immunosorbent assay in 88 ACS patients, 40 stable angina pectoris (SAP) patients, and 50 healthy control subjects.Results No significant differences in IL-25 concentrations were observed between SAP (340±168 ng / l), ACS (330±151 ng / l), and control (302±135 ng / l) groups (p=0.5), nor was there a difference among patients with 1, 2, or 3 vessel disease in the SAP and ACS groups. Linear regression analyses revealed that IL-25 was not correlated with coronary artery disease risk factors. Biochemical and demographic variables did not differ significantly among IL-25 quartiles.Conclusion Despite previous murine and human studies showing a protective role of IL-25 in atherosclerosis, our results revealed that IL-25 does not have potential implications for atherosclerosis development and management in humans.
Collapse
Affiliation(s)
- Nadereh Naderi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Narges Farshidi
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Montazerghaem
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahsa Rahimzadeh
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
14
|
Liberale L, Ministrini S, Carbone F, Camici GG, Montecucco F. Cytokines as therapeutic targets for cardio- and cerebrovascular diseases. Basic Res Cardiol 2021; 116:23. [PMID: 33770265 PMCID: PMC7997823 DOI: 10.1007/s00395-021-00863-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of atherothrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into daily clinical practice.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.
| | - Stefano Ministrini
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| |
Collapse
|
15
|
Momtazi-Borojeni AA, Jaafari MR, Afshar M, Banach M, Sahebkar A. PCSK9 immunization using nanoliposomes: preventive efficacy against hypercholesterolemia and atherosclerosis. Arch Med Sci 2021; 17:1365-1377. [PMID: 34522266 PMCID: PMC8425258 DOI: 10.5114/aoms/133885] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The aim of the study was to study a nanoliposomal anti-PCSK9 vaccine as a novel approach for cholesterol lowering via PCSK9 inhibition. MATERIAL AND METHODS An immunogenic peptide construct termed immunogenic fused PCSK9-tetanus (IFPT) was displayed on the surface of liposome nanoparticles (L-IFPT) and mixed into alum adjuvant (L-IFPTA+). The manufactured vaccine formulations IFPT, L-IFPT, L-IFPTA+, IFPTA+, and free nanoliposomes were subcutaneously injected four times with bi-weekly intervals in C57BL/6 mice on a severe atherogenic protocol. RESULTS Among the formulations, L-IFPTA+ vaccine was found to elicit the highest IgG response against PCSK9 peptide. The induced PCSK9 antibodies inhibited PCSK9-LDLR interaction through binding to PCSK9 in vaccinated mice. Liver low-density lipoprotein receptor (LDLR) protein was increased in vaccinated mice. L-IFPTA+, L-IFPT and IFPTA+ vaccines reduced total cholesterol by up to -38.13 ±3.8% (p = 0.006), -23 ±4.1% (p = 0.027) and -19.12 ±3% (p = 0.038), and low-density lipoprotein cholesterol (LDL-C) by up to -57 ±7.7% (p = 0.0003), -41.67 ±4.2% (p = 0.03) and -36.11 ±5% (p = 0.02) in hypercholesterolemic mice, respectively, versus control mice after 8 weeks. Long-term assessment indicated that the vaccine formulations could stimulate a long-lasting humoral immune response against PCSK9 peptide, which was associated with a marked reduction of total cholesterol in L-IFPTA+, L-IFPT and IFPTA+ vaccine groups by up to -82.5 ±7.3% (p = 0.002), -70.54 ±6.2% (p = 0.013) and -72.02 ±8.7% (p = 0.004), respectively, and LDL-C by up to -88.14 ±5.6% (p = 0.002), -55.92 ±8.3% (p = 0.003) and 54.81 ±9.3% (p = 0.003), respectively, versus the pre-vaccination time point adjusted to the control group. Anti-inflammatory Th2 cells and IL-4 cytokine were considerably increased in splenocytes of vaccinated mice. CONCLUSIONS L-IFPTA+ vaccine can induce long-lasting, functional and safe PCSK9-specific antibodies in hypercholesterolemic C57BL/6 mice, providing a long-term protective impact on dyslipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Afshar
- Department of Anatomy, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2021; 73:64-91. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
AbstractCardiovascular disease is the leading cause of death globally. Coronary artery disease (CAD) is a chronic inflammatory disease usually caused by atherosclerosis, in which the coronary arteries become narrowed by atheromatous plaque. Plaques in atherosclerosis are formed through the accumulation of lipids and various immune cells. Both adaptive and innate immune systems are involved in the pathogenesis of atherosclerosis and facilitate plaque formation and disease progression. Almost all immune system cells, including neutrophils, B cells, T cells monocytes, macrophages, foam cells, and dendritic cells (DCs), play a vital role in atherosclerotic plaque. Atherogenesis, the normal function of the endothelium, is initially disrupted and, then, cells of the immune system are recruited to the endothelium following increased expression of cell adhesion molecules. Accumulation of immune cells and lipids leads to the formation of a necrotic nucleus. As the disease progresses, smooth muscle cells form fibrous layers, whose rupture results in exposing the necrotic nucleus and thrombosis. Accordingly, the present review was conducted to determine the role of different cells in innate and adaptive immune systems in inhibition and progression of atherosclerosis.
Collapse
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
17
|
He X, Liang B, Gu N. Th17/Treg Imbalance and Atherosclerosis. DISEASE MARKERS 2020; 2020:8821029. [PMID: 33193911 PMCID: PMC7648711 DOI: 10.1155/2020/8821029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 01/23/2023]
Abstract
Atherosclerosis is nowadays recognized as a chronic inflammatory disease of large arteries. In recent years, cellular and molecular biology studies on atherosclerosis confirmed that the occurrence and development are related to inflammation and autoimmunity. A variety of immune cells, cytokines, and transcription factors are involved in this process. Current studies found that T helper cell 17, regulatory T cells, and their cytokines play an important role in the development of atherosclerosis and vulnerable plaque rupture. Here, we provide a review of the up-to-date applications of T helper cell 17, regulatory T cells, cytokines, and their balance in the prognosis and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Xin He
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Olson NC, Sitlani CM, Doyle MF, Huber SA, Landay AL, Tracy RP, Psaty BM, Delaney JA. Innate and adaptive immune cell subsets as risk factors for coronary heart disease in two population-based cohorts. Atherosclerosis 2020; 300:47-53. [PMID: 32209232 DOI: 10.1016/j.atherosclerosis.2020.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Cell-mediated immunity is implicated in atherosclerosis. We evaluated whether innate and adaptive immune cell subsets in peripheral blood are risk factors for coronary heart disease. METHODS A nested case-cohort study (n = 2155) was performed within the Multi-Ethnic Study of Atherosclerosis (MESA) and the Cardiovascular Health Study (CHS). Cases of incident myocardial infarction (MI) and incident angina (n = 880 total cases) were compared with a cohort random sample (n = 1275). Immune cell phenotypes (n = 34, including CD14+ monocytes, natural killer cells, γδ T cells, CD4+, CD8+ and CD19+ lymphocyte subsets) were measured from cryopreserved cells by flow cytometry. Cox proportional hazards models with adjustment for cardiovascular disease risk factors were used to evaluate associations of cell phenotypes with incident MI and a composite phenotype of incident MI or incident angina (MI-angina) over a median 9.3 years of follow-up. Th1, Th2, Th17, T regulatory (CD4+CD25+CD127-), naive (CD4+CD45RA+), memory (CD4+CD45RO+), and CD4+CD28- cells were specified as primary hypotheses. In secondary analyses, 27 additional cell phenotypes were investigated. RESULTS After correction for multiple testing, there were no statistically significant associations of CD4+ naive, memory, CD28-, or T helper cell subsets with MI or MI-angina in MESA, CHS, or combined-cohort meta analyses. Null associations were also observed for monocyte subsets, natural killer cells, γδ T cells, CD19+ B cell and differentiated CD4+ and CD8+ cell subsets. CONCLUSIONS The proportions of peripheral blood monocyte and lymphocyte subsets are not strongly related to the future occurrence of MI or angina in adults free of autoimmune disease.
Collapse
Affiliation(s)
- Nels C Olson
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA.
| | - Colleen M Sitlani
- Department of Medicine, University of Washington, Seattle, WA, USA; Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA; Department of Biochemistry, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Bruce M Psaty
- Department of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA; Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA.
| | - Joseph A Delaney
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA; College of Pharmacy, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
19
|
Kuehn C, Tauchi M, Furtmair R, Urschel K, Raaz-Schrauder D, Neumann AL, Frohberger SJ, Hoerauf A, Regus S, Lang W, Sagban TA, Stumpfe FM, Achenbach S, Hübner MP, Dietel B. Filarial extract of Litomosoides sigmodontis induces a type 2 immune response and attenuates plaque development in hyperlipidemic ApoE-knockout mice. FASEB J 2019; 33:6497-6513. [PMID: 30807258 DOI: 10.1096/fj.201800947rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A type 1 immune response is involved in atherosclerosis progression, whereas the role of a type 2 polarization, especially with regard to an enhanced T helper (Th)2 cell differentiation, is still unclear. Helminths trigger type 2 immune responses, protecting the host from inflammatory disorders. We investigated whether an increased type 2 polarization by administration of Litomosoides sigmodontis adult worm extract (LsAg) affects atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Injections of 50 µg LsAg, i.p. into ApoE-/- mice induced a type 2 immune response shown by increased frequencies of peritoneal eosinophils and alternatively activated macrophages. To analyze the effect of LsAg on atherosclerosis initiation, ApoE-/- mice received a high-fat diet for 12 wk and weekly injections of 50 µg LsAg from wk 5 to 12. Therapeutic effects on advanced atherosclerosis were analyzed in mice that were fed a high-fat diet for 12 wk followed by 12 wk of normal chow and weekly LsAg injections. Both preventive and therapeutic LsAg application significantly decreased plaque size. Therapeutic treatment even caused regression of plaque size and macrophage density in the aortic root and reduced Th1-specific gene expression and intraplaque inflammation. In addition, plaque size after therapeutic treatment was inversely correlated with plaque-infiltrated alternatively activated macrophages. In vitro, LsAg treatment of HUVECs reduced intracellular levels of phosphorylated NF-κB-p65, IκB-α, and JNK1/2. In bifurcation flow-through slides, THP-1 cell adhesion to a HUVEC monolayer was decreased by LsAg in regions of nonuniform shear stress. Applying inhibitors of the respective kinases suggests JNK1/2 inhibition is involved in the suppressed cell adhesion. A switch to an enhanced type 2 immune response by LsAg exerts antiatherogenic effects on murine plaque development, indicating a protective role of a hampered type 1 polarization. In vitro, LsAg affects endothelial signaling pathways, among which JNK1/2 inhibition seems to be involved in the suppression of monocytic cell adhesion under proatherogenic shear stress.-Constanze, K., Tauchi, M., Furtmair, R., Urschel, K., Raaz-Schrauder, D., Neumann, A.-L., Frohberger, S. J., Hoerauf, A., Regus, S., Lang, W., Sagban, T. A., Stumpfe, F. M., Achenbach, S., Hübner, M. P., Dietel, B. Filarial extract of Litomosoides sigmodontis induces a type 2 immune response and attenuates plaque development in hyperlipidemic ApoE-knockout mice.
Collapse
Affiliation(s)
- Constanze Kuehn
- Department of Medicine 2-Cardiology and Angiology, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, Erlangen, Germany
| | - Miyuki Tauchi
- Department of Medicine 2-Cardiology and Angiology, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, Erlangen, Germany
| | - Roman Furtmair
- Department of Medicine 2-Cardiology and Angiology, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, Erlangen, Germany
| | - Katharina Urschel
- Department of Medicine 2-Cardiology and Angiology, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, Erlangen, Germany
| | - Dorette Raaz-Schrauder
- Department of Medicine 2-Cardiology and Angiology, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, Erlangen, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Susanne Regus
- Department of Vascular Surgery, University Hospital Erlangen, Erlangen, Germany Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Erlangen, Germany Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tolga Atilla Sagban
- Department of Vascular Surgery, University Hospital Erlangen, Erlangen, Germany Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Sana-Klinikum Hameln-Pyrmont, Hameln, Germany
| | | | - Stephan Achenbach
- Department of Medicine 2-Cardiology and Angiology, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, Erlangen, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology, and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Barbara Dietel
- Department of Medicine 2-Cardiology and Angiology, Friedrich-Alexander-University (FAU) Erlangen-Nuernberg, Erlangen, Germany
| |
Collapse
|
20
|
Jalkanen J, Hollmén M, Maksimow M, Jalkanen S, Hakovirta H. Serum cytokine levels differ according to major cardiovascular risk factors in patients with lower limb atherosclerosis. Cytokine 2019; 114:74-80. [DOI: 10.1016/j.cyto.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
|
21
|
Xu Z, Wang T, Guo X, Li Y, Hu Y, Ma C, Wang J. The Relationship of Serum Antigen-Specific and Total Immunoglobulin E with Adult Cardiovascular Diseases. Int J Med Sci 2018; 15:1098-1104. [PMID: 30123046 PMCID: PMC6097256 DOI: 10.7150/ijms.25857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Background: The relationship of serum antigen-specific immunoglobulin E (IgE) with cardiovascular diseases (CVDs) remains poorly understood. This study aimed to explore the association of antigen-specific and total IgE with CVDs using data derived from the National Health and Nutrition Examination Survey (NHANES) 2005-2006. Methods and Results: The association of serum total or antigen-specific IgE levels with CVDs was analyzed by survey-weighted logistic regression modeling, adjusted by age, sex, race, education, body mass index, blood pressure, total cholesterol, C-reactive protein, homocysteine, diabetes, smoking, and alcohol consumption. 4953 subjects were included. Coronary heart disease was significantly related to serum total IgE levels. The association of serum total IgE levels with coronary heart disease was further validated by negative, ≥1 and 1-6 positive antigen-specific IgE. Myocardial infarction was positively associated with serum total IgE levels only when all antigen-specific IgE were negative, but inversely associated with serum total IgE when plant-specific IgE test results were positive. More specifically, myocardial infarction was also inversely related to positive oak, birch, or peanut-specific IgE. In addition, serum total IgE are positively associated with angina when at least one specific IgE were positive. Conclusions: Serum antigen-specific IgE, as well as total IgE, is significantly associated with CVDs independently of a long list of established cardiovascular risk factors, which is more informative than total IgE per se.
Collapse
Affiliation(s)
- Zhiyan Xu
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, China
- Department of Anatomy, Histology and Embryology; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Guo
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yao Li
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chao Ma
- Department of Anatomy, Histology and Embryology; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Sajja AP, Joshi AA, Teague HL, Dey AK, Mehta NN. Potential Immunological Links Between Psoriasis and Cardiovascular Disease. Front Immunol 2018; 9:1234. [PMID: 29910818 PMCID: PMC5992299 DOI: 10.3389/fimmu.2018.01234] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Preclinical and clinical research provide strong evidence that chronic, systemic inflammation plays a key role in development and progression of atherosclerosis. Indeed, chronic inflammatory diseases, such as psoriasis, are associated with accelerated atherosclerosis and increased risk of cardiovascular events. Contemporary research has demonstrated plausible mechanistic links between immune cell dysfunction and cardiometabolic disease in psoriasis. In this review, we describe the role of potential common immunological mechanisms underlying both psoriasis and atherogenesis. We primarily discuss innate and adaptive immune cell subsets and their contributions to psoriatic disease and cardiovascular morbidity. Emerging efforts should focus on understanding the interplay among immune cells, adipose tissue, and various biomarkers of immune dysfunction to provide direction for future targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | - Nehal N. Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Mantani PT, Dunér P, Bengtsson E, Ljungcrantz I, Sundius L, To F, Nilsson J, Björkbacka H, Fredrikson GN. Interleukin-25 (IL-25) has a protective role in atherosclerosis development in the aortic arch in mice. J Biol Chem 2018; 293:6791-6801. [PMID: 29572351 DOI: 10.1074/jbc.ra117.000292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the entrapment of apolipoprotein B-containing lipoproteins in the arterial intima, leading to local inflammation. T helper (Th) cell 1-mediated immune responses have been associated with atherosclerosis, and the cytokine interleukin-25 (IL-25 or IL-17E) has been reported to potentially regulate Th1 cell- and Th17 cell-related immune responses. In this study, we evaluated the effects of complete IL-25 deficiency or of a temporal IL-25 blockade on atherosclerosis development in apolipoprotein E-deficient (Apoe-/-) mice. Mice deficient in both apolipoprotein E and IL-25 (Apoe-/-/IL-25-/-) had more Th1 cells in the spleen, along with elevated plasma levels of IL-17 and an increased release of splenic interferon-γ (INF-γ). In support of this observation, a 4-week-long treatment of young Apoe-/- mice (at 10-14 weeks of age) with an IL-25-blocking antibody increased the release of Th1/Th17-associated cytokines in the spleen. In both mouse models, these findings were associated with increased atherosclerotic plaque formation in the aortic arch. We conclude that complete IL-25 deficiency and a temporal IL-25 blockade during early plaque development aggravate atherosclerosis development in the aortic arch of Apoe-/- mice, accompanied by an increase in Th1/Th17-mediated immune responses. Our finding that endogenous IL-25 has an atheroprotective role in the murine aortic arch has potential implications for atherosclerosis development and management in humans.
Collapse
Affiliation(s)
- Polyxeni T Mantani
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Pontus Dunér
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Eva Bengtsson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Irena Ljungcrantz
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Lena Sundius
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Fong To
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Jan Nilsson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Harry Björkbacka
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| | - Gunilla Nordin Fredrikson
- From the Department of Clinical Sciences, Skåne University Hospital Malmö, Lund University, 20213 Malmö, Sweden
| |
Collapse
|
24
|
Sagawa N, Olson NC, Ahuja V, Vishnu A, Doyle MF, Psaty BM, Jenny NS, Siscovick DS, Lemaitre RN, Steffen LM, Tsai MY, Sekikawa A. Long chain n-3 polyunsaturated fatty acids are not associated with circulating T-helper type 1 cells: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Prostaglandins Leukot Essent Fatty Acids 2017; 125:37-42. [PMID: 28987720 DOI: 10.1016/j.plefa.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/05/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
T-helper type 1 (Th1) cells are pro-inflammatory and provide signals to immune cells. Animal models and in vitro human cell culture experiments have indicated that long chain n-3 polyunsaturated fatty acids (LCn3PUFAs) reduce Th1 cell levels; however, the association is unknown in healthy humans. We hypothesized that circulating levels and dietary intake of LCn3PUFAs have an inverse association with circulating levels of Th1 cells and studied 895 participants in the Multi-Ethnic Study of Atherosclerosis (age 61 ± 10 years at exam 1, 52% women, 44% white, 21% African-American, 24% Hispanic-American, 11% Chinese-American). Phospholipid LCn3PUFAs (% of total fatty acids), measured by gas chromatography, and intake of LCn3PUFAs, evaluated by food frequency questionnaire, were evaluated at exam 1 (2000-02) and defined as the sum of eicosapentaenoic and docosahexaenoic acids. Th1 cells were measured by flow cytometry at exam 4 (2005-07), expressed as a percentage of CD4+ lymphocytes that were interferon-γ+ (%Th1: CD4+IFN-γ+). Median (interquartile range) plasma LCn3PUFA, dietary LCn3PUFA, and %Th1 levels were 4.31% (3.40-5.82%), 0.09 (0.05-0.16) g/day, and 14.4% (9.8-20.0%), respectively. When the association of LCn3PUFA-quartiles with %Th1 was analyzed using general linear models, neither plasma nor dietary LCn3PUFAs were significantly associated with %Th1 (P-trend = 0.58 and 0.80, respectively), which remained even after adjusting for demographics, lifestyle factors, lipids, season, and cytomegalovirus titers. In this multi-ethnic U.S. population, circulating levels and dietary intake of LCn3PUFAs were not significantly associated with Th1 cell levels. Further research is needed to assess potential benefits of supplementation and much higher dietary consumption of LCn3PUFAs on Th1 cells.
Collapse
Affiliation(s)
- Naoko Sagawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nels C Olson
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Vasudha Ahuja
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Abhishek Vishnu
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, United States; Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Nancy Swords Jenny
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, United States
| | | | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, United States
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
25
|
Crans Yoon AM, Chiu V, Rana JS, Sheikh J. Association of allergic rhinitis, coronary heart disease, cerebrovascular disease, and all-cause mortality. Ann Allergy Asthma Immunol 2017; 117:359-364.e1. [PMID: 27742084 DOI: 10.1016/j.anai.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Inflammation is implicated in atherosclerotic cardiovascular disease. Allergic diseases also involve a systemic inflammatory state, which may potentiate cardiovascular disease. OBJECTIVE To examine the association of allergic rhinitis, coronary heart disease (CHD), cerebrovascular disease (CVD), and all-cause mortality. METHODS We conducted a retrospective, population-based, matched cohort study comparing the incidence of CHD, CVD, and all-cause mortality from January 1, 1999, through December 31, 2012, in patients with International Classification of Disease, Ninth Revision, documented allergic rhinitis matched 1:1 by age, sex, and ethnicity to a reference cohort without allergic rhinitis within Kaiser Permanente Southern California. Fully adjusted hazard ratios (HRs) were calculated. Further analyses for those with positive environmental allergen specific IgE (sIgE) test results within the allergic rhinitis cohort were also performed. RESULTS Patients with physician-diagnosed allergic rhinitis (N = 110, 207 in matched cohort) had significantly lower risk for myocardial infarction (HR, 0.63; 95% confidence interval [CI], 0.59-0.67; P < .001), all CHD (HR, 0.81; 95% CI, 0.78-0.84; P < .001), CVD (HR, 0.67; 95% CI, 0.64-0.70; P < .001), and all-cause mortality (HR, 0.42; 95% CI, 0.40-0.43; P < .001). The results were similar after excluding patients with asthma. Patients with positive sIgE test result also had a decreased risk of all CHD (relative risk [RR], 0.87; 95% CI, 0.79-0.95; P = .003) but no association with cerebrovascular events (RR, 0.89; 95% CI, 0.77-1.02; P = .10) and all-cause mortality (RR, 1.16; 95% CI, 1.00-1.34; P = .06). CONCLUSION We found that the presence of allergic rhinitis was associated with decreased CHD, CVD, and all-cause mortality. This decreased risk was more pronounced after excluding patients with asthma. Patients with positive sIgE test results also had decreased risk of CHD.
Collapse
Affiliation(s)
- Angelina M Crans Yoon
- Department of Allergy and Clinical Immunology, Kaiser Permanente Los Angeles, Los Angeles, California
| | - Vicki Chiu
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Jamal S Rana
- Department of Cardiology and Division of Research, Kaiser Permanente Northern California, Oakland, California; Department of Medicine, University of California San Francisco, San Francisco, California
| | - Javed Sheikh
- Department of Allergy and Clinical Immunology, Kaiser Permanente Los Angeles, Los Angeles, California.
| |
Collapse
|
26
|
Zhu P, Li L, Gao B, Zhang M, Wang Y, Gu Y, Hu L. Impact of chronic methamphetamine treatment on the atherosclerosis formation in ApoE-/- mice fed a high cholesterol diet. Oncotarget 2017; 8:55064-55072. [PMID: 28903402 PMCID: PMC5589641 DOI: 10.18632/oncotarget.19020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/04/2017] [Indexed: 11/25/2022] Open
Abstract
Background We previously reported that methamphetamine could promote atherosclerosis (AS) in ApoE−/− mice fed normal chow. We herein observed the impact of methamphetamine on AS in ApoE−/− mice fed a high cholesterol diet and explored the potential mechanisms. Results and Materials and Methods Male ApoE−/− mice fed a high cholesterol diet were treated with saline (NS, n = 5) or methamphetamine [8 mg/kg/day (M8, n = 6) through intraperitoneal injection] for 24 weeks. Afterwards, the percentage area of atheromatous plaque in aortic root (44.31 ± 3.21% vs. 32.91 ± 3.58%, P < 0.01) and atherosclerotic lesion area on Oil red O stained en face aorta (32.74 ± 6.97% vs. 18.72 ± 3.65%, P < 0.01) were significantly higher in M8 group than in NS group. The percentages of Th1 cells and Th17 cells in spleen were significantly higher while the percentages of Th2 cells and CD4+CD25+Foxp3+ Tregs were significantly lower in M8 group than in NS group. mRNA expressions of TNF-α, IFN-γ, and IL-17 were significantly up-regulated, IL-4, IL-10, Foxp3, and TGF-β were significantly down-regulated in carotid artery and in spleen in M8 group compared to NS group. Conclusions Chronic methamphetamine treatment can enhance atherosclerotic plaque formation possibly through promoting proinflammatory cytokine secretions in ApoE−/− mice fed a high cholesterol diet.
Collapse
Affiliation(s)
- Pengfei Zhu
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lun Li
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Gao
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingjing Zhang
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Wang
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye Gu
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liqun Hu
- Department of Cardiology, Heart Center at Puai Hospital, Puai Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
27
|
Xu L, Cheng D, Huang Z, Ding S, Zhang W, Tan H, Shi H, Chen R, Zou Y, Wang TC, Yang X, Ge J. Histamine promotes the differentiation of macrophages from CD11b + myeloid cells and formation of foam cells through a Stat6-dependent pathway. Atherosclerosis 2017; 263:42-52. [PMID: 28600950 DOI: 10.1016/j.atherosclerosis.2017.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/16/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The enzyme histidine decarboxylase (Hdc), which generates histamine, is highly expressed in CD11b+Gr-1+ myeloid cells that play a critical role in infection, inflammation and tumorigenesis. The aim of this study was to explore the role of Hdc-expressing CD11b+ myeloid cells or histamine in atherogenesis. METHODS Hdc-EGFP bacterial artificial chromosome (BAC) transgenic reporter mice (Hdc-EGFP) were used to track Hdc expression during the development of atherosclerosis. The expression of EGFP fluorescence was examined by immunofluorescence staining in a variety of adult tissues. Wild-type (WT), Apoe knockout (Apoe-/-), Hdc knockout (Hdc-/-), and Stat6 knockout (Stat6-/-) mice were used. Serum concentration of histamine was determined with ELISA. Changes in subsets of immune cells were evaluated by flow cytometry (FACS). Non-invasive tracking of the expression of CD11b+ myeloid cells was tested using 125I-anti-CD11b SPECT/CT imaging in the early stages of atherogenesis. Microarray analysis and RT-PCR were applied to detect gene expressions while Western blot was used to assess protein levels. RESULTS Using Hdc-EGFP transgenic mice, we demonstrated that Hdc+CD11b+ myeloid cells increase in the circulation in response to hypercholesterolemia and contribute to foam cell formation in atherosclerosis. Histamine deficiency in Hdc knockout (Hdc-/-) mice repressed the differentiation of CD11b+Ly6Chigh classically activated M1-type macrophages and CD11b+CD11c+ dendritic cells (DCs), which was associated with downregulation of signal transducer and activator of transcription 6 (Stat6) expression. Furthermore, the results of in vivo and in vitro studies demonstrated that histamine could promote macrophage differentiation and foam cell formation via the Stat6 signal. CONCLUSIONS Modulation of histamine and Stat6-signaling may represent an attractive therapeutic strategy for the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lili Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheyong Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ruizhen Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY 10032, USA
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Foks AC, Kuiper J. Immune checkpoint proteins: exploring their therapeutic potential to regulate atherosclerosis. Br J Pharmacol 2017; 174:3940-3955. [PMID: 28369782 DOI: 10.1111/bph.13802] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022] Open
Abstract
The immune system provides a large variety of immune checkpoint proteins, which involve both costimulatory and inhibitory proteins. Costimulatory proteins can promote cell survival, cell cycle progression and differentiation to effector and memory cells, whereas inhibitory proteins terminate these processes to halt ongoing inflammation. Immune checkpoint proteins play a pivotal role in atherosclerosis by regulating the activation and proliferation of various immune and non-immune cells, such as T-cells, macrophages and platelets. Upon activation within the atherosclerotic lesions or in secondary lymphoid organs, these cells produce large amounts of pro-atherogenic cytokines that contribute to the growth and destabilization of lesions, which can result in rupture of the lesion causing acute coronary syndromes, such as a myocardial infarction. Given the presence and regulatory capacity of immune checkpoint proteins in the circulation and atherosclerotic lesions of cardiovascular patients, modulation of these proteins by, for example, the use of monoclonal antibodies, offers unique opportunities to regulate pro-inflammatory immune responses in atherosclerosis. In this review, we highlight the latest advances on the role of immune checkpoint proteins, such as OX40-OX40L, CTLA-4 and TIM proteins, in atherosclerosis and discuss their therapeutic potential as promising immunotherapies to treat or prevent cardiovascular disease. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- A C Foks
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| | - J Kuiper
- Division of Biopharmaceutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
29
|
Cimmino G, Loffredo FS, Morello A, D'Elia S, De Palma R, Cirillo P, Golino P. Immune-Inflammatory Activation in Acute Coronary Syndromes: A Look into the Heart of Unstable Coronary Plaque. Curr Cardiol Rev 2017; 13:110-117. [PMID: 27758696 PMCID: PMC5452145 DOI: 10.2174/1573403x12666161014093812] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/24/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022] Open
Abstract
In the last twenty years, our comprehension of the molecular mechanisms involved in the formation, progression and complication of atherosclerotic plaque has advanced significantly and the main role of inflammation and immunity in this phenomenon is now largely accepted. Accumulating evidence highlight the crucial role of different inflammatory and immune cells, such as monocytes and T-lymphocytes, in the pathophysiology of atherosclerotic lesion, particularly in contributing to its com-plications, such as rupture or ulceration. According to the new terminology, “vulnerable plaque” identi-fies an inflamed atherosclerotic lesion that is particularly prone to rupture. Once disrupted, prothrom-botic material is exposed to the flowing blood, thus activating coagulation cascade and platelet aggrega-tion, ultimately leading to acute thrombus formation within the coronary vessel. To date this is the key event underlying the clinical manifestations of acute coronary syndromes (ACS). The degree of vessel occlusion (complete vs. incomplete) and the time of blood flow cessation will define the severity of clinical picture. This phenomenon seems to be the final effect of a complex inter-action between different local and systemic factors, involving the degree of inflammation, type of cells infiltration and the rheological characteristics of blood flow at the site of plaque rupture, thrombogenic substrates within the atherosclerotic lesion and different soluble mediators, already present or acutely released in the circulating blood. This article will review currently available data on the pathophysiology of ACS, emphasizing the immunological and inflammatory aspects of vulnerable plaque. We may pos-tulate that intraplaque antigens and local microenvironment will define the immune-inflammatory re-sponse and cells phenotype, thus determining the severity of clinical manifestations.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, Second University of Naples, Naples, Italy
| | - Francesco S Loffredo
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Morello
- Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, Second University of Naples, Naples, Italy
| | - Saverio D'Elia
- Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, Second University of Naples, Naples, Italy
| | - Raffaele De Palma
- Department of Clinical and Experimental Medicine, Section of Immunology, Second University of Naples, Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Paolo Golino
- Department of Cardio-Thoracic and Respiratory Sciences, Section of Cardiology, Second University of Naples, Naples, Italy
| |
Collapse
|
30
|
Dyslipidemia rather than Type 2 Diabetes Mellitus or Chronic Periodontitis Affects the Systemic Expression of Pro- and Anti-Inflammatory Genes. Mediators Inflamm 2017; 2017:1491405. [PMID: 28316372 PMCID: PMC5337859 DOI: 10.1155/2017/1491405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/26/2017] [Indexed: 12/16/2022] Open
Abstract
A high percentage of type 2 diabetes mellitus (T2D) patients are also affected by dyslipidemia and chronic periodontitis (CP), but no studies have determined the gene expression in patients that are simultaneously affected by all three diseases. We investigated the systemic expression of immune-related genes in T2D, dyslipidemia, and CP patients. One hundred and fifty patients were separated into five groups containing 30 individuals each: (G1) poorly controlled T2D with dyslipidemia and CP; (G2) well-controlled T2D with dyslipidemia and CP; (G3) normoglycemic individuals with dyslipidemia and CP; (G4) healthy individuals with CP; (G5) systemic and periodontally healthy individuals. Blood analyses of lipid and glycemic profiles were carried out. The expression of genes, including IL10, JAK1, STAT3, SOCS3, IP10, ICAM1, IFNA, IFNG, STAT1, and IRF1, was investigated by RT-qPCR. Patients with dyslipidemia demonstrated statistically higher expression of the IL10 and IFNA genes, while IFNG, IP10, IRF1, JAK1, and STAT3 were lower in comparison with nondyslipidemic patients. Anti-inflammatory genes, such as IL10, positively correlated with parameters of glucose, lipid, and periodontal profiles, while proinflammatory genes, such as IFNG, were negatively correlated with these parameters. We conclude that dyslipidemia appears to be the primary disease that is associated with gene expression of immune-related genes, while parameters of T2D and CP were correlated with the expression of these important immune genes.
Collapse
|
31
|
Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci U S A 2017; 114:E1395-E1404. [PMID: 28137856 DOI: 10.1073/pnas.1621188114] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.
Collapse
|
32
|
Fatkhullina AR, Peshkova IO, Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. BIOCHEMISTRY (MOSCOW) 2017; 81:1358-1370. [PMID: 27914461 DOI: 10.1134/s0006297916110134] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atherosclerosis contributes to the development of many cardiovascular diseases, which remain the leading cause of death in developed countries. Atherosclerosis is a chronic inflammatory disease of large and medium-sized arteries. It is caused by dyslipidemia and mediated by both innate and adaptive immune responses. Inflammation is a key factor at all stages of atherosclerosis progression. Cells involved in pathogenesis of atherosclerosis were shown to be activated by soluble factors, cytokines, that strongly influence the disease development. Pro-inflammatory cytokines accelerate atherosclerosis progression, while anti-inflammatory cytokines ameliorate the disease. In this review, we discuss the latest findings on the role of cytokines in the development and progression of atherosclerosis.
Collapse
|
33
|
Kumar M, Coburn J, Kaplan DL, Mandal BB. Immuno-Informed 3D Silk Biomaterials for Tailoring Biological Responses. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29310-29322. [PMID: 27726371 DOI: 10.1021/acsami.6b09937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Macrophages, the key players in immunoregulation, are actively involved in tissue remodelling and vascularization. Recent advances in tissue engineering and regenerative medicine illustrate the importance of "immuno-informed" biomaterials to regulate the microenvironment of biomedical implants. In the current study, silk-based 3D hydrogels were utilized to regulate cytokine delivery for macrophage, a type of immune cell, differentiation and polarization. Three different hydrogel variants, silk-poly(ethylene glycol) (PEG) (SP), silk-horseradish peroxidase (HRP) (SH) and silk-sonicated (SS) hydrogels were studied. Hydrogels were loaded with the M1 and M2 polarizing cytokines interferon-γ (IFN-γ) and interleukin-4 (IL-4), respectively. Functional cytokine release and macrophage polarization studies were conducted using three cytokine exposure approaches: only cytokine encapsulation (macrophage in culture well), only macrophage encapsulation (cytokine in culture media) and cytokine with macrophage encapsulation. The extent of macrophage polarization by cytokine-eluting and macrophage-encapsulating hydrogels was investigated using gene expression analysis for C-C chemokine receptor 7 (CCR7), Interleukin-1 beta (IL-1β), cluster of differentiation 206 (CD206) and cluster of differentiation 209 (CD209). The released cytokines polarized macrophages from an M0 phenotype to an M1/M2 phenotype. Also, lineage committed M1/M2 macrophages could be "switched" to their M2/M1 counterparts (M1-to-M2 or M2-to-M1 transition) exhibiting their well-established plasticity. When macrophages were encapsulated in hydrogels, polarization could be induced to the lineage committed M1 or M2 phenotypes either in polarizing media or when coencapsulated with cytokines. Through this study, silk hydrogels demonstrated utility as a novel system for focal delivery of cytokines and macrophages as "immuno-informed" 3D silk-biomaterials.
Collapse
Affiliation(s)
- Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG) , Guwahati, 781039, India
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts United States
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG) , Guwahati, 781039, India
| |
Collapse
|
34
|
Wang K, Jin F, Zhang Z, Sun X. Angiotensin II Promotes the Development of Carotid Atherosclerosis in Type 2 Diabetes Patients via Regulating the T Cells Activities: A Cohort Study. Med Sci Monit 2016; 22:4000-4008. [PMID: 27782101 PMCID: PMC5094472 DOI: 10.12659/msm.900842] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Specific T cell phenotype has been reported to potentially contribute to the development of angiotensin II (Ang II)-induced several vascular disorders. Type 2 diabetes mellitus (T2DM) is intimately associated with cardiovascular disease. The present study aimed to investigate the relationship between T cell phenotypes and Ang II in T2DM patients combined with carotid atherosclerosis (CA). Material/Methods This study was performed on 50 patients with T2DM in our hospital. Based on the presence of CA, they were divided into CA group (presence of CA, n=30) or T2DM group (absence of CA, n=20). Additionally, 10 healthy participants were selected as controls. Basic characteristics of all participants were collected and recorded. Peripheral blood mononuclear cells (PBMCs) isolated from patients and controls with or without Ang II and Ang II receptor blocker (ARB) treatment were used to detect Th1, Th2, and Th17 cell proportions, mRNA levels of T-bet, GATA3, and RORγt as well as the expression of IFN-γ, IL-4, and IL-17 by flow cytometry, ELISA, and Real-Time PCR. Results Ang II levels were notably higher in patients in the CA group than those in the T2DM and control group (p<0.05). Th1 and Th17 positive cells, mRNA levels of T-bet and RORγt as well as the expression of IFN-γ and IL-17 were significantly increased in the CA group compared with the T2DM group and control group (p<0.05). Moreover, the activities of T cells and related cytokines were significantly increased of healthy controls after Ang II treatment (p<0.05), while these changes were notably weakened by ARB treatment (p<0.05). Conclusions Ang II promotes the development of CA in T2DM patients by regulating T cells activities.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Feng Jin
- Department of Radiology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Zhanpu Zhang
- Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China (mainland)
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
35
|
Gong F, Wu J, Zhou P, Zhang M, Liu J, Liu Y, Lu X, Liu Z. Interleukin-22 Might Act as a Double-Edged Sword in Type 2 Diabetes and Coronary Artery Disease. Mediators Inflamm 2016; 2016:8254797. [PMID: 27829708 PMCID: PMC5088317 DOI: 10.1155/2016/8254797] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/19/2016] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD) are both characterized by chronic low-grade inflammation. The role of Th17 and its related cytokines in T2DM and CAD is unclear. Here we investigated the serum levels of five Th17-related cytokines (IL-17, IL-22, MIP-3α, IL-9, and IL-27) in T2DM, CAD, and T2DM-CAD comorbidity patients. IL-22 was found to be elevated in all three conditions. Elevated serum IL-22 was independently associated with the incidence of T2DM and CAD. Conversely, IL-22 was found to protect endothelial cells from glucose- and lysophosphatidylcholine- (LPC-) induced injury, and IL-22R1 expression on endothelial cells was increased upon treatment with high glucose and LPC. Blocking of IL-22R1 with IL-22R1 antibody diminished the protective role of IL-22. Our results suggest that IL-22 functions as a double-edged sword in T2DM and CAD and that IL-22 may be used in the treatment of chronic inflammatory diseases such as T2DM and CAD.
Collapse
Affiliation(s)
- Fangchen Gong
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Jin Wu
- Department of Neurology, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Ping Zhou
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Mengyao Zhang
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Jingning Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Ying Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Jiangsu 210029, China
| |
Collapse
|
36
|
Billon C, Sitaula S, Burris TP. Inhibition of RORα/γ suppresses atherosclerosis via inhibition of both cholesterol absorption and inflammation. Mol Metab 2016; 5:997-1005. [PMID: 27689012 PMCID: PMC5034492 DOI: 10.1016/j.molmet.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Cardiovascular diseases (CVDs) are the leading cause of mortality in Western countries. Atherosclerosis is a multi-step inflammatory disease characterized at early stages by accumulation of cholesterol in the arterial wall followed by recruitment of immune cells. We sought to determine if pharmacological suppression of RORα/γ activity is beneficial in treatment of atherosclerosis. METHODS To identify the role of RORα and RORγ in atherosclerosis, we used the LDL-R(-/-) mouse model of atherosclerosis placed on a high cholesterol diet treated with SR1001, a RORα/γ inverse agonist, for four weeks. RESULTS Our results demonstrate that treatment with the ROR inverse agonist substantially decreases plaque formation in vivo. The mechanism of the anti-atherogenic activity of the inhibition of RORα/γ activity appeared to be due to targeting two distinct pathways. SR1001 treatment reduced plasma low density lipoprotein (LDL) level without affecting high density lipoprotein (HDL) via increasing intestinal cholesterol excretion. Treatment with SR1001 also induced an anti-atherogenic immune profile that was characterized by a reduction in Th17 cells and an increase in Treg and Th2 cells. Our data suggest that RORα and RORγ play a critical role in atherosclerosis development by regulating at least two major pathways important in the pathology of this disease: cholesterol flux and inflammation. CONCLUSION Our data suggest that pharmacological targeting of RORα/γ may be an effective method for treatment of atherosclerosis offering a distinct mechanism of action relative to statins.
Collapse
Affiliation(s)
- Cyrielle Billon
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sadichha Sitaula
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Thomas P Burris
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
37
|
Nus M, Mallat Z. Immune-mediated mechanisms of atherosclerosis and implications for the clinic. Expert Rev Clin Immunol 2016; 12:1217-1237. [PMID: 27253721 DOI: 10.1080/1744666x.2016.1195686] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A large body of evidence supports the inflammatory hypothesis of atherosclerosis, and both innate and adaptive immune responses play important roles in all disease stages. Areas covered: Here, we review our understanding of the role of the immune response in atherosclerosis, focusing on the pathways currently amenable to therapeutic modulation. We also discuss the advantages or undesirable effects that may be foreseen from targeting the immune response in patients at high cardiovascular risk, suggesting new avenues for research. Expert commentary: There is an extraordinary opportunity to directly test the inflammatory hypothesis of atherosclerosis in the clinic using currently available therapeutics. However, a more balanced interpretation of the experimental and translational data is needed, which may help address and identify in more detail the appropriate settings where an immune pathway can be targeted with minimal risk.
Collapse
Affiliation(s)
- Meritxell Nus
- a Division of Cardiovascular Medicine, Department of Medicine , University of Cambridge , Cambridge , UK
| | - Ziad Mallat
- a Division of Cardiovascular Medicine, Department of Medicine , University of Cambridge , Cambridge , UK
| |
Collapse
|
38
|
Zykov MV, Barbarash OL, Kashtalap VV, Kutikhin AG, Barbarash LS. Interleukin-12 serum level has prognostic value in patients with ST-segment elevation myocardial infarction. Heart Lung 2016; 45:336-40. [PMID: 27094852 DOI: 10.1016/j.hrtlng.2016.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/12/2016] [Accepted: 03/19/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The study aimed to evaluate whether serum inflammatory markers have prognostic value in patients with ST-segment elevation myocardial infarction (STEMI). BACKGROUND The role of cytokine-driven inflammation in the development of postdischarge complications after STEMI is obscured. METHODS We recruited 214 patients who were admitted within 24 h of STEMI onset to our Institute. IL-1α, -6, -8, -10, -12, TNF-α, and CRP serum levels were measured on the 10-14th day after STEMI onset. RESULTS Serum levels of IL-12, TNF-α, and CRP were significantly higher in patients with 3 affected coronary arteries compared to those with 1 affected coronary artery. However, only Killip class II-IV at admission and IL-12 serum level ≥90.0 pg/mL were defined as statistically significant predictors of adverse outcome after 1 year of follow-up. CONCLUSION IL-12 serum level may be suggested as a candidate prognostic marker if measured 10-14 days after STEMI onset.
Collapse
Affiliation(s)
- Mikhail V Zykov
- Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Boulevard 6, Kemerovo 650002, Russian Federation
| | - Olga L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Boulevard 6, Kemerovo 650002, Russian Federation; Kemerovo State Medical Academy, Voroshilova Street 22A, Kemerovo 650029, Russian Federation
| | - Vasiliy V Kashtalap
- Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Boulevard 6, Kemerovo 650002, Russian Federation; Kemerovo State Medical Academy, Voroshilova Street 22A, Kemerovo 650029, Russian Federation
| | - Anton G Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Boulevard 6, Kemerovo 650002, Russian Federation.
| | - Leonid S Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Boulevard 6, Kemerovo 650002, Russian Federation
| |
Collapse
|
39
|
Wick C. Tolerization against atherosclerosis using heat shock protein 60. Cell Stress Chaperones 2016; 21:201-11. [PMID: 26577462 PMCID: PMC4786533 DOI: 10.1007/s12192-015-0659-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall, and both innate and adaptive immunity play important roles in the pathogenesis of this disease. In several experimental and human experiments of early atherosclerotic lesions, it has been shown that the first pathogenic event in atherogenesis is intimal infiltration of T cells at predilection sites. These T cells react to heat shock protein 60 (HSP60), which is a ubiquitous self-antigen expressed on the surface of endothelial cells (ECs) together with adhesion molecules in response to classical risk factors for atherosclerosis. When HSP60 is expressed on the EC surface, it can act as a "danger-signal" for both cellular and humoral immune reactions. Acquired by infection or vaccination, beneficial protective immunity to microbial HSP60 and bona fide autoimmunity to biochemically altered autologous HSP60 is present in all humans. Thus, the development of atherosclerosis during aging is paid by the price for lifelong protective preexisting anti-HSP60 immunity by harmful (auto)immune cross-reactive attack on arterial ECs maltreated by atherosclerosis risk factors. This is supported by experiments, which shows that bacterial HSP60 immunization can lead and accelerate experimental atherosclerosis. This review article presents accumulating proof that supports the idea that tolerization with antigenic HSP60 protein or its peptides may arrest or even prevent atherosclerosis by increased production of regulatory T cells and/or anti-inflammatory cytokines. Recent data indicates that HSP60, or more likely some of its derivative peptides, has immunoregulatory functions. Therefore, these peptides may have important potential for being used as diagnostic agents or therapeutic targets.
Collapse
Affiliation(s)
- Cecilia Wick
- Department of Medicine, Rheumatology Unit, Karolinska Institutet, Center for Molecular Medicine (CMM) L8:04, Karolinska University Hospital Solna, S-17176, Stockholm, Sweden.
- Laboratory of Autoimmunity, Division for Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Innsbruck, A-6020, Austria.
| |
Collapse
|
40
|
Dalum A, Tangen R, Falk K, Hordvik I, Rosenlund G, Torstensen B, Koppang EO. Coronary changes in the Atlantic salmon Salmo salar L: characterization and impact of dietary fatty acid compositions. JOURNAL OF FISH DISEASES 2016; 39:41-54. [PMID: 25413740 DOI: 10.1111/jfd.12321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Consumption of fatty acids from fishes is widely regarded as beneficial for preventing cardiovascular disorders. Nevertheless, salmonids themselves are victims of vascular diseases. As the pathogenesis and nature of these changes are elusive, they are here addressed using novel morphological and transcriptional approaches. Coronary arteries of wild Atlantic salmon Salmo salar L., (n = 12) were investigated using histological and immunohistochemical techniques, and RT-qPCR was employed to investigate expression of stretch-induced genes. In an experimental trial, fish were fed diets with different fatty acids composition, and histological features of the coronary arteries (n = 36) were investigated. In addition, the heart fatty acid profile (n = 60) was analysed. There were no differences in morphological or immunological features between wild fish and groups of experimental fish. Arteriosclerotic lesions consisted of smooth muscle cells in dissimilar differential stages embedded in considerable amounts of extracellular matrix in a similar fashion to what is seen in early stages of human atherosclerosis. No fat accumulations were observed, and very few inflammatory cells were present. In affected arteries, there was an induction of stretch-related genes, pointing to a stress-related response. We suggest that salmon may have a natural resistance to developing atherosclerosis, which corresponds well with their high investment in lipid metabolism.
Collapse
Affiliation(s)
- A Dalum
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - R Tangen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - K Falk
- Norwegian Veterinary Institute, Norway
| | - I Hordvik
- Institute of Biology, University of Bergen, Norway
| | | | - B Torstensen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - E O Koppang
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
41
|
Gurven MD, Trumble BC, Stieglitz J, Blackwell AD, Michalik DE, Finch CE, Kaplan HS. Cardiovascular disease and type 2 diabetes in evolutionary perspective: a critical role for helminths? Evol Med Public Health 2016; 2016:338-357. [PMID: 27666719 PMCID: PMC5101910 DOI: 10.1093/emph/eow028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/09/2016] [Indexed: 12/17/2022] Open
Abstract
Heart disease and type 2 diabetes are commonly believed to be rare among contemporary subsistence-level human populations, and by extension prehistoric populations. Although some caveats remain, evidence shows these diseases to be unusual among well-studied hunter-gatherers and other subsistence populations with minimal access to healthcare. Here we expand on a relatively new proposal for why these and other populations may not show major signs of these diseases. Chronic infections, especially helminths, may offer protection against heart disease and diabetes through direct and indirect pathways. As part of a strategy to insure their own survival and reproduction, helminths exert multiple cardio-protective effects on their host through their effects on immune function and blood lipid metabolism. Helminths consume blood lipids and glucose, alter lipid metabolism, and modulate immune function towards Th-2 polarization - which combined can lower blood cholesterol, reduce obesity, increase insulin sensitivity, decrease atheroma progression, and reduce likelihood of atherosclerotic plaque rupture. Traditional cardiometabolic risk factors, coupled with the mismatch between our evolved immune systems and modern, hygienic environments may interact in complex ways. In this review, we survey existing studies in the non-human animal and human literature, highlight unresolved questions and suggest future directions to explore the role of helminths in the etiology of cardio-metabolic disease.
Collapse
Affiliation(s)
- Michael D Gurven
- Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA 93106
| | - Benjamin C Trumble
- School of Human Evolution and Social Change & Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, 21 allée de Brienne, 31015 Toulouse Cedex 6, France
| | - Aaron D Blackwell
- Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA 93106
| | - David E Michalik
- University of California, Irvine School of Medicine; Depts of Pediatrics and Infectious Diseases
| | - Caleb E Finch
- Andrus Gerontology Center and Dept. Neurobiology USC College, University of Southern California, Los Angeles, CA 90089
| | - Hillard S Kaplan
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
42
|
Serum Galectin-9 Levels Are Associated with Coronary Artery Disease in Chinese Individuals. Mediators Inflamm 2015; 2015:457167. [PMID: 26663989 PMCID: PMC4667018 DOI: 10.1155/2015/457167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 01/12/2023] Open
Abstract
Background. Recently, several studies suggest that galectin-9 (Gal-9) might play a pivotal role in the pathogenesis of autoimmune diseases. However, the exact role of Gal-9 in atherosclerosis remains to be elucidated. Methods. Serum Gal-9, high-sensitivity C-reactive protein (hs-CRP), interferon- (IFN-) γ, interleukin- (IL-) 4, IL-17, and transforming growth factor- (TGF-) β1 were measured. The effect of Gal-9 on peripheral blood mononuclear cells (PBMC) was investigated in patients with normal coronary artery (NCA). Results. The lowest level of Gal-9 was found in the ST-segment elevation myocardial infarction (STEMI) group, followed by the non-ST-segment elevation ACS (NSTEACS), the NCA, and the stable angina pectoris (SAP) groups, respectively. Additionally, Gal-9 was found to be independently associated with hs-CRP, lipoprotein(a), and creatinine. Notably, Gal-9 was also noted to be an independent predictor of the Gensini score. Moreover, Gal-9 suppressed T-helper 17 (Th17) and expanded regulatory T cells (Tregs), resulting in decreased IL-17 production and increased secretion of TGF-β1. Conclusions. Serum Gal-9 is associated with not only coronary artery disease (CAD), but also the severity of coronary arteries stenosis. Gal-9 can expand Tregs and suppress Th17 development in activated PBMC, implying that Gal-9 has the potential to dampen the development of atherosclerosis and may be a new therapy for CAD.
Collapse
|
43
|
Reeves ARD, Spiller KL, Freytes DO, Vunjak-Novakovic G, Kaplan DL. Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials 2015; 73:272-83. [PMID: 26421484 DOI: 10.1016/j.biomaterials.2015.09.027] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Polarization of macrophages into an inflammatory (M1) or anti-inflammatory (M2) phenotype is important for clearing pathogens and wound repair, however chronic activation of either type of macrophage has been implicated in several diseases. Methods to locally control the polarization of macrophages is of great interest for biomedical implants and tissue engineering. To that end, silk protein was used to form biopolymer films that release either IFN-γ or IL-4 to control the polarization of macrophages. Modulation of the solubility of the silk films through regulation of β-sheet (crystalline) content enabled a short-term release (4-8 h) of either cytokine, with smaller amounts released out to 24 h. Altering the solubility of the films was accomplished by varying the time that the films were exposed to water vapor. The released IFN-γ or IL-4 induced polarization of THP-1 derived macrophages into the M1 or M2 phenotypes, respectively. The silk biomaterials were able to release enough IFN-γ or IL-4 to repolarize the macrophage from M1 to M2 and vice versa, demonstrating the well-established plasticity of macrophages. High β-sheet content films that are not soluble and do not release the trapped cytokines were also able to polarize macrophages that adhered to the surface through degradation of the silk protein. Chemically conjugating IFN-γ to silk films through disulfide bonds allowed for longer-term release to 10 days. The release of covalently attached IFN-γ from the films was also able to polarize M1 macrophages in vitro. Thus, the strategy described here offers new approaches to utilizing biomaterials for directing the polarization of macrophages.
Collapse
Affiliation(s)
- Andrew R D Reeves
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA.
| | - Donald O Freytes
- New York Stem Cell Foundation Research Institute, New York, NY, USA.
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
44
|
Jiang Y, Gao Q, Wang L, Guo C, Zhu F, Wang B, Wang Q, Gao F, Chen Y, Zhang L. Deficiency of programmed cell death 4 results in increased IL-10 expression by macrophages and thereby attenuates atherosclerosis in hyperlipidemic mice. Cell Mol Immunol 2015; 13:524-34. [PMID: 26166769 DOI: 10.1038/cmi.2015.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 05/09/2015] [Accepted: 05/09/2015] [Indexed: 01/19/2023] Open
Abstract
Programmed cell death 4 (Pdcd4) is a newly defined inhibitor of transcription and translation and a tumor suppressor. Recent studies have suggested that Pdcd4 may also be involved in some inflammatory diseases. However, its role in atherosclerosis, a chronic inflammation of the arterial wall, remains to be investigated. Here, we found that Pdcd4 deficiency in mice increased the expression of IL-10 in macrophages and decreased the expression of IL-17 in T cells in the presence of an atherosclerosis-associated stimulator in vitro and in high fat-induced atherosclerotic plaques. Importantly, knocking out Pdcd4 led to a decrease in atherosclerotic lesions in Apoe(-/-) mice fed a high fat diet. This effect could be partly reversed by blocking IL-10 with a neutralizing antibody but not by the application of exogenous IL-17. Further mechanistic studies revealed that Pdcd4 negatively regulated the expression of IL-10 in an ERK1/2- and p38-dependent manner. These results demonstrate that Pdcd4 deficiency attenuates atherosclerosis in hyperlipidemic mice in part through the upregulation of the anti-inflammatory cytokine IL-10. This indicates that endogenous Pdcd4 promotes atherosclerosis and therefore represents a potential therapeutic target for patients with atherosclerosis.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Immunology, School of Medicine, Shandong University, Jinan, Shandong, China.,Department of Hematology, the Second Hospital of Shandong University, Jinan, Shandong, China
| | - Qi Gao
- Department of Immunology, School of Medicine, Shandong University, Jinan, Shandong, China.,Department of Clinical Laboratory, Provincial Hospital affiliated with Shandong University, Jinan, Shandong, China
| | - Liyang Wang
- Department of Immunology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Chun Guo
- Department of Immunology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Faliang Zhu
- Department of Immunology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Bo Wang
- Department of Immunology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Qun Wang
- Department of Immunology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Youhai Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lining Zhang
- Department of Immunology, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
45
|
Abedinzadeh N, Pedram B, Sadeghian Y, Nodushan SMHT, Gilasgar M, Darvish M, Mokarizadeh A. A histopathological analysis of the epidemiology of coronary atherosclerosis: an autopsy study. Diagn Pathol 2015; 10:87. [PMID: 26137939 PMCID: PMC4490639 DOI: 10.1186/s13000-015-0324-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Atherosclerosis accounts for a large proportion of cardiovascular system associated morbidity and mortality. We studied the possible association between the histopathological changes of the coronary atherosclerotic lesions and the risk of sudden cardiac death (SCD) using autopsy cases. METHODS We performed an autopsy analysis (n = 13, 4 women, 9 men mean age 67.5 years; age range 56-93 years) of SCD which occurred in patients aged over 50 years during March 2010 to December 2013. The following variables were considered: sex, age, medical history, autopsy findings to macroscopic and histological evaluation of the heart. The autopsies were performed according to standard techniques. In all subjects, the heart was dissected following standard autopsy protocol and a 5 cm section of the right coronary artery (RCA) in the atrio-ventricular groove from its origin, a 5 cm segment of the left anterior descending artery (LADA) distal to the origin of the circumflex artery, but including the region of origin of the circumflex branch and left coronary artery (LCA) from its origin till the circumflex branch were excised, dissected out, fixed in 10% formalin, marked for identification and sent for histopathological analysis. RESULTS Atherosclerotic plaques were identified in 6.5% of specimens, 69.34% of males and 30.66% of female. Such plaques were typically concentric and more represented with necrosis, calcification, cholesterol crystals, and giant cells, as well as had a higher inflammatory cell count. Furthermore, intima and media thickness of coronary arteries were significantly higher in studied specimens with visualize the connective tissue layers of the adventitia and the fatty acid containing adipose cells in the periadventitial tissue. Furthermore, the degree of microscopic lesion of atherosclerosis increased proportionally with the increase in the intensity of lipid deposition and with the percentage of collagen in the atherosclerotic plaques. CONCLUSION In this study, age estimate to be a risk factor for coronary atherosclerosis in individuals more than 50 years old and may be used to predict SCD. Altogether, an enhanced understanding of the pathobiologic processes responsible for atherosclerotic changes might allow for early identification of a high-risk coronary plaque and thereby provide a rationale for innovative diagnostic and/or therapeutic strategies for the management of coronary patients and prevention of acute coronary syndromes.
Collapse
Affiliation(s)
- Negin Abedinzadeh
- Graduate, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnam Pedram
- Department of Pathobiology, Susangerd Branch Islamic Azad University, Susangerd, Iran.
| | - Yasan Sadeghian
- Graduate, Faculty of Medicine, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran.
| | | | - Maryam Gilasgar
- Graduate, Faculty of Medicine, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran.
| | - Mahsa Darvish
- Graduate, Faculty of Medicine, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran.
| | - Aram Mokarizadeh
- Cellular & Molecular Research Center, and Department of Immunology, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
46
|
Affiliation(s)
- Erik A L Biessen
- Experimental Vascular Pathology Group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands (E.L.B., J.C.S.)
| | - Judith C Sluimer
- Experimental Vascular Pathology Group, Department of Pathology, CARIM, Maastricht University Medical Center, Maastricht, The Netherlands (E.L.B., J.C.S.)
| |
Collapse
|
47
|
van Dijk RA, Duinisveld AJF, Schaapherder AF, Mulder-Stapel A, Hamming JF, Kuiper J, de Boer OJ, van der Wal AC, Kolodgie FD, Virmani R, Lindeman JHN. A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis. J Am Heart Assoc 2015; 4:jah3876. [PMID: 25814626 PMCID: PMC4579929 DOI: 10.1161/jaha.114.001403] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Experimental studies characterize adaptive immune response as a critical factor in the progression and complications of atherosclerosis. Yet, it is unclear whether these observations translate to the human situation. This study systematically evaluates cellular components of the adaptive immune response in a biobank of human aortas covering the full spectrum of atherosclerotic disease. Methods and Results A systematic analysis was performed on 114 well‐characterized perirenal aortic specimens with immunostaining for T‐cell subsets (CD3/4/8/45RA/45RO/FoxP3) and the Th1/non‐Th1/Th17 ratio (CD4+T‐bet+/CD4+T‐bet−/CD4+/interleukin‐17+ double staining). CD20 and CD138 were used to identify B cells and plasma cells, while B‐cell maturation was evaluated by AID/CD21 staining and expression of lymphoid homeostatic CXCL13. Scattered CD4 and CD8 cells with a T memory subtype were found in normal aorta and early, nonprogressive lesions. The total number of T cells increases in progressive atherosclerotic lesions (≈1:5 CD4/CD8 T‐cell ratio). A further increase in medial and adventitial T cells is found upon progression to vulnerable lesions. This critical stage is further hallmarked by de novo formation of adventitial lymphoidlike structures containing B cells and plasma cells, a process accompanied by transient expression of CXCL13. A dramatic reduction of T‐cell subsets, disappearance of lymphoid structures, and loss of CXCL13 expression characterize postruptured lesions. FoxP3 and Th17 T cells were minimally present throughout the atherosclerotic process. Conclusions Transient CXCL13 expression, restricted presence of B cells in human atherosclerosis, along with formation of nonfunctional extranodal lymphoid structures in the phase preceding plaque rupture, indicates a “critical” change in the inflammatory footprint before and during plaque destabilization.
Collapse
Affiliation(s)
- R A van Dijk
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands (D., D., M.S., H., L.)
| | - A J F Duinisveld
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands (D., D., M.S., H., L.)
| | - A F Schaapherder
- Department of Transplantation Surgery, Leiden University Medical Center, Leiden, The Netherlands (S.)
| | - A Mulder-Stapel
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands (D., D., M.S., H., L.)
| | - J F Hamming
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands (D., D., M.S., H., L.)
| | - J Kuiper
- Gorlaeus Laboratories, Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands (K.)
| | - O J de Boer
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (B., W.)
| | - A C van der Wal
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands (B., W.)
| | - F D Kolodgie
- CVPath Institute Inc., Gaithersburg, MD (K., V.)
| | - R Virmani
- CVPath Institute Inc., Gaithersburg, MD (K., V.)
| | - J H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands (D., D., M.S., H., L.)
| |
Collapse
|
48
|
Affiliation(s)
- Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA.
| |
Collapse
|
49
|
Abstract
Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis. While some cytokines such as TNF or IFNγ clearly had atherogenic effects, others such as IL-10 were found to be atheroprotective. However, studies investigating the different cytokines in experimental atherosclerosis revealed that the cytokine system is complex with both disease stage-dependent and site-specific effects. In this review, we strive to provide an overview of the main cytokines involved in atherosclerosis and to shed light on their individual role during atherogenesis.
Collapse
Affiliation(s)
- Pascal J H Kusters
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Academic Medical Center, L01-146.1, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany.
| |
Collapse
|
50
|
Serological and Histological Examination of a Nonalcoholic Steatohepatitis Mouse Model Created via the Administration of Monosodium Glutamate. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:725351. [PMID: 27433515 PMCID: PMC4897218 DOI: 10.1155/2014/725351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/16/2014] [Accepted: 07/31/2014] [Indexed: 01/29/2023]
Abstract
The administration of monosodium glutamate (MSG) to mice induces hepatic steatosis and inflammation. In this study, we investigated the metabolic features of MSG-treated mice and the histological changes that occur in their livers and adipose tissue. MSG mice were prepared by subcutaneously injecting MSG into newborn C57BL/6J male mice. The control mice were subcutaneously injected with saline. Another group of mice was fed a methionine- and choline-deficient diet (MCD). Compared with the control mice, the MSG mice had higher serum levels of insulin and cholesterol than the control mice, whereas the opposite was true for the MCD mice. Microvesicular steatosis and inflammatory cell infiltration were detected in both the MSG and MCD mouse livers. Enlarged adipocytes and crown-like structures were observed in the epididymal fat of the MSG mice, whereas neither of these features was seen in the MCD mice. Flow cytometric analysis revealed increased frequencies of monocytes and M1 macrophages in the livers and epididymal fat tissue of the MSG mice, respectively. The MSG mice exhibited the characteristic liver histopathology of nonalcoholic steatohepatitis (NASH) as well as metabolic syndrome-like features, which suggested that MSG mice are a better model of human NASH than MCD mice.
Collapse
|