1
|
Kaneguchi A, Sakitani N, Umehara T. Histological changes in skeletal muscle induced by heart failure in human patients and animal models: A scoping review. Acta Histochem 2024; 126:152210. [PMID: 39442432 DOI: 10.1016/j.acthis.2024.152210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This scoping review aimed to characterize the histological changes in skeletal muscle after heart failure (HF) and to identify gaps in knowledge. METHODS On April 03, 2024, systematic searches were performed for papers in which histological analyses were conducted on skeletal muscle sampled from patients with HF or animal models of HF. Screening and data extraction were conducted by two independent authors. RESULTS AND CONCLUSION A total of 118 papers were selected, including 33 human and 85 animal studies. Despite some disagreements among studies, some trends were observed. These trends included a slow-to-fast transition, a decrease in muscle fiber size, capillary to muscle fiber ratio, and mitochondrial activity and content, and an increase in apoptosis. These changes may contribute to the fatigability and decrease in muscle strength observed after HF. Although there were some disagreements between the results of human and animal studies, the results were generally similar. Animal models of HF will therefore be useful in elucidating the histological changes in skeletal muscle that occur in human patients with HF. Because the muscles subjected to histological analysis were mostly thigh muscles in humans and mostly lower leg muscles in animals, it remains uncertain whether changes similar to those seen in lower limb (hindlimb) muscles after HF also occur in upper limb (forelimb) muscles. The results of this review will consolidate the current knowledge on HF-induced histological changes in skeletal muscle and consequently aid in the rehabilitation of patients with HF and future studies.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan.
| | - Naoyoshi Sakitani
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Hayashi-cho 2217-4, Takamatsu, Kagawa, 761-0395, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
| |
Collapse
|
2
|
Himori K, Yamada M, Onoki T, Matsumaru D, Motohashi H, Okutsu M. Nrf2 deficiency in muscle attenuates experimental autoimmune myositis-induced muscle weakness. J Physiol 2024; 602:6189-6207. [PMID: 39429109 DOI: 10.1113/jp286534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are systemic autoimmune diseases characterised by muscle weakness. Although multiple physiological and pathological processes are associated with IIMs, T-lymphocyte infiltration into muscle plays a key role in the development and exacerbation of IIMs. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates inflammatory responses; therefore, muscle Nrf2 may serve an important role in the development of IIMs. In this study, we demonstrated that experimental autoimmune myositis (EAM) causes loss of muscle mass and function in oxidative and glycolytic muscles in C57BL/6 mice. EAM increased CD4+ and CD8+ T-lymphocyte infiltration, as well as interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-α) mRNA expression in oxidative soleus and glycolytic extensor digitorum longus muscles, along with elevated chemokine mRNA levels (i.e. CCL3, CCL5, CXCL9, CXCL10 and CXCL16). IFN-γ and TNF-α treatments increased the mRNA expression levels of these chemokines in C2C12 myotubes. EAM also increased phosphorylated Nrf2 at Ser40 in soleus and glycolytic white vastus lateralis muscle. Although the expression of several chemokines was affected by Nrf2 activation following tert-butylhydroquinone treatment or Keap1 knockdown, CCL5 mRNA expression significantly increased in C2C12 myotubes and mouse skeletal muscle. Moreover, muscle-specific Nrf2 knockout in mice attenuates EAM-induced loss of muscle mass and function, which was associated with the inhibition of CCL5 mRNA expression, CD8+ T-lymphocyte infiltration and IFN-γ mRNA expression. Collectively, these findings reveal that regulating Nrf2 activity is a promising therapeutic approach for treating IIM-mediated muscle weakness. KEY POINTS: Experimental autoimmune myositis (EAM) causes loss of muscle mass and function. Loss of muscle mass and function in EAM were associated with increased chemokine mRNA expression (i.e. CCL3, CCL5, CXCL9, CXCL10 and CXCL16), T-lymphocyte infiltration and inflammatory cytokine mRNA expression (i.e. IFN-γ and TNF-α) in the skeletal muscle. EAM activated Nrf2 in muscle and increased Nrf2 activity in vivo and in vitro increased CCL5 mRNA expression. Muscle-specific Nrf2 knockout in mice attenuated EAM-induced muscle weakness by inhibiting CCL5 mRNA expression, CD8+ T-lymphocyte migration and IFN-γ mRNA expression in muscles. These results provide further evidence for the potential therapeutic targeting of Nrf2 to mitigate EAM-induced muscle weakness.
Collapse
Affiliation(s)
- Koichi Himori
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| | - Mami Yamada
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| | - Takahiro Onoki
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hozumi Motohashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuharu Okutsu
- Graduate School of Science, Nagoya City University, Nagoya, Japan
| |
Collapse
|
3
|
Schmid V, Foulkes SJ, Walesiak D, Wang J, Tomczak CR, Tucker WJ, Angadi SS, Halle M, Haykowsky MJ. Impact of whole-body and skeletal muscle composition on peak oxygen uptake in heart failure: a systematic review and meta-analysis. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae082. [PMID: 39464232 PMCID: PMC11505452 DOI: 10.1093/ehjopen/oeae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Aims Heart failure (HF) has a major impact on exercise tolerance that may (in part) be due to abnormalities in body and skeletal muscle composition. This systematic review and meta-analysis aims to assess how differences in whole-body and skeletal muscle composition between patients with HF and non-HF controls (CON) contribute to reduced peak oxygen uptake (VO2peak). Methods and results The PubMed database was searched from 1975 to May 2024 for eligible studies. Cross-sectional studies with measures of VO2peak, body composition, or muscle biopsies in HF and CON were considered. Out of 709 articles, 27 studies were included in this analysis. Compared with CON, VO2peak [weighted mean difference (WMD): -9.96 mL/kg/min, 95% confidence interval (CI): -11.71 to -8.21), total body lean mass (WMD: -1.63 kg, 95% CI: -3.05 to -0.21), leg lean mass (WMD: -1.38 kg, 95% CI: -2.18 to -0.59), thigh skeletal muscle area (WMD: -10.88 cm2 , 95% CI: -21.40 to -0.37), Type I fibres (WMD: -7.76%, 95% CI: -14.81 to -0.71), and capillary-to-fibre ratio (WMD: -0.27, 95% CI: -0.50 to -0.03) were significantly lower in HF. Total body fat mass (WMD: 3.34 kg, 95% CI: 0.35-6.34), leg fat mass (WMD: 1.37 kg, 95% CI: 0.37-2.37), and Type IIx fibres (WMD: 7.72%, 95% CI: 1.52-13.91) were significantly higher in HF compared with CON. Absolute VO2peak was significantly associated with total body and leg lean mass, thigh skeletal muscle area, and capillary-to-fibre ratio. Conclusion Individuals with HF display abnormalities in body and skeletal muscle composition including reduced lean mass, oxidative Type I fibres, and capillary-to-fibre ratio that negatively impact VO2peak.
Collapse
Affiliation(s)
- Veronika Schmid
- Department for Preventive Sports Medicine and Sports Cardiology, TUM University Hospital, School of Medicine and Health, Technical University of Munich, Georg-Brauchle-Ring 56, 80992 Munich, Germany
- Integrated Cardiovascular Exercise Physiology and Rehabilitation Lab, Faculty of Nursing, College of Health Science, University of Alberta, 3-045/11405 87 Ave NW, Edmonton, T6G IC9 Alberta, Canada
| | - Stephen J Foulkes
- Integrated Cardiovascular Exercise Physiology and Rehabilitation Lab, Faculty of Nursing, College of Health Science, University of Alberta, 3-045/11405 87 Ave NW, Edmonton, T6G IC9 Alberta, Canada
- Heart, Exercise and Research Trials Lab, St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, 3065 Victoria, Australia
| | - Devyn Walesiak
- Integrated Cardiovascular Exercise Physiology and Rehabilitation Lab, Faculty of Nursing, College of Health Science, University of Alberta, 3-045/11405 87 Ave NW, Edmonton, T6G IC9 Alberta, Canada
| | - Jing Wang
- Division of Public Health, School of Medicine, University of Utah, 375 Chipeta Way, UT 84108 Salt Lake City, USA
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, S7N 5B2 Saskatchewan, Canada
| | - Wesley J Tucker
- Department of Nutrition and Food Sciences, Texas Woman’s University, 304 Administration Dr. Denton, TX 76204 Houston, USA
| | - Siddhartha S Angadi
- Department of Kinesiology, University of Virginia, 405 Emmet Street, VA 22903 Charlottesville, USA
| | - Martin Halle
- Department for Preventive Sports Medicine and Sports Cardiology, TUM University Hospital, School of Medicine and Health, Technical University of Munich, Georg-Brauchle-Ring 56, 80992 Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany
| | - Mark J Haykowsky
- Integrated Cardiovascular Exercise Physiology and Rehabilitation Lab, Faculty of Nursing, College of Health Science, University of Alberta, 3-045/11405 87 Ave NW, Edmonton, T6G IC9 Alberta, Canada
| |
Collapse
|
4
|
Uchida S, Kamiya K, Hamazaki N, Nozaki K, Ichikawa T, Yamashita M, Noda T, Ueno K, Hotta K, Maekawa E, Yamaoka-Tojo M, Matsunaga A, Ako J. The Association between the Level of Ankle-Brachial Index and the Risk of Poor Physical Function in Patients with Cardiovascular Disease. J Atheroscler Thromb 2024; 31:419-428. [PMID: 38044086 PMCID: PMC10999722 DOI: 10.5551/jat.64531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/26/2023] [Indexed: 12/05/2023] Open
Abstract
AIMS The progression of atherosclerosis and decline in physical function are poor prognostic factors in patients with cardiovascular disease (CVD). The ankle-brachial index (ABI) is a widely used indicator of the degree of progression of atherosclerosis, which may be used to identify patients with CVD who are at risk of poor physical function. This study examined the association between ABI and poor physical function in patients with CVD. METHODS We reviewed the data of patients with CVD who completed the ABI assessment and physical function tests (6-min walking distance, gait speed, quadriceps isometric strength, and short physical performance battery). Patients were divided into five categories according to the level of ABI, and the association between ABI and poor physical function was examined using multiple logistic regression analysis. Additionally, restricted cubic splines were used to examine the nonlinear association between ABI and physical function. RESULTS A total of 2982 patients (median [interquartile range] age: 71[62-78] years, 65.8% males) were included in this study. Using an ABI range of 1.11-1.20 as a reference, logistic regression analysis showed that ABI ≤ 1.10 was associated with poor physical function. The restricted cubic spline analysis showed that all physical functions increased with an increase in ABI level. The increase in physical function plateaued at an ABI level of approximately 1.1. CONCLUSIONS ABI may be used to identify patients with poor physical function. ABI levels below 1.1 are potentially associated with poor physical function in patients with CVD.
Collapse
Affiliation(s)
- Shota Uchida
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kentaro Kamiya
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Nobuaki Hamazaki
- Department of Rehabilitation, Kitasato University Hospital, Sagamihara, Japan
| | - Kohei Nozaki
- Department of Rehabilitation, Kitasato University Hospital, Sagamihara, Japan
| | - Takafumi Ichikawa
- Department of Rehabilitation, Kitasato University Hospital, Sagamihara, Japan
| | - Masashi Yamashita
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Division of Research, ARCE Inc., Sagamihara, Japan
| | - Takumi Noda
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Exercise Physiology and Cardiovascular Health Lab, Division of Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Canada
| | - Kensuke Ueno
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
| | - Kazuki Hotta
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Emi Maekawa
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Atsuhiko Matsunaga
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
5
|
Serrano N, Hyatt JPK, Houmard JA, Murgia M, Katsanos CS. Muscle fiber phenotype: a culprit of abnormal metabolism and function in skeletal muscle of humans with obesity. Am J Physiol Endocrinol Metab 2023; 325:E723-E733. [PMID: 37877797 PMCID: PMC10864022 DOI: 10.1152/ajpendo.00190.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023]
Abstract
The proportion of the different types of fibers in a given skeletal muscle contributes to its overall metabolic and functional characteristics. Greater proportion of type I muscle fibers is associated with favorable oxidative metabolism and function of the muscle. Humans with obesity have a lower proportion of type I muscle fibers. We discuss how lower proportion of type I fibers in skeletal muscle of humans with obesity may explain metabolic and functional abnormalities reported in these individuals. These include lower muscle glucose disposal rate, mitochondrial content, protein synthesis, and quality/contractile function, as well as increased risk for heart disease, lower levels of physical activity, and propensity for weight gain/resistance to weight loss. We delineate future research directions and the need to examine hybrid muscle fiber populations, which are indicative of a transitory state of fiber phenotype within skeletal muscle. We also describe methodologies for precisely characterizing muscle fibers and gene expression at the single muscle fiber level to enhance our understanding of the regulation of muscle fiber phenotype in obesity. By contextualizing research in the field of muscle fiber type in obesity, we lay a foundation for future advancements and pave the way for translation of this knowledge to address impaired metabolism and function in obesity.
Collapse
Affiliation(s)
- Nathan Serrano
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
| | - Jon-Philippe K Hyatt
- College of Integrative Sciences and Arts, Arizona State University, Tempe, Arizona, United States
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina, United States
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic-Arizona, Phoenix, Arizona, United States
| |
Collapse
|
6
|
Mangner N, Winzer EB, Linke A, Adams V. Locomotor and respiratory muscle abnormalities in HFrEF and HFpEF. Front Cardiovasc Med 2023; 10:1149065. [PMID: 37965088 PMCID: PMC10641491 DOI: 10.3389/fcvm.2023.1149065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Heart failure (HF) is a chronic and progressive syndrome affecting worldwide billions of patients. Exercise intolerance and early fatigue are hallmarks of HF patients either with a reduced (HFrEF) or a preserved (HFpEF) ejection fraction. Alterations of the skeletal muscle contribute to exercise intolerance in HF. This review will provide a contemporary summary of the clinical and molecular alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and thereby differentiate the effects on locomotor and respiratory muscles, in particular the diaphragm. Moreover, current and future therapeutic options to address skeletal muscle weakness will be discussed focusing mainly on the effects of exercise training.
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
7
|
Zuo X, Li X, Tang K, Zhao R, Wu M, Wang Y, Li T. Sarcopenia and cardiovascular diseases: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14:1183-1198. [PMID: 37002802 PMCID: PMC10235887 DOI: 10.1002/jcsm.13221] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 06/03/2023] Open
Abstract
Sarcopenia is an age-related disease and is often accompanied by other diseases. Now, many studies have shown that cardiovascular diseases (CVDs) may raise the incidence rate of sarcopenia. Therefore, the purpose of this study was to conduct a systematic review and meta-analysis to investigate the prevalence of sarcopenia in patients with CVDs compared with the general population, defined as relatively healthy non-hospitalized subjects. The databases of PubMed, Embase, Medline and Web of Science were searched for eligible studies published up to 12 November 2022. Two assessment tools were used to evaluate study quality and the risk of bias. Statistical analysis was conducted using STATA 14.0 and R Version 4.1.2. Thirty-eight out of the 89 629 articles retrieved were included in our review. The prevalence of sarcopenia ranged from 10.1% to 68.9% in patients with CVDs, and the pooled prevalence was 35% (95% confidence interval [95% CI]: 28-42%). The pooled prevalence of sarcopenia was 32% (95% CI: 23-41%) in patients with chronic heart failure (CHF), 61% (95% CI: 49-72%) in patients with acute decompensated heart failure (ADHF), 43% (95% CI: 2-85%) in patients with coronary artery disease, 30% (95% CI: 25-35%) in patients with cardiac arrhythmia (CA), 35% (95% CI: 10-59%) in patients with congenital heart disease and 12% (95% CI: 7-17%) in patients with unclassed CVDs. However, in the general population, the prevalence of sarcopenia varied from 2.9% to 28.6% and the pooled prevalence was 13% (95% CI: 9-17%), suggesting that the prevalence of sarcopenia in patients with CVDs was about twice compared with the general population. The prevalence of sarcopenia was significantly higher only in patients with ADHF, CHF and CA compared with the general population. There is a positive correlation between CVDs and sarcopenia. The prevalence of sarcopenia is higher in patients with CVDs than that in the general population. With global aging, sarcopenia has brought a heavy burden to individuals and society. Therefore, it is important to identify the populations with high-risk or probable sarcopenia in order to do an early intervention, such as exercise, to counteract or slow down the progress of sarcopenia.
Collapse
Affiliation(s)
- Xinrong Zuo
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
| | - Xuehong Li
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Kuo Tang
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Rui Zhao
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Minming Wu
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Yang Wang
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| | - Tao Li
- Department of AnesthesiologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanChina
- Department of Anesthesiology, Laboratory of Mitochondria and Metabolism, National Clinical Research Center for GeriatricsWest China Hospital of Sichuan UniversityChengduSichuanChina
| |
Collapse
|
8
|
Malinowska-Borowska J, Piecuch M, Szlacheta P, Kulik A, Niedziela J, Nowak JU, Pyka Ł, Gąsior M, Rozentryt P. Prognostic Value of Spot Urinary Creatinine Concentration and Its Relationship with Body Composition Parameters in HF Patients. Biomedicines 2023; 11:biomedicines11051429. [PMID: 37239100 DOI: 10.3390/biomedicines11051429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Low 24-h urinary excretion of creatinine in patients with heart failure (HF) is believed to reflect muscle wasting and is associated with a poor prognosis. Recently, spot urinary creatinine concentration (SUCR) has been suggested as a useful prognostic factor in selected HF cohorts. This more practical and cheaper approach has never been tested in an unselected HF population. Moreover, neither the relation between SUCR and body composition markers nor the association of SUCR with the markers of volume overload, which are known to worsen clinical outcome, has been studied so far. The aim of the study was to check the prognostic value of SUCR in HF patients after adjusting for body composition and indirect markers of volume overload. METHODS In 911 HF patients, morning SUCR was determined and body composition scanning using dual X-ray absorptiometry (DEXA) was performed. Univariable and multivariable predictors of log SUCR were analyzed. All participants were divided into quartiles of SUCR. RESULTS In univariable analysis, SUCR weakly correlated with fat-free mass (R = 0.09, p = 0.01). Stronger correlations were shown between SUCR and loop diuretic dose (R = 0.16, p < 0.0001), NTproBNP (R = -0.15, p < 0.0001) and serum sodium (R = 0.16, p < 0.0001). During 3 years of follow-up, 353 (38.7%) patients died. Patients with lower SUCR were more frequently female, and their functional status was worse. The lowest mortality was observed in the top quartile of SUCR. In the unadjusted Cox regression analysis, the relative risk of death in all three lower quartiles of SUCR was higher by roughly 80% compared to the top SUCR quartile. Apart from lower SUCR, the significant predictors of death were age and malnutrition but not body composition. After adjustment for loop diuretic dose and percent of recommended dose of mineralocorticoid receptor antagonists, the difference in mortality vanished completely. CONCLUSIONS Lower SUCR levels in HF patients are associated with a worse outcome, but this effect is not correlated with fat-free mass. Fluid overload-driven effects may link lower SUCR with higher mortality in HF.
Collapse
Affiliation(s)
- Jolanta Malinowska-Borowska
- Department of Chronic Diseases and Civilization-Related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Małgorzata Piecuch
- Department of Chronic Diseases and Civilization-Related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Patryk Szlacheta
- Department of Chronic Diseases and Civilization-Related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Aleksandra Kulik
- Department of Chronic Diseases and Civilization-Related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Jacek Niedziela
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Jolanta Urszula Nowak
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Łukasz Pyka
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Mariusz Gąsior
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland
| | - Piotr Rozentryt
- Department of Chronic Diseases and Civilization-Related Hazards, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland
| |
Collapse
|
9
|
Jun L, Robinson M, Geetha T, Broderick TL, Babu JR. Prevalence and Mechanisms of Skeletal Muscle Atrophy in Metabolic Conditions. Int J Mol Sci 2023; 24:ijms24032973. [PMID: 36769296 PMCID: PMC9917738 DOI: 10.3390/ijms24032973] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle atrophy is prevalent in a myriad of pathological conditions, such as diabetes, denervation, long-term immobility, malnutrition, sarcopenia, obesity, Alzheimer's disease, and cachexia. This is a critically important topic that has significance in the health of the current society, particularly older adults. The most damaging effect of muscle atrophy is the decreased quality of life from functional disability, increased risk of fractures, decreased basal metabolic rate, and reduced bone mineral density. Most skeletal muscle in humans contains slow oxidative, fast oxidative, and fast glycolytic muscle fiber types. Depending on the pathological condition, either oxidative or glycolytic muscle type may be affected to a greater extent. This review article discusses the prevalence of skeletal muscle atrophy and several mechanisms, with an emphasis on high-fat, high-sugar diet patterns, obesity, and diabetes, but including other conditions such as sarcopenia, Alzheimer's disease, cancer cachexia, and heart failure.
Collapse
Affiliation(s)
- Lauren Jun
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Megan Robinson
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-223-844-3840
| |
Collapse
|
10
|
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Front Physiol 2023; 14:1130063. [PMID: 36891137 PMCID: PMC9987248 DOI: 10.3389/fphys.2023.1130063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disorder and is considered to be one of the worst forms of inherited muscular dystrophies. DMD occurs as a result of mutations in the dystrophin gene, leading to progressive muscle fiber degradation and weakness. Although DMD pathology has been studied for many years, there are aspects of disease pathogenesis and progression that have not been thoroughly explored yet. The underlying issue with this is that the development of further effective therapies becomes stalled. It is becoming more evident that extracellular vesicles (EVs) may contribute to DMD pathology. EVs are vesicles secreted by cells that exert a multitude of effects via their lipid, protein, and RNA cargo. EV cargo (especially microRNAs) is also said to be a good biomarker for identifying the status of specific pathological processes that occur in dystrophic muscle, such as fibrosis, degeneration, inflammation, adipogenic degeneration, and dilated cardiomyopathy. On the other hand, EVs are becoming more prominent vehicles for custom-engineered cargos. In this review, we will discuss the possible contribution of EVs to DMD pathology, their potential use as biomarkers, and the therapeutic efficacy of both, EV secretion inhibition and custom-engineered cargo delivery.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Exercise-Induced Excessive Blood Pressure Elevation Is Associated with Cardiac Dysfunction in Male Patients with Essential Hypertension. Int J Hypertens 2022; 2022:8910453. [DOI: 10.1155/2022/8910453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022] Open
Abstract
Objective. Cardiopulmonary exercise testing (CPET) has been used to explore the blood pressure response and potential cardiovascular system structure and dysfunction in male patients with essential hypertension during exercise, to provide a scientific basis for safe and effective exercise rehabilitation and improvement of prognosis. Methods. A total of 100 male patients with essential hypertension (aged 18–60) who were admitted to the outpatient department of the Center for Diagnosis and Treatment of Cardiovascular Diseases of Jilin University from September 2018 to January 2021 were enrolled in this study. The patients had normal cardiac structure in resting state without clinical manifestations of heart failure or systematic regularization of treatment at the time of admission. Symptom-restricted CPET was performed and blood pressure was measured during and after exercise. According to Framingham criteria, male systolic blood pressure (SBP) ≥210 mmHg during exercise was defined as exercise hypertension (EH), and the subjects were divided into EH group (n = 47) and non-EH group (n = 53). Based on whether the oxygen pulse (VO2/HR) plateau appeared immediately after anaerobic threshold (AT), the EH group was further divided into the VO2/HR plateau immediately after AT (EH-ATP) group (n = 19) and EH-non-ATP group (n = 28). The basic clinical data and related parameters, key CPET indicators, were compared between groups. Result. Body mass index (BMI) visceral fat, resting SBP, and SBP variability in EH group were significantly higher than those in non-EH group. Moreover, VO2/HR at AT and the ratio of VO2/HR plateau appearing immediately after AT in EH group were significantly higher than those in the non-EH group. The resting SBP, 15-minute SBP variability, and the presence of VO2/HR plateau were independent risk factors for EH. In addition, work rate (WR) at AT but also WR, oxygen consumption per minute (VO2), VO2/kg, and VO2/HR at peak were significantly lower in the EH-ATP group compared to the EH-non-ATP group. Peak diastolic blood pressure (DBP) increment and decreased △VO2/△WR for AT to peak were independent risk factors for VO2/HR plateau appearing immediately after AT in EH patients. Conclusion. EH patients have impaired autonomic nervous function and are prone to exercise-induced cardiac dysfunction. EH patients with exercise-induced cardiac dysfunction have reduced peak cardiac output and exercise tolerance and impaired vascular diastolic function. CPET examination should be performed on EH patients and EH patients with exercise-induced cardiac dysfunction to develop precise drug therapy and effective individual exercise prescription, to avoid arteriosclerosis and exercise-induced cardiac damage. The retrospective study protocol was approved by medical ethics committee of the First Hospital of Jilin University (AF-IRB-032-06 No. 2021-015). The study was registered with the Chinese Clinical Trials Register, registration number: ChiCTR2100053140.
Collapse
|
12
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
13
|
Single-cell sequencing deconvolutes cellular responses to exercise in human skeletal muscle. Commun Biol 2022; 5:1121. [PMID: 36273106 PMCID: PMC9588010 DOI: 10.1038/s42003-022-04088-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle adaptations to exercise have been associated with a range of health-related benefits, but cell type-specific adaptations within the muscle are incompletely understood. Here we use single-cell sequencing to determine the effects of exercise on cellular composition and cell type-specific processes in human skeletal muscle before and after intense exercise. Fifteen clusters originating from six different cell populations were identified. Most cell populations remained quantitatively stable after exercise, but a large transcriptional response was observed in mesenchymal, endothelial, and myogenic cells, suggesting that these cells are specifically involved in skeletal muscle remodeling. We found three subpopulations of myogenic cells characterized by different maturation stages based on the expression of markers such as PAX7, MYOD1, TNNI1, and TNNI2. Exercise accelerated the trajectory of myogenic progenitor cells towards maturation by increasing the transcriptional features of fast- and slow-twitch muscle fibers. The transcriptional regulation of these contractile elements upon differentiation was validated in vitro on primary myoblast cells. The cell type-specific adaptive mechanisms induced by exercise presented here contribute to the understanding of the skeletal muscle adaptations triggered by physical activity and may ultimately have implications for physiological and pathological processes affecting skeletal muscle, such as sarcopenia, cachexia, and glucose homeostasis. Single-cell RNA-sequencing of human skeletal muscle before and after exercise highlights how physical activity changes the composition and transcriptomic profile of muscle tissue.
Collapse
|
14
|
Voorrips SN, Saucedo-Orozco H, Sánchez-Aguilera PI, De Boer RA, Van der Meer P, Westenbrink BD. Could SGLT2 Inhibitors Improve Exercise Intolerance in Chronic Heart Failure? Int J Mol Sci 2022; 23:8631. [PMID: 35955784 PMCID: PMC9369142 DOI: 10.3390/ijms23158631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Despite the constant improvement of therapeutical options, heart failure (HF) remains associated with high mortality and morbidity. While new developments in guideline-recommended therapies can prolong survival and postpone HF hospitalizations, impaired exercise capacity remains one of the most debilitating symptoms of HF. Exercise intolerance in HF is multifactorial in origin, as the underlying cardiovascular pathology and reactive changes in skeletal muscle composition and metabolism both contribute. Recently, sodium-related glucose transporter 2 (SGLT2) inhibitors were found to improve cardiovascular outcomes significantly. Whilst much effort has been devoted to untangling the mechanisms responsible for these cardiovascular benefits of SGLT2 inhibitors, little is known about the effect of SGLT2 inhibitors on exercise performance in HF. This review provides an overview of the pathophysiological mechanisms that are responsible for exercise intolerance in HF, elaborates on the potential SGLT2-inhibitor-mediated effects on these phenomena, and provides an up-to-date overview of existing studies on the effect of SGLT2 inhibitors on clinical outcome parameters that are relevant to the assessment of exercise capacity. Finally, current gaps in the evidence and potential future perspectives on the effects of SGLT2 inhibitors on exercise intolerance in chronic HF are discussed.
Collapse
Affiliation(s)
- Suzanne N. Voorrips
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.S.-O.); (P.I.S.-A.); (R.A.D.B.); (P.V.d.M.)
| | | | | | | | | | - B. Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (H.S.-O.); (P.I.S.-A.); (R.A.D.B.); (P.V.d.M.)
| |
Collapse
|
15
|
Rao P, Belanger MJ, Robbins JM. Exercise, Physical Activity, and Cardiometabolic Health: Insights into the Prevention and Treatment of Cardiometabolic Diseases. Cardiol Rev 2022; 30:167-178. [PMID: 34560712 PMCID: PMC8920940 DOI: 10.1097/crd.0000000000000416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Physical activity (PA) and exercise are widely recognized as essential components of primary and secondary cardiovascular disease (CVD) prevention efforts and are emphasized in the health promotion guidelines of numerous professional societies and committees. The protean benefits of PA and exercise extend across the spectrum of CVD, and include the improvement and reduction of risk factors and events for atherosclerotic CVD (ASCVD), cardiometabolic disease, heart failure, and atrial fibrillation (AF), respectively. Here, we highlight recent insights into the salutary effects of PA and exercise on the primary and secondary prevention of ASCVD, including their beneficial effects on both traditional and nontraditional risk mediators; exercise "prescriptions" for ASCVD; the role of PA regular exercise in the prevention and treatment of heart failure; and the relationships between, PA, exercise, and AF. While our understanding of the relationship between exercise and CVD has evolved considerably, several key questions remain including the association between extreme volumes of exercise and subclinical ASCVD and its risk; high-intensity exercise and resistance (strength) training as complementary modalities to continuous aerobic exercise; and dose- and intensity-dependent associations between exercise and AF. Recent advances in molecular profiling technologies (ie, genomics, transcriptomics, proteomics, and metabolomics) have begun to shed light on interindividual variation in cardiometabolic responses to PA and exercise and may provide new opportunities for clinical prediction in addition to mechanistic insights.
Collapse
Affiliation(s)
- Prashant Rao
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Jeremy M. Robbins
- Cardiovascular Research Center, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
16
|
Park LK, Coggan AR, Peterson LR. Skeletal Muscle Contractile Function in Heart Failure With Reduced Ejection Fraction-A Focus on Nitric Oxide. Front Physiol 2022; 13:872719. [PMID: 35721565 PMCID: PMC9198547 DOI: 10.3389/fphys.2022.872719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Despite advances over the past few decades, heart failure with reduced ejection fraction (HFrEF) remains not only a mortal but a disabling disease. Indeed, the New York Heart Association classification of HFrEF severity is based on how much exercise a patient can perform. Moreover, exercise capacity-both aerobic exercise performance and muscle power-are intimately linked with survival in patients with HFrEF. This review will highlight the pathologic changes in skeletal muscle in HFrEF that are related to impaired exercise performance. Next, it will discuss the key role that impaired nitric oxide (NO) bioavailability plays in HFrEF skeletal muscle pathology. Lastly, it will discuss intriguing new data suggesting that the inorganic nitrate 'enterosalivary pathway' may be leveraged to increase NO bioavailability via ingestion of inorganic nitrate. This ingestion of inorganic nitrate has several advantages over organic nitrate (e.g., nitroglycerin) and the endogenous nitric oxide synthase pathway. Moreover, inorganic nitrate has been shown to improve exercise performance: both muscle power and aerobic capacity, in some recent small but well-controlled, cross-over studies in patients with HFrEF. Given the critical importance of better exercise performance for the amelioration of disability as well as its links with improved outcomes in patients with HFrEF, further studies of inorganic nitrate as a potential novel treatment is critical.
Collapse
Affiliation(s)
- Lauren K. Park
- Department of Medicine, Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States
| | - Andrew R. Coggan
- Department of Kinesiology, Indiana University Purdue University, Indianapolis, IN, United States
| | - Linda R. Peterson
- Department of Medicine, Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
17
|
Vera K, McConville M, Glazos A, Stokes W, Kyba M, Keller-Ross M. Exercise Intolerance in Facioscapulohumeral Muscular Dystrophy. Med Sci Sports Exerc 2022; 54:887-895. [PMID: 35195100 PMCID: PMC9117420 DOI: 10.1249/mss.0000000000002882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Determine 1) if adults with facioscapulohumeral muscular dystrophy (FSHD) exhibit exercise intolerance and 2) potential contributing mechanisms to exercise intolerance, specific to FSHD. METHODS Eleven people with FSHD (47 ± 13 yr, 4 females) and 11 controls (46 ± 13 yr, 4 females) completed one visit, which included a volitional peak oxygen consumption (V̇O2peak) cycling test. Breath-by-breath gas exchange, ventilation, and cardiovascular responses were measured at rest and during exercise. The test featured 3-min stages (speed, 65-70 rpm) with incremental increases in intensity (FSHD: 20 W per stage; control: 40-60 W per stage). Body lean mass (LM (kg, %)) was collected via dual-energy x-ray absorptiometry. RESULTS V̇O2peak was 32% lower (24.5 ± 9.7 vs 36.2 ± 9.3 mL·kg-1·min-1, P < 0.01), and wattage was 55% lower in FSHD (112.7 ± 56.1 vs 252.7 ± 67.7 W, P < 0.01). When working at a relative submaximal intensity (40% of V̇O2peak), wattage was 55% lower in FSHD (41.8 ± 30.3 vs 92.7 ± 32.6 W, P = 0.01), although ratings of perceived exertion (FSHD: 11 ± 2 vs control: 10 ± 3, P = 0.61) and dyspnea (FSHD: 3 ± 1 vs control: 3 ± 2, P = 0.78) were similar between groups. At an absolute intensity (60 W), the rating of perceived exertion was 63% higher (13 ± 3 vs 8 ± 2, P < 0.01) and dyspnea was 180% higher in FSHD (4 ± 2 vs 2 ± 2, P < 0.01). V̇O2peak was most strongly correlated with resting O2 pulse in controls (P < 0.01, r = 0.90) and percent leg LM in FSHD (P < 0.01, r = 0.88). Among FSHD participants, V̇O2peak was associated with self-reported functionality (FSHD-HI score; activity limitation: P < 0.01, r = -0.78), indicating a strong association between perceived and objective impairments. CONCLUSIONS Disease-driven losses of LM contribute to exercise intolerance in FSHD, as evidenced by a lower V̇O2peak and elevated symptoms of dyspnea and fatigue during submaximal exercise. Regular exercise participation may preserve LM, thus providing some protection against exercise tolerance in FSHD.
Collapse
Affiliation(s)
- Kathryn Vera
- Division of Rehabilitation Science, University of Minnesota, Minneapolis, MN
- Health and Human Performance Department, University of Wisconsin—River Falls, River Falls, WI
| | | | - Aline Glazos
- Division of Rehabilitation Science, University of Minnesota, Minneapolis, MN
| | - William Stokes
- Division of Rehabilitation Science, University of Minnesota, Minneapolis, MN
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Manda Keller-Ross
- Division of Rehabilitation Science, University of Minnesota, Minneapolis, MN
- Division of Physical Therapy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
18
|
Gabisonia K, Khan M, Recchia FA. Extracellular vesicle-mediated bidirectional communication between heart and other organs. Am J Physiol Heart Circ Physiol 2022; 322:H769-H784. [PMID: 35179973 PMCID: PMC8993522 DOI: 10.1152/ajpheart.00659.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
In recent years, a wealth of studies has identified various molecular species released by cardiac muscle under physiological and pathological conditions that exert local paracrine and/or remote endocrine effects. Conversely, humoral factors, principally produced by organs such as skeletal muscle, kidney, or adipose tissue, may affect the function and metabolism of normal and diseased hearts. Although this cross communication within cardiac tissue and between the heart and other organs is supported by mounting evidence, research on the role of molecular mediators carried by exosomes, microvesicles, and apoptotic bodies, collectively defined as extracellular vesicles (EVs), is at an early stage of investigation. Once released in the circulation, EVs can potentially reach any organ where they transfer their cargo of proteins, lipids, and nucleic acids that exert potent biological effects on recipient cells. Although there are a few cases where such signaling was clearly demonstrated, the results from many other studies can only be tentatively inferred based on indirect evidence obtained by infusing exogenous EVs in experimental animals or by adding them to cell cultures. This area of research is in rapid expansion and most mechanistic interpretations may change in the near future; hence, the present review on the role played by EV-carried mediators in the two-way communication between heart and skeletal muscle, kidneys, bone marrow, lungs, liver, adipose tissue, and brain is necessarily limited. Nonetheless, the available data are already unveiling new, intriguing, and ample scenarios in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Khatia Gabisonia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mohsin Khan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Gabriele Monasterio, Pisa, Italy
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Kulej-Lyko K, Niewinski P, Tubek S, Ponikowski P. Contribution of Peripheral Chemoreceptors to Exercise Intolerance in Heart Failure. Front Physiol 2022; 13:878363. [PMID: 35492596 PMCID: PMC9046845 DOI: 10.3389/fphys.2022.878363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Peripheral chemoreceptors (PChRs), because of their strategic localization at the bifurcation of the common carotid artery and along the aortic arch, play an important protective role against hypoxia. Stimulation of PChRs evokes hyperventilation and hypertension to maintain adequate oxygenation of critical organs. A relationship between increased sensitivity of PChRs (hyperreflexia) and exercise intolerance (ExIn) in patients with heart failure (HF) has been previously reported. Moreover, some studies employing an acute blockade of PChRs (e.g., using oxygen or opioids) demonstrated improvement in exercise capacity, suggesting that hypertonicity is also involved in the development of ExIn in HF. Nonetheless, the precise mechanisms linking dysfunctional PChRs to ExIn remain unclear. From the clinical perspective, there are two main factors limiting exercise capacity in HF patients: subjective perception of dyspnoea and muscle fatigue. Both have many determinants that might be influenced by abnormal signalling from PChRs, including: exertional hyperventilation, oscillatory ventilation, ergoreceptor oversensitivity, and augmented sympathetic tone. The latter results in reduced muscle perfusion and altered muscle structure. In this review, we intend to present the milieu of abnormalities tied to malfunctioning PChRs and discuss their role in the complex relationships leading, ultimately, to ExIn.
Collapse
Affiliation(s)
- Katarzyna Kulej-Lyko
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
- *Correspondence: Katarzyna Kulej-Lyko,
| | - Piotr Niewinski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Stanislaw Tubek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Department of Cardiology, University Clinical Hospital, Wroclaw, Poland
| |
Collapse
|
20
|
Masuda T, Takeuchi S, Kubo Y, Nishida Y. Validity of anaerobic threshold measured in resistance exercise. J Phys Ther Sci 2022; 34:199-203. [PMID: 35291469 PMCID: PMC8918104 DOI: 10.1589/jpts.34.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Intensity for resistance exercise is estimated based on the maximum muscle
strength. Exercise prescription without evaluating the biological response has a
challenge. This study aimed to confirm whether anaerobic threshold measured using
cardiopulmonary exercise test in resistance exercise is appropriate or not. [Participants
and Methods] Resistance exercise adopted for the study was right-leg knee extension. The
participants were 10 healthy young males. We investigated whether the oxygen uptake
kinetics achieved a steady state within 3 min during the constant-load test with knee
extension at 80% anaerobic threshold using cardiopulmonary exercise test with knee
extension. If oxygen uptake kinetics achieved a steady state within 3 min, the exercise
intensity measured using cardiopulmonary exercise test was considered appropriate.
[Results] Anaerobic threshold was measured using the conventional approach in all
participants. The steady state of oxygen uptake kinetics could be achieved within 3 min.
In the constant-load test with knee extension at 80% anaerobic threshold, the oxygen
uptake kinetics achieved a steady state within 3 min. [Conclusion] Based on the findings,
the anaerobic threshold obtained using cardiopulmonary exercise test with resistance
exercise was judged as appropriate. The results of this study contribute to the accurate
setting of exercise load for resistance exercise and condition setting for the evaluation
of skeletal muscle function.
Collapse
Affiliation(s)
- Takayuki Masuda
- Department of Rehabilitation, Hamamatsu University School of Medicine, University Hospital: 1-20-1 Handayama, Higashi-ku, Hamamatsu-shi, Shizuoka 431-3192, Japan
| | - Shinta Takeuchi
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare, Japan
| | | | - Yusuke Nishida
- Department of Physical Therapy, School of Health Sciences at Narita, International University of Health and Welfare, Japan
| |
Collapse
|
21
|
Meyer M, Wang Y, Brudy L, Häcker AL, Schulz T, Weberruss H, Oberhoffer R, Ewert P, Müller J. Impaired grip strength in children with congenital heart disease. Arch Dis Child 2022; 107:47-51. [PMID: 34140308 DOI: 10.1136/archdischild-2020-319955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/30/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Grip strength is known to be reduced in adults with congenital heart disease (CHD). This study compared grip strength in paediatric patients with CHD with healthy controls and determined a possible association between grip strength and health-related physical fitness (HRPF). METHODS Grip strength and HRPF were assessed in 569 children (12.4 years, 95% CI 12.16 to 12.72; 238 girls) with various CHD and compared with 2551 healthy controls (11.4 years, 95% CI 11.3 to 11.5; 1424 girls). Grip strength was determined as the maximum value of three repetitions with each hand. HRPF was tested by five motor tasks (FITNESSGRAM) and converted into an SD score (z-score). RESULTS After adjusting for age, sex and weight, children with CHD showed significantly lower grip strength compared with healthy controls (CHD: 20.8 kg, 95% CI 20.4 to 21.2; controls: 24.5 kg, 95% CI 24.3 to 24.8). CHD subgroup analysis also revealed significantly lower grip strength than the controls, with the lowest values in patients with total cavopulmonary connection (19.1, 95% CI 18.0 to 20.2). Children with complex CHD showed the lowest values with 19.8 kg (95% CI 19.2 to 20.4), those with moderate 20.7 kg (95% CI 19.9 to 21.4) and those with simple 22.5 kg (95% CI 21.6 to 23.3), respectively. HRPF was also lower (z-score: -0.46, 95% CI -0.49 to -0.35) compared with healthy controls and poorly associated with grip strength (r=0.21). CONCLUSIONS Grip strength is already reduced in children with CHD and poorly associated with HRPF. This suggests that grip strength and HRPF are different domains and have to be assessed separately.
Collapse
Affiliation(s)
- Michael Meyer
- Institute of Preventive Pediatrics, Technical University of Munich, Munich, Germany .,Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Munich, Germany
| | - Yi Wang
- Institute of Preventive Pediatrics, Technical University of Munich, Munich, Germany
| | - Leon Brudy
- Institute of Preventive Pediatrics, Technical University of Munich, Munich, Germany.,Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Munich, Germany
| | - Anna-Luisa Häcker
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Munich, Germany
| | - Thorsten Schulz
- Institute of Preventive Pediatrics, Technical University of Munich, Munich, Germany
| | - Heidi Weberruss
- Institute of Preventive Pediatrics, Technical University of Munich, Munich, Germany
| | - Renate Oberhoffer
- Institute of Preventive Pediatrics, Technical University of Munich, Munich, Germany.,Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Munich, Germany
| | - Peter Ewert
- Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Munich, Germany
| | - Jan Müller
- Institute of Preventive Pediatrics, Technical University of Munich, Munich, Germany.,Department of Pediatric Cardiology and Congenital Heart Disease, German Heart Centre Munich, Munich, Germany
| |
Collapse
|
22
|
Persistent Exertional Intolerance after COVID-19: Insights from Invasive Cardiopulmonary Exercise Testing. Chest 2021; 161:54-63. [PMID: 34389297 PMCID: PMC8354807 DOI: 10.1016/j.chest.2021.08.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Some Coronavirus disease 2019 (COVID-19) patients who have recovered from their acute infection after experiencing only mild symptoms continue to exhibit persistent exertional limitation that is often unexplained by conventional investigative studies. RESEARCH QUESTION What is the patho-physiological mechanism of exercise intolerance that underlies the post-COVID-19 long haul syndrome following COVID-19 in patients without cardio-pulmonary disease? STUDY DESIGN AND METHODS This study examined the systemic and pulmonary hemodynamics, ventilation, and gas exchange in 10 post-COVID-19 patients without cardio-pulmonary disease during invasive cardiopulmonary exercise testing (iCPET) and compared the results to 10 age- and sex matched controls. These data were then used to define potential reasons for exertional limitation in the post-COVID-19 cohort. RESULTS Post-COVID-19 patients exhibited markedly reduced peak exercise aerobic capacity (VO2) compared to controls (70±11%predicted vs. 131±45%predicted; p<0.0001). This reduction in peak VO2 was associated with impaired systemic oxygen extraction (i.e., narrow CaVO2/CaO2) compared to controls (0.49±0.1 vs. 0.78±0.1, p<0.0001) despite a preserved peak cardiac index (7.8±3.1 vs. 8.4±2.3 L/min, p>0.05). Additionally, post-COVID-19 patients demonstrated greater ventilatory inefficiency (i.e., abnormal VE/VCO2 slope: 35±5 vs. 27±5, p=0.01) compared to controls without an increase in dead space ventilation. INTERPRETATION Post-COVID-19 patients without cardiopulmonary disease demonstrate a marked reduction in peak VO2 from a peripheral rather than a central cardiac limit along with an exaggerated hyper-ventilatory response during exercise.
Collapse
|
23
|
Hong J, Fu S, Gao L, Cai Y, Lazartigues E, Wang HJ. Voltage-gated potassium channel dysfunction in dorsal root ganglia contributes to the exaggerated exercise pressor reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 2021; 321:H461-H474. [PMID: 34270374 DOI: 10.1152/ajpheart.00256.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An exaggerated exercise pressor reflex (EPR) causes excessive sympathoexcitation and exercise intolerance during physical activity in the chronic heart failure (CHF) state. Muscle afferent sensitization contributes to the genesis of the exaggerated EPR in CHF. However, the cellular mechanisms underlying muscle afferent sensitization in CHF remain unclear. Considering that voltage-gated potassium (Kv) channels critically regulate afferent neuronal excitability, we examined the potential role of Kv channels in mediating the sensitized EPR in male rats with CHF. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments demonstrate that both mRNA and protein expressions of multiple Kv channel isoforms (Kv1.4, Kv3.4, Kv4.2, and Kv4.3) were downregulated in lumbar dorsal root ganglions (DRGs) of CHF rats compared with sham rats. Immunofluorescence data demonstrate significant decreased Kv channel staining in both NF200-positive and IB4-positive lumbar DRG neurons in CHF rats compared with sham rats. Data from patch-clamp experiments demonstrate that the total Kv current, especially IA, was dramatically decreased in medium-sized IB4-negative muscle afferent neurons (a subpopulation containing mostly Aδ neurons) from CHF rats compared with sham rats, indicating a potential functional loss of Kv channels in muscle afferent Aδ neurons. In in vivo experiments, adenoviral overexpression of Kv4.3 in lumbar DRGs for 1 wk attenuated the exaggerated EPR induced by muscle static contraction and the mechanoreflex by passive stretch without affecting the blunted cardiovascular response to hindlimb arterial injection of capsaicin in CHF rats. These data suggest that Kv channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in CHF.NEW & NOTEWORTHY The primary finding of this manuscript is that voltage-gated potassium (Kv) channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in chronic heart failure (CHF). We propose that manipulation of Kv channels in DRG neurons could be considered as a potential new approach to reduce the exaggerated sympathoexcitation and to improve exercise intolerance in CHF, which can ultimately facilitate an improved quality of life and reduce mortality.
Collapse
Affiliation(s)
- Juan Hong
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shubin Fu
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska.,College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yanhui Cai
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Exercise causes various dynamic changes in all body parts either in healthy subject or in heart failure (HF) patients. The present review of current knowledge about HF patients with reduced ejection fraction focuses on dynamic changes along a "metabo-hemodynamic" perspective. RECENT FINDINGS Studies on the dynamic changes occurring during exercise span many years. Thanks to the availability of advanced methods, it is nowadays possible to properly characterize respiratory, hemodynamic, and muscular function adjustments and their mismatch with the pulmonary and systemic circulations. Exercise is a dynamic event that involves several body functions. In HF patients, it is important to know at what level the limitation takes place in order to better manage these patients and to optimize therapeutic strategies.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Heart failure (HF) is a structural or functional cardiac abnormality which leads to failure of the heart to deliver oxygen commensurately with the requirements of the tissues and it may progress to a generalized wasting of skeletal muscle, fat tissue, and bone tissue (cardiac cachexia). Clinically, dyspnea, fatigue, and exercise intolerance are some typical signs and symptoms that characterize HF patients. This review focused on the phenotypic characteristics of HF-induced skeletal myopathy as well as the mechanisms of muscle wasting due to HF and highlighted possible therapeutic strategies for skeletal muscle wasting in HF. RECENT FINDINGS The impaired exercise capacity of those patients is not attributed to the reduced blood flow in the exercising muscles, but rather to abnormal metabolic responses, myocyte apoptosis and atrophy of skeletal muscle. Specifically, the development of skeletal muscle wasting in chronic HF is characterized by structural, metabolic, and functional abnormalities in skeletal muscle and may be a result not only of reduced physical activity, but also of metabolic or hormonal derangements that favour catabolism over anabolism. In particular, abnormal energy metabolism, mitochondrial dysfunction, transition of myofibers from type I to type II, muscle atrophy, and reduction in muscular strength are included in skeletal muscle abnormalities which play a central role in the decreased exercise capacity of HF patients. Skeletal muscle alterations and exercise intolerance observed in HF are reversible by exercise training, since it is the only demonstrated intervention able to improve skeletal muscle metabolism, growth factor activity, and functional capacity and to reverse peripheral abnormalities.
Collapse
|
26
|
Adams V, Wunderlich S, Mangner N, Hommel J, Esefeld K, Gielen S, Halle M, Ellingsen Ø, Van Craenenbroeck EM, Wisløff U, Pieske B, Linke A, Winzer EB. Ubiquitin-proteasome-system and enzymes of energy metabolism in skeletal muscle of patients with HFpEF and HFrEF. ESC Heart Fail 2021; 8:2556-2568. [PMID: 33955206 PMCID: PMC8318515 DOI: 10.1002/ehf2.13405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/17/2021] [Accepted: 04/22/2021] [Indexed: 01/14/2023] Open
Abstract
Background Skeletal muscle (SM) alterations contribute to exercise intolerance in heart failure patients with preserved (HFpEF) or reduced (HFrEF) left ventricular ejection fraction (LVEF). Protein degradation via the ubiquitin‐proteasome‐system (UPS), nuclear apoptosis, and reduced mitochondrial energy supply is associated with SM weakness in HFrEF. These mechanisms are incompletely studied in HFpEF, and a direct comparison between these groups is missing. Methods and results Patients with HFpEF (LVEF ≥ 50%, septal E/e′ > 15 or >8 and NT‐proBNP > 220 pg/mL, n = 20), HFrEF (LVEF ≤ 35%, n = 20) and sedentary control subjects (Con, n = 12) were studied. Inflammatory markers were measured in serum, and markers of the UPS, nuclear apoptosis, and energy metabolism were determined in percutaneous SM biopsies. Both HFpEF and HFrEF showed increased proteolysis (MuRF‐1 protein expression, ubiquitination, and proteasome activity) with proteasome activity significantly related to interleukin‐6. Proteolysis was more pronounced in patients with lower exercise capacity as indicated by peak oxygen uptake in per cent predicted below the median. Markers of apoptosis did not differ between groups. Mitochondrial energy supply was reduced in HFpEF and HFrEF (complex‐I activity: −31% and −53%; malate dehydrogenase activity: −20% and −29%; both P < 0.05 vs. Con). In contrast, short‐term energy supply via creatine kinase was increased in HFpEF but decreased in HFrEF (47% and −45%; P < 0.05 vs. Con). Conclusions Similarly to HFrEF, skeletal muscle in HFpEF is characterized by increased proteolysis linked to systemic inflammation and reduced exercise capacity. Energy metabolism is disturbed in both groups; however, its regulation seems to be severity‐dependent.
Collapse
Affiliation(s)
- Volker Adams
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Heart Center Dresden - University Hospital, Herzzentrum Dresden, Universitätsklinik, Fetscherstraße 76, Dresden, 01307, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| | - Sebastian Wunderlich
- Department of Internal Medicine/Cardiology, Heart Center Leipzig - University Hospital, Leipzig, Germany
| | - Norman Mangner
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Heart Center Dresden - University Hospital, Herzzentrum Dresden, Universitätsklinik, Fetscherstraße 76, Dresden, 01307, Germany
| | - Jennifer Hommel
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Heart Center Dresden - University Hospital, Herzzentrum Dresden, Universitätsklinik, Fetscherstraße 76, Dresden, 01307, Germany
| | - Katrin Esefeld
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Prevention and Sports Medicine, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Stephan Gielen
- Department of Cardiology, Angiology and Intensive Care, Klinikum Lippe, Detmold, Germany
| | - Martin Halle
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Prevention and Sports Medicine, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Øyvind Ellingsen
- Department of Cardiology, St. Olavs University Hospital, Trondheim, Norway.,The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Emeline M Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium.,Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Burkert Pieske
- Department Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Heart Center Dresden - University Hospital, Herzzentrum Dresden, Universitätsklinik, Fetscherstraße 76, Dresden, 01307, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| | - Ephraim B Winzer
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Heart Center Dresden - University Hospital, Herzzentrum Dresden, Universitätsklinik, Fetscherstraße 76, Dresden, 01307, Germany
| |
Collapse
|
27
|
Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardiomyopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000-400,000 live births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction, either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy, and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer membrane to localize to the inner membrane where it associates with cardiolipin to enhance ATP synthesis in several organs, including the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this drug for management of this rare disease.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, MI, 48202, USA.
| |
Collapse
|
28
|
Abstract
Although muscle loss is part of the natural course of human aging, sarcopenia has been associated with an increased risk of physical disability and mortality in older patients. Many heart failure patients concomitantly develop deficits in muscle mass and strength, resulting in decreased quality of life and exercise capacity. An underlying state of inflammation is central to the development of sarcopenia and muscle wasting in heart failure; however, additional research in human models is needed to further delineate the pathophysiology of muscle wasting in these patients. Previous studies have shed light on many of the potential targets for therapeutic intervention of sarcopenia in heart failure; however, physical exercise remains the prominent beneficial intervention. Future research must explore other therapeutic interventions in randomized, double-blind clinical trials, which may help to supplement exercise regimens. Sarcopenia shows promise as an easily measured predictor of outcomes after transcatheter aortic valve replacement.
Collapse
|
29
|
Unraveling the Role of Respiratory Muscle Metaboloreceptors under Inspiratory Training in Patients with Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041697. [PMID: 33578776 PMCID: PMC7916511 DOI: 10.3390/ijerph18041697] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Exercise intolerance may be considered a hallmark in patients who suffer from heart failure (HF) syndrome. Currently, there is enough scientific evidence regarding functional and structural deterioration of skeletal musculature in these patients. It is worth noting that muscle weakness appears first in the respiratory muscles and then in the musculature of the limbs, which may be considered one of the main causes of exercise intolerance. Functional deterioration and associated atrophy of these respiratory muscles are related to an increased muscle metaboreflex leading to sympathetic–adrenal system hyperactivity and increased pulmonary ventilation. This issue contributes to increased dyspnea and/or fatigue and decreased aerobic function. Consequently, respiratory muscle weakness produces exercise limitations in these patients. In the present review, the key role that respiratory muscle metaboloreceptors play in exercise intolerance is accurately addressed in patients who suffer from HF. In conclusion, currently available scientific evidence seems to affirm that excessive metaboreflex activity of respiratory musculature under HF is the main cause of exercise intolerance and sympathetic–adrenal system hyperactivity. Inspiratory muscle training seems to be a useful personalized medicine intervention to reduce respiratory muscle metaboreflex in order to increase patients’ exercise tolerance under HF condition.
Collapse
|
30
|
Wood N, Straw S, Scalabrin M, Roberts LD, Witte KK, Bowen TS. Skeletal muscle atrophy in heart failure with diabetes: from molecular mechanisms to clinical evidence. ESC Heart Fail 2021; 8:3-15. [PMID: 33225593 PMCID: PMC7835554 DOI: 10.1002/ehf2.13121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022] Open
Abstract
Two highly prevalent and growing global diseases impacted by skeletal muscle atrophy are chronic heart failure (HF) and type 2 diabetes mellitus (DM). The presence of either condition increases the likelihood of developing the other, with recent studies revealing a large and relatively poorly characterized clinical population of patients with coexistent HF and DM (HFDM). HFDM results in worse symptoms and poorer clinical outcomes compared with DM or HF alone, and cardiovascular-focused disease-modifying agents have proven less effective in HFDM indicating a key role of the periphery. This review combines current clinical knowledge and basic biological mechanisms to address the critical emergence of skeletal muscle atrophy in patients with HFDM as a key driver of symptoms. We discuss how the degree of skeletal muscle wasting in patients with HFDM is likely underpinned by a variety of mechanisms that include mitochondrial dysfunction, insulin resistance, inflammation, and lipotoxicity. Given many atrophic triggers (e.g. ubiquitin proteasome/autophagy/calpain activity and supressed IGF1-Akt-mTORC1 signalling) are linked to increased production of reactive oxygen species, we speculate that a higher pro-oxidative state in HFDM could be a unifying mechanism that promotes accelerated fibre atrophy. Overall, our proposal is that patients with HFDM represent a unique clinical population, prompting a review of treatment strategies including further focus on elucidating potential mechanisms and therapeutic targets of muscle atrophy in these distinct patients.
Collapse
Affiliation(s)
- Nathanael Wood
- Faculty of Biomedical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Sam Straw
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Klaus K. Witte
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | | |
Collapse
|
31
|
Lee CJ, Ryu HY, Chun KH, Oh J, Park S, Lee SH, Kang SM. Association of muscular fitness with rehospitalization for heart failure with reduced ejection fraction. Clin Cardiol 2020; 44:244-251. [PMID: 33368418 PMCID: PMC7852176 DOI: 10.1002/clc.23535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limited information is available regarding the prognostic potential of muscular fitness parameters in heart failure (HF) with reduced ejection fraction (HFrEF). HYPOTHESIS We aimed to investigate the predictive potential of knee extensor muscle strength and power on rehospitalization and evaluate the correlation between exercise capacity and muscular fitness in patients newly diagnosed with HFrEF. METHODS Ninety nine patients hospitalized with a new diagnosis of HF were recruited (64 men; aged 58.7 years [standard deviation (SD), 13.2 years]; 32.3% ischemic; ejection fraction, 28% [SD, 8%]). The inclusion criteria were left ventricular ejection fraction <40% and sufficient clinical stability to undergo exercise testing. Aerobic exercise capacity was measured with cardiopulmonary exercise testing. Knee extensor maximal voluntary isometric contraction (MVIC) and muscle power (MP) were measured using the Baltimore therapeutic equipment system. The clinical outcome was HF rehospitalization. RESULTS Over a mean follow-up period of 1709 ± 502 days, 39 patients were rehospitalized due to HF exacerbation. HF rehospitalization was more probable for patients with diabetes and lower oxygen uptake at peak exercise (peak VO2 ), knee extensor MVIC, and MP. The Kaplan-Meier survival analysis revealed significantly different cumulative HF rehospitalization rates according to the tertiles of peak VO2 (P = 0.005) and MP (P = 0.002). Multivariable Cox proportional hazard model showed that the lowest tertiles of peak VO2 (hazard ratio (HR), 6.26; 95% confidence interval (CI), 1.93-20.27); and MP (HR, 5.29; 95% CI, 1.05-26.53) were associated with HF rehospitalization. Knee extensor muscle power was an independent predictor for rehospitalization in patients with HFrEF. CONCLUSION Knee extensor muscle power was an independent predictor for rehospitalization in patients with HFrEF.
Collapse
Affiliation(s)
- Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho Youl Ryu
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyeong-Hyeon Chun
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaewon Oh
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
32
|
Knapp F, Niemann B, Li L, Molenda N, Kracht M, Schulz R, Rohrbach S. Differential effects of right and left heart failure on skeletal muscle in rats. J Cachexia Sarcopenia Muscle 2020; 11:1830-1849. [PMID: 32985798 PMCID: PMC7749622 DOI: 10.1002/jcsm.12612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/17/2020] [Accepted: 07/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Exercise intolerance is a cardinal symptom in right (RV) and left ventricular (LV) failure. The underlying skeletal muscle contributes to increased morbidity in patients. Here, we compared skeletal muscle sarcopenia in a novel two-stage model of RV failure to an established model of LV failure. METHODS Pulmonary artery banding (PAB) or aortic banding (AOB) was performed in weanling rats, inducing a transition from compensated cardiac hypertrophy (after 7 weeks) to heart failure (after 22-26 weeks). Cardiac function was characterized by echocardiography. Skeletal muscle catabolic/anabolic balance and energy metabolism were analysed by histological and biochemical methods, real-time PCR, and western blot. RESULTS Two clearly distinguishable stages of left or right heart disease with a comparable severity were reached. However, skeletal muscle impairment was significantly more pronounced in LV failure. While the compensatory stage resulted only in minor changes, soleus and gastrocnemius muscle of AOB rats at the decompensated stage demonstrated reduced weight and fibre diameter, higher proteasome activity and expression of the muscle-specific ubiquitin E3 ligases muscle-specific RING finger 1 and atrogin-1, increased expression of the atrophy marker myostatin, increased autophagy activation, and impaired mitochondrial function and respiratory chain gene expression. Soleus and gastrocnemius muscle of PAB rats did not show significant changes in muscle weight and proteasome or autophagy activation, but mitochondrial function was mildly impaired as well. The diaphragm did not demonstrate differences in any model or disease stage except for myostatin expression, which was altered at the decompensated stage in both models. Plasma interleukin (IL)-6 and angiotensin II were strongly increased at the decompensated stage (AOB > > PAB). Soleus and gastrocnemius muscle itself demonstrated an increase in IL-6 expression independent from blood-derived cytokines only in AOB animals. In vitro experiments in rat skeletal muscle cells suggested a direct impact of IL-6 and angiotensin II on distinctive atrophic changes. CONCLUSIONS Manifold skeletal muscle alterations are more pronounced in LV failure compared with RV failure despite a similar ventricular impairment. Most of the catabolic changes were observed in soleus or gastrocnemius muscle rather than in the constantly active diaphragm. Mitochondrial dysfunction and up-regulation of myostatin were identified as the earliest signs of skeletal muscle impairment.
Collapse
Affiliation(s)
- Fabienne Knapp
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Bernd Niemann
- Department of Adult and Pediatric Cardiac and Vascular Surgery, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Rudolf-Buchheim-Strasse 7, Giessen, 35392, Germany
| | - Ling Li
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicole Molenda
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, Schubertstrasse 81, Giessen, 35392, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Rohrbach
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
33
|
Carbone S, Billingsley HE, Rodriguez-Miguelez P, Kirkman DL, Garten R, Franco RL, Lee DC, Lavie CJ. Lean Mass Abnormalities in Heart Failure: The Role of Sarcopenia, Sarcopenic Obesity, and Cachexia. Curr Probl Cardiol 2020; 45:100417. [PMID: 31036371 PMCID: PMC11146283 DOI: 10.1016/j.cpcardiol.2019.03.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
The role of body composition in patients with heart failure (HF) has been receiving much attention in the last few years. Particularly, reduced lean mass (LM), the best surrogate for skeletal muscle mass, is independently associated with abnormal cardiorespiratory fitness (CRF) and muscle strength, ultimately leading to reduced quality of life and worse prognosis. While in the past, reduced CRF in patients with HF was thought to result exclusively from cardiac dysfunction leading to reduced cardiac output at peak exercise, current evidence supports the concept that abnormalities in LM may also play a critical role. Abnormalities in the LM body composition compartment are associated with the development of sarcopenia, sarcopenic obesity, and cachexia. Such conditions have been implicated in the pathophysiology and progression of HF. However, identification of such conditions remains challenging, as universal definitions for sarcopenia, sarcopenic obesity, and cachexia are lacking. In this review article, we describe the most common body composition abnormalities related to the LM compartment, including skeletal and respiratory muscle mass abnormalities, and the consequences of such anomalies on CRF and muscle strength in patients with HF. Finally, we discuss the potential nonpharmacologic therapeutic strategies such as exercise training (ie, aerobic exercise and resistance exercise) and dietary interventions (ie, dietary supplementation and dietary patterns) that have been implemented to target body composition, with a focus on HF.
Collapse
|
34
|
Lalande S, Cross TJ, Keller-Ross ML, Morris NR, Johnson BD, Taylor BJ. Exercise Intolerance in Heart Failure: Central Role for the Pulmonary System. Exerc Sport Sci Rev 2020; 48:11-19. [PMID: 31453845 DOI: 10.1249/jes.0000000000000208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We propose that abnormalities of the pulmonary system contribute significantly to the exertional dyspnea and exercise intolerance observed in patients with chronic heart failure. Interventions designed to address the deleterious pulmonary manifestations of heart failure may, therefore, yield promising improvements in exercise tolerance in this population.
Collapse
Affiliation(s)
- Sophie Lalande
- Department of Kinesiology and Heath Education, The University of Texas at Austin, Austin, TX
| | | | - Manda L Keller-Ross
- Divisions of Physical Therapy and Rehabilitation Sciences, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN
| | - Norman R Morris
- School of Physiotherapy and Exercise Science, Griffith University, Queensland, Australia
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Bryan J Taylor
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
35
|
Beyond the myocardium? SGLT2 inhibitors target peripheral components of reduced oxygen flux in the diabetic patient with heart failure with preserved ejection fraction. Heart Fail Rev 2020; 27:219-234. [PMID: 32583230 DOI: 10.1007/s10741-020-09996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent cardiovascular outcome trials have highlighted the propensity of the antidiabetic agents, SGLT2 inhibitors (SGLT2is or -flozin drugs), to exert positive clinical outcomes in patients with cardiovascular disease at risk for major adverse cardiovascular events (MACEs). Of interest in cardiac diabetology is the physiological status of the patient with T2DM and heart failure with preserved ejection fraction (HFpEF), a well-examined association. Underlying this pathologic tandem are the effects that long-standing hyperglycemia has on the ability of the HFpEF heart to adequately deliver oxygen. It is believed that shortcomings in oxygen diffusion or utilization and the resulting hypoxia thereafter may play a role in underlying the clinical sequelae of patients with T2DM and HFpEF, with implications in the long-term decline of extra-cardiac tissue. Oxygen consumption is one of the most critical factors in indexing heart failure disease burden, warranting a probe into the role of SGLT2i on oxygen utility in HFpEF and T2DM. We investigated the role of oxygen flux in the patient with T2DM and HFpEF extending beyond the heart with focuses on cellular metabolism, perivascular fibrosis with endothelial dysfunction, hematologic changes, and renal effects with neurohormonal considerations in the patient with HFpEF and T2DM. Moreover, we give a commentary on potential therapeutic targets of these components with SGLT2i to gain insight into disease burden amelioration in patients with HFpEF and T2DM.
Collapse
|
36
|
Toniolo L, Formoso L, Torelli L, Crea E, Bergamo A, Sava G, Giacomello E. Long-term resveratrol treatment improves the capillarization in the skeletal muscles of ageing C57BL/6J mice. Int J Food Sci Nutr 2020; 72:37-44. [PMID: 32449407 DOI: 10.1080/09637486.2020.1769569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We recently showed that the treatment with Resveratrol (RES) contrasts the effects of ageing on the skeletal muscle (SKM), reduces the appearance of tubular aggregates (TAs), and improves the fatigue resistance. Since fatigue resistance depends on the SKM capillary network, and RES has been described to improve vascularisation, we analysed the SKM capillarization in naturally ageing C57BL/6J male mice, fed with 0.04% RES in the diet for 6 months, which showed a better fatigue resistance in a previous work. Our data show an inverse correlation between the number of capillaries per fibre (CAF) and TAs in both control and treated type IIB fibres, and an increase of CAF in ageing SKM upon RES-treatment. The present work suggests that capillarization is one of the determinants of the development of TAs and fatigue resistance, and that RES can be considered a good candidate to counteract capillary rarefaction in the SKM tissue.
Collapse
Affiliation(s)
- Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Formoso
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Lucio Torelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Emanuela Crea
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Alberta Bergamo
- Callerio Foundation Onlus, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gianni Sava
- Callerio Foundation Onlus, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
37
|
Takada S, Sabe H, Kinugawa S. Abnormalities of Skeletal Muscle, Adipocyte Tissue, and Lipid Metabolism in Heart Failure: Practical Therapeutic Targets. Front Cardiovasc Med 2020; 7:79. [PMID: 32478098 PMCID: PMC7235191 DOI: 10.3389/fcvm.2020.00079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic diseases, including heart failure (HF), are often accompanied with skeletal muscle abnormalities in both quality and quantity, which are the major cause of impairment of the activities of daily living and quality of life. We have shown that skeletal muscle abnormalities are a hallmark of HF, in which metabolic pathways involving phosphocreatine and fatty acids are largely affected. Not only in HF, but the dysfunction of fatty acid metabolism may also occur in many chronic diseases, such as arteriosclerosis, as well as through insufficient physical exercise. Decreased fatty acid catabolism affects adenosine triphosphate (ATP) production in mitochondria, via decreased activity of the tricarboxylic acid cycle; and may cause abnormal accumulation of adipose tissue accompanied with hyperoxidation and ectopic lipid deposition. Such impairments of lipid metabolism are in turn detrimental to skeletal muscle, which is hence a chicken-and-egg problem between skeletal muscle and HF. In this review, we first discuss skeletal muscle abnormalities in HF, including sarcopenia; particularly their association with lipid metabolism and adipose tissue. On the other hand, the precise mechanisms involved in metabolic reprogramming and dysfunction are beginning to be understood, and an imbalance of daily nutritional intake of individuals has been found to be a causative factor for the development and worsening of HF. Physical exercise has long been known to be beneficial for the prevention and even treatment of HF. Again, the molecular mechanisms by which exercise promotes skeletal muscle as well as cardiac muscle functions are being clarified by recent studies. We propose that it is now the time to develop more “natural” methods to prevent and treat HF, rather than merely relying on drugs and medical interventions. Further analysis of the basic design of and molecular mechanisms involved in the human body, particularly the inextricable association between physical exercise and the integrity and functional plasticity of skeletal and cardiac muscles is required.
Collapse
Affiliation(s)
- Shingo Takada
- Faculty of Lifelong Sport, Department of Sports Education, Hokusho University, Ebetsu, Japan.,Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
38
|
Heyne E, Schrepper A, Doenst T, Schenkl C, Kreuzer K, Schwarzer M. High-fat diet affects skeletal muscle mitochondria comparable to pressure overload-induced heart failure. J Cell Mol Med 2020; 24:6741-6749. [PMID: 32363733 PMCID: PMC7299710 DOI: 10.1111/jcmm.15325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In heart failure, high-fat diet (HFD) may exert beneficial effects on cardiac mitochondria and contractility. Skeletal muscle mitochondrial dysfunction in heart failure is associated with myopathy. However, it is not clear if HFD affects skeletal muscle mitochondria in heart failure as well. To induce heart failure, we used pressure overload (PO) in rats fed normal chow or HFD. Interfibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) from gastrocnemius were isolated and functionally characterized. With PO heart failure, maximal respiratory capacity was impaired in IFM but increased in SSM of gastrocnemius. Unexpectedly, HFD affected mitochondria comparably to PO. In combination, PO and HFD showed additive effects on mitochondrial subpopulations which were reflected by isolated complex activities. While PO impaired diastolic as well as systolic cardiac function and increased glucose tolerance, HFD did not affect cardiac function but decreased glucose tolerance. We conclude that HFD and PO heart failure have comparable effects leading to more severe impairment of IFM. Glucose tolerance seems not causally related to skeletal muscle mitochondrial dysfunction. The additive effects of HFD and PO may suggest accelerated skeletal muscle mitochondrial dysfunction when heart failure is accompanied with a diet containing high fat.
Collapse
Affiliation(s)
- Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Jena, Germany
| | - Andrea Schrepper
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Jena, Germany
| | - Christina Schenkl
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Jena, Germany
| | - Katrin Kreuzer
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Jena, Germany
| | - Michael Schwarzer
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Jena, Germany
| |
Collapse
|
39
|
Garnham JO, Roberts LD, Caspi T, Al-Owais MM, Bullock M, Swoboda PP, Koshy A, Gierula J, Paton MF, Cubbon RM, Kearney MT, Bowen TS, Witte KK. Divergent skeletal muscle mitochondrial phenotype between male and female patients with chronic heart failure. J Cachexia Sarcopenia Muscle 2020; 11:79-88. [PMID: 31430834 PMCID: PMC7015245 DOI: 10.1002/jcsm.12488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/23/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies in heart failure with reduced ejection fraction (HFrEF) suggest that skeletal muscle mitochondrial impairments are associated with exercise intolerance in men. However, the nature of this relationship in female patients remains to be elucidated. This study aimed to determine the relationship between skeletal muscle mitochondrial impairments and exercise intolerance in male and female patients with HFrEF. METHODS Mitochondrial respiration, enzyme activity, and gene expression were examined in pectoralis major biopsies from age-matched male (n = 45) and female (n = 11) patients with HFrEF and healthy-matched male (n = 24) and female (n = 11) controls. Mitochondrial variables were compared between sex and related to peak exercise capacity. RESULTS Compared with sex-matched controls, complex I mitochondrial oxygen flux was 17% (P = 0.030) and 29% (P = 0.013) lower in male and female patients with HFrEF, respectively, which correlated to exercise capacity (r = 0.71; P > 0.0001). Female HFrEF patients had a 32% (P = 0.023) lower mitochondrial content compared with controls. However, after adjusting for mitochondrial content, male patients demonstrated lower complex I function by 15% (P = 0.030). Expression of key mitochondrial genes regulating organelle dynamics and maintenance (i.e. optic atrophy 1, peroxisome proliferator-activated receptor γ coactivator-1α, NADH:ubiquinone oxidoreductase core subunit S1/S3, and superoxide dismutase 2) were selectively lower in female HFrEF patients. CONCLUSIONS These data provide novel evidence that HFrEF induces divergent sex-specific mitochondrial phenotypes in skeletal muscle that predispose towards exercise intolerance, impacting mitochondrial 'quantity' in female patients and mitochondrial 'quality' in male patients. Therapeutic strategies to improve exercise tolerance in HFrEF should consider targeting sex-specific mitochondrial abnormalities in skeletal muscle.
Collapse
Affiliation(s)
- Jack O Garnham
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Talia Caspi
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Moza M Al-Owais
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Max Bullock
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Peter P Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Aaron Koshy
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John Gierula
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Maria F Paton
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Klaus K Witte
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
40
|
Sabbah HN. Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC Basic Transl Sci 2020; 5:88-106. [PMID: 32043022 PMCID: PMC7000886 DOI: 10.1016/j.jacbts.2019.07.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Abstract
The burden of heart failure (HF) in terms of health care expenditures, hospitalizations, and mortality is substantial and growing. The failing heart has been described as "energy-deprived" and mitochondrial dysfunction is a driving force associated with this energy supply-demand imbalance. Existing HF therapies provide symptomatic and longevity benefit by reducing cardiac workload through heart rate reduction and reduction of preload and afterload but do not address the underlying causes of abnormal myocardial energetic nor directly target mitochondrial abnormalities. Numerous studies in animal models of HF as well as myocardial tissue from explanted failed human hearts have shown that the failing heart manifests abnormalities of mitochondrial structure, dynamics, and function that lead to a marked increase in the formation of damaging reactive oxygen species and a marked reduction in on demand adenosine triphosphate synthesis. Correcting mitochondrial dysfunction therefore offers considerable potential as a new therapeutic approach to improve overall cardiac function, quality of life, and survival for patients with HF.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CI (to V), complex I (to V)
- Drp, dynamin-related protein
- ETC, electron transport chain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- LV, left ventricular
- MPTP, mitochondrial permeability transition pore
- Mfn, mitofusin
- OPA, optic atrophy
- PGC, peroxisome proliferator-activated receptor coactivator
- PINK, phosphatase and tensin homolog–inducible kinase
- ROS, reactive oxygen species
- TAZ, tafazzin
- cardiolipin
- heart failure
- mitochondria
- mtDNA, mitochondrial deoxyribonucleic acid
- myocardial energetics
- oxidative phosphorylation
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
41
|
Association between sarcopenia and atherosclerosis in elderly patients with ischemic heart disease. Heart Vessels 2020; 35:769-775. [PMID: 31970510 DOI: 10.1007/s00380-020-01554-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022]
Abstract
Compared to the general population, elderly patients with cardiovascular disease have a higher prevalence of sarcopenia, and it shows an association with increased mortality risk. Although several studies have indicated that atherosclerosis may cause sarcopenia in community dwelling elderly subjects, the association between sarcopenia and atherosclerosis is not clear in patients with ischemic heart disease (IHD). The present study was performed to examine the association between muscle function and atherosclerosis in elderly patients with IHD. We reviewed the findings of 321 consecutive patients ≥ 65 years old with IHD. Three measures of muscle function were examined, i.e., gait speed, quadriceps isometric strength, and handgrip strength, just before hospital discharge. In addition, we measured intima-media thickness (IMT) as a parameter of arteriosclerosis. To investigate the association between sarcopenia and atherosclerosis, patients were divided into Group H (high), Group M (middle), and Group L (low) according to the tertiles of muscle function, and IMT was compared between the three groups. In addition, we considered the association between IMT thickening and muscle function. The mean age of the study population was 74.1 ± 6.0 years and 73.2% of the patients were men. IMT was compared between groups stratified according to gait speed and quadriceps isometric strength, and the results indicated that IMT was significantly lower in Group H than in Groups L and M (p < 0.05). In addition, gait speed and quadriceps isometric strength were associated with IMT thickening (p < 0.05). Parameters reflecting muscle function of the lower limbs are associated with atherosclerosis in patients with IHD.
Collapse
|
42
|
Santa Mina D, Au D, Papadopoulos E, O'Neill M, Diniz C, Dolan L, Lipton J, Chang E, Jones JM. Aerobic capacity attainment and reasons for cardiopulmonary exercise test termination in people with cancer: a descriptive, retrospective analysis from a single laboratory. Support Care Cancer 2020; 28:4285-4294. [PMID: 31900621 DOI: 10.1007/s00520-019-05094-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/20/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE Aerobic exercise prescriptions in clinical populations commonly involve target intensities based on cardiopulmonary exercise tests (CPET). CPETs are often discontinued prior to a patient achieving true maximum oxygen consumption (VO2 max) which can adversely affect exercise dose and efficacy monitoring; however, reasons for early discontinuation are poorly reported. Accordingly, we explored the CPET termination reasons in persons with cancer participating in exercise intervention studies. METHODS This study comprised of an exploratory, descriptive analysis of retrospective CPET data (VO2 and anaerobic threshold) and termination reasons in a convenience sample of people with cancer participating in exercise intervention studies in a single laboratory. CPETs were standardized using the modified Bruce treadmill protocol with expired gas collection and analysis using a metabolic cart. VO2 max was considered "met" when participants demonstrated (a) oxygen consumption plateau or (b) two of the following criteria: rating of perceived exertion ≥ 9/10, respiratory exchange ratio ≥ 1.15, and/or heart rate of 95% of age-predicted maximum. The frequency and distribution of reasons for test termination relative to the number of CPET exposures for the participants were reported. RESULTS Forty-four participants engaged in exercise studies between February 2016 and March 2018 provided data for the analysis. Participants completed up to three CPETs during this period (total of 78 CPETs in the current analysis). Eighty-six percent of all CPETs were terminated prior to achieving VO2 max verification criteria and no tests resulted in an oxygen consumption plateau. For those that did not demonstrate achievement of VO2 max verification criteria, reasons for discontinuation were distributed as follows: equipment discomfort-49%, volitional peak-36%, and physical discomfort-14.9%. For those who met VO2 max criteria, volitional peak was the most common reason for test termination (45.5%), followed by physical discomfort (36.4%), and equipment discomfort (18.2%). CONCLUSIONS In our sample of cancer survivors, VO2 max criteria were infrequently met with equipment discomfort being a primary reason for participant-driven test termination. Protocol and equipment considerations are necessary for interpretation and application of CPET findings in clinical practice.
Collapse
Affiliation(s)
- Daniel Santa Mina
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St, Toronto, Ontario, M5S 2 W6, Canada.,University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darren Au
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St, Toronto, Ontario, M5S 2 W6, Canada. .,University Health Network, Toronto, Ontario, Canada.
| | - Efthymios Papadopoulos
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St, Toronto, Ontario, M5S 2 W6, Canada.,University Health Network, Toronto, Ontario, Canada
| | - Meagan O'Neill
- University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Camilla Diniz
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St, Toronto, Ontario, M5S 2 W6, Canada
| | - Lianne Dolan
- University Health Network, Toronto, Ontario, Canada
| | - Jeffrey Lipton
- University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eugene Chang
- University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer M Jones
- University Health Network, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Kumar AA, Kelly DP, Chirinos JA. Mitochondrial Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation 2019; 139:1435-1450. [PMID: 30856000 DOI: 10.1161/circulationaha.118.036259] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome with an increasingly recognized heterogeneity in pathophysiology. Exercise intolerance is the hallmark of HFpEF and appears to be caused by both cardiac and peripheral abnormalities in the arterial tree and skeletal muscle. Mitochondrial abnormalities can significantly contribute to impaired oxygen utilization and the resulting exercise intolerance in HFpEF. We review key aspects of the complex biology of this organelle, the clinical relevance of mitochondrial function, the methods that are currently available to assess mitochondrial function in humans, and the evidence supporting a role for mitochondrial dysfunction in the pathophysiology of HFpEF. We also discuss the role of mitochondrial function as a therapeutic target, some key considerations for the design of early-phase clinical trials using agents that specifically target mitochondrial function to improve symptoms in patients with HFpEF, and ongoing trials with mitochondrial agents in HFpEF.
Collapse
Affiliation(s)
- Anupam A Kumar
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.)
| | - Daniel P Kelly
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.)
| | - Julio A Chirinos
- From the University of Pennsylvania Perelman School of Medicine, Philadelphia (A.K., D.P.K., J.C.).,the Hospital of the University of Pennsylvania, Philadelphia (J.C.)
| |
Collapse
|
44
|
Tucker WJ, Haykowsky MJ, Seo Y, Stehling E, Forman DE. Impaired Exercise Tolerance in Heart Failure: Role of Skeletal Muscle Morphology and Function. Curr Heart Fail Rep 2019; 15:323-331. [PMID: 30178183 DOI: 10.1007/s11897-018-0408-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW To discuss the impact of deleterious changes in skeletal muscle morphology and function on exercise intolerance in patients with heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), as well as the utility of exercise training and the potential of novel treatment strategies to preserve or improve skeletal muscle morphology and function. RECENT FINDINGS Both HFrEF and HFpEF patients exhibit a reduction in percent of type I (oxidative) muscle fibers and oxidative enzymes coupled with abnormal mitochondrial respiration. These skeletal muscle abnormalities contribute to impaired oxidative metabolism with an earlier shift towards glycolytic metabolism during exercise that is strongly associated with exercise intolerance. In both HFrEF and HFpEF patients, peripheral "non-cardiac" factors are important determinants of the improvement in exercise tolerance following aerobic exercise training. Adjunctive strategies that include nutritional supplementation with amino acids and/or anabolic drugs to stimulate anabolic molecular pathways in skeletal muscle show great promise for improving exercise tolerance and treating heart failure-associated sarcopenia, but these efforts remain early in their evolution, with no immediate clinical applications. There is consistent evidence that heart failure is associated with multiple skeletal muscle abnormalities which impair oxygen uptake and utilization and contribute greatly to exercise intolerance. Exercise training induces favorable adaptations in skeletal muscle morphology and function that contribute to improvements in exercise tolerance in patients with HFrEF. The contribution of skeletal muscle adaptations to improved exercise tolerance following exercise training in HFpEF remains unknown and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Yaewon Seo
- The University of Texas at Arlington, Arlington, TX, USA
| | - Elisa Stehling
- The University of Texas at Arlington, Arlington, TX, USA
| | - Daniel E Forman
- Department of Medicine, Section of Geriatric Cardiology, Veterans Affairs Geriatric Research Education, and Clinical Center, University of Pittsburgh, 3471 Fifth Avenue, Suite 500, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
45
|
Craig JC, Colburn TD, Caldwell JT, Hirai DM, Tabuchi A, Baumfalk DR, Behnke BJ, Ade CJ, Musch TI, Poole DC. Central and peripheral factors mechanistically linked to exercise intolerance in heart failure with reduced ejection fraction. Am J Physiol Heart Circ Physiol 2019; 317:H434-H444. [PMID: 31225988 DOI: 10.1152/ajpheart.00164.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise intolerance is a primary symptom of heart failure (HF); however, the specific contribution of central and peripheral factors to this intolerance is not well described. The hyperbolic relationship between exercise intensity and time to exhaustion (speed-duration relationship) defines exercise tolerance but is underused in HF. We tested the hypotheses that critical speed (CS) would be reduced in HF, resting central functional measurements would correlate with CS, and the greatest HF-induced peripheral dysfunction would occur in more oxidative muscle. Multiple treadmill-constant speed runs to exhaustion were used to quantify CS and D' (distance coverable above CS) in healthy control (Con) and HF rats. Central function was determined via left ventricular (LV) Doppler echocardiography [fractional shortening (FS)] and a micromanometer-tipped catheter [LV end-diastolic pressure (LVEDP)]. Peripheral O2 delivery-to-utilization matching was determined via phosphorescence quenching (interstitial Po2, Po2 is) in the soleus and white gastrocnemius during electrically induced twitch contractions (1 Hz, 8V). CS was lower in HF compared with Con (37 ± 1 vs. 44 ± 1 m/min, P < 0.001), but D' was not different (77 ± 8 vs. 69 ± 13 m, P = 0.6). HF reduced FS (23 ± 2 vs. 47 ± 2%, P < 0.001) and increased LVEDP (15 ± 1 vs. 7 ± 1 mmHg, P < 0.001). CS was related to FS (r = 0.72, P = 0.045) and LVEDP (r = -0.75, P = 0.02) only in HF. HF reduced soleus Po2 is at rest and during contractions (both P < 0.01) but had no effect on white gastrocnemius Po2 is (P > 0.05). We show in HF rats that decrements in central cardiac function relate directly with impaired exercise tolerance (i.e., CS) and that this compromised exercise tolerance is likely due to reduced perfusive and diffusive O2 delivery to oxidative muscles.NEW & NOTEWORTHY We show that critical speed (CS), which defines the upper boundary of sustainable activity, can be resolved in heart failure (HF) animals and is diminished compared with controls. Central cardiac function is strongly related with CS in the HF animals, but not controls. Skeletal muscle O2 delivery-to-utilization dysfunction is evident in the more oxidative, but not glycolytic, muscles of HF rats and is explained, in part, by reduced nitric oxide bioavailability.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jacob T Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Daniel M Hirai
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Ayaka Tabuchi
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Dryden R Baumfalk
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Bradley J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
46
|
Sabbah HN, Gupta RC, Singh-Gupta V, Zhang K. Effects of elamipretide on skeletal muscle in dogs with experimentally induced heart failure. ESC Heart Fail 2019; 6:328-335. [PMID: 30688415 PMCID: PMC6437430 DOI: 10.1002/ehf2.12408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/12/2018] [Indexed: 12/04/2022] Open
Abstract
AIMS Elamipretide (ELAM), an aromatic-cationic tetrapeptide, interacts with cardiolipin and normalizes dysfunctional mitochondria of cardiomyocytes. This study examined the effects of ELAM on skeletal muscle mitochondria function in dogs with chronic heart failure (HF). METHODS AND RESULTS Studies were performed in skeletal muscle biopsy specimens obtained from normal dogs (n = 7) and dogs with chronic intracoronary microembolization-induced HF (n = 14) treated with subcutaneous ELAM 0.5 mg/kg (HF + ELAM, n = 7) or vehicle (normal saline control, HF-CON, n = 7). After 3 months of therapy, triceps skeletal muscle samples were obtained from all dogs, and the proportion of type 1 and type 2 fibres was assessed. Mitochondria isolated from myofibrils of the vastus lateralis skeletal muscle exposed in vitro to ELAM for 1 h were used to assess mitochondrial function. The proportion of skeletal muscle type 1 fibres was lower in HF-CON dogs compared with normal dogs (23 ± 4 vs. 32 ± 5%, P < 0.05). Treatment with ELAM restored a near-normal fibre-type composition (31 ± 7%, P < 0.05 vs. HF-CON). Skeletal muscle mitochondria showed significantly lower levels of adenosine diphosphate-dependent mitochondrial respiration (100 ± 9 vs. 164 ± 15 natom O/min/mg protein, P < 0.05), mitochondrial membrane potential (0.17 ± 0.03 vs. 0.53 ± 0.03 red/green fluorescence ratio, P < 0.05), mitochondrial permeability transition pore (38 ± 3 vs. 62 ± 2 relative light units, P < 0.05), maximum rate of adenosine triphosphate synthesis (3284 ± 418 vs. 8835 ± 423 RLU/μg protein, P < 0.05), and cytochrome c oxidase activity (1390 ± 108 vs. 2459 ± 210 natom O/min/mg protein, P < 0.05) compared with normal dogs. Exposure of skeletal muscle myofibrillar mitochondria from HF dogs to ELAM showed a dose-dependent improvement/normalization of all measures of mitochondrial function. In mitochondria from skeletal muscle of HF dogs exposed to 0.10 μM ELAM, adenosine diphosphate-dependent mitochondrial respiration increased to 183 ± 18 natom O/min/mg protein, membrane potential increased to 0.30 ± 0.03 red/green fluorescence ratio, mitochondrial permeability transition pore increased to 54 ± 4 RLU, maximum rate of adenosine triphosphate synthesis increased to 4423 ± 414, and cytochrome c oxidase activity increased to 2033 ± 191 natom O/min/mg protein. Exposure of skeletal muscle myofibrillar mitochondria from normal dogs to ELAM had no effect on mitochondrial function parameters. CONCLUSIONS The results indicate that ELAM, previously shown to positively influence mitochondrial function of the failing heart, can also positively impact mitochondrial function of skeletal muscle and potentially help restore skeletal muscle function and improve exercise tolerance.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Ramesh C Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Vinita Singh-Gupta
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | - Kefei Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| |
Collapse
|
47
|
Increased Brain-Derived Neurotrophic Factor in Lumbar Dorsal Root Ganglia Contributes to the Enhanced Exercise Pressor Reflex in Heart Failure. Int J Mol Sci 2019; 20:ijms20061480. [PMID: 30909643 PMCID: PMC6471760 DOI: 10.3390/ijms20061480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
An exaggerated exercise pressor reflex (EPR) is associated with excessive sympatho-excitation and exercise intolerance in the chronic heart failure (CHF) state. We hypothesized that brain-derived neurotrophic factor (BDNF) causes the exaggerated EPR via sensitizing muscle mechanosensitive afferents in CHF. Increased BDNF expression was observed in lumbar dorsal root ganglia (DRGs) from CHF rats compared to sham rats. Immunofluorescence data showed a greater increase in the number of BDNF-positive neurons in medium and large-sized DRG subpopulations from CHF rats. Patch clamp data showed that incubation with BDNF for 4–6 h, significantly decreased the current threshold-inducing action potential (AP), threshold potential and the number of APs during current injection in Dil-labeled isolectin B4 (IB4)-negative medium-sized DRG neurons (mainly mechano-sensitive) from sham rats. Compared to sham rats, CHF rats exhibited an increased number of APs during current injection in the same DRG subpopulation, which was significantly attenuated by 4-h incubation with anti-BDNF. Finally, chronic epidural delivery of anti-BDNF attenuated the exaggerated pressor response to either static contraction or passive stretch in CHF rats whereas this intervention had no effect on the pressor response to hindlimb arterial injection of capsaicin. These data suggest that increased BDNF in lumbar DRGs contributes to the exaggerated EPR in CHF.
Collapse
|
48
|
Craig JC, Colburn TD, Hirai DM, Musch TI, Poole DC. Sexual dimorphism in the control of skeletal muscle interstitial Po 2 of heart failure rats: effects of dietary nitrate supplementation. J Appl Physiol (1985) 2019; 126:1184-1192. [PMID: 30844332 DOI: 10.1152/japplphysiol.01004.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sex differences in the mechanisms underlying cardiovascular pathophysiology of O2 transport in heart failure (HF) remain to be explored. In HF, nitric oxide (NO) bioavailability is reduced and contributes to deficits in O2 delivery-to-utilization matching. Females may rely more on NO for cardiovascular control and as such experience greater decrements in HF. We tested the hypotheses that moderate HF induced by myocardial infarction would attenuate the skeletal muscle interstitial Po2 response to contractions (Po2is; determined by O2 delivery-to-utilization matching) compared with healthy controls and females would express greater dysfunction than male counterparts. Furthermore, we hypothesized that 5 days of dietary nitrate supplementation (Nitrate; 1 mmol·kg-1·day-1) would raise Po2is in HF rats. Forty-two Sprague-Dawley rats were randomly assigned to healthy, HF, or HF + Nitrate groups (each n = 14; 7 female/7 male). Spinotrapezius Po2is was measured via phosphorescence quenching during electrically induced twitch contractions (180 s; 1 Hz). HF reduced resting Po2is for both sexes compared with healthy controls (P < 0.01), and females were lower than males (14 ± 1 vs. 17 ± 2 mmHg) (P < 0.05). In HF both sexes expressed reduced Po2is amplitudes following the onset of muscle contractions compared with healthy controls (female: -41 ± 7%, male: -26 ± 12%) (P < 0.01). In HF rats, Nitrate elevated resting Po2is to values not different from healthy rats and removed the sex difference. Female HF + Nitrate rats expressed greater resting Po2is and amplitudes compared with female HF (P < 0.05). In this model of moderate HF, O2 delivery-to-utilization matching in the interstitial space is diminished in a sex-specific manner and dietary nitrate supplementation may serve to offset this reduction in HF rats with greater effects in females. NEW & NOTEWORTHY Interstitial Po2 (Po2is; indicative of O2 delivery-to-utilization matching) determines, in part, O2 flux into skeletal muscle. We show that heart failure (HF) reduces Po2is at rest and during skeletal muscle contractions in rats and this negative effect is amplified for females. However, elevating NO bioavailability with dietary nitrate supplementation increases resting Po2is and alters the dynamic response with greater efficacy in female HF rats, particularly at rest and following the onset of muscle contractions.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Daniel M Hirai
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
49
|
Keller-Ross ML, Larson M, Johnson BD. Skeletal Muscle Fatigability in Heart Failure. Front Physiol 2019; 10:129. [PMID: 30846944 PMCID: PMC6393404 DOI: 10.3389/fphys.2019.00129] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that heart failure (HF) patients experience skeletal muscle fatigability in the lower extremity during single-limb tasks. The contribution of skeletal muscle fatigability to symptoms of exercise intolerance (perceived fatigue and dyspnea) is relatively unclear. Symptomatic or ‘perceived’ fatigue is defined by the sensations of exhaustion or tiredness that patients experience either at rest or while performing a motor task. Although factors that contribute to symptoms of fatigue in patients with HF are multifactorial; the skeletal muscle likely plays a major role. Skeletal muscle fatigability, as opposed to symptomatic fatigue, is an objective measure of a reduction in muscle force or power or reduced ability of the muscles to perform over time. Indeed, evidence suggests that patients with HF experience greater skeletal muscle fatigability which may contribute to a diminution in motor performance and the overall symptomatology that is hallmark of exercise intolerance in HF. This review will discuss (1) skeletal muscle fatigability in patients with HF, (2) the mechanisms contributing to locomotor skeletal muscle fatigability in HF and (3) the relationship of fatigability to symptoms of perceived fatigue and exercise intolerance in HF patients. Evidence suggests that cardiac dysfunction alone does not contribute to exercise intolerance. Therefore, mechanisms of skeletal muscle fatigability and their contribution to symptoms of fatigue and exercise intolerance, is an increasingly important consideration as we develop rehabilitative strategies for improving motor performance and functional capacity in patients with HF.
Collapse
Affiliation(s)
- Manda L Keller-Ross
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Mia Larson
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic and Foundation, Rochester, MN, United States
| |
Collapse
|
50
|
Skeletal Muscle Resident Progenitor Cells Coexpress Mesenchymal and Myogenic Markers and Are Not Affected by Chronic Heart Failure-Induced Dysregulations. Stem Cells Int 2019; 2019:5690345. [PMID: 30719048 PMCID: PMC6335669 DOI: 10.1155/2019/5690345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose In heart failure (HF), metabolic alterations induce skeletal muscle wasting and decrease of exercise capacity and quality of life. The activation of skeletal muscle regeneration potential is a prospective strategy to reduce muscle wasting; therefore, the aim of this project was to determine if functional properties of skeletal muscle mesenchymal progenitor cells (SM-MPC) were affected by HF-induced functional and metabolic dysregulations. Methods Gastrocnemius muscle biopsy samples were obtained from 3 healthy donors (HD) and 12 HF patients to purify mRNA for further analysis and to isolate SM-MPC. Cells were expanded in vitro and characterized by immunocytochemistry and flow cytometry for expression of mesenchymal (CD105/CD73/CD166/CD146/CD140b/CD140a/VIM) and myogenic (Myf5/CD56/MyoG) markers. Cells were induced to differentiate and were then analyzed by immunostaining and Q-PCR to verify the efficiency of differentiation. The expression of genes that control muscle metabolism and development was compared for HD/HF patients in both muscle biopsy and in vitro-differentiated myotubes. Results The upregulation of MYH3/MYH8/Myf6 detected in HF skeletal muscle along with metabolic alterations indicates chronic pathological activation of the muscle developmental program. SM-MPC isolated from HD and HF patients represented a mixed population that coexpresses both mesenchymal and myogenic markers and differs from AD-MMSC, BM-MMSC, and IMF-MSC. The functional properties of SM-MPC did not differ between HD and HF patients. Conclusion In the present work, we demonstrate that the metabolic and functional alterations we detected in skeletal muscle from HF patients do not dramatically affect the functional properties of purified and expanded in vitro SM-MPC. We speculate that skeletal muscle progenitor cells are protected by their niche and under beneficial circumstances could contribute to muscle restoration and prevention and treatment of muscle wasting. The potential new therapeutic strategies of HF-induced skeletal muscle wasting should be targeted on both activation of SM-MPC regeneration potential and improvement of skeletal muscle metabolic status to provide a favorable environment for SM-MPC-driven muscle restoration.
Collapse
|