1
|
Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, Zeng J, Mei J, Wang PY. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 2023; 11:1110765. [PMID: 36911202 PMCID: PMC9995824 DOI: 10.3389/fbioe.2023.1110765] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Janus kinase/signal transduction and transcription activation (JAK/STAT) pathways were originally thought to be intracellular signaling pathways that mediate cytokine signals in mammals. Existing studies show that the JAK/STAT pathway regulates the downstream signaling of numerous membrane proteins such as such as G-protein-associated receptors, integrins and so on. Mounting evidence shows that the JAK/STAT pathways play an important role in human disease pathology and pharmacological mechanism. The JAK/STAT pathways are related to aspects of all aspects of the immune system function, such as fighting infection, maintaining immune tolerance, strengthening barrier function, and cancer prevention, which are all important factors involved in immune response. In addition, the JAK/STAT pathways play an important role in extracellular mechanistic signaling and might be an important mediator of mechanistic signals that influence disease progression, immune environment. Therefore, it is important to understand the mechanism of the JAK/STAT pathways, which provides ideas for us to design more drugs targeting diseases based on the JAK/STAT pathway. In this review, we discuss the role of the JAK/STAT pathway in mechanistic signaling, disease progression, immune environment, and therapeutic targets.
Collapse
Affiliation(s)
- Qian Hu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Qihui Bian
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Dingchao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Leiyun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hsuan-Shun Huang
- Department of Research, Center for Prevention and Therapy of Gynecological Cancers, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Jun Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Mei
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Dong S, Zhen F, Xu H, Li Q, Wang J. Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:152. [PMID: 33569454 PMCID: PMC7867898 DOI: 10.21037/atm-20-8040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The present study aimed to investigate the protective role of leukemia inhibitory factor (LIF) against oxidative damage in photoreceptor cone cells. Methods In vivo, dark-adapted mice were injected with LIF or phosphate-buffered saline (PBS) intravitreously prior to being exposed to 5,000 lux bright light to determine the protective effect of LIF against light damage in cone cells. Oxidative damage to cone cells was analyzed using electroretinograms, immunostaining, Western blotting and reverse transcription quantitative polymerase chain reaction (RT-qPCR). In vitro, 661W cells were pretreated with 5 ng/mL of LIF with or without 50 µM of signal transducer and activator of transcription 3 (STAT3) inhibitor S3I201 for 1 h prior to treatment with 1 mM H2O2; cell survival, apoptosis, the oxidative stress index, and the activation of STAT3, extracellular signal-regulated kinase (ERK1/2), and AKT were subsequently determined. Results In vivo, light induction damaged the function and morphology of cone cells, and LIF was observed to protect cone cells from this light damage. Moreover, the activation of the Janus tyrosine kinase (JAK)/STAT3 signaling pathway and the subsequent changes in apoptosis and proliferation-related genes were found to be involved in the protective effect of LIF against light-induced retinal damage. In the H2O2-induced 661W cell model, H2O2 increased cellular apoptosis rates, the expression levels of Bcl-2–associated X-protein (BAX) and cleaved caspase 3, reactive oxygen species (ROS) production, and malondialdehyde content, while decreasing the cell viability, and Bcl-2, superoxide dismutase, catalase, and glutathione peroxidase activity. LIF was observed to block these events; however, the administration of the STAT3 inhibitor S3I201 reversed the beneficial effects of LIF on H2O2-triggered apoptosis and ROS production. Conclusions In conclusion, the present study suggested that LIF may relieve oxidative damage in cone cells through suppressing apoptosis and oxidative stress by targeting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Fangyuan Zhen
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Huizhuo Xu
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Jiajia Wang
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
3
|
Abstract
The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease. In this article, we give an overview of the importance of skeletal muscle in metabolism, describing its role in glucose uptake and the diseases that are associated with skeletal muscle metabolic dysregulation. We focus on the role of skeletal muscle in peripheral insulin resistance and the potential for skeletal muscle-targeted therapeutics to combat insulin resistance and diabetes, as well as other metabolic diseases like aging and obesity. In particular, we outline the possibilities and pitfalls of the quest for exercise mimetics, which are intended to target the molecular mechanisms underlying the beneficial effects of exercise on metabolic disease. We also provide a description of the molecular mechanisms that regulate skeletal muscle glucose uptake, including a focus on the SNARE proteins, which are essential regulators of glucose transport into the skeletal muscle. © 2020 American Physiological Society. Compr Physiol 10:785-809, 2020.
Collapse
Affiliation(s)
- Karla E. Merz
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
4
|
Cai K, Chen H. MiR-625-5p Inhibits Cardiac Hypertrophy Through Targeting STAT3 and CaMKII. HUM GENE THER CL DEV 2020; 30:182-191. [PMID: 31617427 DOI: 10.1089/humc.2019.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is an adaptive cardiac response to heart stress. Sustained cardiac hypertrophy indicates higher risk of heart failure. Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been proved to be a key regulator of cardiac hypertrophy, but its mechanism remains largely unknown. Our study proposed to explore the regulatory mechanism of CaMKII in cardiac hypertrophy. We validated that CaMKII was upregulated in cardiac hypertrophy models in vivo and in vitro and that knockdown of CaMKII attenuated Ang II-induced cardiac hypertrophy in vitro. Furthermore, we demonstrated that signal transducer and activator of transcription 3 (STAT3) was highly expressed in cardiac hypertrophy and could stimulate the transactivation of CaMKII. Moreover, we predicted through TargetScan and confirmed that miR-625-5p targeted and inhibited STAT3 so as to reduce the expression of CaMKII. Interestingly, we also found that miR-625-5p directly targeted CaMKII and inhibited its expression. Rescue assays suggested that miR-625-5p attenuated Ang II-induced cardiac hypertrophy through CaMKII/STAT3. Consequently, this study elucidated that miR-625-5p inhibited cardiac hypertrophy through targeting STAT3 and CaMKII, suggesting miR-625-5p as a novel negative regulator of cardiac hypertrophy. Graphical abstract [Figure: see text].
Collapse
Affiliation(s)
- Kefeng Cai
- Cardiovascular Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Huiqin Chen
- Department of Basic Medical, Quanzhou Medical College, Quanzhou City, China
| |
Collapse
|
5
|
Kumar S, Wang G, Zheng N, Cheng W, Ouyang K, Lin H, Liao Y, Liu J. HIMF (Hypoxia-Induced Mitogenic Factor)-IL (Interleukin)-6 Signaling Mediates Cardiomyocyte-Fibroblast Crosstalk to Promote Cardiac Hypertrophy and Fibrosis. Hypertension 2019; 73:1058-1070. [PMID: 30827145 DOI: 10.1161/hypertensionaha.118.12267] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIMF (hypoxia-induced mitogenic factor) is a secreted proinflammatory cytokine with a critical role in cardiac hypertrophy development. Loss of HIMF attenuates transverse aortic constriction-induced cardiac hypertrophy and fibrosis, but the underlying mechanisms are unknown. We show that IL (interleukin)-6 production increases following transverse aortic constriction in wild-type mice; this effect is inhibited in HIMF gene knockout ( Himf-/-) mice. IL-6 production also increases in cultured cardiac myocytes overexpressing HIMF and neutralizing IL-6 with an anti-IL-6 antibody prohibits HIMF-induced cardiomyocyte hypertrophy. HIMF expression in cardiac fibroblasts cannot be stimulated by transverse aortic constriction or exposure to prohypertrophic factors, including phenylephrine, Ang II (angiotensin II), TGF (transform growth factor)-β, and hypoxia. However, conditioned medium from cardiomyocytes overexpressing HIMF can increase IL-6 production, and cardiac fibroblast proliferation, migration, and myofibroblast differentiation to a similar level as exposure to exogenous rHIMF (recombinant HIMF). Again, neutralizing IL-6 prevented cardiac fibroblasts activation. Finally, the MAPK (mitogen-activated protein kinase) and CaMKII (Ca2+/calmodulin-dependent protein kinase II)-STAT3 (signal transducers and activators of transcription 3) pathways are activated in HIMF-overexpressing cardiomyocytes and rHIMF-stimulated cardiac fibroblasts; this effect can be inhibited on neutralizing IL-6. These data support that HIMF induces cardiac fibrosis via a cardiomyocyte-to-fibroblast paracrine effect. IL-6 is a downstream signal of HIMF and has a central role in cardiomyocyte hypertrophy and myocardial fibrosis that is mediated by activating the MAPK and CaMKII-STAT3 pathways.
Collapse
Affiliation(s)
- Santosh Kumar
- From the Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology (S.K., G.W., W.C., J.L.), Shenzhen University Health Science Center, China
| | - Gang Wang
- From the Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology (S.K., G.W., W.C., J.L.), Shenzhen University Health Science Center, China
| | - Na Zheng
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathology (N.Z.), Shenzhen University Health Science Center, China
| | - Wanwen Cheng
- From the Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology (S.K., G.W., W.C., J.L.), Shenzhen University Health Science Center, China
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China (K.O.)
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.L.)
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China (H.L., Y.L.)
| | - Jie Liu
- From the Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology (S.K., G.W., W.C., J.L.), Shenzhen University Health Science Center, China
| |
Collapse
|
6
|
Hu YS, Han X, Liu XH. STAT3: A Potential Drug Target for Tumor and Inflammation. Curr Top Med Chem 2019; 19:1305-1317. [PMID: 31218960 DOI: 10.2174/1568026619666190620145052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
STAT (Signal Transducers and Activators of Transcription) is a cellular signal transcription factor involved in the regulation of many cellular activities, such as cell differentiation, proliferation, angiogenesis in normal cells. During the study of the STAT family, STAT3 was found to be involved in many diseases, such as high expression and sustained activation of STAT3 in tumor cells, promoting tumor growth and proliferation. In the study of inflammation, it was found that it plays an important role in the anti-inflammatory and repairing of damage tissues. Because of the important role of STAT3, a large number of studies have been obtained. At the same time, after more than 20 years of development, STAT3 has also been used as a target for drug therapy. And the discovery of small molecule inhibitors also promoted the study of STAT3. Since STAT3 has been extensively studied in inflammation and tumor regulation, this review presents the current state of research on STAT3.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xu Han
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
7
|
Real SAS, Parveen F, Rehman AU, Shaik R, Deo SVS, Husain SA. Mutation, methylation and expression analysis of LIFR gene in Indian breast cancer patients. Mutat Res 2019; 816-818:111677. [PMID: 31557600 DOI: 10.1016/j.mrfmmm.2019.111677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 08/02/2019] [Indexed: 01/19/2023]
Abstract
LIFR functions as a tumor suppressor and metastatic suppressor of breast cancer. The present study investigates the status of LIFR gene in Indian breast cancer patients. A total of 137 breast cancer tissue and 137 adjacent normal tissue which served as controls were analyzed for mutation by automated DNA sequencing, methylation through methylation-specific polymerase chain reaction and its corresponding expression at mRNA and protein level using real-time quantitative polymerase chain reaction and immunohistochemistry respectively in Indian breast cancer patients. All the molecular findings were statistically correlated with clinopathological parameters of the patients to identify its association. LIFR mRNA expression was found to be 2.534 ± 3.52 fold downregulated with subsequent absence of protein in 67.15% cases (92/137). The absence of LIFR protein coincided with 80.95% (85/105) methylated cases thereby showing a very strong correlation among the LIFR promoter methylation and LIFR protein expression (p = 0.0001). We also observed G2968C nucleotide change in 6/137 cases of exon 20 of LIFR gene resulting in Glu990Gln mutation. Correlation of LIFR promoter methylation with geographic location and age at menopause and LIFR mutation with age at menarche, age at first live birth, molecular subtypes of breast cancer, and lymph node status remained significant even after bonferroni correction (p ≤ 0.0027). All these data suggests the relevance of these associations in relation to Indian breast cancer patients. The loss of LIFR protein was frequently found in Indian breast cancer patients, and aberrant promoter methylation showed a significant correlation with its downregulation.
Collapse
Affiliation(s)
| | - Farah Parveen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Asad Ur Rehman
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
8
|
Scutellarin protects human cardiac microvascular endothelial cells with hypoxia-reoxygenation injury via JAK2/STAT3 signal pathway. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Dewachter L, Dewachter C. Inflammation in Right Ventricular Failure: Does It Matter? Front Physiol 2018; 9:1056. [PMID: 30177883 PMCID: PMC6109764 DOI: 10.3389/fphys.2018.01056] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 01/22/2023] Open
Abstract
Right ventricular (RV) failure is a common consequence of acute and chronic RV overload of pressure, such as after pulmonary embolism and pulmonary hypertension. It has been recently realized that symptomatology and survival of patients with pulmonary hypertension are essentially determined by RV function adaptation to increased afterload. Therefore, improvement of RV function and reversal of RV failure are treatment goals. Currently, the pathophysiology and the pathobiology underlying RV failure remain largely unknown. A better understanding of the pathophysiological processes involved in RV failure is needed, as there is no proven treatment for this disease at the moment. The present review aims to summarize the current understanding of the pathogenesis of RV failure, focusing on inflammation. We attempt to formally emphasize the importance of inflammation and associated representative inflammatory molecules and cells in the primum movens and development of RV failure in humans and in experimental models. We present inflammatory biomarkers and immune mediators involved in RV failure. We focus on inflammatory mediators and cells which seem to correlate with the deterioration of RV function and also explain how all these inflammatory mediators and cells might impact RV function adaptation to increased afterload. Finally, we also discuss the evidence on potential beneficial effects of targeted anti-inflammatory agents in the setting of acute and chronic RV failure.
Collapse
Affiliation(s)
- Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Cardiology, Erasmus Academic Hospital, Brussels, Belgium
| |
Collapse
|
10
|
Estrada CC, Paladugu P, Guo Y, Pace J, Revelo MP, Salant DJ, Shankland SJ, D'Agati VD, Mehrotra A, Cardona S, Bialkowska AB, Yang VW, He JC, Mallipattu SK. Krüppel-like factor 4 is a negative regulator of STAT3-induced glomerular epithelial cell proliferation. JCI Insight 2018; 3:98214. [PMID: 29925693 PMCID: PMC6124441 DOI: 10.1172/jci.insight.98214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Pathologic glomerular epithelial cell (GEC) hyperplasia is characteristic of both rapidly progressive glomerulonephritis (RPGN) and subtypes of focal segmental glomerulosclerosis (FSGS). Although initial podocyte injury resulting in activation of STAT3 signals GEC proliferation in both diseases, mechanisms regulating this are unknown. Here, we show that the loss of Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, enhances GEC proliferation in both RPGN and FSGS due to dysregulated STAT3 signaling. We observed that podocyte-specific knockdown of Klf4 (C57BL/6J) increased STAT3 signaling and exacerbated crescent formation after nephrotoxic serum treatment. Interestingly, podocyte-specific knockdown of Klf4 in the FVB/N background alone was sufficient to activate STAT3 signaling, resulting in FSGS with extracapillary proliferation, as well as renal failure and reduced survival. In cultured podocytes, loss of KLF4 resulted in STAT3 activation and cell-cycle reentry, leading to mitotic catastrophe. This triggered IL-6 release into the supernatant, which activated STAT3 signaling in parietal epithelial cells. Conversely, either restoration of KLF4 expression or inhibition of STAT3 signaling improved survival in KLF4-knockdown podocytes. Finally, human kidney biopsy specimens with RPGN exhibited reduced KLF4 expression with a concomitant increase in phospho-STAT3 expression as compared with controls. Collectively, these results suggest the essential role of KLF4/STAT3 signaling in podocyte injury and its regulation of aberrant GEC proliferation.
Collapse
Affiliation(s)
- Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Praharshasai Paladugu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jesse Pace
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - David J Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vivette D D'Agati
- Department of Pathology, Columbia University, New York, New York, USA
| | - Anita Mehrotra
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J. Peters VA Medical Center, New York, New York, USA
| | - Stephanie Cardona
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J. Peters VA Medical Center, New York, New York, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA.,Renal Section, Northport VA Medical Center, Northport, New York, USA
| |
Collapse
|
11
|
Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett 2018; 23:12. [PMID: 29588647 PMCID: PMC5863838 DOI: 10.1186/s11658-018-0078-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor with many important functions in the biology of normal and transformed cells. Its regulation is highly complex as it is involved in signaling pathways in many different cell types and under a wide variety of conditions. Besides other functions, STAT3 is an important regulator of normal stem cells and cancer stem cells. p63 which is a member of the p53 protein family is also involved in these functions and is both physically and functionally connected with STAT3. This review summarizes STAT3 function and regulation, its role in stem cell and cancer stem cell properties and highlights recent reports about its relationship to p63.
Collapse
Affiliation(s)
- Michaela Galoczova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Philip Coates
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
12
|
Wang XJ, Qiao Y, Xiao MM, Wang L, Chen J, Lv W, Xu L, Li Y, Wang Y, Tan MD, Huang C, Li J, Zhao TC, Hou Z, Jing N, Chin YE. Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self-Renewal Growth Signaling in Mouse Embryonic Stem Cells. Cell Rep 2017; 18:933-946. [PMID: 28122243 DOI: 10.1016/j.celrep.2016.12.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/25/2016] [Accepted: 12/22/2016] [Indexed: 11/27/2022] Open
Abstract
LIF promotes self-renewal of mouse embryonic stem cells (mESCs), and in its absence, the cells differentiate. LIF binds to the LIF receptor (LIFR) and activates the JAK-STAT3 pathway, but it remains unknown how the receptor complex triggers differentiation or self-renewal. Here, we report that the LIFR cytoplasmic domain contains a self-renewal domain within the juxtamembrane region and a differentiation domain within the C-terminal region. The differentiation domain contains four SPXX repeats that are phosphorylated by MAPK to restrict STAT3 activation; the self-renewal domain is characterized by a 3K motif that is acetylated by p300. In mESCs, acetyl-LIFR undergoes homodimerization, leading to STAT3 hypo- or hyper-activation depending on the presence or absence of gp130. LIFR-activated STAT3 restricts differentiation via cytokine induction. Thus, LIFR acetylation and serine phosphorylation differentially promote stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Xiong-Jun Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China; Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunbo Qiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; iHuman Institute, Shanghai Tech University, 99 Haike Road, Shanghai 201210, China
| | - Minzhe M Xiao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Lingbo Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jun Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenjian Lv
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Li Xu
- Department of Signal Transduction, School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yan Li
- Department of Signal Transduction, School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yumei Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Ming-Dian Tan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Chao Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
13
|
Rocha-Resende C, Guedes de Jesus IC, Roman-Campos D, Miranda AS, Alves F, Resende RR, Dos Santos Cruz J, Machado FS, Guatimosim S. Absence of suppressor of cytokine signaling 2 turns cardiomyocytes unresponsive to LIF-dependent increases in Ca 2+ levels. Am J Physiol Cell Physiol 2017; 312:C478-C486. [PMID: 28122728 DOI: 10.1152/ajpcell.00004.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/12/2023]
Abstract
Little is known regarding the role of suppressor of cytokine signaling (SOCS) in the control of cytokine signaling in cardiomyocytes. We investigated the consequences of SOCS2 ablation for leukemia inhibitory factor (LIF)-induced enhancement of intracellular Ca2+ ([Ca2+]i) transient by performing experiments with cardiomyocytes from SOCS2-knockout (ko) mice. Similar levels of SOCS3 transcripts were seen in cardiomyocytes from wild-type and SOCS2-ko mice, while SOCS1 mRNA was reduced in SOCS2-ko. Immunoprecipitation experiments showed increased SOCS3 association with gp130 receptor in SOCS2-ko myocytes. Measurements of Ca2+ in wild-type myocytes exposed to LIF showed a significant increase in the magnitude of the Ca2+ transient. This change was absent in LIF-treated SOCS2-ko cells. LIF activation of ERK and STAT3 was observed in both wild-type and SOCS2-ko cells, indicating that in SOCS2-ko, LIF receptors were functional, despite the lack of effect in the Ca2+ transient. In wild-type cells, LIF-induced increase in [Ca2+]i and phospholamban Thr17 [PLN(Thr17)] phosphorylation was inhibited by KN-93, indicating a role for CaMKII in LIF-induced Ca2+ raise. LIF-induced phosphorylation of PLN(Thr17) was abrogated in SOCS2-ko myocytes. In wild-type cardiomyocytes, LIF treatment increased L-type Ca2+ current (ICa,L), a key activator of CaMKII in response to LIF. Conversely, SOCS2-ko myocytes failed to activate ICa,L in response to LIF, providing a rationale for the lack of LIF effect on Ca2+ transient. Our data show that absence of SOCS2 turns cardiomyocytes unresponsive to LIF-induced [Ca2+] raise, indicating that endogenous levels of SOCS2 are crucial for full activation of LIF signaling in the heart.
Collapse
Affiliation(s)
- Cibele Rocha-Resende
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Itamar Couto Guedes de Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danilo Roman-Campos
- Department of Biophysics, Paulista School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Artur S Miranda
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; and
| | - Fabiana Alves
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; and
| | - Jader Dos Santos Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; and
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; and
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
| |
Collapse
|
14
|
Enomoto D, Obana M, Miyawaki A, Maeda M, Nakayama H, Fujio Y. Cardiac-specific ablation of the STAT3 gene in the subacute phase of myocardial infarction exacerbated cardiac remodeling. Am J Physiol Heart Circ Physiol 2015; 309:H471-80. [PMID: 26055795 DOI: 10.1152/ajpheart.00730.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/29/2015] [Indexed: 11/22/2022]
Abstract
STAT3 is a cardioprotective molecule against acute myocardial injury; however, recent studies have suggested that chronic STAT3 activation in genetically modified mice was detrimental after myocardial infarction (MI). In the present study, we assessed the biological significance of STAT3 activity in subacute MI using tamoxifen (TM)-inducible cardiac-specific STAT3 knockout (STAT3 iCKO) mice. After coronary ligation, STAT3 was rapidly activated in hearts, and its activation was sustained to the subacute phase. To make clear the pathophysiological roles of STAT3 activation specifically in subacute MI, MI was generated in STAT3 iCKO mice followed by TM treatment for 14 consecutive days beginning from day 11 after MI, which ablated the STAT3 gene in the subacute phase. Intriguingly, mortality was increased by TM treatment in STAT3 iCKO mice, accompanied by an increased heart weight-to-body weight ratio. Masson's trichrome staining demonstrated that cardiac fibrosis was dramatically exacerbated in STAT3 iCKO mice 24 days after MI (fibrotic circumference: 58.3 ± 6.7% in iCKO mice and 40.8 ± 9.3% in control mice), concomitant with increased expressions of fibrosis-related gene transcripts, including matrix metalloproteinase 9, procollagen 1, and procollagen 3. Echocardiography clarified that cardiac function was deteriorated in STAT3 iCKO mice (fractional shortening: 20.6 ± 4.1% in iCKO mice and 29.1 ± 6.0% in control mice). Dihydroethidium fluorescence analysis revealed that superoxide production was increased in STAT3 iCKO mice. Moreover, immunohistochemical analyses revealed that capillary density was decreased in STAT3 iCKO mice. Finally, STAT3 deletion in subacute MI evoked severe cardiac hypertrophy in the border zone. In conclusion, the intrinsic activity of STAT3 in the myocardium confers the resistance to cardiac remodeling in subacute MI.
Collapse
Affiliation(s)
- Daichi Enomoto
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masanori Obana
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Akimitsu Miyawaki
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Makiko Maeda
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Nakayama
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
15
|
Matsuo R, Morihara H, Mohri T, Murasawa S, Takewaki K, Nakayama H, Maeda M, Fujio Y. The inhibition of N-glycosylation of glycoprotein 130 molecule abolishes STAT3 activation by IL-6 family cytokines in cultured cardiac myocytes. PLoS One 2014; 9:e111097. [PMID: 25340554 PMCID: PMC4207791 DOI: 10.1371/journal.pone.0111097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
Interleukin-6 (IL-6) family cytokines play important roles in cardioprotection against pathological stresses. IL-6 cytokines bind to their specific receptors and activate glycoprotein 130 (gp130), a common receptor, followed by further activation of STAT3 and extracellular signal-regulated kinase (ERK)1/2 through janus kinases (JAKs); however the importance of glycosylation of gp130 remains to be elucidated in cardiac myocytes. In this study, we examined the biological significance of gp130 glycosylation using tunicamycin (Tm), an inhibitor of enzyme involved in N-linked glycosylation. In cardiomyocytes, the treatment with Tm completely replaced the glycosylated form of gp130 with its unglycosylated one. Tm treatment inhibited leukemia inhibitory factor (LIF)-mediated activation of STAT3 and ERK1/2. Similarly, IL-11 failed to activate STAT3 and ERK1/2 in the presence of Tm. Interestingly, Tm inhibited the activation of JAKs 1 and 2, without influencing the expression of suppressor of cytokine signalings (SOCSs) and protein-tyrosine phosphatase 1B (PTP1B), which are endogenous inhibitors of JAKs. To exclude the possibility that Tm blocks LIF and IL-11 signals by inhibiting the glycosylation of their specific receptors, we investigated whether the stimulation with IL-6 plus soluble IL-6 receptor (sIL-6R) could transduce their signals in Tm-treated cardiomyocytes and found that this stimulation was unable to activate the downstream signals. Collectively, these findings indicate that glycosylation of gp130 is essential for signal transduction of IL-6 family cytokines in cardiomyocytes.
Collapse
Affiliation(s)
- Reo Matsuo
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | - Hirofumi Morihara
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | - Tomomi Mohri
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | - Shiho Murasawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | - Kana Takewaki
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | - Hiroyuki Nakayama
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | - Makiko Maeda
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | - Yasushi Fujio
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| |
Collapse
|
16
|
Luan HF, Zhao ZB, Zhao QH, Zhu P, Xiu MY, Ji Y. Hydrogen sulfide postconditioning protects isolated rat hearts against ischemia and reperfusion injury mediated by the JAK2/STAT3 survival pathway. Braz J Med Biol Res 2014; 45:898-905. [PMID: 22948409 PMCID: PMC3854176 DOI: 10.1590/s0100-879x2012007500090] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 05/11/2012] [Indexed: 01/22/2023] Open
Abstract
The JAK2/STAT3 signal pathway is an important component of survivor activating factor enhancement (SAFE) pathway. The objective of the present study was to determine whether the JAK2/STAT3 signaling pathway participates in hydrogen sulfide (H2S) postconditioning, protecting isolated rat hearts from ischemic-reperfusion injury. Male Sprague-Dawley rats (230-270 g) were divided into 6 groups (N = 14 per group): time-matched perfusion (Sham) group, ischemia/reperfusion (I/R) group, NaHS postconditioning group, NaHS with AG-490 group, AG-490 (5 µM) group, and dimethyl sulfoxide (DMSO; <0.2%) group. Langendorff-perfused rat hearts, with the exception of the Sham group, were subjected to 30 min of ischemia followed by 90 min of reperfusion after 20 min of equilibrium. Heart rate, left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP), and the maximum rate of increase or decrease of left ventricular pressure (± dp/dt(max)) were recorded. Infarct size was determined using triphenyltetrazolium chloride (TTC) staining. Myocardial TUNEL staining was used as the in situ cell death detection method and the percentage of TUNEL-positive nuclei to all nuclei counted was used as the apoptotic index. The expression of STAT3, bcl-2 and bax was determined by Western blotting. After reperfusion, compared to the I/R group, H2S significantly improved functional recovery and decreased infarct size (23.3 ± 3.8 vs 41.2 ± 4.7%, P < 0.05) and apoptotic index (22.1 ± 3.6 vs 43.0 ± 4.8%, P < 0.05). However, H2S-mediated protection was abolished by AG-490, the JAK2 inhibitor. In conclusion, H2S postconditioning effectively protects isolated I/R rat hearts via activation of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Heng-Fei Luan
- Department of Anesthesiology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
17
|
Mikelonis D, Jorcyk CL, Tawara K, Oxford JT. Stüve-Wiedemann syndrome: LIFR and associated cytokines in clinical course and etiology. Orphanet J Rare Dis 2014; 9:34. [PMID: 24618404 PMCID: PMC3995696 DOI: 10.1186/1750-1172-9-34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/06/2014] [Indexed: 12/14/2022] Open
Abstract
Stüve-Wiedemann syndrome (STWS; OMIM #610559) is a rare bent-bone dysplasia that includes radiologic bone anomalies, respiratory distress, feeding difficulties, and hyperthermic episodes. STWS usually results in infant mortality, yet some STWS patients survive into and, in some cases, beyond adolescence. STWS is caused by a mutation in the leukemia inhibitory factor receptor (LIFR) gene, which is inherited in an autosomally recessive pattern. Most LIFR mutations resulting in STWS are null mutations which cause instability of the mRNA and prevent the formation of LIFR, impairing the signaling pathway. LIFR signaling usually follows the JAK/STAT3 pathway, and is initiated by several interleukin-6-type cytokines. STWS is managed on a symptomatic basis since there is no treatment currently available.
Collapse
Affiliation(s)
| | | | | | - Julia Thom Oxford
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise ID 83725, USA.
| |
Collapse
|
18
|
Abstract
Multiple studies have shown that the cytokine leukemia inhibitory factor (LIF) is protective of the myocardium in the acute stress of ischemia-reperfusion. All three major intracellular signaling pathways that are activated by LIF in cardiac myocytes have been linked to actions that protect against oxidative stress and cell death, either at the level of the mitochondrion or via nuclear transcription. In addition, LIF has been shown to contribute to post-myocardial infarction cardiac repair and regeneration, by stimulating the homing of bone marrow-derived cardiac progenitors to the injured myocardium, the differentiation of resident cardiac stem cells into endothelial cells, and neovascularization. Whether LIF offers protection to the heart under chronic stress such as hypertension-induced cardiac remodeling and heart failure is not known. However, mice with cardiac myocyte restricted knockout of STAT3, a principal transcription factor activated by LIF, develop heart failure with age, and cardiac STAT3 levels are reported to be decreased in heart failure patients. In addition, endogenously produced LIF has been implicated in the cholinergic transdiffrentiation that may serve to attenuate sympathetic overdrive in heart failure and in the peri-infarct region of the heart after myocardial infarction. Surprisingly, therapeutic strategies to exploit the beneficial actions of LIF on the injured myocardium have received scant attention. Nor is it established whether the purported so-called adverse effects of LIF observed in isolated cardiac myocytes have physiological relevance in vivo. Here we present an overview of the actions of LIF in the heart with the goal of stimulating further research into the translational potential of this pleiotropic cytokine.
Collapse
|
19
|
Frias MA, Montessuit C. JAK-STAT signaling and myocardial glucose metabolism. JAKSTAT 2013; 2:e26458. [PMID: 24416656 PMCID: PMC3876426 DOI: 10.4161/jkst.26458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/19/2022] Open
Abstract
JAK-STAT signaling occurs in virtually every tissue of the body, and so does glucose metabolism. In this review, we summarize the regulation of glucose metabolism in the myocardium and ponder whether JAK-STAT signaling participates in this regulation. Despite a paucity of data directly pertaining to cardiac myocytes, we conclude that JAK-STAT signaling may contribute to the development of insulin resistance in the myocardium in response to various hormones and cytokines.
Collapse
Affiliation(s)
- Miguel A Frias
- Division of Endocrinology, Diabetology and Nutrition; University of Geneva School of Medicine; Geneva, Switzerland
| | - Christophe Montessuit
- Division of Cardiology; Department of Medical Specialties; University of Geneva School of Medicine; Geneva, Switzerland
| |
Collapse
|
20
|
Sinha A, Khadilkar RJ, S VK, Roychowdhury Sinha A, Inamdar MS. Conserved regulation of the Jak/STAT pathway by the endosomal protein asrij maintains stem cell potency. Cell Rep 2013; 4:649-58. [PMID: 23972987 PMCID: PMC4673900 DOI: 10.1016/j.celrep.2013.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 05/18/2013] [Accepted: 07/18/2013] [Indexed: 11/17/2022] Open
Abstract
Asrij/OCIAD1 is an endosomal protein expressed in stem cells and cardiovascular lineages and aberrantly expressed in several cancers. We show that dose-dependent modulation of cytokine-dependent JAK/STAT signaling by Asrij regulates mouse embryonic stem cell pluripotency as well as Drosophila hematopoietic stem cell maintenance. Furthermore, mouse asrij can substitute for Drosophila asrij, indicating that they are true homologs. We identify a conserved region of Asrij that is necessary and sufficient for vesicular localization and function. We also show that Asrij and STAT3 colocalize in endosomes and interact biochemically. We propose that Asrij provides an endosomal scaffold for STAT3 interaction and activation, and may similarly control other circuits that maintain stemness. Thus, Asrij provides a key point of control for spatial and kinetic regulation of stem cell signals.
Collapse
Affiliation(s)
- Abhishek Sinha
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | | | | | | | |
Collapse
|
21
|
Tokito A, Jougasaki M, Ichiki T, Hamasaki S. Cardiotrophin-1 induces matrix metalloproteinase-1 in human aortic endothelial cells. PLoS One 2013; 8:e68801. [PMID: 23935888 PMCID: PMC3720803 DOI: 10.1371/journal.pone.0068801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
Rupture of an atherosclerotic plaque is a key event in the development of cardiovascular disorders, in which matrix metalloproteinase-1 (MMP-1) plays a crucial role by degradation of extracellular matrix resulting in plaque instability. Cardiotrophin-1 (CT-1), a member of interleukin-6-type proinflammatory cytokines, has potent cardiovascular actions and is highly expressed in vascular endothelium, however its role in atherosclerosis has not been fully elucidated to date. The present study was designed to investigate whether CT-1 induces MMP-1 in human aortic endothelial cells (HAECs). Ribonuclease protection assay demonstrated that MMP-1 gene level in HAECs was enhanced by the treatment of CT-1 in a dose- and time-dependent manner. Immunocytochemical staining, Western immunoblot analysis and enzyme-linked immunosorbent assay revealed that CT-1 augmented MMP-1 protein synthesis and secretion. MMP-1 activity assay revealed that MMP-1 present in the supernatant of HAECs was exclusively precursor form. Casein zymography disclosed proteolytic activity in the supernatant of HAECs, which was enhanced by CT-1 treatment. Furthermore, pharmacological inhibitor study indicated the important roles of extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein (MAP) kinase, c-Jun N-terminal kinase (JNK) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathways in mediating CT-1-induced MMP-1 gene and protein expression. These data reveal for the first time that CT-1 induces the proteolytic potential in HAECs by upregulating MMP-1 expression through ERK1/2, p38 MAP kinase, JNK and JAK/STAT pathways, and suggest that CT-1 may play an important role in the pathophysiology of atherosclerosis and plaque instability.
Collapse
Affiliation(s)
- Akinori Tokito
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Michihisa Jougasaki
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Tomoko Ichiki
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Shuichi Hamasaki
- Department of Cardiovascular, Respiratory and Metabolic Medicine, Graduate School of Medicine, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| |
Collapse
|
22
|
Papay RS, Shi T, Piascik MT, Naga Prasad SV, Perez DM. α₁A-adrenergic receptors regulate cardiac hypertrophy in vivo through interleukin-6 secretion. Mol Pharmacol 2013; 83:939-48. [PMID: 23404509 PMCID: PMC3629827 DOI: 10.1124/mol.112.084483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 01/17/2023] Open
Abstract
The role of α₁-adrenergic receptors (ARs) in the regulation of cardiac hypertrophy is still unclear, because transgenic mice demonstrated hypertrophy or the lack of it despite high receptor overexpression. To further address the role of the α₁-ARs in cardiac hypertrophy, we analyzed unique transgenic mice that overexpress constitutively active mutation (CAM) α₁A-ARs or CAM α₁B-ARs under the regulation of large fragments of their native promoters. These constitutively active receptors are expressed in all tissues that endogenously express their wild-type counterparts as opposed to only myocyte-targeted transgenic mice. In this study, we discovered that CAM α₁A-AR mice in vivo have cardiac hypertrophy independent of changes in blood pressure, corroborating earlier studies, but in contrast to myocyte-targeted α₁A-AR mice. We also found cardiac hypertrophy in CAM α₁B-AR mice, in agreement with previous studies, but hypertrophy only developed in older mice. We also discovered unique α₁-AR-mediated hypertrophic signaling that was AR subtype-specific with CAM α₁A-AR mice secreting atrial naturietic factor and interleukin-6 (IL-6), whereas CAM α₁B-AR mice expressed activated nuclear factor-κB (NF-κB). These particular hypertrophic signals were blocked when the other AR subtype was coactivated. We also discovered that crossbreeding the two CAM models (double CAM α₁A/B-AR) inhibited the development of hypertrophy and was reversible with single receptor activation, suggesting that coactivation of the receptors can lead to novel antagonistic signal transduction. This was confirmed by demonstrating antagonistic signals that were even lower than normal controls in the double CAM α₁A/B-AR mice for p38, NF-κB, and the IL-6/glycoprotein 130/signal transducer and activator of transcription 3 pathway. Because α₁A/B double knockout mice fail to develop hypertrophy in response to IL-6, our results suggest that IL-6 is a major mediator of α₁A-AR cardiac hypertrophy.
Collapse
Affiliation(s)
- Robert S Papay
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
23
|
Rehn TA, Munkvik M, Lunde PK, Sjaastad I, Sejersted OM. Intrinsic skeletal muscle alterations in chronic heart failure patients: a disease-specific myopathy or a result of deconditioning? Heart Fail Rev 2013; 17:421-36. [PMID: 21996779 DOI: 10.1007/s10741-011-9289-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic heart failure (CHF) patients frequently experience impaired exercise tolerance due to skeletal muscle fatigue. Studies suggest that this in part is due to intrinsic alterations in skeletal muscle of CHF patients, often interpreted as a disease-specific myopathy. Knowledge about the mechanisms underlying these skeletal muscle alterations is of importance for the pathophysiological understanding of CHF, therapeutic approach and rehabilitation strategies. We here critically review the evidence for skeletal muscle alterations in CHF, the underlying mechanisms of such alterations and how skeletal muscle responds to training in this patient group. Skeletal muscle characteristics in CHF patients are very similar to what is reported in response to chronic obstructive pulmonary disease (COPD), detraining and deconditioning. Furthermore, skeletal muscle alterations observed in CHF patients are reversible by training, and skeletal muscle of CHF patients seems to be at least as trainable as that of matched controls. We argue that deconditioning is a major contributor to the skeletal muscle dysfunction in CHF patients and that further research is needed to determine whether, and to what extent, the intrinsic skeletal muscle alterations in CHF represent an integral part of the pathophysiology in this disease.
Collapse
Affiliation(s)
- T A Rehn
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway.
| | | | | | | | | |
Collapse
|
24
|
Scott JM, Lakoski S, Mackey JR, Douglas PS, Haykowsky MJ, Jones LW. The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics. Oncologist 2013; 18:221-31. [PMID: 23335619 PMCID: PMC3579607 DOI: 10.1634/theoncologist.2012-0226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/05/2012] [Indexed: 01/03/2023] Open
Abstract
Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies.
Collapse
Affiliation(s)
- Jessica M Scott
- Exercise Physiology and Countermeasures, NASA Johnson Space Center, Universities Space Research Association, 2101 NASA Parkway, Houston, TX 77058, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Naeem A, Zhong K, Moisá SJ, Drackley JK, Moyes KM, Loor JJ. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. J Dairy Sci 2012; 95:6397-408. [PMID: 22959936 DOI: 10.3168/jds.2011-5173] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 07/25/2012] [Indexed: 01/23/2023]
Abstract
MicroRNA (miRNA) are small single-stranded noncoding RNA with important roles in regulating innate immunity in nonruminants via transcriptional and posttranscriptional mechanisms. Mastitis causes significant losses in the dairy industry and a wealth of large-scale mRNA expression data from mammary tissue have provided fundamental insights into the tissue adaptations to pathogens. We studied the expression of 14 miRNA (miR-10a, -15b, -16a, -17, -21, -31, -145, -146a, -146b, -155, -181a, -205, -221, and -223) associated with regulation of innate immunity and mammary epithelial cell function in tissue challenged with Streptococcus uberis. Those data, along with microarray expression of 2,102 differentially expressed genes, were used for bioinformatics analysis to uncover putative target genes and the most affected biological pathways and functions. Three miRNA (181a, 16, and 31) were downregulated approximately 3- to 5-fold and miR-223 was upregulated approximately 2.5-fold in infected versus healthy tissue. Among differentially expressed genes due to infection, bioinformatics analysis revealed that the studied miRNA share in the regulation of a large number of metabolic (SCD, CD36, GPAM, and FASN), immune/oxidative stress (TNF, IL6, IL10, SOD2, LYZ, and TLR4), and cellular proliferation/differentiation (FOS and CASP4) target genes. This level of complex regulation was underscored by the coordinate effect revealed by bioinformatics on various cellular pathways within the Kyoto Encyclopedia of Genes and Genomes database. Most pathways associated with "cellular processes," "organismal systems," and "diseases" were activated by putative target genes of miR-31 and miR-16a, with an overlapping activation of "immune system" and "signal transduction." A pronounced effect and activation of miR-31 target genes was observed within "folding, sorting, and degradation," "cell growth and death," and "cell communication" pathways, whereas a marked inhibition of "lipid metabolism" occurred. Putative targets of miR-181a had a strong effect on FcγR-mediated phagocytosis, toll-like receptor signaling, and antigen processing and presentation, which were activated during intramammary infections. The targets of both miR-31 and miR-223 had an inhibitory effect on "lipid metabolism." Overall, the combined analyses indicated that changes in mammary tissue immune, metabolic, and cell growth-related signaling pathways during infection might have been mediated in part through effects of miRNA on gene transcription. Differential expression of miRNA supports the view from nonruminant cells/tissues that certain miRNA might be essential for the tissue's adaptive response to infection.
Collapse
Affiliation(s)
- A Naeem
- Mammalian NutriPhysioGenomics, and Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | |
Collapse
|
26
|
Barry SP. JAK-STAT. JAKSTAT 2012; 1:90-1. [PMID: 24058757 PMCID: PMC3670300 DOI: 10.4161/jkst.20939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
27
|
Fujio Y, Maeda M, Mohri T, Obana M, Iwakura T, Hayama A, Yamashita T, Nakayama H, Azuma J. Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. J Pharmacol Sci 2011; 117:213-22. [PMID: 22056652 DOI: 10.1254/jphs.11r05cr] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Postnatal cardiomyocytes have only limited capacity of proliferation. Therefore, the myocardium is intrinsically equipped with cardioprotective machineries and protects itself from pathological stresses. One of the most important cardioprotective systems is the signal network of autocrine/paracrine factors, including neurohumoral factors, growth factors, and cytokines. In this review, we focus on the roles of interleukin-6 (IL-6) family cytokines, also known as glycoprotein 130 (gp130) cytokines, in cardioprotection. These cytokines make a complex with their specific cytokine receptor α-subunits. The cytokine-receptor α-subunit complex binds to gp130, a common receptor of the IL-6 family, followed by the activation of JAK/STAT, ERK, and PI3 kinase/Akt pathways. In cardiomyocytes, signals through gp130 promote cell survival and angiogenesis through the JAK/STAT pathway. Activation of gp130 in cardiac stem cells induces their endothelial transdifferentiation, leading to neovascularization. Recently, accumulating evidence has revealed that altered JAK/STAT activity is associated with heart failure, suggesting that the JAK/STAT pathway is a therapeutic target against cardiovascular diseases. Interestingly, activation of the JAK/STAT pathway with interleukin-11 (IL-11) exhibits preconditioning effects in ischemia/reperfusion model. Moreover, IL-11 treatment after coronary ligation prevents cardiac remodeling through the JAK/STAT pathway. Since IL-11 is used for patients with thrombocytopenia, we propose that IL-11 is a candidate cytokine clinically available for cardioprotection therapy.
Collapse
Affiliation(s)
- Yasushi Fujio
- Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N. Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 2011; 15:543-62. [PMID: 20405319 DOI: 10.1007/s10741-010-9168-4] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased circulating and intracardiac levels of proinflammatory cytokines have been associated with chronic heart failure. Following an initial insult, the increased production of proinflammatory cytokines, including TNF-α, IL-6, IL-1, and IL-18, jeopardizes the surrounding tissue through propagation of the inflammatory response and direct effects on the cardiac myocyte structure and function. Cardiac myocyte hypertrophy, contractile dysfunction, cardiac myocyte apoptosis, and extracellular matrix remodeling contribute enormously to the development and progression of chronic heart failure. Despite the identification of efficacious pharmacological regimens and introduction of mechanical interventions, chronic heart failure remains among the leading causes of mortality worldwide. To introduce novel therapeutic strategies that modulate the inflammatory response in the context of the failing heart, it is of prime importance to determine the contributions of TNF-α, IL-6, IL-1, and IL-18 in mediating cardiac adaptive and maladaptive responses, as well as delineating their downstream intracellular signaling pathways and their potential therapeutic implications.
Collapse
Affiliation(s)
- Mona Hedayat
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
29
|
Smith CCT, Dixon RA, Wynne AM, Theodorou L, Ong SG, Subrayan S, Davidson SM, Hausenloy DJ, Yellon DM. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol 2010; 299:H1265-70. [PMID: 20656889 DOI: 10.1152/ajpheart.00092.2010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Leptin-induced protection against myocardial ischemia-reperfusion (I/R) injury involves the activation of the reperfusion injury salvage kinase pathway, incorporating phosphatidylinositol 3-kinase-Akt/protein kinase B and p44/42 MAPK, and the inhibition of the mitochondrial permeability transition pore (MPTP). Recently published data indicate that the JAK/STAT signaling pathway, which mediates the metabolic actions of leptin, also plays a pivotal role in cardioprotection. Consequently, in the present study we considered the possibility that JAK/STAT signaling linked to the MPTP may be involved in modulating the cardioprotective actions of leptin. Employing rat in vitro models (Langendorff-perfused hearts and cardiomyocytes) of I/R injury, we investigated the actions of leptin (10 nM), administered at reperfusion, in the presence or absence of the JAK2 inhibitor, AG-490 (5 μM). Leptin reduced infarct size significantly (control, 60.05 ± 7.41% vs. leptin treated, 29.9 ± 3.24%, P < 0.05), protection being abolished by AG-490. Time course studies revealed that leptin caused a 171% (P < 0.001) increase in STAT3/tyrosine-705 phosphorylation at 2.5 min reperfusion; however, increases were not seen at 5, 10, 15, or 30 min reperfusion. Contrasting with STAT3, Akt/serine-473 phosphorylation was not significantly increased until 15 min into the reperfusion phase (140%, P < 0.05). AG-490 blocked the leptin-induced rise in STAT3 phosphorylation seen at 2.5 min reperfusion but did not influence Akt/serine-473 phosphorylation at 15 min. Leptin reduced the MPTP opening (P < 0.001), which was blocked by AG-490. This is the first study to yield evidence that JAK/STAT signaling linked to the MPTP plays a role in leptin-induced cardioprotection. Under the experimental conditions employed, STAT3 phosphorylation appears to have occurred earlier during reperfusion than that of Akt. Further research into the interactions between these two signaling pathways in the setting of I/R injury is, however, required.
Collapse
Affiliation(s)
- Christopher C T Smith
- The Hatter Cardiovascular Institute, University College London and Hospital Medical School, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rohini A, Agrawal N, Koyani CN, Singh R. Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 2010; 61:269-80. [DOI: 10.1016/j.phrs.2009.11.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/29/2009] [Accepted: 11/30/2009] [Indexed: 02/08/2023]
|
31
|
Pietronave S, Forte G, Locarno D, Merlin S, Zamperone A, Nicotra G, Isidoro C, Nardo PD, Prat M. Agonist monoclonal antibodies against HGF receptor protect cardiac muscle cells from apoptosis. Am J Physiol Heart Circ Physiol 2010; 298:H1155-65. [PMID: 20061536 DOI: 10.1152/ajpheart.01323.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hepatocyte growth factor (HGF), a pleiotropic cytokine with mitogenic, motogenic, morphogenic, and antiapoptotic effects in various cell types, is a cardioprotective growth factor that can counteract the loss of cardiomyocytes usually observed in cardiac diseases. HGF is a quite unstable molecule in its biologically active heterodimeric form. Since all HGF-induced biological responses are mediated by its high-affinity tyrosine kinase receptor (Met/HGF-R) encoded by the Met gene, we asked whether a monoclonal antibody (MAb) that displays receptor full agonist activity could protect cardiac muscle cell lines from hydrogen peroxide-induced apoptosis. We report that the MAb efficiently inhibited hydrogen peroxide-induced cell shrinkage, DNA fragmentation, annexin V positivity, mitochondrial translocation of bax, and caspase activation. The MAb was thus able to counteract apoptosis evaluated by both morphological and biochemical criteria. The agonist activity of the MAb was mediated by Met/HGF-R, since a Met/HGF-R-specific short hairpin RNA (shRNA) inhibited both activation of transduction pathways and motility triggered by MAb DO-24. The protective antiapoptotic effect of MAb DO-24 was dependent on activation of the ras-MAPK Erk1/2 and phosphatidylinositol 3-kinase (PI3-kinase)-Akt transduction pathways, since it was abrogated by treatments with their specific pharmacological inhibitors, PD-98059 and wortmannin. Moreover, the MAb induced a motogenic, but not mitogenic, response in these cells, mimicking in all aspects the natural ligand HGF but displaying a significant higher stability than HGF in culture. This MAb may thus be a valuable substitute for HGF, being more easily available in a biologically active, highly stable, and purified form.
Collapse
Affiliation(s)
- Stefano Pietronave
- Dept. of Medical Sciences, Università del Piemonte Orientale "A. Avogadro," Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Binding of ligands to gp130 activates at least three different downstream signaling pathways: the signal transducer and activator of transcription (STAT), the Src-homology tyrosine phosphatase 2-ras-MAPK and the PI3K/Akt pathways. Cardiac-specific disruption of gp130 was shown to result in heart failure in response to mechano-stress accompanied by an increase in apoptosis of cardiac myocytes. Inactivation of STAT3 resulting from the loss of gp130 may be a key event in the transition from cardiac hypertrophy to heart failure. Proper vascular growth would be essential for normal cardiac development and the remodeling process. In addition to various factors, such as bcl-xL, inducible nitric oxide synthase and reactive oxygen species-scavenging proteins, VEGF has also been identified as a target gene of STAT3 and together can promote cardiac myocyte survival by preventing apoptosis and restoration of energy deprivation. In this regard, the gp130-receptor system and its main downstream mediator, STAT3, play a key role in the prevention of heart failure. In this review, current knowledge of the IL-6 family of cytokines relating to human cardiac disease is summarized, in addition to the potential role of gp130-mediated signaling systems in various models of experimental heart failure.
Collapse
Affiliation(s)
- Keiko Yamauchi-Takihara
- Health Care Center & Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 1-17 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
33
|
The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation 2008; 77:395-411. [PMID: 19281787 DOI: 10.1016/j.diff.2008.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/12/2008] [Accepted: 10/13/2008] [Indexed: 11/21/2022]
Abstract
Mouse skin melanocytes originate from the neural crest and subsequently invade the epidermis and migrate into the hair follicles (HF) where they proliferate and differentiate. Here we demonstrate a role for the chemokine SDF-1/CXCL12 and its receptor CXCR4 in regulating the migration and positioning of melanoblasts during HF formation and cycling. CXCR4 expression by melanoblasts was upregulated during the anagen phase of the HF cycle. CXCR4-expressing cells in the HF also expressed the stem cell markers nestin and LEX, the neural crest marker SOX10 and the cell proliferation marker PCNA. SDF-1 was widely expressed along the path taken by migrating CXCR4-expressing cells in the outer root sheath (ORS), suggesting that SDF-1-mediated signaling might be required for the migration of CXCR4 cells. Skin sections from CXCR4-deficient mice, and skin explants treated with the CXCR4 antagonist AMD3100, contained melanoblasts abnormally concentrated in the epidermis, consistent with a defect in their migration. SDF-1 acted as a chemoattractant for FACS-sorted cells isolated from the anagen skin of CXCR4-EGFP transgenic mice in vitro, and AMD3100 inhibited the SDF-1-induced migratory response. Together, these data demonstrate an important role for SDF-1/CXCR4 signaling in directing the migration and positioning of melanoblasts in the HF.
Collapse
|
34
|
Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 2008; 40:2023-39. [PMID: 18407781 DOI: 10.1016/j.biocel.2008.02.020] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/13/2008] [Accepted: 02/15/2008] [Indexed: 01/05/2023]
Abstract
Heart failure is one of the leading causes of mortality in the western world and encompasses a wide spectrum of cardiac pathologies. When the heart experiences extended periods of elevated workload, it undergoes hypertrophic enlargement in response to the increased demand. Cardiovascular disease, such as that caused by myocardial infarction, obesity or drug abuse promotes cardiac myocyte hypertrophy and subsequent heart failure. A number of signalling modulators in the vasculature milieu are known to regulate heart mass including those that influence gene expression, apoptosis, cytokine release and growth factor signalling. Recent evidence using genetic and cellular models of cardiac hypertrophy suggests that pathological hypertrophy can be prevented or reversed and has promoted an enormous drive in drug discovery research aiming to identify novel and specific regulators of hypertrophy. In this review we describe the molecular characteristics of cardiac hypertrophy such as the aberrant re-expression of the fetal gene program. We discuss the various molecular pathways responsible for the co-ordinated control of the hypertrophic program including: natriuretic peptides, the adrenergic system, adhesion and cytoskeletal proteins, IL-6 cytokine family, MEK-ERK1/2 signalling, histone acetylation, calcium-mediated modulation and the exciting recent discovery of the role of microRNAs in controlling cardiac hypertrophy. Characterisation of the signalling pathways leading to cardiac hypertrophy has led to a wealth of knowledge about this condition both physiological and pathological. The challenge will be translating this knowledge into potential pharmacological therapies for the treatment of cardiac pathologies.
Collapse
Affiliation(s)
- Sean P Barry
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N IEH, United Kingdom.
| | | | | |
Collapse
|
35
|
Fischer P, Hilfiker-Kleiner D. Role of gp130-mediated signalling pathways in the heart and its impact on potential therapeutic aspects. Br J Pharmacol 2008; 153 Suppl 1:S414-27. [PMID: 18246092 DOI: 10.1038/bjp.2008.1] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IL-6-type cytokines bind to plasma membrane receptor complexes containing the common signal transducing receptor chain gp130 that is ubiquitously expressed in most tissues including the heart. The two major signalling cascades activated by the gp130 receptor, SHP2/ERK and STAT pathways, have been demonstrated to play important roles in cardiac development, hypertrophy, protection and remodelling in response to physiological and pathophysiological stimuli. Experimental data, both in vivo and in vitro, imply beneficial effects of gp130 signalling on cardiomyocytes in terms of growth and survival. In contrast, it has been reported that elevated serum levels of IL-6 cytokines and gp130 proteins are strong prognostic markers for morbidity and mortality in patients with heart failure or after myocardial infarction. Moreover, it has been shown that the local gp130 receptor system is altered in failing human hearts. In the present review, we summarize the basic principles of gp130 signalling, which requires simultaneous activation of STAT and ERK pathways under the tight control of positive and negative intracellular signalling modulators to provide a balanced biological outcome. Furthermore, we highlight the key role of the gp130 receptor and its major downstream effectors in the heart in terms of development and regeneration and in response to various physiological and pathophysiological stress situations. Finally, we comment on tissue-specific diversity and challenges in targeted pharmacological interference with components of the gp130 receptor system.
Collapse
Affiliation(s)
- P Fischer
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
36
|
Ichiki T, Jougasaki M, Setoguchi M, Imamura J, Nakashima H, Matsuoka T, Sonoda M, Nakamura K, Minagoe S, Tei C. Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells. Am J Physiol Heart Circ Physiol 2008; 294:H750-63. [DOI: 10.1152/ajpheart.00161.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) play critical roles in mediating monocyte adhesion to the vascular endothelium and monocyte migration into the subendothelial regions of the vessels. Inasmuch as cardiotrophin-1 (CT-1), an IL-6-type cytokine, was expressed in human atherosclerotic plaque, we examined whether CT-1 induces monocyte adhesion and migration by stimulating gene and protein expressions of ICAM-1 and MCP-1 in human aortic endothelial cells (HAECs). Immunocytochemistry revealed that CT-1 increased intensity of ICAM-1 and MCP-1 immunoreactivity in HAECs. Adhesion assay and chemotaxis assay revealed that CT-1 increased human monocytic THP-1 cell adhesion to HAECs and promoted chemotaxis in THP-1 cells, which were attenuated by anti-ICAM-1 and anti-MCP-1 antibody, respectively. Western blot analysis showed that CT-1 increased phosphorylation of ERK1/2 MAP kinase, p38 MAP kinase, and Akt and that their inhibitors, PD-98059, SB-203580, and LY-294002, respectively, inhibited phosphorylation. RNase protection assay and ELISA demonstrated that CT-1 increased gene and protein expressions of ICAM-1 and MCP-1. EMSA revealed that CT-1 enhanced NF-κB DNA-binding activity. CT-1-mediated upregulation of ICAM-1 and MCP-1 was suppressed by PD-98059, SB-203580, LY-294002, and parthenolide. The present study demonstrates that CT-1 promotes monocyte adhesion and migration by stimulating ICAM-1 and MCP-1 through mechanisms that involve ERK1/2 MAP kinase, p38 MAP kinase, phosphatidylinositol 3-kinase, and NF-κB pathways and suggests that CT-1 plays an important role in the pathophysiology of vascular inflammation and atherosclerosis.
Collapse
|
37
|
Hamilton KL, Lin L, Wang Y, Knowlton AA. Effect of ovariectomy on cardiac gene expression: inflammation and changes in SOCS gene expression. Physiol Genomics 2008; 32:254-63. [PMID: 17986523 DOI: 10.1152/physiolgenomics.00039.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Basic research on estrogen-related changes in cardiomyocyte gene expression is needed to provide a greater understanding of the effects of estrogen, so that hormone replacement trials and treatment can be based on a true comprehension of estrogen's pleiotropic effects. Therefore, we compared gene expression in models of estrogen depletion and estrogen replacement. Using gene expression array analysis, we examined differences in expression in cardiac tissue from ovariectomized (OVX), ovariectomized with 17β-estradiol replacement (OVX/E2), and intact rats undergoing sham procedures (Sham). We found that OVX results in at least twofold changes in expression of genes involved in inflammation, vascular tone, apoptosis, and proteolysis compared with OVX/E2. With confirmation via real-time PCR, we found an OVX-induced increase in genes mediating inflammation (inhibin βa, IL-6, TNF-α, SOCS2, SOCS3), an OVX-related decrease in the myocardial mRNA expression of genes involved in regulating vasodilation (endothelial NOS, soluble guanyl cyclase), an OVX-associated increase in extracellular matrix genes (collagen12alpha1, connexin 43), and an OVX-related increase in proapoptotic genes (caspase 3, calpain). Because details of cardiac signaling by SOCS genes are virtually unknown, we examined the protein expression for these genes via Western analyses. Although we observed OVX-related increases in SOCS2 and SOCS3 mRNA, SOCS2 and SOCS3 protein did not differ among groups. In light of these findings, investigation into the net effect of OVX on inflammation is warranted. These experiments add to existing evidence that estrogen can protect against negative changes associated with estrogen removal.
Collapse
Affiliation(s)
- Karyn L. Hamilton
- College of Applied Human Sciences, Colorado State University, Fort Collins, Colorado
| | - Li Lin
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California, Davis, Davis, California
- Department of Physiology, Second Military Medical University, Shanghai
| | - Yin Wang
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California, Davis, Davis, California
- Ningxia Medical College, Yinchuan, Peoples Republic of China
| | - Anne A. Knowlton
- Molecular & Cellular Cardiology, Cardiovascular Division, Department of Medicine, University of California, Davis, Davis, California
- Northern California Veterans Affairs
| |
Collapse
|
38
|
|
39
|
Hagiwara Y, Miyoshi S, Fukuda K, Nishiyama N, Ikegami Y, Tanimoto K, Murata M, Takahashi E, Shimoda K, Hirano T, Mitamura H, Ogawa S. SHP2-mediated signaling cascade through gp130 is essential for LIF-dependent I CaL, [Ca2+]i transient, and APD increase in cardiomyocytes. J Mol Cell Cardiol 2007; 43:710-6. [PMID: 17961593 DOI: 10.1016/j.yjmcc.2007.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/30/2007] [Accepted: 09/10/2007] [Indexed: 02/08/2023]
Abstract
Leukemia inhibitory factor (LIF), a cardiac hypertrophic cytokine, increases L-type Ca(2+) current (I(CaL)) via ERK-dependent and PKA-independent phosphorylation of serine 1829 in the Cav(1.2) subunit. The signaling cascade through gp130 is involved in this augmentation. However, there are two major cascades downstream of gp130, i.e. JAK/STAT3 and SHP2/ERK. In this study, we attempted to clarify which of these two cascades plays a more important role. Knock-in mouse line, in which the SHP2 signal was disrupted (gp130(F759/F759) group), and wild-type mice (WT group) were used. A whole-cell patch clamp experiment was performed, and intracellular Ca(2+) concentration ([Ca(2+)](i) transient) was monitored. The I(CaL) density and [Ca(2+)](i) transient were measured from the untreated cells and the cells treated with LIF or IL-6 and soluble IL-6 receptor (IL-6+sIL-6r). Action potential duration (APD) was also recorded from the ventricle of each mouse, with or without LIF. Both LIF and IL-6+sIL-6r increased I(CaL) density significantly in WT (+27.0%, n=16 p<0.05, and +32.2%, n=15, p<0.05, respectively), but not in gp130(F759/F759) (+9.4%, n=16, NS, and -6.1%, n=13, NS, respectively). Administration of LIF and IL-6+sIL-6r increased [Ca(2+)](i) transient significantly in WT (+18.8%, n=13, p<0.05, and +32.0%, n=21, p<0.05, respectively), but not in gp130(F759/F759) (-3.8%, n=7, NS, and -6.4%, n=10, NS, respectively). LIF prolonged APD(80) significantly in WT (10.5+/-4.3%, n=12, p<0.05), but not in gp130(F759/F759) (-2.1+/-11.2%, n=7, NS). SHP2-mediated signaling cascade is essential for the LIF and IL-6+sIL-6r-dependent increase in I(CaL), [Ca(2+)](i) transient and APD.
Collapse
Affiliation(s)
- Yoko Hagiwara
- Division of Cardiology, Department of Medicine, Keio University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fischer P, Hilfiker-Kleiner D. Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 2007; 102:279-97. [PMID: 17530315 DOI: 10.1007/s00395-007-0658-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 12/26/2022]
Abstract
Circulating levels of interleukin (IL)-6 and related cytokines are elevated in patients with congestive heart failure and after myocardial infarction. Serum IL-6 concentrations are related to decreasing functional status of these patients and provide important prognostic information.Moreover, in the failing human heart, multiple components of the IL-6- glycoprotein (gp)130 receptor system are impaired, implicating an important role of this system in cardiac pathophysiology.Experimental studies have shown that the common receptor subunit of IL-6 cytokines is phosphorylated in response to pressure overload and myocardial infarction and that it subsequently activates at least three different downstream signaling pathways, the signal transducers and activators of transcription 1 and 3 (STAT1/3), the Src-homology tyrosine phosphatase 2 (SHP2)-Ras-ERK, and the PI3K-Akt system. Gp130 receptor mediated signaling promotes cardiomyocyte survival, induces hypertrophy, modulates cardiac extracellular matrix and cardiac function. In this regard, the gp130 receptor system and its main downstream mediator STAT3 play a key role in cardioprotection. This review summarizes the current knowledge of IL-6 cytokines, gp130 receptor and STAT3 signaling in the heart exposed to physiological (aging, pregnancy) and pathophysiological stress (ischemia, pressure overload, inflammation and cardiotoxic agents) with a special focus on the potential role of individual IL-6 cytokines.
Collapse
Affiliation(s)
- P Fischer
- Dept. of Cardiology & Angiology, Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
41
|
|
42
|
Kimura R, Maeda M, Arita A, Oshima Y, Obana M, Ito T, Yamamoto Y, Mohri T, Kishimoto T, Kawase I, Fujio Y, Azuma J. Identification of cardiac myocytes as the target of interleukin 11, a cardioprotective cytokine. Cytokine 2007; 38:107-15. [PMID: 17629706 DOI: 10.1016/j.cyto.2007.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/30/2007] [Accepted: 05/25/2007] [Indexed: 11/23/2022]
Abstract
Interleukin (IL)-6 family cytokines, which share glycoprotein 130 (gp130) as a signal-transducing receptor component, play important roles in the maintenance of cardiac homeostasis. IL-11, a member of IL-6 family cytokines, is expressed in cardiac myocytes, though it remains to be elucidated how IL-11 functions in the hearts. In the present study, first, we showed that IL-11 administration reduced the ischemia/reperfusion injury in the hearts. IL-11 receptor alpha was expressed in cardiomyocytes. IL-11 treatment rapidly activated signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) 1/2 in cardiac myocytes. IL-11 stimulation resulted in the translocation of phosphorylated STAT3 into nuclei. Immunofluorescence microscopic analyses revealed that IL-11 treatment led to the cell elongation, as is the case with other cardiotrophic members of IL-6 family, such as leukemia inhibitory factor. Finally we showed that IL-11 treatment conferred the resistance to cell death induced by hydrogen peroxide, which was abrogated by adenoviral transfer of dominant negative STAT3, but not by the inhibition of ERK1/2 with U0126. These findings indicate that IL-11 mediates cytoprotective signals in cardiomyocytes, proposing that IL-11 has the potential to exhibit cardioprotection as a novel biological function.
Collapse
Affiliation(s)
- Ryusuke Kimura
- Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita City, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gong KZ, Zhang H, Du JH, Zhang YY. Crosstalk between signaling pathways of adrenoreceptors and signal transducers and activators of transcription 3 (STAT3) in heart. Acta Pharmacol Sin 2007; 28:153-65. [PMID: 17241516 DOI: 10.1111/j.1745-7254.2007.00525.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently, there have been important advancements in our understanding of the signaling mechanisms of adrenoreceptors (AR) and signal transducers and activators of transcription 3 (STAT3). While their crucial roles in the pathological processes of the heart are well established, accumulating evidence suggests there is a complex pattern of crosstalk between these 2 signaling pathways. Moreover, the potential for crosstalk occurs at multiple levels in each signaling cascade and involves receptor transactivation, G proteins, small GTPases, cyclic adenosine 3',5'-monophosphate/protein kinase A, protein kinase C, scaffold/adaptor proteins, protein tyrosine kinases, and mitogen-activated protein kinases. In addition, post-translational modification (eg acetylation) of STAT3 may provide a link between STAT3 and AR signaling. In particular, crosstalk between these 2 systems in the heart would appear to be dependent upon the species/tissue studied, developmental stage, and eliciting stimulus. This at least partly accounts for the epigenetic effects on biological function that is mediated by the 2 signaling pathways. Elucidation of these mechanisms will provide new targets in the development of novel clinical strategies for heart disorders.
Collapse
Affiliation(s)
- Kai-zheng Gong
- Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100083, China
| | | | | | | |
Collapse
|
44
|
Trenerry MK, Carey KA, Ward AC, Cameron-Smith D. STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. J Appl Physiol (1985) 2007; 102:1483-9. [PMID: 17204573 DOI: 10.1152/japplphysiol.01147.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as a mediator of cytokine signaling and implicated in hypertrophy; however, the importance of this pathway following resistance exercise in human skeletal muscle has not been investigated. In the present study, the phosphorylation and nuclear localization of STAT3, together with STAT3-regulated genes, were measured in the early recovery period following intense resistance exercise. Muscle biopsy samples from healthy subjects (7 males, 23.0 + 0.9 yr) were harvested before and again at 2, 4, and 24 h into recovery following a single bout of maximal leg extension exercise (3 sets, 12 repetitions). Rapid and transient activation of phosphorylated (tyrosine 705) STAT3 was observed at 2 h postexercise. STAT3 phosphorylation paralleled the transient localization of STAT3 to the nucleus, which also peaked at 2 h postexercise. Downstream transcriptional events regulated by STAT3 activation peaked at 2 h postexercise, including early responsive genes c-FOS (800-fold), JUNB (38-fold), and c-MYC (140-fold) at 2 h postexercise. A delayed peak in VEGF (4-fold) was measured 4 h postexercise. Finally, genes associated with modulating STAT3 signaling were also increased following exercise, including the negative regulator SOCS3 (60-fold). Thus, following a single bout of intense resistance exercise, a rapid phosphorylation and nuclear translocation of STAT3 are evident in human skeletal muscle. These data suggest that STAT3 signaling is an important common element and may contribute to the remodeling and adaptation of skeletal muscle following resistance exercise.
Collapse
Affiliation(s)
- Marissa K Trenerry
- School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria, Australia
| | | | | | | |
Collapse
|
45
|
Gritman K, Van Winkle DM, Lorentz CU, Pennica D, Habecker BA. The lack of cardiotrophin-1 alters expression of interleukin-6 and leukemia inhibitory factor mRNA but does not impair cardiac injury response. Cytokine 2006; 36:9-16. [PMID: 17150369 PMCID: PMC1796948 DOI: 10.1016/j.cyto.2006.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 02/06/2023]
Abstract
Cardiotrophin-1 (CT-1) was identified as a growth factor for cardiac myocytes and CT-1 protects myocytes from cell death. Adult CT-1(-/-) mice exhibit neural deficits including the loss of preganglionic sympathetic neurons, but their autonomic and cardiac parameters have not been examined. We used these mice to determine if the absence of CT-1 or loss of preganglionic sympathetic input altered heart rate, left ventricular pressure, cardiac contractility (dP/dt), or cell death following ischemia-reperfusion. Basal heart rate was increased in CT-1(-/-) mice, and this difference was abolished by ganglionic block. Left ventricular pressure and dP/dt were unchanged. Dobutamine stimulated similar increases in heart rate and dP/dt in both genotypes, but ventricular pressure was significantly lower in CT-1 nulls. Cardiac expression of interleukin-6 (IL-6) mRNA was increased significantly in CT-1 null mice, while leukemia inhibitory factor (LIF) mRNA was unchanged. Infarct size normalized to area at risk was no different in CT-1(-/-) mice (33.8+/-1.0% vs. 37.7+/-3.2% WT) 24h after ischemia-reperfusion. Induction of IL-6 mRNA after infarct was significantly abrogated in CT-1 null mice compared to wild-type mice, but LIF mRNA-induction remained significant in CT-1 null mice and might contribute to cardiac protection in the absence of CT-1.
Collapse
Affiliation(s)
- Kurt Gritman
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Donna M. Van Winkle
- Department of Anesthesiology, Oregon Health & Science University, Portland, OR 97239
- Anesthesiology Service, Portland VA Medical Center, Portland, OR 97239
| | - Christina U. Lorentz
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Diane Pennica
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Beth A. Habecker
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
- * Address correspondence to: Beth A. Habecker, Ph.D., Dept. of Physiology & Pharmacology, L334, OHSU, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, TEL 1 (503) 494-0497, FAX 1 (503) 494-4352, Email
| |
Collapse
|
46
|
Terrell AM, Crisostomo PR, Wairiuko GM, Wang M, Morrell ED, Meldrum DR. Jak/STAT/SOCS signaling circuits and associated cytokine-mediated inflammation and hypertrophy in the heart. Shock 2006; 26:226-34. [PMID: 16912647 DOI: 10.1097/01.shk.0000226341.32786.b9] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytokines are important mediators of cardiac disease. Accumulating evidence indicates that members of the interleukin-6 family of cytokines promote cardiac hypertrophy through the activation of the Janus kinase-signal transducer and activator of transcription (Jak/STAT) pathway. Aberrant Jak/STAT signaling may promote progression from hypertrophy to heart failure. Suppressor of cytokine signaling (SOCS) proteins are underexplored, negative regulators of Jak/STAT signaling. SOCS proteins may also interact with other inflammatory pathways known to affect cardiac function. A better understanding of the therapeutic potential of these proteins may lead to the controlled progression of heart failure and the limitation of myocardial depression. This review summarizes the cardiophysiological effect of the IL-6 cytokine family, outlines the mechanistic pathway of Jak/STAT signaling, explores the regulatory role of SOCS proteins in the heart, and discusses the potential of using SOCS proteins clinically.
Collapse
Affiliation(s)
- Andrew M Terrell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
47
|
Yano Y, Ozono R, Oishi Y, Kambe M, Yoshizumi M, Ishida T, Omura S, Oshima T, Igarashi K. Genetic ablation of the transcription repressor Bach1 leads to myocardial protection against ischemia/reperfusion in mice. Genes Cells 2006; 11:791-803. [PMID: 16824198 DOI: 10.1111/j.1365-2443.2006.00979.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bach1 is a transcriptional repressor of heme oxygenase-1 gene (Hmox-1) and beta-globin gene. Heme oxygenase (HO)-1 is an inducible cytoprotective enzyme that degrades pro-oxidant heme to carbon monoxide (CO) and biliverdin/bilirubin, which are thought to mediate anti-inflammatory and anti-oxidant actions of HO-1. In the present study, we investigated the role of Bach1 in tissue protection against myocardial ischemia/reperfusion (I/R) injury in vivo using mice lacking the Bach1 gene (Bach1(-/-)) and wild-type (Bach1(+/+)) mice. In Bach1(-/-) mice, myocardial expression of HO-1 protein was constitutively up-regulated by 3.4-fold compared to that in Bach1(+/+) mice. While myocardial I/R induced HO-1 protein in ischemic myocytes in both strains of mice, the extent of induction was significantly greater in Bach1(-/-) mice than in Bach1(+/+) mice. Myocardial infarction was markedly reduced in size by 48.4% in Bach1(-/-) mice. Pretreatment of Bach1(-/-) mice with zinc-protoporphyrin, an inhibitor of HO activity, abolished the infarction-reducing effect of Bach1 disruption, indicating that reduction in the infarct size was mediated, at least in part, by HO-1 activity. Thus, Bach1 plays a pivotal role in setting the levels of both constitutive and inducible expression of HO-1 in the myocardium. Bach1 inactivation during I/R appears to be a key mechanism controlling the activation level of cytoprotective program involving HO-1.
Collapse
Affiliation(s)
- Yoko Yano
- Department of Clinical Laboratory Medicine, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wu L, Zhao L, Zheng Q, Shang F, Wang X, Wang L, Lang B. Simvastatin attenuates hypertrophic responses induced by cardiotrophin-1 via JAK–STAT pathway in cultured cardiomyocytes. Mol Cell Biochem 2006; 284:65-71. [PMID: 16534557 DOI: 10.1007/s11010-005-9014-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/21/2005] [Indexed: 11/28/2022]
Abstract
UNLABELLED Cardiotrophin-1 (CT-1) is a cytokine involved in the growth and survival of cardiac cells via activation of the Janus activated kinase/signal transducer activator of transcription (JAK/STAT). Statins, 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, have effects that extend beyond cholesterol reduction and inhibit vascular smooth muscle cell (VSMC) proliferation and cardiac hypertrophy. However, whether stains also can inhibitin vitromyocardial hypertrophy or not still remains elusive. The purpose of this study was to explore the effects of simvastatin on the hypertrophy of cultured rat cardiomyocytes induced by CT-1 and to investigate whether this effect was mediated via JAK-STAT signaling pathway. METHODS AND RESULTS Primary cardiomyocytes from 2-day-old (P2) rats were cultured, stimulated with CT-1, and treated with various concentration of simvastatin. Incorporation of [(3)H] leucine, reverse transcription-polymerase chain reaction and western blotting techniques were used to investigate cardiacmyocyte size, ANP mRNA and JAK-STAT protein expression. Simvastatin was proved, in a dose-independent manner, to decrease cardiacmyocytes size as well as protein synthesis, and inhibit ANP mRNA synthesis and JAK-STAT protein expression induced by CT-1 in cardiacmyocytes. CONCLUSION These results suggest that simvastatin can ameliorate cardiacmyocytes hypertrophyin vitrovia JAK-STAT signaling pathways. The present study provides a novel understanding and alternative therapeutic strategy for cardiac hypertrophy.
Collapse
Affiliation(s)
- LiJun Wu
- Institute Hypertension, Department of Cardiology, TangDu Hospital, Fourth Military Medical University, Xi'an 710038, PR China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Mohri T, Fujio Y, Maeda M, Ito T, Iwakura T, Oshima Y, Uozumi Y, Segawa M, Yamamoto H, Kishimoto T, Azuma J. Leukemia inhibitory factor induces endothelial differentiation in cardiac stem cells. J Biol Chem 2005; 281:6442-7. [PMID: 16407199 DOI: 10.1074/jbc.m508969200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of interleukin 6 (IL-6)-related cytokines in cardiac homeostasis has been studied extensively; however, little is known about their biological significance in cardiac stem cells. Here we describe that leukemia inhibitory factor (LIF), a member of IL-6-related cytokines, activated STAT3 and ERK1/2 in cardiac Sca-1+ stem cells. LIF stimulation resulted in the induction of endothelial cell-specific genes, including VE-cadherin, Flk-1, and CD31, whereas neither smooth muscle nor cardiac muscle marker genes such as GATA4, GATA6, Nkx-2.5, and calponin were up-regulated. Immunocytochemical examination showed that about 25% of total cells were positively stained with anti-CD31 antibody 14 days after LIF stimulation. Immunofluorescent microscopic analyses identified the Sca-1+ cells that were also positively stained with anti-von Willebrand factor antibody, indicating the differentiating process of Sca-1+ cells into the endothelial cells. IL-6, which did not activate STAT3 and ERK1/2, failed to induce the differentiation of cardiac stem cells into the endothelial cells. In cardiac stem cells, the transduction with dominant negative STAT3 abrogated the LIF-induced endothelial differentiation. And the inhibition of ERK1/2 with the MEK1/2 inhibitor U0126 also prevented the differentiation of Sca-1+ cells into endothelial cells. Thus, both STAT3 and ERK1/2 are required for LIF-mediated endothelial differentiation in cardiac stem cells. Collectively, it is proposed that LIF regulates the commitment of cardiac stem cells into the endothelial cell lineage, contributing to neovascularization in the process of tissue remodeling and/or regeneration.
Collapse
Affiliation(s)
- Tomomi Mohri
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Coles JG, Boscarino C, Takahashi M, Grant D, Chang A, Ritter J, Dai X, Du C, Musso G, Yamabi H, Goncalves J, Kumar AS, Woodgett J, Lu H, Hannigan G. Cardioprotective stress response in the human fetal heart. J Thorac Cardiovasc Surg 2005; 129:1128-36. [PMID: 15867790 PMCID: PMC5328676 DOI: 10.1016/j.jtcvs.2004.11.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We propose that the fetal heart is highly resilient to hypoxic stress. Our objective was to elucidate the human fetal gene expression profile in response to simulated ischemia and reperfusion to identify molecular targets that account for the innate cardioprotection exhibited by the fetal phenotype. METHODS Primary cultures of human fetal cardiac myocytes (gestational age, 15-20 weeks) were exposed to simulated ischemia and reperfusion in vitro by using a simulated ischemic buffer under anoxic conditions. Total RNA from treated and baseline cells were isolated, reverse transcribed, and labeled with Cy3 or Cy5 and hybridized to a human cDNA microarray for expression analysis. This analysis revealed a highly significant (false discovery rate, <3%) suppression of interleukin 6 transcript levels during the reperfusion phase confirmed by means of quantitative polymerase chain reaction (0.25 +/- 0.11-fold). Interleukin 6 signaling during ischemia and reperfusion was assessed at the protein expression level by means of Western measurements of interleukin 6 receptor, the signaling subunit of the interleukin 6 receptor complex (gp130), and signal transducer of activated transcription 3. Posttranslational changes in the protein kinase B signaling pathway were determined on the basis of the phosphorylation status of protein kinase B, mitogen-activated protein kinase, and glycogen synthase kinase 3beta. The effect of suppression of a prohypertrophic kinase, integrin-linked kinase, with short-interfering RNA was determined in an ischemia and reperfusion-stressed neonatal rat cardiac myocyte model. Endogenous secretion of interleukin 6 protein in culture supernatants was measured by enzyme-linked immunosorbent assay. RESULTS Human fetal cardiac myocytes exhibited a significantly lower rate of apoptosis induction during ischemia and reperfusion and after exposure to staurosporine and recombinant interleukin 6 compared with that observed in neonatal rat cardiac myocytes ( P < .05 for all comparisons, analysis of variance). Exposure to exogenously added recombinant interleukin 6 increased the apoptotic rate in both rat and human fetal cardiac myocytes ( P < .05). Short-interfering RNA-mediated suppression of integrin-linked kinase, a prohypertrophy upstream kinase regulating protein kinase B and glycogen synthase kinase 3beta phosphorylation, was cytoprotective against ischemia and reperfusion-induced apoptosis in neonatal rat cardiac myocytes ( P < .05). CONCLUSIONS Human fetal cardiac myocytes exhibit a uniquely adaptive transcriptional response to ischemia and reperfusion that is associated with an apoptosis-resistant phenotype. The stress-inducible fetal cardiac myocyte gene repertoire is a useful platform for identification of targets relevant to the mitigation of cardiac ischemic injury and highlights a novel avenue involving interleukin 6 modulation for preventing the cardiac myocyte injury associated with ischemia and reperfusion.
Collapse
Affiliation(s)
- John G Coles
- Department of Cardiovascular Surgery, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|