1
|
van Dijck P, Hannemann C, Dreger H, Stangl V, Stangl K, Ludwig A, Hewing B. Increased Expression of Inactive Rhomboid Protein 2 in Circulating Monocytes after Acute Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:1059-1066. [PMID: 38743187 PMCID: PMC11519168 DOI: 10.1007/s12265-024-10519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
Increased TNF-α levels following acute myocardial infarction (AMI) contribute to impaired recovery of myocardial function. Interaction of inactive rhomboid protein 2 (iRhom2) with TNF-α converting enzyme (TACE) is required for TNF-α shedding from immune cells. We hypothesized that iRhom2 expression increases in circulating monocytes following AMI. Transcript levels of iRhom2, TACE and TNF-α were evaluated by quantitative real-time PCR in isolated monocytes of 50 AMI patients at admission (d1) and 3 days (d3) after. We observed a significant increase in levels of iRhom2 mRNA expression in monocytes between d1-3, while TNF-α and TACE mRNA expression remained unchanged. At d3, iRhom2 mRNA expression positively correlated with levels of intermediate monocytes or serum TNF-α, and negatively with LV systolic function. iRhom2 may contribute to regulation of post-infarction inflammation and is associated with LV dysfunction following AMI. iRhom2 modulation should be evaluated as a potential therapeutic strategy to attenuate cardiac remodeling following AMI.
Collapse
Affiliation(s)
- Phillip van Dijck
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Mitte, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Carmen Hannemann
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Mitte, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Henryk Dreger
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow Klinikum, Deutsches Herzzentrum der Charité, Berlin, Germany
- Structural Heart Interventions Program (SHIP), Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Verena Stangl
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Mitte, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Karl Stangl
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Mitte, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Antje Ludwig
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Mitte, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Bernd Hewing
- Department of Cardiology, Angiology and Intensive Care Medicine, Campus Mitte, Deutsches Herzzentrum der Charité, Charitéplatz 1, 10117, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
- Berlin Institute of Health (BIH), 10178, Berlin, Germany.
- Zentrum Für Kardiologie, Kardiologische Gemeinschaftspraxis, Muenster, Germany.
- Department of Cardiology III - Adult Congenital and Valvular Heart Disease, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
2
|
Heger LA, Schommer N, Van Bruggen S, Sheehy CE, Chan W, Wagner DD. Neutrophil NLRP3 promotes cardiac injury following acute myocardial infarction through IL-1β production, VWF release and NET deposition in the myocardium. Sci Rep 2024; 14:14524. [PMID: 38914598 PMCID: PMC11196583 DOI: 10.1038/s41598-024-64710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/12/2024] [Indexed: 06/26/2024] Open
Abstract
NLRP3 inflammasome has been implicated in neutrophil polarization and extrusion of neutrophil extracellular traps (NETs) in vitro and facilitates secretion of Il1-beta (IL-1β). Permanent ligation of the left anterior descending artery was used to induce MI in WT and NLRP3-/- mice as well as in NLRP3-/- recipient mice transfused with either WT or NLRP3-/- neutrophils. NLRP3 deficiency reduced infarct size to roughly a third of WT heart injury and preserved left ventricular (LV) function at 12 h after MI as assessed by echocardiography and triphenyltetrazolium chloride staining of live tissue. Transfusion of WT but not NLRP3-/- neutrophils after MI increased infarct size in NLRP3-/- mice and significantly reduced LV function. The key features of myocardial tissue in WT neutrophil transfused recipients were increased H3Cit-positive deposits with NET-like morphology and increased tissue levels of IL-1β and plasma levels of von Willebrand Factor (VWF). Flow cytometry analysis also revealed that neutrophil NLRP3 increased the number of labeled and transfused neutrophils in the bone marrow of recipient mice following MI. Our data suggest a key role for neutrophil NLRP3 in the production of IL-1β and deposition of NETs in cardiac tissue exacerbating injury following MI. We provide evidence for a link between neutrophil NLRP3 and VWF release likely enhancing thromboinflammation in the heart. Neutrophil NLRP3 deficiency conferred similar cardioprotective effects to general NLRP3 deletion in MI rendering anti-neutrophil NLRP3 therapy a promising target for early cardioprotective treatment.
Collapse
Affiliation(s)
- Lukas A Heger
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle, Ninth Floor, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Departement of Cardiology and Angiology, University Hospital Freiburg Bad Krozingen, 79106, Freiburg, Germany
| | - Nicolas Schommer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle, Ninth Floor, Boston, MA, 02115, USA
- Departement of Cardiology and Angiology, University Hospital Freiburg Bad Krozingen, 79106, Freiburg, Germany
| | - Stijn Van Bruggen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle, Ninth Floor, Boston, MA, 02115, USA
- Center of Molecular and Vascular Biology, Department of Cardiovascular Science, KU Leuven, 3000, Leuven, Belgium
| | - Casey E Sheehy
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle, Ninth Floor, Boston, MA, 02115, USA
| | - William Chan
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle, Ninth Floor, Boston, MA, 02115, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle, Ninth Floor, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Tonon CR, Monte MG, Balin PS, Fujimori ASS, Ribeiro APD, Ferreira NF, Vieira NM, Cabral RP, Okoshi MP, Okoshi K, Zornoff LAM, Minicucci MF, Paiva SAR, Gomes MJ, Polegato BF. Liraglutide Pretreatment Does Not Improve Acute Doxorubicin-Induced Cardiotoxicity in Rats. Int J Mol Sci 2024; 25:5833. [PMID: 38892020 PMCID: PMC11172760 DOI: 10.3390/ijms25115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Doxorubicin is an effective drug for cancer treatment; however, cardiotoxicity limits its use. Cardiotoxicity pathophysiology is multifactorial. GLP-1 analogues have been shown to reduce oxidative stress and inflammation. In this study, we evaluated the effect of pretreatment with liraglutide on doxorubicin-induced acute cardiotoxicity. A total of 60 male Wistar rats were allocated into four groups: Control (C), Doxorubicin (D), Liraglutide (L), and Doxorubicin + Liraglutide (DL). L and DL received subcutaneous injection of liraglutide 0.6 mg/kg daily, while C and D received saline for 2 weeks. Afterwards, D and DL received a single intraperitoneal injection of doxorubicin 20 mg/kg; C and L received an injection of saline. Forty-eight hours after doxorubicin administration, the rats were subjected to echocardiogram, isolated heart functional study, and euthanasia. Liraglutide-treated rats ingested significantly less food and gained less body weight than animals that did not receive the drug. Rats lost weight after doxorubicin injection. At echocardiogram and isolated heart study, doxorubicin-treated rats had systolic and diastolic function impairment. Myocardial catalase activity was statistically higher in doxorubicin-treated rats. Myocardial protein expression of tumor necrosis factor alpha (TNF-α), phosphorylated nuclear factor-κB (p-NFκB), troponin T, and B-cell lymphoma 2 (Bcl-2) was significantly lower, and the total NFκB/p-NFκB ratio and TLR-4 higher in doxorubicin-treated rats. Myocardial expression of OPA-1, MFN-2, DRP-1, and topoisomerase 2β did not differ between groups (p > 0.05). In conclusion, doxorubicin-induced cardiotoxicity is accompanied by decreased Bcl-2 and phosphorylated NFκB and increased catalase activity and TLR-4 expression. Liraglutide failed to improve acute doxorubicin-induced cardiotoxicity in rats.
Collapse
Affiliation(s)
- Carolina R. Tonon
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina G. Monte
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Paola S. Balin
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Anderson S. S. Fujimori
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ana Paula D. Ribeiro
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Natália F. Ferreira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Nayane M. Vieira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Ronny P. Cabral
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marina P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Leonardo A. M. Zornoff
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Marcos F. Minicucci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Sergio A. R. Paiva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| | - Mariana J. Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA;
| | - Bertha F. Polegato
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (M.G.M.); (P.S.B.); (A.S.S.F.); (A.P.D.R.); (N.F.F.); (N.M.V.); (R.P.C.); (M.P.O.); (K.O.); (L.A.M.Z.); (M.F.M.); (S.A.R.P.); (B.F.P.)
| |
Collapse
|
4
|
Zhang H, Dhalla NS. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int J Mol Sci 2024; 25:1082. [PMID: 38256155 PMCID: PMC10817020 DOI: 10.3390/ijms25021082] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
With cardiovascular disease (CVD) being a primary source of global morbidity and mortality, it is crucial that we understand the molecular pathophysiological mechanisms at play. Recently, numerous pro-inflammatory cytokines have been linked to several different CVDs, which are now often considered an adversely pro-inflammatory state. These cytokines most notably include interleukin-6 (IL-6),tumor necrosis factor (TNF)α, and the interleukin-1 (IL-1) family, amongst others. Not only does inflammation have intricate and complex interactions with pathophysiological processes such as oxidative stress and calcium mishandling, but it also plays a role in the balance between tissue repair and destruction. In this regard, pre-clinical and clinical evidence has clearly demonstrated the involvement and dynamic nature of pro-inflammatory cytokines in many heart conditions; however, the clinical utility of the findings so far remains unclear. Whether these cytokines can serve as markers or risk predictors of disease states or act as potential therapeutic targets, further extensive research is needed to fully understand the complex network of interactions that these molecules encompass in the context of heart disease. This review will highlight the significant advances in our understanding of the contributions of pro-inflammatory cytokines in CVDs, including ischemic heart disease (atherosclerosis, thrombosis, acute myocardial infarction, and ischemia-reperfusion injury), cardiac remodeling (hypertension, cardiac hypertrophy, cardiac fibrosis, cardiac apoptosis, and heart failure), different cardiomyopathies as well as ventricular arrhythmias and atrial fibrillation. In addition, this article is focused on discussing the shortcomings in both pathological and therapeutic aspects of pro-inflammatory cytokines in CVD that still need to be addressed by future studies.
Collapse
Affiliation(s)
- Hannah Zhang
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Nchodu M, Efuntayo A, du Preez R, Ali H, Olateju OI. Simvastatin Significantly Reduced Alcohol-Induced Cardiac Damage in Adolescent Mice. Cardiovasc Toxicol 2024; 24:15-26. [PMID: 38261135 PMCID: PMC10838240 DOI: 10.1007/s12012-023-09821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/16/2023] [Indexed: 01/24/2024]
Abstract
Alcohol abuse by adolescents is becoming a serious health concern as they often progress to becoming alcoholics later in life which may lead to heart problems. Chronic alcohol use alters the cardiac function and structure, such as haemodynamic changes, weakening and loss of cardiomyocytes, myocardial fibrosis, and inflammation. Simvastatin is a commonly used drug for the treatment and management of various cardiovascular problems but information on its protective effects against alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation is lacking in the literature. Four-week-old male (n = 5) and female (n = 5) C57BL/6 J mice were assigned to each experimental group: (I) NT-no administration of alcohol or Simvastatin; (II) ALC-2.5 g/Kg/day of 20% alcohol via intraperitoneal injection (i.p.); (III) SIM-5 mg/Kg/day of Simvastatin via oral gavage; (iv) ALC + SIM5-5 mg/Kg/day of Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p.; and (v) ALC + SIM15-15 mg/Kg/day Simvastatin via oral gavage followed by 2.5 g/Kg/day of 20% alcohol via i.p. After the 28-day treatment period, the heart was removed and processed for H&E, Masson's trichrome, or TNF-α immunolabelling. The area and diameter of cardiomyocytes were measured on the H&E-stained sections. The distribution of collagen or TNF-α expression was quantified using the deconvolution tool of ImageJ software. The results confirmed alcohol-induced toxicity on the cardiomyocytes and Simvastatin reduced alcohol-induced cardiomyocyte hypertrophy, fibrosis, and inflammation in both sexes. This study demonstrated that Simvastatin, an FDA approved and easily accessible drug, may be beneficial in lowering the prevalence of alcohol-induced cardiovascular diseases (especially in adolescents) which will have a huge financial implication on health systems worldwide.
Collapse
Affiliation(s)
- Makgotso Nchodu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Alice Efuntayo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Robin du Preez
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Hasiena Ali
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa
| | - Oladiran I Olateju
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, Republic of South Africa.
| |
Collapse
|
6
|
Haybar H, Bandar B, Torfi E, Mohebbi A, Saki N. Cytokines and their role in cardiovascular diseases. Cytokine 2023; 169:156261. [PMID: 37413877 DOI: 10.1016/j.cyto.2023.156261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
The evaluation of diagnostic and prognostic biomarkers has always been a hot topic in various diseases. Considering that cardiovascular diseases (CVDs) have the highest mortality and morbidity rates in the world, various studies have been conducted so far to find CVD associated biomarkers, including cardiac troponin (cTn) and NT-proBNP. Cytokines are components of the immune system that are involved in the pathogenesis of CVD due to their contribution to the inflammation process. The level of cytokines varies in many cardiovascular diseases. For instance, the plasma level of IL-1α, IL-18, IL-33, IL-6 and IL-8 is positively correlated with atherosclerosis and that of some other interleukins such as IL-35 is negatively correlated with acute myocardial infarction or cardiac angina. Due to its pivotal role in the inflammation process, IL-1 super family is involved in many CVDs, including atherosclerosis. IL-20 among the interleukins of IL-10 family has a pro-atherogenic role, while others, such as IL-10 and IL-19, play an anti-atherogenic role. In the present review, we have collected the latest published evidence in this respect to discuss valuable cytokines from the diagnostic and prognostic stand point in CVDs.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bita Bandar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ekhlas Torfi
- Department of Cardiovascular Disease, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mohebbi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Grillo TG, Silveira CFDSMP, Quaglio AEV, Dutra RDM, Baima JP, Bazan SGZ, Sassaki LY. Acute heart failure as an adverse event of tumor necrosis factor inhibitor therapy in inflammatory bowel disease: A review of the literature. World J Cardiol 2023; 15:217-228. [PMID: 37274378 PMCID: PMC10237008 DOI: 10.4330/wjc.v15.i5.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 05/19/2023] Open
Abstract
Tumor necrosis factor inhibitors (anti-TNFs) are widely used therapies for the treatment of inflammatory bowel diseases (IBD); however, their administration is not risk-free. Heart failure (HF), although rare, is a potential adverse event related to administration of these medications. However, the exact mechanism of development of HF remains obscure. TNFα is found in both healthy and damaged hearts. Its effects are concentration- and receptor-dependent, promoting either cardio-protection or cardiomyocyte apoptosis. Experimental rat models with TNFα receptor knockout showed increased survival rates, less reactive oxygen species formation, and improved diastolic left ventricle pressure. However, clinical trials employing anti-TNF therapy to treat HF had disappointing results, suggesting abolishment of the cardioprotective properties of TNFα, making cardiomyocytes susceptible to apoptosis and oxidation. Thus, patients with IBD who have risk factors should be screened for HF before initiating anti-TNF therapy. This review aims to discuss adverse events associated with the administration of anti-TNF therapy, with a focus on HF, and propose some approaches to avoid cardiac adverse events in patients with IBD.
Collapse
Affiliation(s)
- Thais Gagno Grillo
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu, Botucatu 18618686, Brazil
| | | | - Ana Elisa Valencise Quaglio
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, Botucatu 18618689, Brazil
| | - Renata de Medeiros Dutra
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu, Botucatu 18618686, Brazil
| | - Julio Pinheiro Baima
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu, Botucatu 18618686, Brazil
| | - Silmeia Garcia Zanati Bazan
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu, Botucatu 18618686, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, Medical School, São Paulo State University, Botucatu, Botucatu 18618686, Brazil.
| |
Collapse
|
8
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
9
|
Efentakis P, Andreadou I, Iliodromitis KE, Triposkiadis F, Ferdinandy P, Schulz R, Iliodromitis EK. Myocardial Protection and Current Cancer Therapy: Two Opposite Targets with Inevitable Cost. Int J Mol Sci 2022; 23:14121. [PMID: 36430599 PMCID: PMC9696420 DOI: 10.3390/ijms232214121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Myocardial protection against ischemia/reperfusion injury (IRI) is mediated by various ligands, activating different cellular signaling cascades. These include classical cytosolic mediators such as cyclic-GMP (c-GMP), various kinases such as Phosphatydilinositol-3- (PI3K), Protein Kinase B (Akt), Mitogen-Activated-Protein- (MAPK) and AMP-activated (AMPK) kinases, transcription factors such as signal transducer and activator of transcription 3 (STAT3) and bioactive molecules such as vascular endothelial growth factor (VEGF). Most of the aforementioned signaling molecules constitute targets of anticancer therapy; as they are also involved in carcinogenesis, most of the current anti-neoplastic drugs lead to concomitant weakening or even complete abrogation of myocardial cell tolerance to ischemic or oxidative stress. Furthermore, many anti-neoplastic drugs may directly induce cardiotoxicity via their pharmacological effects, or indirectly via their cardiovascular side effects. The combination of direct drug cardiotoxicity, indirect cardiovascular side effects and neutralization of the cardioprotective defense mechanisms of the heart by prolonged cancer treatment may induce long-term ventricular dysfunction, or even clinically manifested heart failure. We present a narrative review of three therapeutic interventions, namely VEGF, proteasome and Immune Checkpoint inhibitors, having opposing effects on the same intracellular signal cascades thereby affecting the heart. Moreover, we herein comment on the current guidelines for managing cardiotoxicity in the clinical setting and on the role of cardiovascular confounders in cardiotoxicity.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | | |
Collapse
|
10
|
He W, Chen P, Chen Q, Cai Z, Zhang P. Cytokine storm: behind the scenes of the collateral circulation after acute myocardial infarction. Inflamm Res 2022; 71:1143-1158. [PMID: 35876879 PMCID: PMC9309601 DOI: 10.1007/s00011-022-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
At least 17 million people die from acute myocardial infarction (AMI) every year, ranking it first among causes of death of human beings, and its incidence is gradually increasing. Typical characteristics of AMI include acute onset and poor prognosis. At present, there is no satisfactory treatment, but development of coronary collateral circulation (CCC) can be key to improving prognosis. Recent research indicates that the levels of cytokines, including those related to promoting inflammatory responses and angiogenesis, increase after the onset of AMI. In the early phase of AMI, cytokines play a vital role in inducing development of collateral circulation. However, when myocardial infarction is decompensated, cytokine secretion increases greatly, which may induce a cytokine storm and worsen prognosis. Cytokines can regulate the activation of a variety of signal pathways and form a complex network, which may promote or inhibit the establishment of collateral circulation. We searched for published articles in PubMed and Google Scholar, employing the keyword "acute myocardial infarction", "coronary collateral circulation" and "cytokine storm", to clarify the relationship between AMI and a cytokine storm, and how a cytokine storm affects the growth of collateral circulation after AMI, so as to explore treatment methods based on cytokine agents or inhibitors used to improve prognosis of AMI.
Collapse
Affiliation(s)
- Weixin He
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Peixian Chen
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Qingquan Chen
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zongtong Cai
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Levels of soluble tumor necrosis factor receptor 1 and 2 are associated with survival after ST segment elevation myocardial infarction. Sci Rep 2022; 12:14762. [PMID: 36042366 PMCID: PMC9427857 DOI: 10.1038/s41598-022-18972-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
The soluble tumor necrosis factor receptors (sTNFR1 and sTNFR2) are suggested to play dual roles on physiological and pathophysiological actions of TNF-α. The aim of this study was to investigate the dynamic changes of these biomarkers in patients with ST-segment elevation myocardial infarction (STEMI). Blood was collected from 165 STEMI patients at admission, 1–3 days and 3 months after percutaneous coronary intervention (PCI) and from 40 healthy blood donors. sTNFR1 and sTNFR2 were measured with ELISA. The plasma levels of both sTNFR1 and sTNFR2 were significantly higher than in healthy donors at all three time points. We found no significant differences in sTNFR1 or sTNFR2 when comparing patients with patent versus occluded culprit vessels, or between patients having a thrombus aspiration or not. Survival analysis was performed comparing patients with levels of biomarkers above and below the median values at that time point. We found significant differences in survival for sTNFR2 in acute samples (p = 0.0151) and for both sTNFR1 and sTNFR2 in samples 1–3 days after PCI (p = 0.0054 and p = 0.0003, respectively). Survival analyses suggest that sTNFR1 or sTNFR2 could be promising markers to predict mortality in STEMI patients after PCI.
Collapse
|
12
|
Rabinovich-Nikitin I, Blant A, Dhingra R, Kirshenbaum LA, Czubryt MP. NF-κB p65 Attenuates Cardiomyocyte PGC-1α Expression in Hypoxia. Cells 2022; 11:cells11142193. [PMID: 35883637 PMCID: PMC9322255 DOI: 10.3390/cells11142193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoxia exerts broad effects on cardiomyocyte function and viability, ranging from altered metabolism and mitochondrial physiology to apoptotic or necrotic cell death. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of cardiomyocyte metabolism and mitochondrial function and is down-regulated in hypoxia; however, the underlying mechanism is incompletely resolved. Using primary rat cardiomyocytes coupled with electrophoretic mobility shift and luciferase assays, we report that hypoxia impaired mitochondrial energetics and resulted in an increase in nuclear localization of the Nuclear Factor-κB (NF-κB) p65 subunit, and the association of p65 with the PGC-1α proximal promoter. Tumor necrosis factor α (TNFα), an activator of NF-κB signaling, similarly reduced PGC-1α expression and p65 binding to the PGC-1α promoter in a dose-dependent manner, and TNFα-mediated down-regulation of PGC-1α expression could be reversed by the NF-κB inhibitor parthenolide. RNA-seq analysis revealed that cardiomyocytes isolated from p65 knockout mice exhibited alterations in genes associated with chromatin remodeling. Decreased PGC-1α promoter transactivation by p65 could be partially reversed by the histone deacetylase inhibitor trichostatin A. These results implicate NF-κB signaling, and specifically p65, as a potent inhibitor of PGC-1α expression in cardiac myocyte hypoxia.
Collapse
Affiliation(s)
- Inna Rabinovich-Nikitin
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (I.R.-N.); (R.D.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Alexandra Blant
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Rimpy Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (I.R.-N.); (R.D.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Lorrie A. Kirshenbaum
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (I.R.-N.); (R.D.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (L.A.K.); (M.P.C.); Tel.: +1-204-235-3661 (L.A.K.); +1-204-235-3719 (M.P.C.)
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (I.R.-N.); (R.D.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (L.A.K.); (M.P.C.); Tel.: +1-204-235-3661 (L.A.K.); +1-204-235-3719 (M.P.C.)
| |
Collapse
|
13
|
Hong H, Cao X, Deng T, Meng XM, Li YM, Zhu LJ, Lv J, Li X, Yu SG, Zhu BM. Acupuncture at Neiguan suppresses PVCs occurring post-myocardial infarction by alleviating inflammation and fibrosis. Chin Med 2022; 17:52. [PMID: 35484628 PMCID: PMC9047269 DOI: 10.1186/s13020-022-00606-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background Acupuncture at Neiguan (PC6) has long been used for treating cardiovascular diseases, but its antiarrhythmic effect and the underlying mechanisms have not yet been well investigated, especially regarding premature ventricular complexes (PVCs) that occur post-myocardial infarction (MI). The purpose of this study was to study the antiarrhythmic effect of manual acupuncture applied to PC6 for a relatively long period (28 days) and to elucidate the mechanism in mice. Methods An MI mouse model was generated by ligating the left anterior descending coronary artery in male C57/BL6 mice (n = 31). Manual acupuncture at PC6 was applied seven times weekly for 4 weeks. The state of myocardial injury was characterized by electrocardiography (ECG) and echocardiography. Inflammation was detected by ELISA and immunohistochemical stanning. Fibrosis was evaluated by Masson’s trichrome staining. RNA sequencing was used to explore the differentially expressed genes (DEGs) among the different groups after treatment. Results Acupuncture at PC6 lowered the incidence of spontaneous PVCs after MI injury (1/9, 11%) compared to that in mice without acupuncture treatment (6/9, 67%) and improved the ejection fraction from 31.77% in the MI mice to 44.18% in the MI + PC6 mice. Fibrosis was reduced after PC6 treatment. RNA-seq showed many DEGs involved in the immune system and inflammatory response pathway. Further studies confirmed that inflammation at the circulation level and cardiac tissue was inhibited in MI + PC6 mice, accompanied by suppressed sympathetic activation. Conclusions In conclusion, 28-day treatment of acupuncture at PC6 reduced spontaneous PVCs and improved systolic function, possibly by suppressing inflammatory response-mediated fibrosis and sympathetic hyperactivity.
Collapse
Affiliation(s)
- Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, 610041, Sichuan, China
| | - Xin Cao
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Shierqiao Road 37, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, 610041, Sichuan, China
| | - Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, 610041, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, 610041, Sichuan, China
| | - Li-Juan Zhu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Shierqiao Road 37, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Jing Lv
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Shierqiao Road 37, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Xuan Li
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Shierqiao Road 37, Jinniu District, Chengdu, 610075, Sichuan, China
| | - Shu-Guang Yu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Shierqiao Road 37, Jinniu District, Chengdu, 610075, Sichuan, China.
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Keyuan Road 4, Gaopeng Street, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants (Basel) 2022; 11:antiox11020208. [PMID: 35204091 PMCID: PMC8868283 DOI: 10.3390/antiox11020208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.
Collapse
|
15
|
Segués A, van Duijnhoven SMJ, Parade M, Driessen L, Vukovic N, Zaiss D, Sijts AJAM, Berraondo P, van Elsas A. Generation and characterization of novel co-stimulatory anti-mouse TNFR2 antibodies. J Immunol Methods 2021; 499:113173. [PMID: 34699840 DOI: 10.1016/j.jim.2021.113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models. Here, we describe the generation, production, purification, and characterization of a panel of novel antibodies targeting mouse TNFR2. The antibodies display functional differences in binding affinity and potency to block TNFα. Furthermore, epitope binding showed that the anti-mTNFR2 antibodies target different domains on the TNFR2 protein, associated with varying capacity to enhance CD8+ T-cell activation and costimulation. Moreover, the anti-TNFR2 antibodies demonstrate binding to isolated splenic mouse Tregs ex vivo and activated CD8+ cells, reinforcing their potential use to establish TNFR2-dependent immune modulation in translational models of autoimmunity and cancer.
Collapse
Affiliation(s)
- Aina Segués
- Aduro Biotech Europe, Oss, the Netherlands; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands; Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | | | | | | | - Nataša Vukovic
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Dietmar Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom; Institute of Immune Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Alice J A M Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Pedro Berraondo
- Division of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
16
|
Paccalet A, Crola Da Silva C, Mechtouff L, Amaz C, Varillon Y, de Bourguignon C, Cartier R, Prieur C, Tomasevic D, Genot N, Leboube S, Derimay F, Rioufol G, Bonnefoy-Cudraz E, Mewton N, Ovize M, Bidaux G, Bochaton T. Serum Soluble Tumor Necrosis Factor Receptors 1 and 2 Are Early Prognosis Markers After ST-Segment Elevation Myocardial Infarction. Front Pharmacol 2021; 12:656928. [PMID: 34539391 PMCID: PMC8440863 DOI: 10.3389/fphar.2021.656928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/31/2021] [Indexed: 11/30/2022] Open
Abstract
Background: As inflammation following ST-segment elevation myocardial infarction (STEMI) is both beneficial and deleterious, there is a need to find new biomarkers of STEMI severity. Objective: We hypothesized that the circulating concentration of the soluble tumor necrosis factor α receptors 1 and 2 (sTNFR1 and sTNFR2) might predict clinical outcomes in STEMI patients. Methods: We enrolled into a prospective cohort 251 consecutive STEMI patients referred to our hospital for percutaneous coronary intervention revascularization. Blood samples were collected at five time points: admission and 4, 24, 48 h, and 1 month after admission to assess sTNFR1 and sTNFR2 serum concentrations. Patients underwent cardiac magnetic resonance imaging at 1 month. Results: sTNFR1 concentration increased at 24 h with a median of 580.5 pg/ml [95% confidence interval (CI): 534.4–645.6]. sTNFR2 increased at 48 h with a median of 2,244.0 pg/ml [95% CI: 2090.0–2,399.0]. Both sTNFR1 and sTNFR2 peak levels were correlated with infarct size and left ventricular end-diastolic volume and inversely correlated with left ventricular ejection fraction. Patients with sTNFR1 or sTNFR2 concentration above the median value were more likely to experience an adverse clinical event within 24 months after STEMI [hazards ratio (HR): 8.8, 95% CI: 4.2–18.6, p < 0.0001 for sTNFR1; HR: 6.1, 95% CI: 2.5 –10.5, p = 0.0003 for sTNFR2]. Soluble TNFR1 was an independent predictor of major adverse cardiovascular events and was more powerful than troponin I (p = 0.04 as compared to the troponin AUC). Conclusion: The circulating sTNFR1 and sTNFR2 are inflammatory markers of morphological and functional injury after STEMI. sTNFR1 appears as an early independent predictor of clinical outcomes in STEMI patients.
Collapse
Affiliation(s)
- Alexandre Paccalet
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France
| | - Claire Crola Da Silva
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France
| | - Laura Mechtouff
- Stroke Department, Hôpital Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Camille Amaz
- Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Yvonne Varillon
- Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Charles de Bourguignon
- Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Regine Cartier
- Centre de Biologie Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Cyril Prieur
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| | - Danka Tomasevic
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| | - Nathalie Genot
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| | - Simon Leboube
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France
| | - François Derimay
- Department of Interventional Cardiology, Cardiovascular Hospital and Claude-Bernard University, Bron, France
| | - Gilles Rioufol
- Department of Interventional Cardiology, Cardiovascular Hospital and Claude-Bernard University, Bron, France
| | - Eric Bonnefoy-Cudraz
- Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| | - Nathan Mewton
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France.,Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Michel Ovize
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France.,Centre D'investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France.,Service D'explorations Fonctionnelles Cardiovasculaires, Hôpital Louis Pradel, Hospices Civils de Lyon, Bron, France
| | - Gabriel Bidaux
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France
| | - Thomas Bochaton
- INSERM U1060, CarMeN Laboratory, Groupement Hospitalier Est, Université de Lyon, Bron, France.,Unité de Soins Intensifs Cardiologiques, Hôpital Louis Pradel et Université Claude Bernard, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
17
|
Role of IL-37- and IL-37-Treated Dendritic Cells in Acute Coronary Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6454177. [PMID: 34471467 PMCID: PMC8405329 DOI: 10.1155/2021/6454177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
As a chronic inflammatory disease, atherosclerosis is a leading cause of morbidity and mortality in most countries. Inflammation is responsible for plaque instability and the subsequent onset of acute coronary syndrome (ACS), which is one of the leading causes of hospitalization. Therefore, exploring the potential mechanism underlying ACS is of considerable concern, and searching for alternative therapeutic targets is very urgent. Interleukin-37 (IL-37) inhibits the production of proinflammatory chemokines and cytokines and acts as a natural inhibitor of innate and adaptive immunity. Interestingly, our previous study with murine models showed that IL-37 alleviated cardiac remodeling and myocardial ischemia/reperfusion injury. Of note, our clinical study revealed that IL-37 is elevated and plays a beneficial role in patients with ACS. Moreover, dendritic cells (DCs) orchestrate both immunity and tolerance, and tolerogenic DCs (tDCs) are characterized by more secretion of immunosuppressive cytokines. As expected, IL-37-treated DCs are tolerogenic. Hence, we speculate that IL-37- or IL-37-treated DCs is a novel therapeutic possibility for ACS, and the precise mechanism of IL-37 requires further study.
Collapse
|
18
|
Hussain A, Tarahomi T, Singh L, Bollampally M, Heydari-Kamjani M, Kesselman MM. Cardiovascular Risk Associated With TNF Alpha Inhibitor Use in Patients With Rheumatoid Arthritis. Cureus 2021; 13:e17938. [PMID: 34660128 PMCID: PMC8513733 DOI: 10.7759/cureus.17938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and pannus formation, with subsequent joint and cartilage degradation. Treatment commonly targets inflammatory cytokines, including tumor necrosis factor (TNF) alpha, which is a potent inflammatory cytokine required for cell signaling, regulation, and apoptosis, as well as for other cellular functions including immune response. TNF alpha inhibitors have demonstrated benefits in improving RA patient outcomes in terms of immune function and symptomatology. While TNF alpha inhibitors are generally beneficial, some studies have demonstrated that TNF alpha inhibitors may increase the risk of adverse cardiovascular events. While this continues to be debated, our study investigates the role of Tumor Necrosis Factor Receptor 1 (TNFR1) and Tumor Necrosis Factor Receptor 2 (TNFR2) in cardiac tissue. TNFR1 is an apoptotic receptor and its inhibition by TNF alpha inhibitors is subsequently cardioprotective. However, TNF alpha inhibitors may be inhibiting TNFR2 receptors even more so than TNFR1 receptors. TNFR2 is primarily a cardioprotective receptor and its greater inhibition results in the cardiovascular morbidity associated with TNF alpha inhibitors.
Collapse
Affiliation(s)
- Aaiz Hussain
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, USA
| | - Targol Tarahomi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Lavi Singh
- College of Liberal Arts and Science, Wayne State University, Detroit, USA
| | - Murali Bollampally
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | | | - Marc M Kesselman
- Division of Rheumatology, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| |
Collapse
|
19
|
Wu Y, Vazquez-Prada KX, Liu Y, Whittaker AK, Zhang R, Ta HT. Recent Advances in the Development of Theranostic Nanoparticles for Cardiovascular Diseases. Nanotheranostics 2021; 5:499-514. [PMID: 34367883 PMCID: PMC8342263 DOI: 10.7150/ntno.62730] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. CVD includes a group of disorders of the heart and blood vessels such as myocardial infarction, ischemic heart, ischemic injury, injured arteries, thrombosis and atherosclerosis. Amongst these, atherosclerosis is the dominant cause of CVD and is an inflammatory disease of the blood vessel wall. Diagnosis and treatment of CVD remain the main challenge due to the complexity of their pathophysiology. To overcome the limitations of current treatment and diagnostic techniques, theranostic nanomaterials have emerged. The term "theranostic nanomaterials" refers to a multifunctional agent with both therapeutic and diagnostic abilities. Theranostic nanoparticles can provide imaging contrast for a diversity of techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT). In addition, they can treat CVD using photothermal ablation and/or medication by the drugs in nanoparticles. This review discusses the latest advances in theranostic nanomaterials for the diagnosis and treatment of CVDs according to the order of disease development. MRI, CT, near-infrared spectroscopy (NIR), and fluorescence are the most widely used strategies on theranostics for CVDs detection. Different treatment methods for CVDs based on theranostic nanoparticles have also been discussed. Moreover, current problems of theranostic nanoparticles for CVDs detection and treatment and future research directions are proposed.
Collapse
Affiliation(s)
- Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karla X. Vazquez-Prada
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yajun Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, the University of Queensland, QLD 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hang T. Ta
- Queensland Micro- and Nanotechnology, Griffith University, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Arvind V, Huang AH. Reparative and Maladaptive Inflammation in Tendon Healing. Front Bioeng Biotechnol 2021; 9:719047. [PMID: 34350166 PMCID: PMC8327090 DOI: 10.3389/fbioe.2021.719047] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Tendon injuries are common and debilitating, with non-regenerative healing often resulting in chronic disease. While there has been considerable progress in identifying the cellular and molecular regulators of tendon healing, the role of inflammation in tendon healing is less well understood. While inflammation underlies chronic tendinopathy, it also aids debris clearance and signals tissue repair. Here, we highlight recent findings in this area, focusing on the cells and cytokines involved in reparative inflammation. We also discuss findings from other model systems when research in tendon is minimal, and explore recent studies in the treatment of human tendinopathy to glean further insights into the immunobiology of tendon healing.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alice H. Huang
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Orthopedic Surgery, Columbia University, New York, NY, United States
| |
Collapse
|
21
|
Yang MX, Shi K, Xu HY, He Y, Ma M, Zhang L, Wang JL, Li XS, Fu C, Li H, Zhou B, Zhou XY, Yang Z, Guo YK, Yang ZG. Inflammation in Remote Myocardium and Left Ventricular Remodeling After Acute Myocardial Infarction: A Pilot Study Using T2 Mapping. J Magn Reson Imaging 2021; 55:555-564. [PMID: 34245075 DOI: 10.1002/jmri.27827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The pathophysiological changes in the remote myocardium after acute myocardial infarction (MI) remains less understood. PURPOSE To assess the inflammation in the remote myocardium post-MI and its association with left ventricular (LV) remodeling using T2 mapping. STUDY TYPE Prospective. ANIMAL MODEL AND SUBJECTS Twelve pigs at 3-day post-MI, 6 pigs at 3-month post-MI, 6 healthy pigs; 54 patients at 3-day and 3-month post-MI, 31 healthy volunteers; FIELD STRENGTH/SEQUENCE: A 3 T MRI/ steady-state free-precession sequence for T2 mapping (animals: 0, 30, and 55 msec; human: 0, 25, and 55 msec), phase-sensitive inversion recovery gradient echo for late gadolinium enhancement (LGE), balanced steady free-precession sequence for cine. ASSESSMENT Infarcted myocardium was defined on LGE, remote T2 was measured on T2 maps. LV remodeling was evaluated as LV end-diastolic volume change index between two scans using cine. CD68 staining was conducted to detect monocyte/macrophage. STATISTICAL TESTS Student-t test and one-way ANOVA were used to compare remote T2 with normal controls. The association of remote T2 with LV remodeling was assessed using linear regression. P values of <0.05 were used to denote statistical significance. RESULTS Compared with healthy pigs, remote T2 significantly increased from 3 days to 3 months post-MI (31.43 ± 0.67 vs. 33.53 ± 1.15 vs. 36.43 ± 1.07 msec). CD68 staining demonstrated the inflammation in remote myocardium post-MI but not in healthy pigs. Significant remote myocardial alterations in T2 were also observed in human group (40.51 ± 1.79 vs. 41.94 ± 1.14 vs. 42.52 ± 1.71 msec). In patients, the 3-month remote T2 (β = 0.432) and remote T2 variation between two scans (β = 0.554) were both independently associated with LV remodeling. CONCLUSION T2 mapping could characterize the abnormalities in the remote myocardium post-MI, which was potentially caused by the inflammatory response. Moreover, variations in remote T2 were associated with LV remodeling. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Meng-Xi Yang
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Sichuan, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Min Ma
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China.,Department of Cardiology, The Sixth People's Hospital of Chengdu, Sichuan, China
| | - Lu Zhang
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | | | - Xue-Sheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Chuan Fu
- Department of Radiology, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Hong Li
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Bin Zhou
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Xiao-Yue Zhou
- MR Collaboration, Siemens Healthcare Ltd, Shanghai, China
| | - Zhi Yang
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China.,Department of Radiology, Chengdu Fifth People's Hospital, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
22
|
Ishiyama M, Kurita T, Nakamura S, Omori T, Nakamori S, Ishida M, Fujimoto N, Kitagawa K, Sakuma H, Ito M, Dohi K. Prognostic importance of acute phase extracellular volume evaluated by cardiac magnetic resonance imaging for patients with acute myocardial infarction. Int J Cardiovasc Imaging 2021; 37:3285-3297. [PMID: 34191203 DOI: 10.1007/s10554-021-02321-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
Myocardial extracellular volume (ECV) by cardiac magnetic resonance (CMR) in the acute phase of acute myocardial infarction (MI) more precisely predicts the functional recovery of infarct-related wall motion abnormalities and left ventricular (LV) remodeling than late gadolinium enhancement (LGE). The purpose of this study was to evaluate the prognostic importance of acute phase ECV in patients with AMI. We evaluated 61 consecutive AMI patients using 3.0 T CMR. CMR examination was performed median 10 days (7-15 days) after PCI. Primary endpoint was defined as major adverse cardiac event (MACE). The median follow-up duration was 3.1 years, and MACE occurred in 11 (18%) patients. Although LVEF and % infarct LGE volume were not associated with MACE in this study population, higher infarct ECV predicted the MACE with a hazard ratio (HR) of 4.04 (P = 0.02). High global ECV, which was a combined assessment of infarct ECV and remote ECV, also predicted MACE with a HR of 5.24 (P = 0.035). The addition of infarct ECV to remote ECV (global chi-squared score: 1.4) resulted in a significantly increased global chi-squared score (6.7; P = 0.017). Furthermore, after adjusting for the calculated propensity score for high global ECV, it remained an independent predictor of MACE with HR of 5.10 (P = 0.04). The quantification of ECV in the acute phase among AMI patients may provide an incremental prognostic value for predicting MACE beyond that of clinical, angiographic, and functional variables.
Collapse
Affiliation(s)
- Masaki Ishiyama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Satoshi Nakamura
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Taku Omori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shiro Nakamori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Ishida
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoki Fujimoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kakuya Kitagawa
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kaoru Dohi
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
23
|
Inoue M, Yamashita K, Tsuji Y, Miki M, Amano S, Okumura T, Kuge K, Tone T, Enomoto S, Yoshimine C, Morita Y, Ando D, Kamada H, Mikami N, Tsutsumi Y, Tsunoda SI. Characterization of a TNFR2-Selective Agonistic TNF-α Mutant and Its Derivatives as an Optimal Regulatory T Cell Expander. THE JOURNAL OF IMMUNOLOGY 2021; 206:1740-1751. [PMID: 33782090 DOI: 10.4049/jimmunol.2000871] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/02/2021] [Indexed: 12/26/2022]
Abstract
Regulatory T cells (Tregs) are a subpopulation of lymphocytes that play a role in suppressing and regulating immune responses. Recently, it was suggested that controlling the functions and activities of Tregs might be applicable to the treatment of human diseases such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease. TNF receptor type 2 (TNFR2) is a target molecule that modulates Treg functions. In this study, we investigated the role of TNFR2 signaling in the differentiation and activation of mouse Tregs. We previously reported the generation of a TNFR2-selective agonist TNF mutant, termed R2agoTNF, by using our unique cytokine modification method based on phage display. R2agoTNF activates cell signaling via mouse TNFR2. In this study, we evaluated the efficacy of R2agoTNF for the proliferation and activation of Tregs in mice. R2agoTNF expanded and activated mouse CD4+CD25+ Tregs ex vivo. The structural optimization of R2agoTNF by internal cross-linking or IgG-Fc fusion selectively and effectively enhanced Treg expansion in vivo. Furthermore, the IgG-Fc fusion protein suppressed skin-contact hypersensitivity reactions in mice. TNFR2 agonists are expected to be new Treg expanders.
Collapse
Affiliation(s)
- Masaki Inoue
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan.,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kanako Yamashita
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Yuta Tsuji
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Midori Miki
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Shota Amano
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Taichi Okumura
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Koki Kuge
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Takao Tone
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Shota Enomoto
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Chinatsu Yoshimine
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Yuki Morita
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan
| | - Daisuke Ando
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,National Institutes of Health Sciences, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Haruhiko Kamada
- Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 65-0871, Japan; and
| | - Yasuo Tsutsumi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan.,Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shin-Ichi Tsunoda
- Laboratory of Cellular and Molecular Physiology, The Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe 650-8586, Japan; .,Laboratory of Biopharmaceutical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Rolski F, Błyszczuk P. Complexity of TNF-α Signaling in Heart Disease. J Clin Med 2020; 9:E3267. [PMID: 33053859 PMCID: PMC7601316 DOI: 10.3390/jcm9103267] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Heart disease is a leading cause of death with unmet clinical needs for targeted treatment options. Tumor necrosis factor alpha (TNF-α) represents a master pro-inflammatory cytokine that plays an important role in many immunopathogenic processes. Anti-TNF-α therapy is widely used in treating autoimmune inflammatory disorders, but in case of patients with heart disease, this treatment was unsuccessful or even harmful. The underlying reasons remain elusive until today. This review summarizes the effects of anti-TNF-α treatment in patients with and without heart disease and describes the involvement of TNF-α signaling in a number of animal models of cardiovascular diseases. We specifically focused on the role of TNF-α in specific cardiovascular conditions and in defined cardiac cell types. Although some mechanisms, mainly in disease development, are quite well known, a comprehensive understanding of TNF-α signaling in the failing heart is still incomplete. Published data identify pathogenic and cardioprotective mechanisms of TNF-α in the affected heart and highlight the differential role of two TNF-α receptors pointing to the complexity of the TNF-α signaling. In the light of these findings, it seems that targeting the TNF-α pathway in heart disease may show therapeutic benefits, but this approach must be more specific and selectively block pathogenic mechanisms. To this aim, more research is needed to better understand the molecular mechanisms of TNF-α signaling in the failing heart.
Collapse
Affiliation(s)
- Filip Rolski
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland;
| | - Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Cracow, Poland;
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, 8952 Schlieren, Switzerland
| |
Collapse
|
25
|
Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC. The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). J Am Coll Cardiol 2019; 72:2213-2230. [PMID: 30360829 DOI: 10.1016/j.jacc.2018.08.2149] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022]
Abstract
Macrophages are integral components of cardiac tissue and exert profound effects on the healthy and diseased heart. Paradigm shifting studies using advanced molecular techniques have revealed significant complexity within these macrophage populations that reside in the heart. In this final of a 4-part review series covering the macrophage in cardiovascular disease, the authors review the origins, dynamics, cell surface markers, and respective functions of each cardiac macrophage subset identified to date, including in the specific scenarios of myocarditis and after myocardial infarction. Looking ahead, a deeper understanding of the diverse and often dichotomous functions of cardiac macrophages will be essential for the development of targeted therapies to mitigate injury and orchestrate recovery of the diseased heart. Moreover, as macrophages are critical for cardiac healing, they are an emerging focus for therapeutic strategies aimed at minimizing cardiomyocyte death, ameliorating pathological cardiac remodeling, and for treating heart failure and after myocardial infarction.
Collapse
Affiliation(s)
- Kory J Lavine
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Alexander R Pinto
- Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Benjamin J Kopecky
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xavier Clemente-Casares
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - James Godwin
- The Jackson Laboratory, Bar Harbor, Maine; Mt. Desert Island Biological Laboratory, Bar Harbor, Maine
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
26
|
Campos-Staffico AM, Costa APR, Carvalho LSF, Moura FA, Santos SN, Coelho-Filho OR, Nadruz W, Quinaglia E Silva JC, Sposito AC. Omega-3 intake is associated with attenuated inflammatory response and cardiac remodeling after myocardial infarction. Nutr J 2019; 18:29. [PMID: 31060562 PMCID: PMC6503367 DOI: 10.1186/s12937-019-0455-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) elicits an intense acute inflammatory response that is essential for cardiac repair. However, an excessive inflammatory response also favors myocardial apoptosis, cardiac remodeling, and cardiovascular mortality. Omega-3 polyunsaturated fatty acids (ω-3) bear anti-inflammatory effects, which may mitigate the inflammatory response during MI. This study investigated whether ω-3 intake is associated with attenuation of the MI-related inflammatory response and cardiac remodeling. METHODS ST-elevation MI (STEMI) patients (n = 421) underwent clinical, biochemical, nutritional, 3D echocardiogram, Cardiac Magnetic Resonance imaging (CMRi) at 30 days and 3D echocardiogram imaging at six months after the MI. Blood tests were performed at day one (D1) and day five (D5) of hospitalization. Changes in inflammatory markers (ΔD5-D1) were calculated. A validated food frequency questionnaire estimated the nutritional consumption and ω-3 intake in the last 3 months before admission. RESULTS The intake of ω-3 below the median (< 1.7 g/day) was associated with a short-term increase in hs-C-reactive protein [OR:1.96(1.24-3.10); p = 0.004], Interleukin-2 [OR:2.46(1.20-5.04); p = 0.014], brain-type natriuretic peptide [OR:2.66(1.30-5.44); p = 0.007], left-ventricle end-diastolic volume [OR:5.12(1.11-23.52)]; p = 0.036] and decreases in left-ventricle ejection fraction [OR:2.86(1.47-6.88); p = 0.017] after adjustment for covariates. No differences were observed in the extension of infarcted mass obtained by CMRi. CONCLUSION These findings suggest that a reduced daily intake of ω-3 may intensify outcome-determining mechanisms after STEMI, such as acute inflammatory response and late left ventricular remodeling. TRIAL REGISTRATION Clinical Trial Registry number and website: NCT02062554 .
Collapse
Affiliation(s)
| | | | | | - Filipe A Moura
- Cardiology Department, State University of Campinas (Unicamp), Campinas, SP, Brazil
- Department of Medicine, Weill-Cornell Medical College, New York, United States
| | - Simone N Santos
- Cardiology Department, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Wilson Nadruz
- Cardiology Department, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Andrei C Sposito
- Cardiology Department, State University of Campinas (Unicamp), Campinas, SP, Brazil.
| |
Collapse
|
27
|
Serum of patients with acute myocardial infarction prevents inflammation in iPSC-cardiomyocytes. Sci Rep 2019; 9:5651. [PMID: 30948775 PMCID: PMC6449343 DOI: 10.1038/s41598-019-42079-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction (MI) evokes a systemic inflammatory response and locally the degradation of the necrotic tissue, followed by scar formation. The mechanisms for containment of the infarct zone are not studied well. The study aimed to examine the response of healthy cardiomyocytes to serum of patients with myocardial infarction. Human iPSC-cardiomyocytes (iPSC-CM) generated from two healthy donors were incubated with serum of patients with MI with and without ventricular fibrillation (VF) or of healthy controls. Different cell adhesion molecules were studied by flow cytometry and immunostaining. Cellular electrophysiology was studied by patch clamp. The cell adhesion molecules CD54/ICAM-1, CD58/LFA-3 and CD321/JAM-A were expressed on iPSC-CM within the plasma membrane. Incubation with serum of MI patients reduced the levels of expression of CD54/ICAM-1 and CD321/JAM-A by 15–20%. VF serum was less effective than serum of MI patients without VF. MI serum or VF serum did not affect resting potential, action potential duration or maximum depolarization velocity. Myocardial infarction serum exerts anti-inflammatory effects on healthy cardiomyocytes without affecting their electrical activity, thus helping to contain the infarct zone and to protect healthy tissue. Ventricular fibrillation during MI drives healthy cardiomyocytes towards a pro-inflammatory phenotype.
Collapse
|
28
|
Liu X, Du H, Chen D, Yuan H, Chen W, Jia W, Wang X, Li X, Gao L. Cyclophilin D deficiency protects against the development of mitochondrial ROS and cellular inflammation in aorta. Biochem Biophys Res Commun 2019; 508:1202-1208. [PMID: 30554656 DOI: 10.1016/j.bbrc.2018.12.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Inflammation and oxidative stress are closely correlated in the pathology of cardiovascular disease. Mitochondrial cyclophilin D (CypD), the important modulator for mPTP opening, is increasingly recognized as a key regulator of cellular ROS generation. Besides, its association with cell inflammation is also being discovered. However, the effects of CypD in modulating vascular inflammatory response is unknown. We sought to investigate whether CypD deficiency attenutes vascular inflammation under physical conditions. METHODS AND RESULTS We adopted CypD KO mouse and their littermate controls to observe the effects of CypD deficiency on aortic mitochondrial functions and vascular inflammation. As we found in our study, we confirmed that under physical conditions, CypD deficiency enhanced mouse whole body metabolic status, increased aortic mitochondrial complex III activity and decreased mitochondrial ROS generation. Functionally, CypD deficiency also attenuated inflammatory molecules expression, including VCAM-1, IL-6 and TNF-α in mouse aorta. CONCLUSIONS Our results review that mitochondrial CypD is involved in the regulation of inflammation in aorta and provide insights that blocking mitochondrial CypD enhances vascular resistance to inflammatory injuries.
Collapse
Affiliation(s)
- Xiaojing Liu
- Deparment of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, 250021, China
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Dan Chen
- Deparment of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; Department of Electrocardiographic, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Hai Yuan
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Wenyu Jia
- Deparment of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, 250021, China
| | - Xiaolei Wang
- Deparment of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, 250021, China
| | - Xia Li
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, Shandong, 250021, China.
| | - Ling Gao
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, 250021, China; Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
29
|
Zhang Y, Cao Y, Xin L, Gao N, Liu B. Association between rs1800629 polymorphism in tumor necrosis factor-α gene and dilated cardiomyopathy susceptibility: Evidence from case-control studies. Medicine (Baltimore) 2018; 97:e13386. [PMID: 30557992 PMCID: PMC6320213 DOI: 10.1097/md.0000000000013386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Several published studies have investigated the association between the -308G/A (rs1800629) polymorphism in the tumor necrosis factor-α (TNF-α) gene and the risk of dilated cardiomyopathy (DCM). However, the TNF-α gene polymorphism has a controversial role in the pathogenesis of DCM among different populations. In the present study, a meta-analysis was performed to resolve this inconsistency. METHODS Potentially eligible papers reporting an association between the TNF-α rs1800629 polymorphism and DCM susceptibility were searched in 4 databases including PubMed, EMBASE, Chinese Biomedical Database (CBM), and the Cochrane Library up to April 1, 2018. The odds ratio (OR) with its 95% confidence interval (CI) was used to estimate the strength of the associations. Subgroup analysis based on the ethnicity, studies with or without ischemic and valvular DCM was conducted. Publication bias detection was conducted using Begg test. RESULTS Nine papers detailing case-control studies were included, reporting a total of 1339 DCM cases and 1677 healthy controls. The meta-analysis results indicated that TNF-α rs1800629 was associated with increased DCM susceptibility in the populations studied under the heterozygous model (AG vs GG: OR = 1.91, 95% CI = 1.05-3.50, P = .035) and dominant model (AG + AA vs GG: OR = 1.87, 95% CI = 1.01-3.45, P = .046). In the subgroup analysis for ethnicity, rs1800629 polymorphism was significantly associated with the susceptibility of DCM for Asians under the 5 models (A vs G: OR = 2.87, 95% CI = 1.56-5.30, P = .001; AA vs GG: OR = 3.95, 95% CI = 1.13-13.82, P = 0.031; AG vs GG: OR = 3.8, 95% CI = 1.57-9.19, P = .003; AA vs GG + AG: OR = 2.51, 95% CI = 1.41-4.49, P = .002; AG + AA vs GG: OR = 3.77, 95% CI = 1.54-9.20, P = .004). CONCLUSION There may be a moderate association between TNF-α rs1800629 polymorphism and DCM susceptibility in the whole populations studied; however, TNF-α rs1800629 polymorphism was significantly associated with the susceptibility of DCM for Asians, which indicates that such associations may be different between ethnicities.
Collapse
|
30
|
Sun Q, Wang K, Pan M, Zhou J, Qiu X, Wang Z, Yang Z, Chen Y, Shen H, Gu Q, Fang L, Zhang G, Bai Y. A minimally invasive approach to induce myocardial infarction in mice without thoracotomy. J Cell Mol Med 2018; 22:5208-5219. [PMID: 30589494 PMCID: PMC6201221 DOI: 10.1111/jcmm.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of morbidity and mortality in the world. Traditional method to induce MI by left coronary artery (LCA) ligation is typically performed by an invasive approach that requires ventilation and thoracotomy, causing serious injuries in animals undergoing this surgery. We attempted to develop a minimally invasive method (MIM) to induce MI in mice. Under the guide of ultrasound, LCA ligation was performed in mice without ventilation and chest-opening. Compared to sham mice, MIM induced MI in mice as determined by triphenyltetrazolium chloride staining and Masson staining. Mice with MIM surgery revealed the reductions of LVEF, LVFS, E/A and ascending aorta (AAO) blood flow, and the elevations of S-T segment and serum cTn-I levels at 24 post-operative hours. The effects of MI induced by MIM were comparable to the effects of MI produced by traditional method in mice. Importantly, MIM increased the survival rates and caused less inflammation after the surgery of LCA ligation, compared to the surgery of traditional method. Further, MIM induced angiogenesis and apoptosis in ischaemic hearts from mice at postoperative 28 days as similarly as traditional method did. Finally, the MIM model was able to develop into the myocardial ischaemia/reperfusion model by using a balloon catheter with minor modifications. The MI model is able to be efficiently induced by a minimally invasive approach in mice without ventilation and chest-opening. This new model is potentially to be used in studying ischaemia-related heart diseases.
Collapse
Affiliation(s)
- Quan Sun
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Kang‐Kai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Miao Pan
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Ji‐Peng Zhou
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Xue‐Ting Qiu
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen‐Yu Wang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen Yang
- Department of Hypertension and Vascular Diseasethe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yan Chen
- Department of HematologyXiangya HospitalCentral South UniversityChangshaChina
| | - Hong Shen
- Institute of Medical SciencesXiangya HospitalCentral South UniversityChangshaChina
| | - Qi‐Lin Gu
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Long‐Hou Fang
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Guo‐Gang Zhang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Yong‐Ping Bai
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|
31
|
Tao Z, Tan S, Chen W, Chen X. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J Cardiovasc Transl Res 2018; 11:403-411. [PMID: 30324254 DOI: 10.1007/s12265-018-9823-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Shihua Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Association of matrix metalloproteinase 3 and endogenous inhibitors with inflammatory markers in mitral valve disease and calcification. Mol Biol Rep 2018; 45:2135-2143. [PMID: 30302620 DOI: 10.1007/s11033-018-4372-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
Calcific mitral valve stenosis (MVS) is a common disease characterized by extensive remodeling of the extracellular matrix via matrix metalloproteinases (MMPs). The mechanism of calcification due to extensive matrix remodeling remains unclear. In this study, we investigated the relationship between MMP-3, tissue inhibitors of metalloproteinases (TIMPs) as well as pro-inflammatory cytokines and the phenomenon of calcification in MVS. 212 patients having rheumatic mitral stenosis (RMS) and 155 healthy control subjects were recruited in the Cardiology Department of La Rabta Hospital University. Levels of MMP-3, TIMPs, IL-6 and TNF-α were measured by ELISA sandwich assay, hs-CRP was measured by immunoturbidimetry. Plasma levels of MMP-3, TIMP-1 and MMP-3/TIMP-2 ratio were lower only in RMS women in comparison to the control group. Calcification degree correlated positively with MMP-3 in women and men. In addition, calcification was correlated positively with MMP-3/TIMPs ratio in women patients. The inflammatory parameters were positively associated with extracellular matrix turnover biomarkers in men patients. In patients, the level of MMP-3 was increased in men and women with a calcification score ≥ 5. In addition, MMP-3 level predicted the occurrence of calcification. At ROC curves analysis, the cut-off MMP-3 level was in women was 9.21 ng/ml (sensitivity 51.1%, specificity 89.3%) and in men was 12.84 ng/ml (sensitivity 78.6%, specificity 77.8%). The high levels of MMP-3 and the biomarkers of inflammation contribute to valvular remodeling and calcification of the mitral valve.
Collapse
|
33
|
Muller J, Baeyens A, Dustin ML. Tumor Necrosis Factor Receptor Superfamily in T Cell Priming and Effector Function. Adv Immunol 2018; 140:21-57. [PMID: 30366518 DOI: 10.1016/bs.ai.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) and their ligands mediate lymphoid tissue development and homeostasis in addition to key aspects of innate and adaptive immune responses. T cells of the adaptive immune system express a number of TNFRSF members that are used to receive signals at different instructive stages and produce several tumor necrosis factor superfamily (TNFSF) members as effector molecules. There is also one example of a TNFRSF member serving as a ligand for negative regulatory checkpoint receptors. In most cases, the ligands in afferent and efferent phases are membrane proteins and thus the interaction with TNFRSF members must take place in immunological synapses and other modes of cell-cell interaction. A particular feature of the TNFRSF-mediated signaling is the prominent use of linear ubiquitin chains as scaffolds for signaling complexes that activate nuclear factor κ-B and Fos/Jun transcriptional regulators. This review will focus on the signaling mechanisms triggered by TNFRSF members in their role as costimulators of early and late phases of T cell instruction and the delivery mechanism of TNFSF members through the immunological synapses of helper and cytotoxic effector cells.
Collapse
Affiliation(s)
- James Muller
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Audrey Baeyens
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States; Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
34
|
Najjar F, Ahmad M, Lagace D, Leenen FHH. Sex differences in depression-like behavior and neuroinflammation in rats post-MI: role of estrogens. Am J Physiol Heart Circ Physiol 2018; 315:H1159-H1173. [PMID: 30052050 DOI: 10.1152/ajpheart.00615.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with heart failure (HF) have a high prevalence of depression associated with a worse prognosis, particularly in older women. The present study evaluated whether sex and estrogens affect depression-like behavior and associated neuroinflammation induced by myocardial infarction (MI) in rats. MI was induced by occlusion of the left anterior descending artery in young adult male and female Wistar rats or in ovariectomized (OVX) female rats without and with estrogen [17β-estradiol (E2)] replacement. MI groups showed a comparable degree of cardiac dysfunction. Eight weeks post-MI, male rats with HF exhibited depression-like behaviors, including anhedonia and higher immobility in the sucrose preference and forced swim tests, which were not observed in female rats with HF. In the cued fear conditioning test, male but not female rats with HF froze more than sham rats. After OVX, female sham rats developed mild depression-like behaviors that were pronounced in OVX female rats post-MI and were largely prevented by E2 replacement. Cytokine levels in the plasma and paraventricular nucleus increased in both sexes with HF, but only male rats with HF showed an increase in cytokine levels in the prefrontal cortex. OVX alone did not affect cytokine levels, but OVX-MI caused significant increases in the prefrontal cortex, which were shifted to an anti-inflammatory pattern by E2 replacement. These results suggest that estrogens prevent depression-like behavior induced by HF post-MI in young adult female rats by inhibiting proinflammatory cytokine production and actions in the prefrontal cortex. NEW & NOTEWORTHY In contrast to male rats, female rats with heart failure after myocardial infarction do not develop depression-like behavior or increases in prefrontal cortex cytokines. However, after ovariectomy, female rats exhibit similar changes, which are prevented by 17β-estradiol replacement. Neuroinflammation in the prefrontal cortex in male subjects may contribute to depression-like behavior, whereas its estrogen-dependent absence in female subjects may protect against depression.
Collapse
Affiliation(s)
- Fatimah Najjar
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| | - Diane Lagace
- Department of Cellular and Molecular Medicine and Neuroscience Program, University of Ottawa Brain and Mind Institute , Ottawa, Ontario , Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| |
Collapse
|
35
|
Como CN, Pearce CM, Cohrs RJ, Baird NL. Interleukin-6 and type 1 interferons inhibit varicella zoster virus replication in human neurons. Virology 2018; 522:13-18. [PMID: 29979960 DOI: 10.1016/j.virol.2018.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus that, following primary infection (varicella), establishes latency in sensory, autonomic, sympathetic and parasympathetic neurons, where it remains until reactivation (zoster). VZV-specific cell-mediated immune responses maintain VZV latency; thus, immunosuppressed and elderly persons are at risk of reactivation and associated neurological diseases. However, the cytokines produced by the immune system that control VZV in neurons are largely unknown. Therefore, to better understand how the immune system may restrict VZV in neurons, we studied interleukin-6, tumor necrosis factor-alpha and type 1 interferons for their ability to inhibit VZV replication in human neurons in vitro. Our studies revealed that VZV transcription and viral spread were significantly reduced by interleukin-6 and type 1 interferons, and to a lesser extent by tumor necrosis factor-alpha. These findings will help in understanding how the innate immune system limits virus replication in neurons in vivo.
Collapse
Affiliation(s)
- Christina N Como
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Catherine M Pearce
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Randall J Cohrs
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas L Baird
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
36
|
Raj P, McCallum JL, Kirby C, Grewal G, Yu L, Wigle JT, Netticadan T. Effects of cyanidin 3-0-glucoside on cardiac structure and function in an animal model of myocardial infarction. Food Funct 2018; 8:4089-4099. [PMID: 28990610 DOI: 10.1039/c7fo00709d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cyanidin 3-0-glucoside (CG) is a polyphenol with potential health benefits. In this study, we investigated, for the first time, the cardioprotective effects of CG in an animal model of myocardial infarction (MI), a major cause of death worldwide. Sham and MI rats were administered CG (10 mg kg-1 day-1) daily for one week prior to surgery, and 8 weeks post-surgery. Echocardiography was performed to assess cardiac structure and function at 4 and 8 weeks. At 4 weeks, MI rats had significantly lower body mass when compared to control rats, and CG administration significantly prevented this decrease. Four-week MI rats also showed significantly increased left ventricle dilation, end systolic and end diastolic volumes in comparison to controls, and CG significantly prevented these adverse changes. Ejection fraction was significantly lower in 4-week MI rats in comparison to controls, and CG had no effect on this parameter. At 8 weeks, body mass was significantly lower in MI rats when compared to control rats, and CG significantly prevented this decrease. At 8 weeks, MI rats showed a significant increase in left ventricle dilation and isovolumic relaxation time, while ejection fraction was significantly lower when compared to controls; these parameters were not altered by CG treatment. Eight-week MI rats had significantly higher level of oxidative stress in heart tissue in comparison to controls, and CG administration did not prevent this increase. In conclusion, administration of CG was able to significantly preserve body mass in both 4 and 8 weeks MI rats, as well as significantly prevent cardiac dilation in 4 weeks MI rats. However, CG was unable to sustain this cardioprotection, as cardiac structure and function were not significantly improved in 8 weeks MI rats.
Collapse
Affiliation(s)
- Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Gabriel-Costa D. The pathophysiology of myocardial infarction-induced heart failure. ACTA ACUST UNITED AC 2018; 25:277-284. [PMID: 29685587 DOI: 10.1016/j.pathophys.2018.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/14/2018] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is a multifactorial disorder and is usually the end stage of many cardiovascular diseases (CVD). HF presents one of the highest morbidity and mortality indices worldwide and high costs to public health organizations. Myocardial infarction (MI) is the most prevalent CVD in the Western world and leads to HF when its management is inadequate. It has a destructive potential for heart cells and abruptly reduces the cardiac output, a clinical condition known as heart dysfunction that might progress to HF. Many acute and chronic adaptations occur due to MI that progress to HF, e.g., neurohumoral hyperactivity, inflammatory response and cardiac remodeling. Herein, we reviewed in simplistic manner the processes involved in setting of MI until the establishment of HF.
Collapse
Affiliation(s)
- Daniele Gabriel-Costa
- Universidade da Força Aérea, Instituto de Ciências da Atividade Física, Programa de Pós-Graduação em Desempenho Humano Operacional, Rio de Janeiro, RJ, Brasil.
| |
Collapse
|
38
|
Zou H, Li R, Hu H, Hu Y, Chen X. Modulation of Regulatory T Cell Activity by TNF Receptor Type II-Targeting Pharmacological Agents. Front Immunol 2018; 9:594. [PMID: 29632537 PMCID: PMC5879105 DOI: 10.3389/fimmu.2018.00594] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
There is now compelling evidence that tumor necrosis factor (TNF)-TNF receptor type II (TNFR2) interaction plays a decisive role in the activation, expansion, and phenotypical stability of suppressive CD4+Foxp3+ regulatory T cells (Tregs). In an effort to translate this basic research finding into a therapeutic benefit, a number of agonistic or antagonistic TNFR2-targeting biological agents with the capacity to activate or inhibit Treg activity have been developed and studied. Recent studies also show that thalidomide analogs, cyclophosphamide, and other small molecules are able to act on TNFR2, resulting in the elimination of TNFR2-expressing Tregs. In contrast, pharmacological agents, such as vitamin D3 and adalimumab, were reported to induce the expansion of Tregs by promoting the interaction of transmembrane TNF (tmTNF) with TNFR2. These studies clearly show that TNFR2-targeting pharmacological agents represent an effective approach to modulating the function of Tregs and thus may be useful in the treatment of major human diseases such as autoimmune disorders, graft-versus-host disease (GVHD), and cancer. In this review, we will summarize and discuss the latest progress in the study of TNFR2-targeting pharmacological agents and their therapeutic potential based on upregulation or downregulation of Treg activity.
Collapse
Affiliation(s)
- Huimin Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ruixin Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
39
|
Li H, Anderson SK. Association of TNFRSF1B Promoter Polymorphisms with Human Disease: Further Studies Examining T-Regulatory Cells Are Required. Front Immunol 2018; 9:443. [PMID: 29559979 PMCID: PMC5845690 DOI: 10.3389/fimmu.2018.00443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
The TNFR2 receptor is expressed by highly active regulatory T cells, and thus constitutes an important therapeutic target for the treatment of autoimmune disease and cancer. Disease susceptibility as well as the potential response to therapies directed at TNFR2 could be significantly impacted by genetic variation in the promoter of the TNFRSF1B gene that codes for the TNFR2 protein. To date, only a few studies have examined the association of TNFRSF1B promoter variation with disease, and the potential impact on T-regulatory cell (Treg) number and function has not been examined. We propose that copy number variation of a key transcription factor binding site has a significant effect on TNFRSF1B promoter activity, and should be considered in studies of disease susceptibility and especially with regard to variation in the level of TNFR2 expression on Tregs.
Collapse
Affiliation(s)
- Hongchuan Li
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Stephen K. Anderson
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
40
|
Farcaş AD, Rusu A, Stoia MA, Vida-Simiti LA. Plasma leptin, but not resistin, TNF-α and adiponectin, is associated with echocardiographic parameters of cardiac remodeling in patients with coronary artery disease. Cytokine 2018; 103:46-49. [PMID: 29324260 DOI: 10.1016/j.cyto.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/17/2017] [Accepted: 01/02/2018] [Indexed: 01/16/2023]
Abstract
The aim of this research was to assess the relationship between plasma adiponectin, leptin, resistin, tumor necrosis factor alpha (TNF-α) levels and echocardiographic parameters of ventricular remodeling in patients with coronary artery disease, without acute myocardial infarction. The study population consisted of 49 patients with echocardiographic measurements performed. After adjustment for age, gender, body mass index, systolic and diastolic blood pressure, and glycaemia, adiponectin was statistically significant associated with interventricular septum thickness (β = -0.304), left ventricular posterior wall thickness (β = -0.402), left ventricular end diastolic diameter (LVEDD; β = 0.385) and left ventricular relative wall thickness (β = -0.448, p < .05 for all). The associations were no longer significant when only patients without diabetes were included in the analysis. Leptin was associated with LVEDD (β = -0.354) and left ventricular relative wall thickness (β = 0.385, p < .05 for all). No associations between resistin, TNF-α and echocardiographic left ventricular parameters assessed were found in these patients. In conclusion, in patients with coronary artery disease and without acute myocardial infarction leptin may represent a potential mechanism of adverse cardiac remodeling. Resistin and TNF-α might not be involved in ventricular remodeling in these patients.
Collapse
Affiliation(s)
- Anca Daniela Farcaş
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Adriana Rusu
- Department of Diabetes and Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 4-6 Clinicilor Street, 400006 Cluj-Napoca, Romania.
| | - Mirela Anca Stoia
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Luminiţa Animarie Vida-Simiti
- Internal Medicine Department, "Iuliu Haţieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| |
Collapse
|
41
|
TNFR signalling and its clinical implications. Cytokine 2018; 101:19-25. [DOI: 10.1016/j.cyto.2016.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 01/05/2023]
|
42
|
Selvasandran K, Makhoul G, Jaiswal PK, Jurakhan R, Li L, Ridwan K, Cecere R. A Tumor Necrosis Factor-α and Hypoxia-Induced Secretome Therapy for Myocardial Repair. Ann Thorac Surg 2017; 105:715-723. [PMID: 29258676 DOI: 10.1016/j.athoracsur.2017.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/23/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Poor viability and retention of transplanted bone marrow mesenchymal stem cells (BM-MSC) remains an obstacle in promoting healing after myocardial infarction (MI). This study aimed to understand the migratory, angiogenic, and cardioprotective effects induced by tumor necrosis factor (TNF)-α and hypoxia through rat BM-MSC (rBM-MSC) paracrine secretions, collectively referred to as secretome, after MI. METHODS Secretome from rBM-MSC cultures treated with various combinations of H9c2 cardiomyoblast-conditioned medium, TNF-α, and hypoxia was initially collected. Immunocytochemistry, Western blot analyses, and transwell cell migration assays were conducted. In vivo, echocardiography was performed on rats with induced MI after their treatment with TNF-α and hypoxia-induced secretome. RESULTS Immunocytochemistry confirmed the presence of TNF receptors 1 and 2 on rBM-MSCs. Western blot analyses of rBM-MSCs treated with TNF-α and hypoxia showed an overall increasing trend in the expression of antiinflammatory proteins and angiogenic and migratory cytokines (transforming growth factor-β, fibroblast growth factor-2, angiopoietin-2, vascular endothelial growth factor-1). In addition, the TNF-α and hypoxia-induced secretome significantly increased the in vitro rBM-MSCs migration. In the rat MI model, the rats treated with the TNF-α and hypoxia-induced secretome had a significantly higher left ventricular fractional shortening than the control group. CONCLUSIONS Our data suggest that after MI, rBM-MSCs secrete paracrine factors in response to TNF-α and hypoxia that work together to manipulate the microenvironment and decrease inflammation. In addition, these signaling factors trigger angiogenic and migratory effects at the site of the infarct to promote myocardial healing and improve the cardiac function.
Collapse
Affiliation(s)
- Kaviyanka Selvasandran
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Georges Makhoul
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Prashant K Jaiswal
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rishi Jurakhan
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Li Li
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Khalid Ridwan
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada; Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Renzo Cecere
- Department of Experimental Surgery, McGill University Health Centre, Montreal, Quebec, Canada; Division of Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
43
|
Fadda LM, Attia HA, Al-Rasheed NM, Ali HM, Al-Rasheed NM. Roles of some antioxidants in modulation of cardiac myopathy induced by sodium nitrite via down-regulation of mRNA expression of NF-κB, Bax, and flt-1 and suppressing DNA damage. Saudi Pharm J 2017; 26:217-223. [PMID: 30166919 PMCID: PMC6111199 DOI: 10.1016/j.jsps.2017.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/10/2017] [Indexed: 12/30/2022] Open
Abstract
The underlying pathology of cardiac damage involves various molecular and signaling pathways. Therefore, this study aimed to explore the role of Quercetin (Querc), alone or in combination with Melatonin (Melat) against cardiac damage induced by sodium nitrite (Sod nit), as well as to elucidate different signaling pathways. Querc and Melat were injected intraperitoneally (i.p.), followed by induction of hypoxia in rats by using a single dose of Sod nit (60 mg/kg, s.c.). Treatment with Sod nit significantly decreased hemoglobin (Hb) levels in blood. Pretreatment of hypoxic rats with Querc and/or Melat elevated the declined Hb concentration. The forementioned antioxidants also successfully ameliorated the alteration of heat shock protein 70 (HSP-70) and markers of cardiac injury, including troponin T (Trop. T), creatine kinase-MB (CK-MB), tumor necrosis factor-α (TNF α), and C-reactive protein (CRP) in the rats serum. Furthermore, RT-PCR revealed that these antioxidants successfully modulated mRNA expression of NF-κB, Bax, Bcl-2, and flt-1. They also regulated vascular endothelial growth factor (VEGF), the apoptosis marker caspase 3, and oxidative DNA damage in cardiac tissue, compared to Sod nit-intoxicated rats. The present biochemical results are reinforced by histopathological examination. IN CONCLUSION The results reflected that treatment with Querc in combination with Melat was most effective in improving Sod nit-toxicity induced cardiac damage, thus confirming the promising role of this combination as an effective treatment for cardiac damage induced by other cardio-toxic agents.
Collapse
Affiliation(s)
- Laila Mohamed Fadda
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hala A Attia
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Hanaa Mahmoud Ali
- Department of Genetics and Cytology, National Research Center, Dokki, Egypt.,Common First Year Deanship, King Saud University, Riyadh, Saudi Arabia
| | - Nawal Mohamed Al-Rasheed
- Pharmacology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Effect of Losartan on Mitral Valve Changes After Myocardial Infarction. J Am Coll Cardiol 2017; 70:1232-1244. [PMID: 28859786 DOI: 10.1016/j.jacc.2017.07.734] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/26/2017] [Accepted: 07/04/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND After myocardial infarction (MI), mitral valve (MV) tethering stimulates adaptive leaflet growth, but counterproductive leaflet thickening and fibrosis augment mitral regurgitation (MR), doubling heart failure and mortality. MV fibrosis post-MI is associated with excessive endothelial-to-mesenchymal transition (EMT), driven by transforming growth factor (TGF)-β overexpression. In vitro, losartan-mediated TGF-β inhibition reduces EMT of MV endothelial cells. OBJECTIVES This study tested the hypothesis that profibrotic MV changes post-MI are therapeutically accessible, specifically by losartan-mediated TGF-β inhibition. METHODS The study assessed 17 sheep, including 6 sham-operated control animals and 11 with apical MI and papillary muscle retraction short of producing MR; 6 of the 11 were treated with daily losartan, and 5 were untreated, with flexible epicardial mesh comparably limiting left ventricular (LV) remodeling. LV volumes, tethering, and MV area were quantified by using three-dimensional echocardiography at baseline and at 60 ± 6 days, and excised leaflets were analyzed by histopathology and flow cytometry. RESULTS Post-MI LV dilation and tethering were comparable in the losartan-treated and untreated LV constraint sheep. Telemetered sensors (n = 6) showed no significant losartan-induced changes in arterial pressure. Losartan strongly reduced leaflet thickness (0.9 ± 0.2 mm vs. 1.6 ± 0.2 mm; p < 0.05; 0.4 ± 0.1 mm sham animals), TGF-β, and downstream phosphorylated extracellular-signal-regulated kinase and EMT (27.2 ± 12.0% vs. 51.6 ± 11.7% α-smooth muscle actin-positive endothelial cells, p < 0.05; 7.2 ± 3.5% sham animals), cellular proliferation, collagen deposition, endothelial cell activation (vascular cell adhesion molecule-1 expression), neovascularization, and cells positive for cluster of differentiation (CD) 45, a hematopoietic marker associated with post-MI valve fibrosis. Leaflet area increased comparably (17%) in constrained and losartan-treated sheep. CONCLUSIONS Profibrotic changes of tethered MV leaflets post-MI can be modulated by losartan without eliminating adaptive growth. Understanding the cellular and molecular mechanisms could provide new opportunities to reduce ischemic MR.
Collapse
|
45
|
Peng KY, Liu YH, Li YW, Yen BL, Yen ML. Extracellular matrix protein laminin enhances mesenchymal stem cell (MSC) paracrine function through αvβ3/CD61 integrin to reduce cardiomyocyte apoptosis. J Cell Mol Med 2017; 21:1572-1583. [PMID: 28600799 PMCID: PMC5543513 DOI: 10.1111/jcmm.13087] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022] Open
Abstract
Myocardial ischaemia (MI) results in extensive cardiomyocyte death and reactive oxygen species (ROS)-induced damage in an organ with little or no regenerative capacity. Although the use of adult bone marrow mesenchymal stem cells (BMMSCs) has been proposed as a treatment option, the high cell numbers required for clinical use are difficult to achieve with this source of MSCs, and animal studies have produced inconsistent data. We recently demonstrated in small and large animal models of acute MI that the application of human term placenta-derived multipotent cells (PDMCs), a foetal-stage MSC, resulted in reversal of cardiac injury with therapeutic efficacy. However, the mechanisms involved are unclear, making it difficult to strategize for therapeutic improvements. We found that PDMCs significantly reduced cardiomyocyte apoptosis and ROS production through the paracrine factors GRO-α, HGF and IL-8. Moreover, culturing PDMCs on plates coated with laminin, an extracellular matrix (ECM) protein, resulted in significantly enhanced secretion of all three paracrine factors, which further reduced cardiomyocyte apoptosis. The enhancement of PDMC paracrine function by laminin was mediated through αvβ3 integrin, with involvement of the signalling pathways of JNK, for GRO-α and IL-8 secretion, and PI3K/AKT, for HGF secretion. Our results demonstrated the utility of PDMC therapy to reduce cardiomyocyte apoptosis through modulation of ECM proteins in in vitro culture systems as a strategy to enhance the therapeutic functions of stem cells.
Collapse
Affiliation(s)
- Kai-Yen Peng
- Department of Life Science, National Central University, Jhongli, Taiwan.,Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yuan-Hung Liu
- Section of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, Pan Chiao, New Taipei City, Taiwan
| | - Yu-Wei Li
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Betty Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
46
|
Zhu Y, Chai YL, Hilal S, Ikram MK, Venketasubramanian N, Wong BS, Chen CP, Lai MKP. Serum IL-8 is a marker of white-matter hyperintensities in patients with Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 7:41-47. [PMID: 28239640 PMCID: PMC5318538 DOI: 10.1016/j.dadm.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Neuroinflammation and cerebrovascular disease (CeVD) have been implicated in cognitive impairment and Alzheimer's disease (AD). The present study aimed to examine serum inflammatory markers in preclinical stages of dementia and in AD, as well as to investigate their associations with concomitant CeVD. METHODS We performed a cross-sectional case-control study including 96 AD, 140 cognitively impaired no dementia (CIND), and 79 noncognitively impaired participants. All subjects underwent neuropsychological and neuroimaging assessments, as well as collection of blood samples for measurements of serum samples interleukin (IL)-6, IL-8, and tumor necrosis factor α levels. Subjects were classified as CIND or dementia based on clinical criteria. Significant CeVD, including white-matter hyperintensities (WMHs), lacunes, and cortical infarcts, was assessed by magnetic resonance imaging. RESULTS After controlling for covariates, higher concentrations of IL-8, but not the other measured cytokines, were associated with both CIND and AD only in the presence of significant CeVD (CIND with CeVD: odds ratios [ORs] 4.53; 95% confidence interval [CI] 1.5-13.4 and AD with CeVD: OR 7.26; 95% CI 1.2-43.3). Subsequent multivariate analyses showed that among the types of CeVD assessed, only WMH was associated with higher IL-8 levels in CIND and AD (WMH: OR 2.81; 95% CI 1.4-5.6). DISCUSSION Serum IL-8 may have clinical utility as a biomarker for WMH in AD. Longitudinal follow-up studies would help validate these findings.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Narayanaswamy Venketasubramanian
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore
| | - Boon-Seng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| |
Collapse
|
47
|
Protective effects of high-intensity versus low-intensity interval training on isoproterenol-induced cardiac injury in wistar rats. Res Cardiovasc Med 2017. [DOI: 10.5812/cardiovascmed.34639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol Cell Biochem 2016; 424:123-145. [PMID: 27766529 DOI: 10.1007/s11010-016-2849-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 01/15/2023]
Abstract
Heart disease causing cardiac cell death due to ischemia-reperfusion injury is a major cause of morbidity and mortality in the United States. Coronary heart disease and cardiomyopathies are the major cause for congestive heart failure, and thrombosis of the coronary arteries is the most common cause of myocardial infarction. Cardiac injury is followed by post-injury cardiac remodeling or fibrosis. Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium and results in both systolic and diastolic dysfunctions. It has been suggested by both experimental and clinical evidence that fibrotic changes in the heart are reversible. Hence, it is vital to understand the mechanism involved in the initiation, progression, and resolution of cardiac fibrosis to design anti-fibrotic treatment modalities. Animal models are of great importance for cardiovascular research studies. With the developing research field, the choice of selecting an animal model for the proposed research study is crucial for its outcome and translational purpose. Compared to large animal models for cardiac research, the mouse model is preferred by many investigators because of genetic manipulations and easier handling. This critical review is focused to provide insight to young researchers about the various mouse models, advantages and disadvantages, and their use in research pertaining to cardiac fibrosis and hypertrophy.
Collapse
|
49
|
van Diepen S, Alemayehu WG, Zheng Y, Theroux P, Newby LK, Mahaffey KW, Granger CB, Armstrong PW. Temporal changes in biomarkers and their relationships to reperfusion and to clinical outcomes among patients with ST segment elevation myocardial infarction. J Thromb Thrombolysis 2016; 42:376-85. [DOI: 10.1007/s11239-016-1390-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Wu T, Ding H, Han J, Arriens C, Wei C, Han W, Pedroza C, Jiang S, Anolik J, Petri M, Sanz I, Saxena R, Mohan C. Antibody-Array-Based Proteomic Screening of Serum Markers in Systemic Lupus Erythematosus: A Discovery Study. J Proteome Res 2016; 15:2102-14. [PMID: 27211902 DOI: 10.1021/acs.jproteome.5b00905] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A discovery study was carried out where serum samples from 22 systemic lupus erythematosus (SLE) patients and matched healthy controls were hybridized to antibody-coated glass slide arrays that interrogated the level of 274 human proteins. On the basis of these screens, 48 proteins were selected for ELISA-based validation in an independent cohort of 28 SLE patients. Whereas AXL, ferritin, and sTNFRII were significantly elevated in patients with active lupus nephritis (LN) relative to SLE patients who were quiescent, other molecules such as OPN, sTNFRI, sTNFRII, IGFBP2, SIGLEC5, FAS, and MMP10 exhibited the capacity to distinguish SLE from healthy controls with ROC AUC exceeding 90%, all with p < 0.001 significance. These serum markers were next tested in a cohort of 45 LN patients, where serum was obtained at the time of renal biopsy. In these patients, sTNFRII exhibited the strongest correlation with eGFR (r = -0.50, p = 0.0014) and serum creatinine (r = 0.57, p = 0.0001), although AXL, FAS, and IGFBP2 also correlated with these clinical measures of renal function. When concurrent renal biopsies from these patients were examined, serum FAS, IGFBP2, and TNFRII showed significant positive correlations with renal pathology activity index, while sTNFRII displayed the highest correlation with concurrently scored renal pathology chronicity index (r = 0.57, p = 0.001). Finally, in a longitudinal cohort of seven SLE patients examined at ∼3 month intervals, AXL, ICAM-1, IGFBP2, SIGLEC5, sTNFRII, and VCAM-1 demonstrated the ability to track with concurrent disease flare, with significant subject to subject variation. In summary, serum proteins have the capacity to identify patients with active nephritis, flares, and renal pathology activity or chronicity changes, although larger longitudinal cohort studies are warranted.
Collapse
Affiliation(s)
- Tianfu Wu
- Department Biomedical Engineering, University of Houston , Houston, Texas 77204, United States
| | - Huihua Ding
- Department Biomedical Engineering, University of Houston , Houston, Texas 77204, United States
| | - Jie Han
- Division of Nephrology/Rheumatology, UT Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| | - Cristina Arriens
- Division of Nephrology/Rheumatology, UT Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| | - Chungwen Wei
- Division of Rheumatology, Emory University , Atlanta, Georgia 30322, United States
| | - Weilu Han
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston , Houston, Texas 77030, United States
| | - Shan Jiang
- Department Biomedical Engineering, University of Houston , Houston, Texas 77204, United States
| | - Jennifer Anolik
- Division of Rheumatology, University of Rochester , Rochester, New York 14642, United States
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University Medical School , Baltimore, Mississippi 21205, United States
| | - Ignacio Sanz
- Division of Rheumatology, Emory University , Atlanta, Georgia 30322, United States
| | - Ramesh Saxena
- Division of Nephrology/Rheumatology, UT Southwestern Medical Center at Dallas , Dallas, Texas 75390, United States
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston , Houston, Texas 77204, United States
| |
Collapse
|