1
|
Dangudubiyyam SV, Bosse B, Yadav P, Song R, Hofmann A, Mishra JS, Kumar S. Restoring Angiotensin Type 2 Receptor Function Reverses PFOS-Induced Vascular Hyper-Reactivity and Hypertension in Pregnancy. Int J Mol Sci 2023; 24:14180. [PMID: 37762482 PMCID: PMC10531530 DOI: 10.3390/ijms241814180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Perfluorooctane sulfonic acid (PFOS) exposure during pregnancy induces hypertension with decreased vasodilatory angiotensin type-2 receptor (AT2R) expression and impaired vascular reactivity and fetal weights. We hypothesized that AT2R activation restores the AT1R/AT2R balance and reverses gestational hypertension by improving vascular mechanisms. Pregnant Sprague-Dawley rats were exposed to PFOS through drinking water (50 μg/mL) from gestation day (GD) 4-20. Controls received drinking water with no detectable PFOS. Control and PFOS-exposed rats were treated with AT2R agonist Compound 21 (C21; 0.3 mg/kg/day, SC) from GD 15-20. In PFOS dams, blood pressure was higher, blood flow in the uterine artery was reduced, and C21 reversed these to control levels. C21 mitigated the heightened contraction response to Ang II and enhanced endothelium-dependent vasorelaxation in uterine arteries of PFOS dams. The observed vascular effects of C21 were correlated with reduced AT1R levels and increased AT2R and eNOS protein levels. C21 also increased plasma bradykinin production in PFOS dams and attenuated the fetoplacental growth restriction. These data suggest that C21 improves the PFOS-induced maternal vascular dysfunction and blood flow to the fetoplacental unit, providing preclinical evidence to support that AT2R activation may be an important target for preventing or treating PFOS-induced adverse maternal and fetal outcomes.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Bradley Bosse
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA;
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (S.V.D.); (P.Y.); (R.S.); (A.H.); (J.S.M.)
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA;
| |
Collapse
|
2
|
Fouda AY, Ahmed HA, Pillai B, Kozak A, Hardigan T, Ergul A, Fagan SC, Ishrat T. Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke. Neurochem Int 2022; 158:105375. [PMID: 35688299 PMCID: PMC9719365 DOI: 10.1016/j.neuint.2022.105375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 01/16/2023]
Abstract
We and others have previously shown that angiotensin II receptor type 2 receptor (AT2R) is upregulated in the contralesional hemisphere after stroke in normoglycemic Wistar rats. In this study, we examined the expression of AT2R in type 2 diabetic Goto-Kakizaki (GK) rats and control Wistars after stroke. We also tested the contribution of the contralesional AT2R in recovery after stroke through a specific knockdown of the AT2R in this hemisphere only. Two experiments were conducted. In the first experiment, GK rats were subjected to middle cerebral artery occlusion (MCAO) and treated with the angiotensin II receptor type 1 receptor (AT1R) blocker candesartan or saline at reperfusion. Stroke outcomes, as well as AT2R expression, were examined and compared to control Wistars at 24 h. In the second experiment, localized AT2R knockdown was achieved through intrastriatal injection of short hairpin RNA (shRNA) lentiviral particles or non-targeting control into the left-brain hemisphere of Wistar rats. After 14 days, rats were subjected to right MCAO and treated with the AT2R agonist, Compound 21 (C21), or saline for 7 days. Behavioral outcomes were assessed for up to 10 days. In the first experiment, stroke reduced the expression of AT2R in GK rats. Candesartan treatment failed to improve the neurobehavioral outcomes, preserve vascular integrity or reduce oxidative/nitrative stress or apoptotic markers at 24 h post stroke in these animals. In the second experiment, contralesional AT2R knockdown reduced the C21-mediated functional recovery after stroke. In conclusion, contralesional AT2R upregulation after stroke is blunted in diabetic rats which show reduced sensitivity to post-stroke candesartan treatment. Contralesional AT2R could be involved in C21-mediated functional recovery after stroke.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- University of Arkansas for Medical Sciences, Little Rock, AR, USA,Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,Corresponding author. University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR, USA. (A.Y. Fouda)
| | - Heba A. Ahmed
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bindu Pillai
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Anna Kozak
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Trevor Hardigan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA,Ralph H. Jackson VA Medical Center, Charleston, SC, USA
| | - Susan C. Fagan
- Charlie Norwood VA Medical Center, Augusta, GA, USA,Center for Pharmacy and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA,Corresponding author. University of Tennessee Health Science Center, College of Medicine, Department of Anatomy and Neurobiology, 875 Monroe Avenue, Wittenborg Bldg, Room-231, Memphis, TN, 38163, USA. (T. Ishrat)
| |
Collapse
|
3
|
Johnstone EKM, Ayoub MA, Hertzman RJ, See HB, Abhayawardana RS, Seeber RM, Pfleger KDG. Novel Pharmacology Following Heteromerization of the Angiotensin II Type 2 Receptor and the Bradykinin Type 2 Receptor. Front Endocrinol (Lausanne) 2022; 13:848816. [PMID: 35721749 PMCID: PMC9204302 DOI: 10.3389/fendo.2022.848816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/21/2022] [Indexed: 01/18/2023] Open
Abstract
The angiotensin type 2 (AT2) receptor and the bradykinin type 2 (B2) receptor are G protein-coupled receptors (GPCRs) that have major roles in the cardiovascular system. The two receptors are known to functionally interact at various levels, and there is some evidence that the observed crosstalk may occur as a result of heteromerization. We investigated evidence for heteromerization of the AT2 receptor and the B2 receptor in HEK293FT cells using various bioluminescence resonance energy transfer (BRET)-proximity based assays, including the Receptor Heteromer Investigation Technology (Receptor-HIT) and the NanoBRET ligand-binding assay. The Receptor-HIT assay showed that Gαq, GRK2 and β-arrestin2 recruitment proximal to AT2 receptors only occurred upon B2 receptor coexpression and activation, all of which is indicative of AT2-B2 receptor heteromerization. Additionally, we also observed specific coupling of the B2 receptor with the Gαz protein, and this was found only in cells coexpressing both receptors and stimulated with bradykinin. The recruitment of Gαz, Gαq, GRK2 and β-arrestin2 was inhibited by B2 receptor but not AT2 receptor antagonism, indicating the importance of B2 receptor activation within AT2-B2 heteromers. The close proximity between the AT2 receptor and B2 receptor at the cell surface was also demonstrated with the NanoBRET ligand-binding assay. Together, our data demonstrate functional interaction between the AT2 receptor and B2 receptor in HEK293FT cells, resulting in novel pharmacology for both receptors with regard to Gαq/GRK2/β-arrestin2 recruitment (AT2 receptor) and Gαz protein coupling (B2 receptor). Our study has revealed a new mechanism for the enigmatic and poorly characterized AT2 receptor to be functionally active within cells, further illustrating the role of heteromerization in the diversity of GPCR pharmacology and signaling.
Collapse
Affiliation(s)
- Elizabeth K. M. Johnstone
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
- *Correspondence: Elizabeth K. M. Johnstone, ; Kevin D. G. Pfleger,
| | - Mohammed Akli Ayoub
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rebecca J. Hertzman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Heng B. See
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Rekhati S. Abhayawardana
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Ruth M. Seeber
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
| | - Kevin D. G. Pfleger
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Perth, WA, Australia
- Dimerix Limited, Nedlands, WA, Australia
- *Correspondence: Elizabeth K. M. Johnstone, ; Kevin D. G. Pfleger,
| |
Collapse
|
4
|
González-Blázquez R, Alcalá M, Fernández-Alfonso MS, Steckelings UM, Lorenzo MP, Viana M, Boisvert WA, Unger T, Gil-Ortega M, Somoza B. C21 preserves endothelial function in the thoracic aorta from DIO mice: role for AT2, Mas and B2 receptors. Clin Sci (Lond) 2021; 135:1145-1163. [PMID: 33899912 DOI: 10.1042/cs20210049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Compound 21 (C21), a selective agonist of angiotensin II type 2 receptor (AT2R), induces vasodilation through NO release. Since AT2R seems to be overexpressed in obesity, we hypothesize that C21 prevents the development of obesity-related vascular alterations. The main goal of the present study was to assess the effect of C21 on thoracic aorta endothelial function in a model of diet-induced obesity (DIO) and to elucidate the potential cross-talk among AT2R, Mas receptor (MasR) and/or bradykinin type 2 receptor (B2R) in this response. Five-week-old male C57BL6J mice were fed a standard (CHOW) or a high-fat diet (HF) for 6 weeks and treated daily with C21 (1 mg/kg p.o) or vehicle, generating four groups: CHOW-C, CHOW-C21, HF-C, HF-C21. Vascular reactivity experiments were performed in thoracic aorta rings. Human endothelial cells (HECs; EA.hy926) were used to elucidate the signaling pathways, both at receptor and intracellular levels. Arteries from HF mice exhibited increased contractions to Ang II than CHOW mice, effect that was prevented by C21. PD123177, A779 and HOE-140 (AT2R, Mas and B2R antagonists) significantly enhanced Ang II-induced contractions in CHOW but not in HF-C rings, suggesting a lack of functionality of those receptors in obesity. C21 prevented those alterations and favored the formation of AT2R/MasR and MasR/B2R heterodimers. HF mice also exhibited impaired relaxations to acetylcholine (ACh) due to a reduced NO availability. C21 preserved NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways. In conclusion, C21 favors the interaction among AT2R, MasR and B2R and prevents the development of obesity-induced endothelial dysfunction by stimulating NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diet, High-Fat
- Drug Evaluation, Preclinical
- Endothelium, Vascular/drug effects
- Human Umbilical Vein Endothelial Cells
- Humans
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Male
- Mice, Inbred C57BL
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Obesity/complications
- Obesity/metabolism
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor Cross-Talk
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Bradykinin B2/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/drug effects
- Signal Transduction/drug effects
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Thiophenes/pharmacology
- Thiophenes/therapeutic use
- Vascular Diseases/etiology
- Vascular Diseases/metabolism
- Vascular Diseases/prevention & control
- Mice
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, Madrid 28040, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ulrike Muscha Steckelings
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - M Paz Lorenzo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB311, Honolulu, HI 96813, U.S.A
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| |
Collapse
|
5
|
Mishra JS, Kumar S. Activation of angiotensin type 2 receptor attenuates testosterone-induced hypertension and uterine vascular resistance in pregnant rats†. Biol Reprod 2021; 105:192-203. [PMID: 33739377 DOI: 10.1093/biolre/ioab051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Preeclampsia is a pregnancy-related hypertensive disorder with unclear mechanisms. While hypersensitivity to angiotensin II via vasoconstrictive angiotensin type-1 receptor (AT1R) is observed in preeclampsia, the importance of vasodilatory angiotensin type-2 receptor (AT2R) in the control of vascular dysfunction is less clear. We assessed whether AT1R, AT2R, and endothelial nitric oxide synthase (eNOS) expression are altered in placental vessels of preeclamptic women and tested if ex vivo incubation with AT2R agonist Compound 21 (C21; 1 μM) could restore AT1R, AT2R, and eNOS balance. Further, using a rat model of gestational hypertension induced by elevated testosterone, we examined whether C21 (1 μg/kg/day, oral) could preserve AT1R and AT2R balance and improve blood pressure, uterine artery blood flow, and vascular function. Western blots revealed that AT1R protein level was higher while AT2R and eNOS protein were reduced in preeclamptic placental vessels, and AT2R agonist C21 decreased AT1R and increased AT2R and eNOS protein levels in preeclamptic vessels. In testosterone dams, blood pressure was higher, and uterine artery blood flow was reduced, and C21 treatment reversed these levels similar to those in controls dams. C21 attenuated the exaggerated Ang II contraction and improved endothelium-dependent vasorelaxation in uterine arteries of testosterone dams. These C21-mediated vascular effects were associated with decreased AT1R and increased AT2R and eNOS protein levels. C21 also increased serum nitrate/nitrite and bradykinin production in testosterone dams and attenuated the fetoplacental growth restriction. Thus, AT1R upregulation and AT2R downregulation are observed in preeclampsia and testosterone model, and increasing AT2R activity could help restore AT1R and AT2R balance and improve gestational vascular function.
Collapse
Affiliation(s)
- Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.,Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
6
|
La Rosa M, Kechichian T, Olson G, Saade G, Bytautiene Prewit E. Lactation Leads to Modifications in Maternal Renin-Angiotensin System in Later Life. Reprod Sci 2020; 27:260-266. [PMID: 32046371 DOI: 10.1007/s43032-019-00018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/28/2019] [Indexed: 01/22/2023]
Abstract
The objective of this study was to evaluate whether the renin-angiotensin system (RAS) is associated with maternal cardioprotective phenotype observed in post-lactated mice later in life. Following the delivery, CD-1 female mice were randomized to one of the following groups: lactated (nursed pups for 3 weeks, n = 10) or non-lactated (pups were removed after birth, n = 10). The mice were sacrificed 6 months after the delivery, and tissues were collected. Protein levels of angiotensinogen, angiotensin type 1 and 2 receptors (AT1R, AT2R), angiotensin converting enzymes (ACE, ACE2), and MAS receptor were determined using Western blot. Results were analyzed using Student's t-test and Mann-Whitney test as appropriate (significance: P < 0.05). Angiotensinogen levels were significantly lower in the liver (P = 0.0002), and ACE was significantly decreased in the lungs (P = 0.04) and kidney (P = 0.001) from lactated mice as compared to non-lactated. The levels of AT2R in the kidney (P = 0.02) and visceral adipose tissue (VAT, P = 0.04), the ACE 2 in the VAT (P = 0.03) and heart (P = 0.04), and MAS receptor in VAT (P = 0.02) were significantly elevated in tissues from lactated mice. No other differences were found. Lactation led to the upregulation and downregulation of selected RAS components in lactated mice as compared to non-lactated group and may be a contributing factor to maternal cardioprotective phenotype later in life. Further studies are needed to dissect the mechanisms between lactation and the long-term maternal cardiometabolic benefits, which could lead to the therapies to prevent cardiovascular disease in women.
Collapse
Affiliation(s)
- Mauricio La Rosa
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Talar Kechichian
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gayle Olson
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - George Saade
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Egle Bytautiene Prewit
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
7
|
AGTR2 and sprint/power performance: a case-control replication study for rs11091046 polymorphism in two ethnicities. Biol Sport 2017; 35:105-109. [PMID: 30455538 PMCID: PMC6234304 DOI: 10.5114/biolsport.2018.71599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 01/12/2023] Open
Abstract
We aimed to replicate, in a specific athletic event cohort (only track and field) and in two different ethnicities (Japanese and East European, i.e. Russian and Polish), original findings showing the association of the angiotensin-II receptor type-2 gene (AGTR2) rs11091046 A>C polymorphism with athlete status. We compared genotypic frequencies of the AGTR2 rs11091046 polymorphism among 282 track and field sprint/power athletes (200 men and 82 women), including several national record holders and Olympic medallists (214 Japanese, 68 Russian and Polish), and 2024 control subjects (842 men and 1182 women) (804 Japanese, 1220 Russian and Polish). In men, a meta-analysis from the two combined cohorts showed a significantly higher frequency of the C allele in athletes than in controls (odds ratio: 1.62, P=0.008, heterogeneity index I2=0%). With regard to respective cohorts, C allele frequency was higher in Japanese male athletes than in controls (67.7% vs. 55.9%, P=0.022), but not in Russian/Polish male athletes (61.9% vs. 51.0%, P=0.172). In women, no significant results were obtained by meta-analysis for the two cohorts combination (P=0.850). The AC genotype frequency was significantly higher in Russian/Polish women athletes than in controls (69.2% vs. 42.1%, P=0.022), but not in Japanese women athletes (P=0.226). Our results, in contrast to previous findings, suggested by meta-analysis that the C allele of the AGTR2 rs11091046 polymorphism is associated with sprint/power track and field athlete status in men, but not in women.
Collapse
|
8
|
Guo HL, Liao XH, Liu Q, Zhang L. Angiotensin II Type 2 Receptor Decreases Transforming Growth Factor-β Type II Receptor Expression and Function in Human Renal Proximal Tubule Cells. PLoS One 2016; 11:e0148696. [PMID: 26867007 PMCID: PMC4750982 DOI: 10.1371/journal.pone.0148696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor-β (TGF-β), via its receptors, induces epithelial-mesenchymal transition (EMT) and plays an important role in the development of renal tubulointersitial fibrosis. Angiotensin II type 2 receptor (AT2R), which mediates beneficial renal physiological functions, has received attention as a prospective therapeutic target for renoprotection. In this study, we investigated the effect and underlying mechanism of AT2R on the TGF-β receptor II (TGF-βRII) expression and function in human proximal tubular cells (HK-2). Here, we show that the AT2R agonist CGP42112A decreased TGF-βRII protein expression in a concentration- and time-dependent manner in HK-2 cells. The inhibitory effect of the AT2R on TGF-βRII expression was blocked by the AT2R antagonists PD123319 or PD123177. Stimulation with TGF-β1 enhanced EMT in HK-2 cells, which was prevented by pre-treatment with CGP42112A. One of mechanisms in this regulation is associated with the increased TGF-βRII degradation after activation of AT2R. Furthermore, laser confocal immunofluorescence microscopy showed that AT2R and TGF-βRII colocalized in HK-2 cells. AT2R and TGF-βRII coimmunoprecipitated and this interaction was increased after AT2R agonist stimulation for 30 min. The inhibitory effect of the AT2R on TGF-βRII expression was also blocked by the nitric oxide synthase inhibitor L-NAME, indicating that nitric oxide is involved in the signaling pathway. Taken together, our study indicates that the renal AT2R regulates TGF-βRII expression and function via the nitric oxide pathway, which may be important in the control of renal tubulointerstitial fibrosis.
Collapse
MESH Headings
- Cell Line
- Dose-Response Relationship, Drug
- Epithelial-Mesenchymal Transition
- Fibrosis/pathology
- Humans
- Imidazoles/chemistry
- Kidney/pathology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/pathology
- Microscopy, Confocal
- Microscopy, Fluorescence
- Nitric Oxide/chemistry
- Oligopeptides/chemistry
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyridines/chemistry
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Time Factors
Collapse
Affiliation(s)
- Hui-Lin Guo
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xiao-Hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qi Liu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- * E-mail: (LZ); (QL)
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- * E-mail: (LZ); (QL)
| |
Collapse
|
9
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
10
|
Babu CS, Kalaivani P, Ranju V, Sathiya S, Anbarasi C, Mahadevan MV, Vijayakumar H, Sunil AG, Thanikachalam S. Venthamarai chooranam, a polyherbal Siddha medicine, alleviates hypertension via AT₁R and eNOS signaling pathway in 2K1C hypertensive rats. Exp Biol Med (Maywood) 2015; 239:758-69. [PMID: 24719376 DOI: 10.1177/1535370214525317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The present study was aimed to scientifically demonstrate the anti-hypertensive action of Venthamarai chooranam (VMC) in renal hypertensive rats. Two Kidney One Clip (2K1C) Goldblatt model was adopted to induce hypertension in rats. Male Sprague Dawley rats (270-320 g) were randomized into sham (n = 6), vehicle-treated 2K1C (n = 9) and VMC-treated 2K1C (400 mg/kg, p.o; n = 8) and monitored for nine weeks. Systolic blood pressure (SBP), plasma nitrate/nitrite, carotid endothelial nitric oxide synthetase (eNOS), renal angiotensin type 1 receptor (AT₁R), angiotensin type 2 receptor (AT₂R), TNFα, IL-6, thioredoxin 1 (TRX1), and thioredoxin reductase 1 (TRXR1) mRNA expressions were studied. VMC upregulated eNOS expression which in turn improved plasma nitric oxide and decreased SBP in hypertensive rats. It down-regulated AT₁R and simultaneously upregulated AT₂R expression in comparison to vehicle-treated 2K1C rats. Further, renal TNFα and IL-6 expressions were down-regulated while TRX1 and TRXR1 were upregulated by VMC. VMC potentially interacts with renin-angiotensin components and endothelial functions, and thereby exerts its antihypertensive action. This is the first study to demonstrate the mechanism of anti-hypertensive action of VMC in an animal model of renovascular hypertension.
Collapse
MESH Headings
- Animals
- Blood Pressure/drug effects
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Hypertension, Renovascular/drug therapy
- Hypertension, Renovascular/metabolism
- Hypertension, Renovascular/pathology
- Interleukin-6/biosynthesis
- Male
- Medicine, Ayurvedic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Nitric Oxide Synthase Type III/metabolism
- Plant Preparations/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
- Thioredoxins/biosynthesis
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
|
11
|
Kim HY, Cha HJ, Choi JH, Kang YJ, Park SY, Kim HS. CCL5 Inhibits Elevation of Blood Pressure and Expression of Hypertensive Mediators in Developing Hypertension State Spontaneously Hypertensive Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.2.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hye Ju Cha
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jin Hee Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
12
|
Vinturache AE, Smith FG. Angiotensin type 1 and type 2 receptors during ontogeny: cardiovascular and renal effects. Vascul Pharmacol 2014; 63:145-54. [DOI: 10.1016/j.vph.2014.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 01/24/2023]
|
13
|
Abstract
SIGNIFICANCE Renal oxidative stress can be a cause, a consequence, or more often a potentiating factor for hypertension. Increased reactive oxygen species (ROS) in the kidney have been reported in multiple models of hypertension and related to renal vasoconstriction and alterations of renal function. Nicotinamide adenine dinucleotide phosphate oxidase is the central source of ROS in the hypertensive kidney, but a defective antioxidant system also can contribute. RECENT ADVANCES Superoxide has been identified as the principal ROS implicated for vascular and tubular dysfunction, but hydrogen peroxide (H2O2) has been implicated in diminishing preglomerular vascular reactivity, and promoting medullary blood flow and pressure natriuresis in hypertensive animals. CRITICAL ISSUES AND FUTURE DIRECTIONS Increased renal ROS have been implicated in renal vasoconstriction, renin release, activation of renal afferent nerves, augmented contraction, and myogenic responses of afferent arterioles, enhanced tubuloglomerular feedback, dysfunction of glomerular cells, and proteinuria. Inhibition of ROS with antioxidants, superoxide dismutase mimetics, or blockers of the renin-angiotensin-aldosterone system or genetic deletion of one of the components of the signaling cascade often attenuates or delays the onset of hypertension and preserves the renal structure and function. Novel approaches are required to dampen the renal oxidative stress pathways to reduced O2(-•) rather than H2O2 selectivity and/or to enhance the endogenous antioxidant pathways to susceptible subjects to prevent the development and renal-damaging effects of hypertension.
Collapse
Affiliation(s)
- Magali Araujo
- Hypertension, Kidney and Vascular Research Center, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
14
|
Painemal P, Acuña MJ, Riquelme C, Brandan E, Cabello-Verrugio C. Transforming growth factor type beta 1 increases the expression of angiotensin II receptor type 2 by a SMAD- and p38 MAPK-dependent mechanism in skeletal muscle. Biofactors 2013; 39:467-75. [PMID: 23460581 DOI: 10.1002/biof.1087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 12/13/2012] [Indexed: 01/13/2023]
Abstract
Excessive deposition of extracellular matrix (ECM) proteins, a condition known as fibrosis, is a hallmark of Duchenne muscular dystrophy. Among the factors that trigger muscle fibrosis are transforming growth factor beta (TGF-β) and angiotensin II (Ang-II). Ang-II belongs to the renin-angiotensin system, and its biological effects are exerted by Ang-II receptors type 1 and type 2 (AT-1 and AT-2, respectively). This study aims to determine the effect of TGF-β1 on the expression of AT-1 and AT-2 receptor in skeletal muscle. C2 C12 myoblasts exposed to TGF-β1 showed a dose-dependent increase in AT-2 expression but with no effect on AT-1 levels. Injection of TGF-β1 in the skeletal muscle of mice increased the levels of AT-2 and ECM protein but unchanged AT-1 levels. We also detected higher expression levels of AT-2 receptor in dystrophic skeletal muscle of mdx mice than in normal mice. The induction of AT-2 was mediated by the canonical TGF-β pathway because under the inhibitory conditions of the kinase activity of TGFβ receptor I or the knockdown of Smad2/3 levels, TGF-β-induced AT-2 receptor increase was strongly inhibited. Furthermore, we demonstrated that p38MAPK activity in response to TGF-β is also required for AT-2 increase as evaluated by a p38MAPK inhibitor. Our results show that the levels of AT-2 but not AT-1 receptor are modulated by the pro-fibrotic factor TGF-β1 in myoblasts and mouse skeletal muscle. This finding suggests that AT-2 might be involved in the physiopathology of fibrosis in dystrophic skeletal muscle.
Collapse
MESH Headings
- Animals
- Cell Line
- Gene Expression
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myoblasts/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System
- Signal Transduction
- Smad Proteins/metabolism
- Transforming Growth Factor beta1/pharmacology
- Transforming Growth Factor beta1/physiology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Paula Painemal
- Centro de Regulación Celular y Patología (CRCP), Centro de Regeneración y Envejecimiento (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
15
|
Angiotensin II AT(2) receptor decreases AT(1) receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats. J Hypertens 2012; 30:1176-84. [PMID: 22504846 DOI: 10.1097/hjh.0b013e3283532099] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The renin-angiotensin (Ang) system controls blood pressure, in part, by regulating renal tubular sodium transport. In the kidney, activation of the angiotensin II type 1 (AT(1)) receptor increases renal sodium reabsorption, whereas the angiotensin II type 2 (AT(2)) receptor produces the opposite effect. We hypothesized that the AT(2) receptor regulates AT(1) receptor expression and function in the kidney. METHODS AND RESULTS In immortalized renal proximal tubule (RPT) cells from Wistar-Kyoto rats, CGP42112, an AT(2) receptor agonist, decreased AT(1) receptor mRNA and protein expression (P < 0.05), as assessed by reverse transcriptase-polymerase chain reaction and immunoblotting. The inhibitory effect of the AT(2) receptor on AT(1) receptor expression was blocked by the AT(2) receptor antagonist, PD123319 (10 (-6)mol/l), the nitric oxide synthase inhibitor N(w)-nitro-L-arginine methyl ester (10(-4) mol/l), or the nitric oxide-dependent soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (10(-5) mol/l), indicating that both nitric oxide and cyclic guanosine monophosphate (cGMP) were involved in the signaling pathway. Furthermore, CGP42112 decreased Sp1 serine phosphorylation and reduced the binding of Sp1 to AT(1) receptor DNA. Stimulation with Ang II (10(-11) mol/l per 30 min) enhanced Na(+)-K(+)-ATPase activity in RPT cells, which was prevented by pretreatment with CGP42112 (10(-7) mol/l per 24 h) (P < 0.05). The above-mentioned results were confirmed in RPT cells from AT(2) receptor knockout mice; AT(1) receptor expression and Ang II-stimulated Na-K-ATPase activity were greater in these cells than in RPT cells from wild-type mice (P < 0.05). AT(1)/AT(2) receptors co-localized and co-immunoprecipitated in RPT cells; short-term CGP42112 (10 mol/l per 30 min) treatment increased AT(1)/AT(2) receptor co-immunoprecipitation (P < 0.05). CONCLUSIONS These results indicate that the renal AT(2) receptor, via nitric oxide/cGMP/Sp1 pathway, regulates AT(1 )receptor expression and function, which may be important in the regulation of sodium excretion and blood pressure.
Collapse
|
16
|
Salhan D, Sagar A, Kumar D, Rattanavich R, Rai P, Maheshwari S, Adabala M, Husain M, Ding G, Malhotra A, Chander PN, Singhal PC. HIV-associated nephropathy: role of AT2R. Cell Signal 2012; 24:734-41. [PMID: 22108089 PMCID: PMC3258382 DOI: 10.1016/j.cellsig.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/22/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
AT(1)R has been reported to play an important role in the progression of HIV-associated nephropathy (HIVAN); however, the effect of AT(2)R has not been studied. Age and sex matched control (FVB/N) and Tg26 mice aged 4, 8, and 16weeks were studied for renal tissue expression of AT(1)R and AT(2)R (Protocol A). Renal tissue mRNA expression of AT(2)R was lower in Tg26 mice when compared with control mice. In Protocol B, Tg26 mice were treated with either saline, telmisartan (TEL, AT(1) blocker), PD123319 (PD, AT(2)R blocker), or TEL+PD for two weeks. TEL-receiving Tg26 (TRTg) displayed less advanced glomerular and tubular lesions when compared with saline-receiving Tg26 (SRTg). TRTgs displayed enhanced renal tissue AT(2)R expression when compared to SRTgs. Diminution of renal tissue AT(2)R expression was associated with advanced renal lesions in SRTgs; whereas, upregulation of AT(2)R expression in TRTgs was associated with attenuated renal lesions. PD-receiving Tg26 mice (PDRTg) did not show any alteration in the course of HIVAN; whereas, PD+TEL-receiving Tg26 (PD-TRTg) showed worsening of renal lesions when compared to TRTgs. Interestingly, plasma as well as renal tissues of Tg26 mice displayed several fold higher concentration of Ang III, a ligand of AT(2)R.
Collapse
Affiliation(s)
- Divya Salhan
- Division of Kidney Diseases and Hypertension, North Shore-LIJ Health System, Great Neck, NY 11021, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pawluczyk IZA, Harris KPG. Effect of angiotensin type 2 receptor over-expression on the rat mesangial cell fibrotic phenotype: effect of gender. J Renin Angiotensin Aldosterone Syst 2012; 13:221-31. [PMID: 22287496 DOI: 10.1177/1470320311432185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND AIM The protective role of angiotensin type 2 receptors (AT2-Rs) is still controversial. As AT2-Rs are minimally expressed in adult tissues the aim of the current study was to over-express AT2-Rs in rat mesangial cells in order to ascertain their potential role in modulating renal scarring. METHODS Male and female mesangial cells were transiently transfected with AT2-R or control vector then 'injured' with macrophage-conditioned medium (MCM). Culture supernatants and extracted RNA were analysed for evidence of an anti-fibrotic phenotype. RESULTS Supernatant fibronectin levels in female mesangial cells treated with MCM were reduced in AT2-R transfected cells (p < 0.001) compared to controls. AT2-R transfected male cells showed a trend towards lower constitutive fibronectin levels. There was no effect of AT2-R transfection on TGF-β or TNF-α secretion; however, IL-1β levels were reduced in male cells treated with MCM. RT-PCR demonstrated that constitutive kallikrein mRNA levels were suppressed in both male and female AT2-R transfected cells. Bradykinin receptors (BkB2-R and BkB1-R) were unaffected in female cells although the BkB1-R was upregulated in male cells treated with MCM. CONCLUSION This data provides a case for AT2 receptors playing a protective role in rat mesangial cells independent of the effects of blood pressure control.
Collapse
Affiliation(s)
- Izabella Z A Pawluczyk
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.
| | | |
Collapse
|
18
|
Gembardt F, van Veghel R, Coffman TM, Schultheiss HP, Danser AHJ, Walther T. Hemodynamic effects of vasorelaxant compounds in mice lacking one, two or all three angiotensin II receptors. Hypertens Res 2012; 35:547-51. [DOI: 10.1038/hr.2012.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Abstract
The renin-angiotensin system (RAS) plays an important role in regulating blood pressure, water-salt balance and the pathogenesis of cardiovascular diseases. Angiotensin II (Ang II) is the physiologically active mediator and mediates the main pathophysiological actions in RAS. Ang II exerts the effects by activating its receptors, primarily type 1 (AT1R) and type 2 (AT2R). Most of the known pathophysiological effects of Ang II are mediated by AT1R activation. The precise physiological function of AT2R is still not clear. Generally, AT2R is considered to oppose the effects of AT1R. Lectin-like oxidized low-density lipoprotein scavenger receptor-1 (LOX-1) is one of the major receptors responsible for binding, internalizing and degrading ox-LDL. The activation of LOX-1 has been known to be related to many pathophysiological events, including endothelial dysfunction and injury, fibroblast growth, and vascular smooth muscle cell hypertrophy. Many of these alterations are present in atherosclerosis, hypertension, and myocardial ischemia and remodeling. A growing body of evidence suggests the existence of a cross-talk between LOX-1 and Ang II receptors. Their interplays are embodied in the reciprocal regulation of their expression and activity. Their interplays are involved in a series of signals. Recent studies suggests that reactive oxygen species (ROS), nitric oxide (NO), protein kinase C (PKC) and mitogen activated protein kinases (MAPKs) are important signals responsible for their cross-talk. This paper reviews these aspects of dyslipidemia and RAS activation.
Collapse
Affiliation(s)
- Xianwei Wang
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
20
|
Ouyang J, Wu Z, Xing J, Yan Y, Zhang G, Wang B, Li H, Ma X, Zhang X. Association of polymorphisms in angiotensin II receptor genes with aldosterone-producing adenoma. ACTA ACUST UNITED AC 2011; 31:301. [PMID: 21671168 DOI: 10.1007/s11596-011-0371-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Indexed: 11/27/2022]
Abstract
This study examined the association of polymorphisms in angiotensin II receptor genes (AT (1) R and AT (2) R) with the risk for aldosterone-producing adenoma (APA) in a Chinese Han population. Four polymorphisms including rs5182 (573T/C) in exon 4, rs5186 (1166A/C) in 3'-untranslated region (3'-UTR) in AT (1) R gene and rs5194 (2274G/A) in 3'-UTR, rs1403543 (1675G/A) in intron 1 in AT (2) R gene were detected in 148 APA patients and 192 normal subjects (serving as control) by using a MGB-Taqman probe. The distribution of genotypes of each locus was in accordance with Hardy-Weinberg Equilibrium (HWE) in the APA and control groups (P>0.05). The allele A frequency at rs5194 was significantly higher in the APA group (0.49) than in the control group (0.35) (χ (2)=12.08, P=0.001). Subjects with homozygotic genotype AA and heterozygotic genotype GA were at an increased risk for APA as compared to those with GG genotype (OR=2.66, 95% CI=1.45-4.87; OR=1.67, 95% CI=1.02-2.74). Furthermore, rs5194 single-nucleotide polymorphism (SNP) at AT (2) R gene was significantly associated with APA in additive (OR=1.64, 95% CI=1.21-2.20, P=0.001), dominant (OR=1.94, 95% CI=1.23-3.06, P=0.003), and recessive model (OR=2.01, 95% CI=1.17-3.45, P=0.01). It was concluded that rs5194 polymorphism at AT (2) R gene was associated with the risk for APA, which may constitute a genetic marker of APA.
Collapse
Affiliation(s)
- Jinzhi Ouyang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, 100086, China
| | - Zhun Wu
- Department of Urology, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jinchun Xing
- Department of Urology, the First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yongji Yan
- Department of Urology, the Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Guoxi Zhang
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Baojun Wang
- Department of Urology, Chinese PLA General Hospital, Beijing, 100086, China
| | - Hongzhao Li
- Department of Urology, Chinese PLA General Hospital, Beijing, 100086, China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital, Beijing, 100086, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing, 100086, China.
| |
Collapse
|
21
|
Kim HY, Choi JH, Kang YJ, Park SY, Choi HC, Kim HS. Reparixin, an Inhibitor of CXCR1 and CXCR2 Receptor Activation, Attenuates Blood Pressure and Hypertension-Related Mediators Expression in Spontaneously Hypertensive Rats. Biol Pharm Bull 2011; 34:120-7. [DOI: 10.1248/bpb.34.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Jin Hee Choi
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Young Jin Kang
- Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - So Young Park
- Department of Physiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Hyoung Chul Choi
- Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Hee Sun Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| |
Collapse
|
22
|
Yu L, Zheng M, Wang W, Rozanski GJ, Zucker IH, Gao L. Developmental changes in AT1 and AT2 receptor-protein expression in rats. J Renin Angiotensin Aldosterone Syst 2010; 11:214-21. [PMID: 20807798 DOI: 10.1177/1470320310379065] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has long been known that angiotensin type-1 receptors (AT1R) play a critical role in sympathetic regulation, cardiovascular activity, and hormone secretion under physiological and pathological states. On the other hand, the functional significance of angiotensin type-2 receptors (AT2R) is poorly understood. In a recent study we demonstrated that, in rats with chronic heart failure, AT1R protein expression was increased but AT2R expression was decreased in the rostral ventrolateral medulla (RVLM). This imbalance of angiotensin receptors contributed to sympatho-excitation in the heart failure state. In the current experiment, we measured AT1R and AT2R protein expressions in the brainstem, kidney and liver from male foetuses (3 days before birth), male neonates (3 days after birth), male and female adults (8 weeks) and male aged (28 months) rats by Western blot analysis. In the brainstem, we found that the foetuses and neonates exhibited a significantly lower AT2R protein expression compared with adult rats (foetus 0.08 ± 0.01, neonate 0.12 ± 0.01, male adult 0.25 ± 0.01, female adult 0.22 ± 0.02; n = 4 per group, p < 0.001 foetus and neonate compared with male or female adults). In contrast, the foetuses and neonates expressed significantly higher AT1R protein than that of the adults (foetus 0.64 ± 0.09, neonate 0.56 ± 0.01, male adult 0.13 ± 0.02, female adult 0.08 ± 0.02; n = 4 each group, p < 0.001 foetus and neonate compared with male and female adults). In the liver, the AT2R protein was also higher in foetus and neonate, than in adult rats. Interestingly, the foetal liver expressed higher AT1R protein compared with that of the neonate. In the kidney, AT2R expression was significantly increased with age (foetus 0.08 ± 0.01, neonate 0.19 ± 0.02, male adult 0.49 ± 0.04, female adult 0.90 ± 0.10; n = 4 per group, p < 0.01-0.001). AT1R expression, on the other hand, was higher in the foetuses than that in both neonate and male adults. This study provides data contrary to existing dogma that AT2R expression is higher in foetal life and low in adults, suggesting an involvement of a potentially important functional role for AT2R in adult animals and AT1R in foetal development and/or physiology.
Collapse
Affiliation(s)
- Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | | | |
Collapse
|
23
|
Zhu L, Carretero OA, Liao TD, Harding P, Li H, Sumners C, Yang XP. Role of prolylcarboxypeptidase in angiotensin II type 2 receptor-mediated bradykinin release in mouse coronary artery endothelial cells. Hypertension 2010; 56:384-90. [PMID: 20606103 DOI: 10.1161/hypertensionaha.110.155051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activation of angiotensin II type 2 receptors (AT(2)R) causes the release of kinins, which have beneficial effects on the cardiovascular system. However, it is not clear how AT(2)R interact with the kallikrein-kinin system to generate kinins. Prolylcarboxypeptidase is an endothelial membrane-bound plasma prekallikrein activator that converts plasma prekallikrein to kallikrein, leading to generation of bradykinin from high-molecular-weight kininogen. We hypothesized that AT(2)R-induced bradykinin release is at least in part mediated by activation of prolylcarboxypeptidase. Cultures of mouse coronary artery endothelial cells were transfected with an adenoviral vector containing the AT(2)R gene (Ad-AT(2)R) or green fluorescent protein only (Ad-GFP) as control. We found that overexpression of AT(2)R increased prolylcarboxypeptidase mRNA by 1.7-fold and protein 2.5-fold compared with Ad-GFP controls. AT(2)R overexpression had no effect on angiotensin II type 1 receptor mRNA. Bradykinin release was increased 2.2-fold in AT(2)R-transfected cells. Activation of AT(2)R by CGP42112A, a specific AT(2)R agonist, increased bradykinin further in AT(2)R-transfected cells. These effects were diminished or abolished by AT(2)R blockade or a plasma kallikrein inhibitor. Furthermore, blocking prolylcarboxypeptidase with a small interfering RNA partially but significantly reduced bradykinin release by transfected AT(2)R cells either at the basal condition or when stimulated by the AT(2)R agonist CGP42112A. These findings suggest that overexpression of AT(2)R in mouse coronary artery endothelial cells increases expression of prolylcarboxypeptidase, which may contribute to kinin release.
Collapse
Affiliation(s)
- Liping Zhu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Molecular mechanisms of the antagonistic action between AT1 and AT2 receptors. Biochem Biophys Res Commun 2009; 391:85-90. [PMID: 19896468 DOI: 10.1016/j.bbrc.2009.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/23/2022]
Abstract
Although angiotensin II (Ang II) binds to Ang II type 1 (AT(1)) and type 2 (AT(2)) receptors, AT(1) and AT(2) receptors have antagonistic actions with regard to cell signaling. The molecular mechanisms that underlie this antagonism are not well understood. We examined AT(1) and AT(2) receptor-induced signal cross-talk in the cytoplasm and the importance of the hetero-dimerization of AT(1) receptor with AT(2) receptor on the cell surface. AT(1) and AT(2) receptors showed antagonistic effects toward inositol phosphate production. AT(1) receptors mainly formed homo-dimers, rather than hetero-dimers with AT(2) receptor, on the cell surface as determined by immunoprecipitation, and subsequently induced cell signals. AT(2) receptor mainly formed homo-dimers, rather than hetero-dimers with AT(1) receptor, on the cell surface. The expression levels of homo-dimerized AT(1) receptor or AT(2) receptor on the cell surface did not change after treatment with Ang II, the AT(1) receptor antagonist telmisartan or the AT(2) receptor antagonist PD123319. Finally, AT(1) and AT(2) receptor-induced signals antagonized phospholipase C-beta(3) phosphorylation. In conclusion, Ang II-induced AT(1) receptor signals may be mainly blocked by AT(2) receptor signals through their negative cross-talk in the cytoplasm rather than by the hetero-dimerization of both receptors on the cell surface. The proper balance of the expression levels of AT(1) and AT(2) receptors might be critical for the antagonistic action between these receptors.
Collapse
|
26
|
Funke-Kaiser H, Reinemund J, Steckelings UM, Unger T. Adapter proteins and promoter regulation of the angiotensin AT2 receptor — implications for cardiac pathophysiology. J Renin Angiotensin Aldosterone Syst 2009; 11:7-17. [DOI: 10.1177/1470320309343652] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The angiotensin AT 2 receptor (AT2R) represents an important component of the renin-angiotensin system since it is involved in the (patho) physiology of different cardiovascular and neuronal diseases. Furthermore, AT2 receptors can partly mediate beneficial effects of angiotensin AT 1 receptor (AT1R) blockers, and direct pharmacological AT 2 receptor agonism emerges as a novel therapeutic strategy. This review discusses the constitutive and ligand-mediated activity as well as the signal transduction of the AT2 receptor, focusing on adapter proteins which directly bind to this receptor. Direct protein-protein interaction partners of the AT2 receptor described so far include the transcription factor promyelocytic zinc finger protein, AT2 receptor binding protein and the AT1 receptor. In addition, the putative crosstalk of the AT2 receptor with the renin/ prorenin receptor (RER) via the promyelocytic zinc finger protein (PLZF) and the role of oestrogens on the regulation of the AT2 receptor are presented. Conceiving the coupling of the AT2 receptor to different adapter proteins with distinct and partly opposing cellular effects and the implications of its constitutive activity might help to overcome the current controversies on the (patho)physiological role of the AT2 receptor.
Collapse
Affiliation(s)
- Heiko Funke-Kaiser
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany,
| | - Jana Reinemund
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike M Steckelings
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Unger
- Center for Cardiovascular Research (CCR)/Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Kim JH, Kang YJ, Kim HS. IL-8/CXCL8 Upregulates 12-Lipoxygenase Expression in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats. Immune Netw 2009; 9:106-13. [PMID: 20107540 PMCID: PMC2803299 DOI: 10.4110/in.2009.9.3.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/15/2009] [Accepted: 05/26/2009] [Indexed: 12/24/2022] Open
Abstract
Background We previously demonstrated remarkable differences in the expression of IL-8/CXCL8 in aortic tissues and vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) compared to VSMC from normotensive Wistar-Kyoto rats (WKY). In the present study, we investigated the direct effect of IL-8/CXCL8 on expression of 12-lipoxygenase (LO), a hypertensive modulator, in SHR VSMC. Methods Cultured aortic VSMC from SHR and WKY were used. Expression of 12-LO mRNA was determined by real-time polymerase chain reaction. Phosphorlyation of ERK1/2 and production of 12-LO and angiotensin II subtype 1 (AT1) receptor were assessed by Western blots. IL-8/CXCL8-stimulated DNA synthesis was determined by measuring incorporation of [3H]-thymidine. And effect of IL-8/CXCL8 on vascular tone was determined by phenylephrine-induced contraction of thoracic aortic rings. Results Treatment with IL-8/CXCL8 greatly increased 12-LO mRNA expression and protein production compared to treatment with angiotensin II. IL-8/CXCL8 also increased the expression of the AT1 receptor. The increase in 12-LO induced by IL-8/CXCL8 was inhibited by treatment with an AT1 receptor antagonist. The induction of 12-LO mRNA production and the proliferation of SHR VSMC by IL-8/CXCL8 was mediated by the ERK pathway. The proliferation of SHR VSMC and the vascular contraction in the thoracic aortic ring, both of which were induced by IL-8/CXCL8, were inhibited by baicalein, a 12-LO inhibitor. Conclusion These results suggest that the potential role of IL-8/CXCL8 in hypertensive processes is likely mediated through the 12-LO pathway.
Collapse
Affiliation(s)
- Jung Hae Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | | | | |
Collapse
|
28
|
Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 2008; 120:292-316. [PMID: 18804122 PMCID: PMC7112668 DOI: 10.1016/j.pharmthera.2008.08.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/24/2022]
Abstract
The renin angiotensin system (RAS) is intricately involved in normal cardiovascular homeostasis. Excessive stimulation by the octapeptide angiotensin II contributes to a range of cardiovascular pathologies and diseases via angiotensin type 1 receptor (AT1R) activation. On the other hand, tElsevier Inc.he angiotensin type 2 receptor (AT2R) is thought to counter-regulate AT1R function. In this review, we describe the enhanced expression and function of AT2R in various cardiovascular disease settings. In addition, we illustrate that the RAS consists of a family of angiotensin peptides that exert cardiovascular effects that are often distinct from those of Ang II. During cardiovascular disease, there is likely to be an increased functional importance of AT2R, stimulated by Ang II, or even shorter angiotensin peptide fragments, to limit AT1R-mediated overactivity and cardiovascular pathologies.
Collapse
Key Words
- angiotensin ii
- at2 receptor
- at1 receptor
- cardiovascular disease
- ace, angiotensin converting enzyme
- ace2, angiotensin converting enzyme 2
- ang ii, angiotensin ii
- ang iii, angiotensin iii
- ang iv, angiotensin iv
- ang (1–7), angiotensin (1–7)
- atbp50, at2r-binding protein of 50 kda
- atip-1, at2 receptor interacting protein-1
- at1r, angiotensin ii type 1 receptor
- at2r, angiotensin ii type 2 receptor
- at4r, angiotensin ii type 4 receptor
- bk, bradykinin
- bp, blood pressure
- cgmp, cyclic guanine 3′,5′-monophosphate
- ecm, extracellular matrix
- enos, endothelial nitric oxide synthase
- erk-1/2, extracellular-regulated kinases-1,2
- irap, insulin-regulated aminopeptidase
- l-name, ng-nitro-l arginine methyl ester
- lvh, left ventricular hypertrophy
- mapk, mitogen-activated protein kinase
- mcp-1, monocyte chemoattractant protein-1
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mrna, messenger ribonucleic acid
- nf-κβ, nuclear transcription factor-κβ
- no, nitric oxide
- o2−, superoxide
- pc12w, rat pheochromocytoma cell line
- ras, renin angiotensin system
- ros, reactive oxygen species
- shr, spontaneously hypertensive rat
- timp-1, tissue inhibitor of metalloproteinase-1
- tnfα, tumour-necrosis factor α
- vsmc, vascular smooth muscle cell
- wky, wistar-kyoto rat
Collapse
Affiliation(s)
- Emma S Jones
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
29
|
Tani T, Ayuzawa R, Takagi T, Kanehira T, Maurya DK, Tamura M. Angiotensin II bi-directionally regulates cyclooxygenase-2 expression in intestinal epithelial cells. Mol Cell Biochem 2008; 315:185-93. [PMID: 18543083 DOI: 10.1007/s11010-008-9806-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 05/23/2008] [Indexed: 12/19/2022]
Abstract
We previously demonstrated that angiotensin II (Ang II) receptor signaling is involved in azoxymethane-induced mouse colon tumorigenesis. In order to clarify the role of Ang II in COX-2 expression in the intestinal epithelium, the receptor subtype-specific effect on COX-2 expression in a rat intestinal epithelial cell line (RIE-1) has been investigated. Ang II dose- and time-dependently increased the expression of COX-2, but not COX-1 mRNA and protein. This stimulation was completely blocked by the AT(1) receptor antagonist but not the AT(2) receptor antagonist. Ang II and lipopolysaccharide (LPS) additively induced COX-2 protein in RIE-1 cells, whereas the LPS-induced COX-2 expression was significantly attenuated by low concentrations of Ang II or the AT(2) agonistic peptide CGP-42112A only in AT(2) over-expressed cells. These data indicate that Ang II bi-directionally regulates COX-2 expression via both AT(1) and AT(2) receptors. Control of COX-2 expression through Ang II signaling may have significance in cytokine-induced COX-2 induction and colon tumorigenesis.
Collapse
Affiliation(s)
- Tatsuo Tani
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
30
|
Bäcklund T, Lakkisto P, Palojoki E, Grönholm T, Saraste A, Finckenberg P, Mervaala E, Tikkanen I, Laine M. Activation of protective and damaging components of the cardiac renin-angiotensin system after myocardial infarction in experimental diabetes. J Renin Angiotensin Aldosterone Syst 2007; 8:66-73. [PMID: 17703432 DOI: 10.3317/jraas.2007.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION Diabetes is associated with prolonged apoptotic cell death of cardiac myocytes and adverse remodelling after myocardial infarction (MI). Because the renin-angiotensin system (RAS) has a major role in the remodelling, we studied whether diabetes is associated with altered regulation of RAS after MI in rats. METHODS Male Wistar rats were randomised to receive either streptozotocin (diabetic group) or citrate buffer (control group) intravenously. MI was produced four weeks later by ligating the left descending coronary artery. The rats were sacrificed 1, 4 and 12 weeks after the operation. Angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE 2), angiotensin type 1 and 2 receptors (AT(1)-receptor, AT(2)-receptor), and connective tissue growth factor (CTGF) mRNA expression were determined. RESULTS The expression of both protective and damaging components of RAS increased after MI. However, myocardial ACE 2 and AT(2)-receptor messenger ribonucleic acid (mRNA) expression levels were significantly lower in diabetic compared to non-diabetic rats 1 week after MI. In contrast, AT(1)-receptor, ACE and CTGF mRNA levels were up-regulated in diabetic as compared with non-diabetic rats 12 weeks after MI. CONCLUSION The activation of the protective components of RAS (ACE 2 and AT(2)-receptor) was blunted early after MI in diabetic rats, whereas the levels of ACE, AT(1)-receptor and CTGF mRNA leading to adverse effects on myocardium, were elevated in diabetic as compared with non-diabetic rats. This unbalanced activation of the RAS may influence the pathophysiology of myocardial injury in diabetes after MI.
Collapse
Affiliation(s)
- Tom Bäcklund
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Haartmaninkatu 8, FIN-00029 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The first renin inhibitor, aliskiren, will soon enter the clinical arena. This review summarizes the potential differences between renin inhibitors and the currently existing blockers of the renin-angiotensin system (RAS) [ie, the ACE inhibitors and the angiotensin II type 1 (AT(1)) receptor antagonists], taking also into consideration the recently discovered (pro)renin receptor. This receptor not only activates the inactive precursor of renin, prorenin, but it also exerts direct renin/prorenin-induced effects, independently of angiotensin. The review ends with a brief overview of the available (pre)clinical aliskiren data and a description of its safety profile.
Collapse
Affiliation(s)
- A H Jan Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Savoia C, Touyz RM, Volpe M, Schiffrin EL. Angiotensin Type 2 Receptor in Resistance Arteries of Type 2 Diabetic Hypertensive Patients. Hypertension 2007; 49:341-6. [PMID: 17159079 DOI: 10.1161/01.hyp.0000253968.95136.b8] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of angiotensin type 2 receptor (AT
2
R) on vascular responses to angiotensin II in humans remains unclear. In this study we explored whether AT
2
R is expressed and functionally active on peripheral resistance arteries of hypertensive diabetic patients treated for 1 year with either the angiotensin receptor blocker valsartan or the β-blocker atenolol. Twenty-six hypertensive type 2 diabetic patients treated with oral hypoglycemic and antihypertensive agents (not receiving angiotensin receptor blockers or β-blockers) were randomly assigned to double-blind treatment for 1 year with valsartan or atenolol once daily added to their previous therapy in a clinical trial that we reported recently and compared with 10 normal subjects. Resistance arteries dissected from gluteal subcutaneous tissues were assessed on a pressurized myograph. Vasomotor response curves to angiotensin II (1 nmol/L to 1 μmol/L) were performed on norepinephrine precontracted vessels in the presence of valsartan (10 μmol/L) with or without the AT
2
R inhibitor PD123319 (1 μmol/L). AT
2
R expression was evaluated by confocal microscopy. After 1 year of treatment, systolic and diastolic blood pressure was controlled and comparable in the valsartan and atenolol groups. Angiotensin II evoked a significant vasodilatory response only on resistance arteries from patients treated with valsartan, effect blocked by PD123319. AT
2
R expression was 4-fold higher in small arteries of valsartan-treated patients. In conclusion, AT
2
Rs are upregulated and contribute to angiotensin II–induced vasodilation in resistance arteries of hypertensive diabetic patients treated with angiotensin type 1 receptor blockers and may mediate, in part, vascular actions of these drugs in high cardiovascular risk patients.
Collapse
Affiliation(s)
- Carmine Savoia
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Esch JHV, Danser AJ. Local Angiotensin Generation and AT2 Receptor Activation. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7119946 DOI: 10.1007/978-1-4020-6372-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
van Esch JHM, Schuijt MP, Sayed J, Choudhry Y, Walther T, Jan Danser AH. AT2 receptor-mediated vasodilation in the mouse heart depends on AT1A receptor activation. Br J Pharmacol 2006; 148:452-8. [PMID: 16682962 PMCID: PMC1751777 DOI: 10.1038/sj.bjp.0706762] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Angiotensin (Ang) II type 2 (AT(2)) receptors are believed to counteract Ang II type 1 (AT(1)) receptor-mediated effects. Here, we investigated AT(2) receptor-mediated effects on coronary and cardiac contractility in C57BL/6 mice. Hearts were perfused according to Langendorff. Baseline coronary flow (CF) and left ventricular systolic pressure (LVSP) were 2.7 +/- 0.1 ml min(-1) and 111 +/- 3 mmHg (n = 50), respectively. Ang II (n = 14) concentration dependently decreased CF and LVSP, by maximally 41 +/- 4 and 25 +/- 3%, respectively (pEC(50)s 7.41 +/- 0.12 and 7.65 +/- 0.12). The AT(1) receptor antagonist irbesartan (n = 4) abolished all Ang II-induced changes, whereas the AT(2) receptor antagonist PD123319 (n = 6) enhanced (P < 0.05) the effect of Ang II on CF (to 59 +/- 1%) and LVSP (to 44 +/- 2%), without altering its potency. A similar enhancement was observed in the presence of nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester HCl (L-NAME; n = 4). On top of L-NAME, PD123319 no longer affected the response to Ang II (n = 4). The AT(2) receptor agonist CGP42112A (n = 4) did not affect CF or LVSP, nor did CGP42112A (n = 4) alter the constrictor response to the alpha(1)-adrenoceptor agonist phenylephrine. Furthermore, Ang II exerted no effects in hearts of AT(1A)(-/-) mice (n = 5), whereas its effects in hearts of AT(1A)(+/+) wild-type control mice (n = 7) were indistinguishable from those in hearts of C57BL/6 mice. In conclusion, Ang II exerts opposite effects on coronary and cardiac contractility in the mouse heart via activation of AT(1A) and AT(2) receptors. AT(2) receptor-mediated effects depend on NO and occur only in conjunction with AT(1A) receptor activation.
Collapse
Affiliation(s)
- Joep H M van Esch
- Department of Pharmacology, Erasmus MC, Room EE1418b, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Martin P Schuijt
- Department of Pharmacology, Erasmus MC, Room EE1418b, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Jilani Sayed
- Department of Pharmacology, Erasmus MC, Room EE1418b, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Yawar Choudhry
- Department of Pharmacology, Erasmus MC, Room EE1418b, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Thomas Walther
- Department of Pharmacology, Erasmus MC, Room EE1418b, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Pharmacology, Erasmus MC, Room EE1418b, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
- Author for correspondence:
| |
Collapse
|
35
|
D'Amore A, Black MJ, Thomas WG. The Angiotensin II Type 2 Receptor Causes Constitutive Growth of Cardiomyocytes and Does Not Antagonize Angiotensin II Type 1 Receptor–Mediated Hypertrophy. Hypertension 2005; 46:1347-54. [PMID: 16286564 DOI: 10.1161/01.hyp.0000193504.51489.cf] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) has important actions on the heart via type 1 (AT
1
) and type 2 (AT
2
) receptors. The link between AT
1
receptor activation and the hypertrophy of cardiomyocytes is accepted, whereas the contribution of the AT
2
receptor, which reportedly antagonizes the AT
1
receptor, is contentious. This ambiguity is primarily based on in vivo approaches, in which the direct effect of the AT
2
receptor and its modulation of the AT
1
receptor (at the level of the cardiomyocyte) are difficult to establish. In this study, we used adenoviruses encoding AT
1
and AT
2
to coexpress these receptors in isolated cardiomyocytes, allowing a direct examination of the consequence of varying AT
1
/AT
2
stoichiometry on cardiomyocyte hypertrophy. In myocytes expressing only the AT
1
receptor, Ang II stimulation promoted robust hypertrophy (increased protein:DNA ratio and phenotypic changes) via activation of mitogen-activated protein kinases (MAPKs). Titration of the AT
2
receptor against the AT
1
receptor did not inhibit Ang II–mediated cardiomyocyte hypertrophy. Instead, basal and Ang II–mediated hypertrophy was increased in line with the amplified expression of the AT
2
receptor, indicating a capacity for the AT
2
receptor to enhance basal cardiomyocyte growth. Indeed, expression of the AT
2
receptor alone resulted in hypertrophy; remarkably, this was unaffected by Ang II stimulation or the AT
2
receptor–specific ligands PD123319 and CGP42112. Although previous studies have indicated that the AT
2
receptor can antagonize MAPK activation via the AT
1
receptor, we found no evidence for this in cardiomyocytes. Thus, the AT
2
receptor promotes ligand-independent, constitutive cardiomyocyte hypertrophy and does not directly antagonize the AT
1
receptor in this setting.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cardiomegaly/etiology
- Cardiomegaly/pathology
- Cell Division
- Cells, Cultured
- Gene Transfer Techniques
- Genetic Vectors
- Mitogen-Activated Protein Kinases/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
Collapse
Affiliation(s)
- Angelo D'Amore
- Department of Anatomy and Cell Biology, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
36
|
Li HW, Gao YX, Raizada MK, Sumners C. Intronic enhancement of angiotensin II type 2 receptor transgene expression in vitro and in vivo. Biochem Biophys Res Commun 2005; 336:29-35. [PMID: 16122703 DOI: 10.1016/j.bbrc.2005.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/05/2005] [Indexed: 11/24/2022]
Abstract
The angiotensin II type 2 receptor (AT2R) can influence a variety of intracellular signaling molecules and cellular functions. However, its physiological functions and the roles of introns in the regulation of its expression have not been well determined. We first demonstrated that both intron 1 and intron 2 of AT2R could significantly enhance AT2R overexpression. Thus, we have provided some new prerequisites for further studies on the mechanisms that control AT2R gene expression. Next, we established a highly efficient method of delivering this receptor in vitro and in vivo using an AT2R recombinant adenoviral vector containing two introns of the AT2R. The vector may be useful in helping to uncover AT2R physiological functions and also for gene therapy related to AT2R. Moreover, we determined the important role of introns in gene expression cassettes and the inconsistency of expression between the targeted gene and the reporter gene.
Collapse
Affiliation(s)
- Hong-wei Li
- Department of Physiology and Functional Genomics and McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0274, USA.
| | | | | | | |
Collapse
|
37
|
Anavekar NS, Solomon SD. Angiotensin II receptor blockade and ventricular remodelling. J Renin Angiotensin Aldosterone Syst 2005; 6:43-8. [PMID: 16088851 DOI: 10.3317/jraas.2005.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cardiac remodelling is the expression of molecular, cellular and interstitial changes in response to cardiac injury, manifesting as adverse alterations in the size, shape and function of the ventricle. Several clinical studies have documented significant elevations in the levels of renin, angiotensin II (Ang II) and aldosterone attending acute myocardial infarction and/or congestive heart failure. Similar to catecholamines, markedly elevated activity of the renin-angiotensin-aldosterone system (RAAS) is associated with poor prognosis. The effects of Ang II upon cardiac tissue are related to two primary receptors, Ang II type 1 (AT1) and Ang II type 2 (AT2). The AT1-receptor appears to mediate many of the deleterious effects of chronic RAAS activity, while the AT2-receptor is increasingly shown to have potential cardioprotective effects. Attenuating the deleterious effects of sustained Ang II stimulation can be achieved by direct inhibition of angiotensin- converting enzyme (ACE) and/or direct antagonism of AT receptors. ACE inhibition reduces left ventricular (LV) volumes, retards the progression of LV dilatation and hypertrophy and increases systolic function in systolic dysfunction. By blocking at the receptor level, Ang II receptor blockers (ARBs) provide an alternative and more direct approach to inhibiting the effects of Ang II; however, data relating to their effects upon ventricular remodelling, whether used in isolation or in combination with ACE inhibitors (ACE-Is), are less convincing. Data arising from several recent clinical trials suggest that simultaneous use of ACE-Is and ARBs maybe of more benefit in attenuating ventricular remodelling than either agent alone.
Collapse
Affiliation(s)
- Nagesh S Anavekar
- Wynn Metabolic Cardiology Unit, Baker Heart Institute, Melbourne, Australia
| | | |
Collapse
|
38
|
Warnecke C, Mugrauer P, Sürder D, Erdmann J, Schubert C, Regitz-Zagrosek V. Intronic ANG II type 2 receptor gene polymorphism 1675 G/A modulates receptor protein expression but not mRNA splicing. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1729-35. [PMID: 16109806 DOI: 10.1152/ajpregu.00385.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-linked ANG II type 2 receptor (AT2) is supposed to be involved in cardiovascular disorders. Two studies associated the A allele of the AT2 gene polymorphism (PM) 1675 G/A with left ventricular hypertrophy in men and coronary ischemia in women. Because the PM is located in the short intron 1 of the AT2 gene within a sequence motif similar to the splice branch site consensus, we tested whether it might affect pre-mRNA splicing and/or modulate AT2 receptor expression. We first analyzed the AT2 mRNA splice pattern by RT-PCR in myocardial samples from 12 explanted human hearts and compared it with the respective genotypes. All 12 patients, 10 hemizygous males (7 A, 3 G allele carriers) and 2 homozygous females (2 G/G allele carriers), exhibited the same myocardial AT2 splice pattern with a relative abundance of transcript exon 1/2/3 compared with exon 1/3. Next, AT2 minigene constructs were cloned from both alleles, comprising the core promoter and the complete transcribed region up to the translation start codon, upstream of a luciferase reporter gene. These constructs were transfected into human (HT1080) and rat (PC12W) cell lines and rat vascular smooth muscle cells, and luciferase activities were assessed, as well as the splice patterns of the chimeric AT2/luciferase mRNAs. In all transfected cell types, the mRNA expressed from the AT2 constructs was spliced like the endogenous myocardial AT2 mRNA. However, luciferase activities driven by the G allele construct were significantly higher than those expressed from the A allele. Taken together, these data indicate that individuals carrying the G allele may express higher levels of AT2 receptor protein, which may be protective during the development of ventricular hypertrophy and coronary ischemia.
Collapse
Affiliation(s)
- Christina Warnecke
- Cardiovascular Disease in Women, CCR, Center for Cardiovascular Research, Charité Univ. Medicine Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Savoia C, Tabet F, Yao G, Schiffrin EL, Touyz RM. Negative regulation of RhoA/Rho kinase by angiotensin II type 2 receptor in vascular smooth muscle cells: role in angiotensin II-induced vasodilation in stroke-prone spontaneously hypertensive rats. J Hypertens 2005; 23:1037-45. [PMID: 15834290 DOI: 10.1097/01.hjh.0000166845.49850.39] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To test whether angiotensin II (Ang II) through the Ang II type 2 receptor (AT2R), downregulates RhoA/Rho kinase, which plays a role in AT1 receptor (AT1R)-mediated function. METHODS In vitro studies were performed in A10 vascular smooth muscle cells (VSMC) and in vivo studies in mesenteric arteries from Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) rats. VSMC were stimulated with Ang II (10 mol/l), CGP42112A (10 mol/l, a selective AT2R agonist) +/- valsartan (10 mol/l, an AT1R antagonist), or the Rho kinase inhibitor fasudil (10 mol/l). AT1R and AT2R expression and myosin light chain (MLC) phosphorylation were determined by immunoblotting. RhoA activity was assessed by measuring membrane translocation. Functional significance between AT2R, RhoA/Rho kinase and vasodilation was assessed in arteries from valsartan-treated (30 mg/kg per day, 14 days) WKY and SHRSP rats. Vasodilatory responses to Ang II (10-10 mol/l) were performed in norepinephrine pre-contracted vessels +/- valsartan(10 mol/l), PD123319 (10 mol/l, an AT2R antagonist) or fasudil (10 mol/l). RESULTS A10 VSMC expressed AT1R and AT2R. In valsartan-treated cells, Ang II-induced RhoA translocation was reduced versus controls (42 +/- 6%, P < 0.05). Similar responses were obtained with CGP42112A (45 +/- 6%, P < 0.05). This was associated with decreased MLC activation. Fasudil abrogated Ang II- and CGP42112A-mediated effects. Ang II evoked a significant vasodilatory response only in valsartan-treated SHRSP (max dilation 40 +/- 7%). PD123319 blocked these effects. Fasudil increased AngII-induced relaxation in SHRSP vessels. AT2R expression was increased by valsartan (two- to three-fold) in SHRSP arteries. RhoA translocation was increased two-fold in untreated SHRSP (P < 0.05) and was reduced by valsartan (P < 0.05). These changes were associated with decreased MLC phosphorylation. CONCLUSIONS Ang II/AT2R negatively regulates vascular RhoA/Rho kinase/MLC phosphorylation. These processes may play a role in Ang II-mediated vasodilation in conditions associated with vascular AT2R upregulation, such as in SHRSP chronically treated with AT1R blockers, which may contribute to blood pressure lowering by these antihypertensive agents.
Collapse
Affiliation(s)
- Carmine Savoia
- CIHR Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
40
|
Batenburg WW, Tom B, Schuijt MP, Danser AHJ. Angiotensin II type 2 receptor-mediated vasodilation. Focus on bradykinin, NO and endothelium-derived hyperpolarizing factor(s). Vascul Pharmacol 2005; 42:109-18. [PMID: 15792928 DOI: 10.1016/j.vph.2005.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Angiotensin (Ang) II type 1 (AT(1)) receptors account for the majority of the cardiovascular effects Ang II, including vasoconstriction and growth stimulation. Recent evidence, mainly obtained in animals, suggests that Ang II type 2 (AT(2)) receptors counteract some or all of these effects. This review summarizes the current knowledge on the vasodilator effects induced by AT(2) receptors in humans and animals, focussing not only on the mediators of this effect, but also on the modulatory role of age, gender, and endothelial function. It is concluded that AT(2) receptor-mediated vasodilation most likely depends on the bradykinin-bradykinin type 2 (B(2)) receptor-NO-cGMP pathway, although evidence for a direct link between AT(2) and B(2) receptors is currently lacking. If indeed B(2) receptors are involved, this would imply that, in addition to NO, also the wide range of non-NO 'endothelium-derived hyperpolarizing factors' (EDHFs) that is released following B(2) receptor activation (e.g., K(+), cytochrome P450 products from arachidonic acid, H(2)O(2) and S-nitrososothiols), could contribute to AT(2) receptor-induced vasodilation.
Collapse
Affiliation(s)
- Wendy W Batenburg
- Department of Pharmacology, room EE1418b, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
41
|
Abstract
The renin-angiotensin system (RAS) is a major physiological regulator of vascular tone and is implicated in cardiovascular pathophysiology. More recently, basic research has however continuously extended our understanding of the complexicity of the systemic and tissular RASs. The peptid hormone, angiotensin II, acts primarily via type I (AT1) and type II (AT2) angiotensin receptors. Most, if not all, of the peripheral and central actions of angiotensin II, including vasoconstriction, renal salt and water retention, facilitation of sympathetic transmission, modification of vascular and cardiac structure, oxydative stress stimulation and proinflammatory action were all thought to be mediated by the angiotensin type 1 receptor, AT1. Angiotensin II/III exerts actions through the AT2 receptor, which are directly opposed to those mediated by the AT1 receptor. Most notably, proteolytic fragments of angiotensin II also have biological activity via ther own receptors: angiotensin-(1-7)/AT1-7 and angiotensin IV/AT4. They are vasodilators in many arterial beds. The identification of these angiotensins opens the way to develop new therapeutics.
Collapse
Affiliation(s)
- N Oudart
- Laboratoire de Pharmacologie, Faculté de Pharmacie, 2, rue du Dr Marcland, F87025 Limoges Cedex
| |
Collapse
|
42
|
Siragy HM, Carey RM. The Angiotensin Receptors: AT1 and AT2. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Hannan RE, Widdop RE. Vascular angiotensin II actions mediated by angiotensin II type 2 receptors. Curr Hypertens Rep 2004; 6:117-23. [PMID: 15010015 DOI: 10.1007/s11906-004-0086-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Angiotensin II (Ang II) is the major effector peptide of the renin-angiotensin system and acts at two major receptors known as Ang II type 1 receptor (AT(1)R) and Ang II type 2 receptor (AT(2)R). Increasingly, there is evidence suggesting that the AT(2)R counter-regulates the excitatory effects of AT(1)R stimulation. In this review, we have focused on pharmacodynamic and trophic components of AT(2)R with respect to vascular function, and put the current status of vascular AT(2)R research in the context of a potential role for this ATR subtype in the therapeutic effects of AT(1)R antagonists.
Collapse
Affiliation(s)
- Ruth E Hannan
- Department of Pharmacology, Monash University-Clayton, Wellington Road, Melbourne, Victoria 3800, Australia
| | | |
Collapse
|
44
|
Perlegas D, Xie H, Sinha S, Somlyo AV, Owens GK. ANG II type 2 receptor regulates smooth muscle growth and force generation in late fetal mouse development. Am J Physiol Heart Circ Physiol 2004; 288:H96-102. [PMID: 15331365 DOI: 10.1152/ajpheart.00620.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although evidence from culture studies implicates the angiotensin II (ANG II) type 2 receptor (AT(2)R) in the regulation of growth and differentiation of arterial smooth muscle (SM) cells (SMC), the lack of its expression in adult arteries has precluded direct investigation of its role in vivo. The goal of the present study was to determine the role of AT(2)R in the control of fetal SMC growth, contractility, and differentiation during vascular development. Determination of isometric tension in fetal aortas showed potentiated ANG II-induced contraction by treatment with the selective AT(2)R antagonist PD-123319, demonstrating the presence of functional AT(2)Rs that mediate reduced force development in vascular SMC. In direct contrast to numerous cell culture studies, proliferation indexes were decreased rather than increased in aortic SMC of fetal homozygous AT(2)R knockout compared with wild-type or heterozygous knockout mice. Experiments using SMC tissues from heterozygous female AT(2)R knockout mice, which are naturally occurring chimeras for AT(2)R expression, showed that AT(2)R mRNA expression was exactly 50% of that of wild type. This indicated that loss of AT(2)R expression did not confer a selective advantage or disadvantage for SMC lineage determination and expansion. Real time RT-PCR analyses showed no significant difference in expression of SM-alpha-actin, SM myosin heavy chain, and myocardin in various SM tissues from all three genotypes, suggesting that knockout of AT(2)R had no effect on subsequent SMC differentiation. Taken together, results indicate that functional AT(2)R are expressed in fetal aorta and mediate reduced force development but do not significantly contribute to regulation of SMC differentiation.
Collapse
MESH Headings
- Actins/metabolism
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/embryology
- Cell Division/physiology
- Cell Line
- Female
- Fetal Development
- Fetus/physiology
- In Vitro Techniques
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/embryology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myosin Heavy Chains/metabolism
- Nuclear Proteins/metabolism
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Trans-Activators/metabolism
- Vasoconstriction/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Demetra Perlegas
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 801394, Charlottesville, VA 22908-1394, USA
| | | | | | | | | |
Collapse
|
45
|
Fournier A, Achard JM, Boutitie F, Mazouz H, Mansour J, Oprisiu R, Fernandez L, Messerli F. Is the angiotensin ii type 2 receptor cerebroprotective? Curr Hypertens Rep 2004; 6:182-9. [PMID: 15128469 DOI: 10.1007/s11906-004-0067-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most of the deleterious effects of angiotensin II (Ang II) on blood pressure (BP), cardiovascular remodeling, and atherosclerosis are mediated by Ang II type 1 (AT1)-receptor activation. This explains why Ang-II-decreasing or blocking drugs have been successful in decreasing global cardiovascular morbimortality in patients with cardiac complications. However, in primary or secondary stroke prevention trials in patients with low cardiac risk, b-blockers and angiotensin-converting enzyme inhibitors (ACEIs), which decrease Ang II formation, seem to be less protective than thiazides and dihydropyridines, which increase Ang II. When compared with a beta-blocker, an Ang II-increasing AT1-receptor blocker better protects against stroke but not against cardiac events, whereas an ACEI gives the same protection against both cardiac and cerebral events. This dissociation between blood-pressure-independent cardiac and cerebral protection between b-blockers or ACEIs versus AT1-blockers in patients with low cardiac risk can be best explained if, besides the beneficial vascular effect of AT1-receptor blunting, there is evidence of a beneficial effect of non-AT1-receptor activation. In this review, we present experimental evidence for AT2- and AT4-receptor-mediated brain-anti-ischemic mechanisms and propose a direct comparison of AT1-blockers with ACEIs to prove the clinical effectiveness of non-AT1-mediated mechanisms in stroke prevention, particularly in patients with a higher risk for stroke than for cardiac complications.
Collapse
Affiliation(s)
- Albert Fournier
- Service de Néphrologie, CHU SUD, Avenue René Laënnec, 80054 Amiens 1, France.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Toblli JE, Stella I, Mazza ON, Ferder L, Inserra F. Candesartan cilexetil protects cavernous tissue in spontaneously hypertensive rats. Int J Impot Res 2004; 16:305-12. [PMID: 15103316 DOI: 10.1038/sj.ijir.3901146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous experiments, our group demonstrated morphological changes in erectile tissue from male spontaneously hypertensive rats (SHR). The present study was performed to determine whether an angiotensin II receptor blocker could protect cavernous tissue (CT) from these structural alterations in SHR. Male SHR and Wistar-Kyoto (WKY) rats were studied during 4 months. Rats were divided into three groups: SHR (n=10), SHR with candesartan cilexetil (n=10) and WKY rats (n=10). Candesartan cilexetil 7.5 mg/kg/day was administered orally throughout the study. CT was processed for pathology studies. The amount of (1) cavernous smooth muscle (CSM), (2) vascular smooth muscle (VSM), (3) collagen type III, and the rat endothelial cell antibody (RECA-1)/tunica media ratio in cavernous arteries were evaluated. SHR with candesartan cilexetil showed a lower blood pressure, a lower percentage of CSM, smaller VSM area, with a higher RECA-1/media ratio, and a lower percentage of collagen type III, when compared to untreated SHR. In addition, SHR showed a positive correlation between systolic blood pressure (SBP) and CSM amount (r=0.91; P<0.01), and SBP and the percentage of collagen type III (r=0.88; P<0.01); these correlations were not observed either in SHR treated with candesartan cilexetil or in WKY rats. We conclude that candesartan cilexetil provides a significant protective role against morphologic changes in vessels as well as in cavernous spaces of the erectile tissue, caused by high blood pressure, in SHR.
Collapse
Affiliation(s)
- J E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
47
|
Tan Y, Hutchison FN, Jaffa AA. Mechanisms of angiotensin II-induced expression of B2 kinin receptors. Am J Physiol Heart Circ Physiol 2004; 286:H926-32. [PMID: 14766673 DOI: 10.1152/ajpheart.00757.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the primary roles of the kallikreinkinin system and the renin-angiotensin system are quite divergent, they are often intertwined under pathophysiological conditions. We examined the effect of ANG II on regulation of B(2) kinin receptors (B2KR) in vascular cells. Vascular smooth muscle cells (VSMC) were treated with ANG II in a concentration (10(-9)-10(-6) M)- and time (0-24 h)-dependent manner, and B2KR protein and mRNA levels were measured by Western blots and PCR, respectively. A threefold increase in B2KR protein levels was observed as early as 6 h, with a peak response at 10(-7) M. ANG II (10(-7) M) also increased B2KR mRNA levels twofold 4 h after stimulation. Actinomycin D suppressed the increase in B2KR mRNA and protein levels induced by ANG II. To elucidate the receptor subtype involved in mediating this regulation, VSMC were pretreated with losartan (AT(1) receptor antagonist) and/or PD-123319 (AT(2) receptor antagonist) at 10 microM for 30 min, followed by ANG II (10(-7) M) stimulation. Losartan completely blocked the ANG II-induced B2KR increase, whereas PD-123319 had no effect. In addition, expression of B2KR mRNA levels was decreased in AT(1A) receptor knockout mice. Finally, to determine whether ANG II stimulates B2KR expression via activation of the MAPK pathway, VSMC were pretreated with an inhibitor of p42/p44(mapk) (PD-98059) and/or an inhibitor of p38(mapk) (SB-202190), followed by ANG II (10(-7) M) for 24 h. Selective inhibition of the p42/p44(mapk) pathway significantly blocked the ANG II-induced increase in B2KR expression. These findings demonstrate that ANG II regulates expression of B2KR in VSMC and provide a rationale for studying the interaction between ANG II and bradykinin in the pathogenesis of vascular dysfunction.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/cytology
- Cells, Cultured
- Extracellular Fluid/metabolism
- Gene Expression/drug effects
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Signal Transduction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Yan Tan
- Dept. of Medicine, Endocrinology-Diabetes-Medical Genetics, Medical Univ. of South Carolina, 114 Doughty St., PO Box 250776, Charleston, SC 29425, USA
| | | | | |
Collapse
|
48
|
Widdop RE, Jones ES, Hannan RE, Gaspari TA. Angiotensin AT2 receptors: cardiovascular hope or hype? Br J Pharmacol 2003; 140:809-24. [PMID: 14530223 PMCID: PMC1574085 DOI: 10.1038/sj.bjp.0705448] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Revised: 06/30/2003] [Accepted: 07/10/2003] [Indexed: 02/02/2023] Open
Abstract
British Journal of Pharmacology (2003) 140, 809–824. doi:10.1038/sj.bjp.0705448
Collapse
Affiliation(s)
- Robert E Widdop
- Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
49
|
Volpe M, Musumeci B, De Paolis P, Savoia C, Morganti A. Angiotensin II AT2 receptor subtype: an uprising frontier in cardiovascular disease? J Hypertens 2003; 21:1429-43. [PMID: 12872031 DOI: 10.1097/00004872-200308000-00001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in the regulation of fluid, electrolyte balance and blood pressure, and is a modulator of cellular growth and proliferation. Biological actions of RAS are linked to the binding of the effector molecule, angiotensin II (AngII), to specific membrane receptors, mostly the AT1 subtype and, to a lesser extent, other subtypes. Following the identification and characterization of the AT2 subtype receptor, it has been proposed that a complex interaction between AngII and its receptors may play an important role in the effects of RAS. In this paper current information on AngII subtype receptors--their structure, regulation and intracellular signalling--are reviewed, with a particular emphasis on the potential relevance for cardiovascular pathophysiology. In addition, we discuss modulation of expression of the AT2 receptor and its interaction with the AT1 receptor subtype, as well as the potential effects of this receptor on blood pressure regulation. A better understanding of the integrated effects of the AngII subtype receptors may help to elucidate the function of the RAS, as well as their participation in the mechanisms of cardiovascular disease and attendant therapeutic implications.
Collapse
Affiliation(s)
- Massimo Volpe
- Cattedra di Cardiologia, II Facoltà di Medicina, Dipartimento di Medicina Sperimentale e Patologia, Università La Sapienza, Rome, Italy.
| | | | | | | | | |
Collapse
|
50
|
Shimada Y, Yamakawa A, Morita T, Sugiyama K. Effects of dietary eritadenine on the liver microsomal Delta6-desaturase activity and its mRNA in rats. Biosci Biotechnol Biochem 2003; 67:1258-66. [PMID: 12843651 DOI: 10.1271/bbb.67.1258] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eritadenine, a hypocholesterolemic factor of Lentinus edodes mushroom, has a wide range of effects on lipid metabolism such as an increase in the liver microsomal phosphatidylethanolamine (PE) concentration, a decrease in the liver microsomal Delta6-desaturase activity, and an alteration of the fatty acid and molecular species profile of liver and plasma lipids. In this study, the time-dependent effects of dietary eritadenine on several variables concerning lipid metabolism were investigated in rats to clarify the sequence of metabolic changes caused by eritadenine, with special interest in the association of the liver microsomal phospholipid profile and the activity of Delta6-desaturase. The effect of dietary eritadenine on the abundance of mRNA for Delta6-desaturase was also investigated. When the time required for a half-change of variables was estimated during the first 5 days after the change from the control diet to the eritadenine-supplemented (50 mg/kg) diet, the change rates of the variables were fastest in the following order: alteration of the liver microsomal phospholipid profile>decrease in liver microsomal Delta6-desaturase activity>alteration of the fatty acid and molecular species profiles of microsomal and plasma phosphatidylcholine (PC)>decrease in the plasma cholesterol concentration. There was a significant correlation between the Delta6-desaturase activity and liver microsomal PE concentration, but not PC concentration, or the proportion of PC and PE or the PC/PE ratio. The suppression of Delta6-desaturase activity by dietary eritadenine was accompanied by a significant reduction in the abundance of mRNA for the enzyme. These results suggest that dietary eritadenine might suppress the activity of liver microsomal Delta6-desaturase by altering the microsomal phospholipid profile, as represented by an increase in PE concentration, and that the effect of eritadenine is mediated by the regulation of gene expression.
Collapse
Affiliation(s)
- Yasuhiko Shimada
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University
| | | | | | | |
Collapse
|