1
|
Costa RM, Cerqueira DM, Francis L, Bruder-Nascimento A, Alves JV, Sims-Lucas S, Ho J, Bruder-Nascimento T. In utero exposure to maternal diabetes exacerbates dietary sodium intake-induced endothelial dysfunction by activating cyclooxygenase 2-derived prostanoids. Am J Physiol Endocrinol Metab 2024; 326:E555-E566. [PMID: 38446637 PMCID: PMC11376489 DOI: 10.1152/ajpendo.00009.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024]
Abstract
Prenatal exposure to maternal diabetes has been recognized as a significant cardiovascular risk factor, increasing the susceptibility to the emergence of conditions such as high blood pressure, atherosclerosis, and heart disease in later stages of life. However, it is unclear if offspring exposed to diabetes in utero have worse vascular outcomes on a high-salt (HS) diet. To test the hypothesis that in utero exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, we treated adult male wild-type offspring (DM_Exp, 6 mo old) of diabetic Ins2+/C96Y mice (Akita mice) with HS (8% sodium chloride, 10 days) and analyzed endothelial function via wire myograph and cyclooxygenase (COX)-derived prostanoids pathway by ELISA, quantitative PCR, and immunochemistry. On a regular diet, DM_Exp mice did not manifest any vascular dysfunction, remodeling, or inflammation. However, HS increased aortic contractility to phenylephrine and induced endothelial dysfunction (analyzed by acetylcholine-induced endothelium-dependent relaxation), vascular hydrogen peroxide production, COX2 expression, and prostaglandin E2 (PGE2) overproduction. Interestingly, ex vivo antioxidant treatment (tempol) or COX1/2 (indomethacin) or COX2 (NS398) inhibitors improved or reverted the endothelial dysfunction in DM_Exp mice fed a HS diet. Finally, DM_Exp mice fed with HS exhibited greater circulating cytokines and chemokines accompanied by vascular inflammation. In summary, our findings indicate that prenatal exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, primarily through the induction of oxidative stress and the generation of COX2-derived PGE2. This supports the concept that in utero exposure to maternal diabetes is a cardiovascular risk factor in adulthood.NEW & NOTEWORTHY Using a unique mouse model of prenatal exposure to maternal type 1 diabetes, our study demonstrates the novel observation that prenatal exposure to maternal diabetes results in a predisposition to high-salt (HS) dietary-induced vascular dysfunction and inflammation in adulthood. Mechanistically, we demonstrated that in utero exposure to maternal diabetes and HS intake induces vascular oxidative stress, cyclooxygenase-derived prostaglandin E2, and inflammation.
Collapse
Affiliation(s)
- Rafael M Costa
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Institute of Health Sciences, Federal University of Jatai, Jatai, Goiás, Brazil
| | - Débora Malta Cerqueira
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Nephrology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Lydia Francis
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Nephrology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ariane Bruder-Nascimento
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Institute of Health Sciences, Federal University of Jatai, Jatai, Goiás, Brazil
| | - Juliano V Alves
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Institute of Health Sciences, Federal University of Jatai, Jatai, Goiás, Brazil
| | - Sunder Sims-Lucas
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Nephrology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jacqueline Ho
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Nephrology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thiago Bruder-Nascimento
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Center for Pediatrics Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Endocrinology Division, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Stocker SD, Sullivan JB. Deletion of the Transient Receptor Potential Vanilloid 1 Channel Attenuates Sympathoexcitation and Hypertension and Improves Glomerular Filtration Rate in 2-Kidney-1-Clip Rats. Hypertension 2023; 80:1671-1682. [PMID: 37334698 PMCID: PMC10527253 DOI: 10.1161/hypertensionaha.123.21153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Renal denervation lowers arterial blood pressure in both clinical populations and multiple experimental models of hypertension. This therapeutic effect is partly attributed to the removal of overactive renal sensory nerves. The TRPV1 (transient receptor potential vanilloid 1) channel is highly expressed in renal sensory nerves and detects changes in noxious and mechanosensitive stimuli, pH, and chemokines. However, the extent to which TRPV1 channels contribute to 2-kidney-1-clip (2K1C) renovascular hypertension has not been tested. METHODS We generated a novel Trpv1-/- (TRPV1 knockout) rat using CRISPR/Cas9 and 26-bp deletion in exon 3 and induced 2K1C hypertension. RESULTS The majority (85%) of rat renal sensory neurons retrogradely labeled from the kidney were TRPV1-positive. Trpv1-/- rats lacked TRPV1 immunofluorescence in the dorsal root ganglia, had a delayed tail-flick response to hot but not cold water, and lacked an afferent renal nerve activity response to intrarenal infusion of the TRPV1 agonist capsaicin. Interestingly, 2K1C hypertension was significantly attenuated in male Trpv1-/- versus wild-type rats. 2K1C hypertension significantly increased the depressor response to ganglionic blockade, total renal nerve activity (efferent and afferent), and afferent renal nerve activity in wild-type rats, but these responses were attenuated in male Trpv1-/- rats. 2K1C hypertension was attenuated in female rats with no differences between female strains. Finally, glomerular filtration rate was reduced by 2K1C in wild-type rats but improved in Trpv1-/- rats. CONCLUSIONS These findings suggest that renovascular hypertension requires activation of the TRPV1 channel to elevate renal afferent and sympathetic nerve activity, reduce glomerular filtration rate, and increase arterial blood pressure.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA
| | - Jacob B Sullivan
- Department of Neurobiology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
3
|
Szallasi A. The Vanilloid (Capsaicin) Receptor TRPV1 in Blood Pressure Regulation: A Novel Therapeutic Target in Hypertension? Int J Mol Sci 2023; 24:8769. [PMID: 37240118 PMCID: PMC10217837 DOI: 10.3390/ijms24108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Today's sedentary lifestyle with excess food and little exercise increases the number of people with hypertension, a major risk factor for stroke. New knowledge of treatments in this field is of utmost importance. In animal experiments, the activation by capsaicin of TRPV1-expressing sensory afferents evokes a drop in blood pressure by triggering the Bezold-Jarisch reflex. In hypertensive rats, capsaicin reduces blood pressure. Conversely, genetic ablation of the TRPV1 receptor results in elevated nocturnal (but not diurnal) blood pressure. These observations imply a therapeutic potential for TRPV1 activation in hypertensive patients. Indeed, in a major epidemiological study involving 9273 volunteers, dietary capsaicin was found to lower the risk for hypertension. New research indicates that the mechanism of action of capsaicin on blood pressure regulation is far more complex than previously thought. In addition to the well-recognized role of capsaicin-sensitive afferents in blood pressure regulation, TRPV1 seems to be expressed both in endothelial cells and vascular smooth muscle. This review aims to evaluate the therapeutic potential of TRPV1-targeting drugs in hypertensive patients.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
4
|
Renal sympathetic activity: A key modulator of pressure natriuresis in hypertension. Biochem Pharmacol 2023; 208:115386. [PMID: 36535529 DOI: 10.1016/j.bcp.2022.115386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Hypertension is a complex disorder ensuing necessarily from alterations in the pressure-natriuresis relationship, the main determinant of long-term control of blood pressure. This mechanism sets natriuresis to the level of blood pressure, so that increasing pressure translates into higher osmotically driven diuresis to reduce volemia and control blood pressure. External factors affecting the renal handling of sodium regulate the pressure-natriuresis relationship so that more or less natriuresis is attained for each level of blood pressure. Hypertension can thus only develop following primary alterations in the pressure to natriuresis balance, or by abnormal activity of the regulation network. On the other hand, increased sympathetic tone is a very frequent finding in most forms of hypertension, long regarded as a key element in the pathophysiological scenario. In this article, we critically analyze the interplay of the renal component of the sympathetic nervous system and the pressure-natriuresis mechanism in the development of hypertension. A special focus is placed on discussing recent findings supporting a role of baroreceptors as a component, along with the afference of reno-renal reflex, of the input to the nucleus tractus solitarius, the central structure governing the long-term regulation of renal sympathetic efferent tone.
Collapse
|
5
|
Wu LL, Zhang Y, Li XZ, Du XL, Gao Y, Wang JX, Wang XL, Chen Q, Li YH, Zhu GQ, Tan X. Impact of Selective Renal Afferent Denervation on Oxidative Stress and Vascular Remodeling in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2022; 11:1003. [PMID: 35624870 PMCID: PMC9137540 DOI: 10.3390/antiox11051003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress and sustained sympathetic over-activity contribute to the pathogenesis of hypertension. Catheter-based renal denervation has been used as a strategy for treatment of resistant hypertension, which interrupts both afferent and efferent renal fibers. However, it is unknown whether selective renal afferent denervation (RAD) may play beneficial roles in attenuating oxidative stress and sympathetic activity in hypertension. This study investigated the impact of selective RAD on hypertension and vascular remodeling. Nine-week-old normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were subjected to selective renal afferent denervation (RAD) with 33 mM of capsaicin for 15 min. Treatment with the vehicle of capsaicin was used as a control. The selective denervation was confirmed by the reduced calcitonin gene-related peptide expression and the undamaged renal sympathetic nerve activity response to the stimulation of adipose white tissue. Selective RAD reduced plasma norepinephrine levels, improved heart rate variability (HRV) and attenuated hypertension in SHR.It reduced NADPH oxidase (NOX) expression and activity, and superoxide production in the hypothalamic paraventricular nucleus (PVN), aorta and mesenteric artery of SHR. Moreover, the selective RAD attenuated the vascular remodeling of the aorta and mesenteric artery of SHR. These results indicate that selective removal of renal afferents attenuates sympathetic activity, oxidative stress, vascular remodeling and hypertension in SHR. The attenuated superoxide signaling in the PVN is involved in the attenuation of sympathetic activity in SHR, and the reduced sympathetic activity at least partially contributes to the attenuation of vascular oxidative stress and remodeling in the arteries of hypertensive rats.
Collapse
Affiliation(s)
- Lu-Lu Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (L.-L.W.); (J.-X.W.); (X.-L.W.)
| | - Yue Zhang
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| | - Xiu-Zhen Li
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| | - Xin-Li Du
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| | - Ying Gao
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (L.-L.W.); (J.-X.W.); (X.-L.W.)
| | - Xiao-Li Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (L.-L.W.); (J.-X.W.); (X.-L.W.)
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China; (Q.C.); (Y.-H.L.)
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China; (Q.C.); (Y.-H.L.)
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (L.-L.W.); (J.-X.W.); (X.-L.W.)
| | - Xiao Tan
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| |
Collapse
|
6
|
Mariano VS, Boer PA, Gontijo JAR. Fetal Undernutrition Programming, Sympathetic Nerve Activity, and Arterial Hypertension Development. Front Physiol 2021; 12:704819. [PMID: 34867434 PMCID: PMC8635863 DOI: 10.3389/fphys.2021.704819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
A wealth of evidence showed that low birth weight is associated with environmental disruption during gestation, triggering embryotic or fetal adaptations and increasing the susceptibility of progeny to non-communicable diseases, including metabolic and cardiovascular diseases, obesity, and arterial hypertension. In addition, dietary disturbance during pregnancy in animal models has highlighted mechanisms that involve the genesis of arterial hypertension, particularly severe maternal low-protein intake (LP). Functional studies demonstrated that maternal low-protein intake leads to the renal decrease of sodium excretion and the dysfunction of the renin-angiotensin-aldosterone system signaling of LP offspring. The antinatriuretic effect is accentuated by a reduced number of nephron units and glomerulosclerosis, which are critical in establishing arterial hypertension phenotype. Also, in this way, studies have shown that the overactivity of the central and peripheral sympathetic nervous system occurs due to reduced sensory (afferent) renal nerve activity. As a result of this reciprocal and abnormal renorenal reflex, there is an enhanced tubule sodium proximal sodium reabsorption, which, at least in part, contributes directly to arterial hypertension development in some of the programmed models. A recent study has observed that significant changes in adrenal medulla secretion could be involved in the pathophysiological process of increasing blood pressure. Thus, this review aims to compile studies that link the central and peripheral sympathetic system activity mechanisms on water and salt handle and blood pressure control in the maternal protein-restricted offspring. Besides, these pathophysiological mechanisms mainly may involve the modulation of neurokinins and catecholamines pathways.
Collapse
Affiliation(s)
- Vinícius Schiavinatto Mariano
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Moreira JD, Nist KM, Carmichael CY, Kuwabara JT, Wainford RD. Sensory Afferent Renal Nerve Activated Gαi 2 Subunit Proteins Mediate the Natriuretic, Sympathoinhibitory and Normotensive Responses to Peripheral Sodium Challenges. Front Physiol 2021; 12:771167. [PMID: 34916958 PMCID: PMC8669768 DOI: 10.3389/fphys.2021.771167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022] Open
Abstract
We have previously reported that brain Gαi2 subunit proteins are required to maintain sodium homeostasis and are endogenously upregulated in the hypothalamic paraventricular nucleus (PVN) in response to increased dietary salt intake to maintain a salt resistant phenotype in rats. However, the origin of the signal that drives the endogenous activation and up-regulation of PVN Gαi2 subunit protein signal transduction pathways is unknown. By central oligodeoxynucleotide (ODN) administration we show that the pressor responses to central acute administration and central infusion of sodium chloride occur independently of brain Gαi2 protein pathways. In response to an acute volume expansion, we demonstrate, via the use of selective afferent renal denervation (ADNX) and anteroventral third ventricle (AV3V) lesions, that the sensory afferent renal nerves, but not the sodium sensitive AV3V region, are mechanistically involved in Gαi2 protein mediated natriuresis to an acute volume expansion [peak natriuresis (μeq/min) sham AV3V: 43 ± 4 vs. AV3V 45 ± 4 vs. AV3V + Gαi2 ODN 25 ± 4, p < 0.05; sham ADNX: 43 ± 4 vs. ADNX 23 ± 6, AV3V + Gαi2 ODN 25 ± 3, p < 0.05]. Furthermore, in response to chronically elevated dietary sodium intake, endogenous up-regulation of PVN specific Gαi2 proteins does not involve the AV3V region and is mediated by the sensory afferent renal nerves to counter the development of the salt sensitivity of blood pressure (MAP [mmHg] 4% NaCl; Sham ADNX 124 ± 4 vs. ADNX 145 ± 4, p < 0.05; Sham AV3V 125 ± 4 vs. AV3V 121 ± 5). Additionally, the development of the salt sensitivity of blood pressure following central ODN-mediated Gαi2 protein down-regulation occurs independently of the actions of the brain angiotensin II type 1 receptor. Collectively, our data suggest that in response to alterations in whole body sodium the peripheral sensory afferent renal nerves, but not the central AV3V sodium sensitive region, evoke the up-regulation and activation of PVN Gαi2 protein gated pathways to maintain a salt resistant phenotype. As such, both the sensory afferent renal nerves and PVN Gαi2 protein gated pathways, represent potential targets for the treatment of the salt sensitivity of blood pressure.
Collapse
Affiliation(s)
- Jesse D. Moreira
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Medicine, School of Medicine, Boston University, Boston, MA, United States
| | - Kayla M. Nist
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Anatomy & Neurobiology, School of Medicine, Boston University, Boston, MA, United States
| | - Casey Y. Carmichael
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Jill T. Kuwabara
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Richard D. Wainford
- Whitaker Cardiovascular Institute, School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Yu SQ, Ma S, Wang DH. Ablation of TRPV1-positive nerves exacerbates salt-induced hypertension and tissue injury in rats after renal ischemia-reperfusion via infiltration of macrophages. Clin Exp Hypertens 2021; 43:254-262. [PMID: 33327798 PMCID: PMC7858237 DOI: 10.1080/10641963.2020.1860078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 01/28/2023]
Abstract
Background: High-salt intake after renal ischemia/reperfusion (I/R) injury leads to hypertension and further renal injury, but the mechanisms are largely unknown. This study tested the hypothesis that degeneration of transient receptor potential vanilloid 1 (TRPV1)-positive nerves exacerbates salt-induced hypertension and renal injury after I/R via enhancing renal macrophage infiltration.Methods: Large dose of capsaicin (CAP, 100 mg/kg, subcutaneously) was used to degenerate rat TRPV1-positive nerves. Then, rats were subjected to renal I/R injury and fed with a low-salt (0.4% NaCl) diet for 5 weeks after I/R, followed by a high-salt (4% NaCl) diet for 4 weeks during which macrophages were depleted using liposome-encapsulated clodronate (LC, 1.3 ml/kg/week, intravenously).Results: The protein level of TRPV1 in the kidney was downregulated by renal I/R injury and was further decreased by CAP treatment. LC treatment did not affect the protein levels of renal TRPV1. After renal I/R injury, high-salt diet significantly increased renal macrophage infiltration, inflammatory cytokines (tumor necrosis factor-alpha and interleukin 1 beta), systolic blood pressure, the urine/water intake ratio, plasma creatine and urea levels, urinary 8-isoprostane, and renal collagen deposition. Interestingly, CAP treatment further increased these parameters. These increases were abolished by depleting macrophages with LC treatment.Conclusions: These data suggest that degenerating TRPV1-positive nerves exacerbates salt-induced hypertension and tissue injury in rats after renal I/R injury via macrophages-mediated renal inflammation.
Collapse
Affiliation(s)
- Shuang-Quan Yu
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University , East Lansing, MI, USA
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University , East Lansing, MI, USA
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University , East Lansing, MI, USA
- Neuroscience Program, Michigan State University , East Lansing, MI, USA
- Cell and Molecular Biology Program, Michigan State University , East Lansing, MI, USA
| |
Collapse
|
9
|
Yu SQ, Ma S, Wang DH. TRPV1 Activation Prevents Renal Ischemia-Reperfusion Injury-Induced Increase in Salt Sensitivity by Suppressing Renal Sympathetic Nerve Activity. Curr Hypertens Rev 2020; 16:148-155. [PMID: 31721716 PMCID: PMC7499355 DOI: 10.2174/1573402115666191112122339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/23/2022]
Abstract
Abstract: Background Salt sensitivity is increased following renal Ischemia-Reperfusion (I/R) injury. We tested the hypothesis that high salt intake induced increase in Renal Sympathetic Nerve Activity (RSNA) after renal I/R can be prevented by activation of Transient Receptor Potential Vanilloid 1 (TRPV1). Methods Rats were fed a 0.4% NaCl diet for 5 weeks after renal I/R, followed by a 4% NaCl diet for 4 more weeks in four groups: sham, I/R, I/R +High Dose Capsaicin (HDC), and I/R+Low Dose Capsaicin (LDC). The low (1mg/kg) or high (100mg/kg) dose of capsaicin was injected subcutaneously before I/R to activate or desensitize TRPV1, respectively. Results Systolic blood pressure was gradually elevated after fed on a high-salt diet in the I/R and I/R+HDC groups but not in the I/R+LDC group, with a greater increase in the I/R+HDC group. Renal function was impaired in the I/R group and was further deteriorated in the I/R+HDC group but was unchanged in the I/R+LDC group. At the end of high salt treatment, afferent renal nerve activity in response to unilateral intra-pelvic administration of capsaicin was decreased in the I/R group and was further suppressed in the I/R+HDC group but was unchanged in the I/R+LDC group. RSNA in response to intrathecal administration of muscimol, a selective agonist of GABA-A receptors, was augmented in the I/R group and further intensified in the I/R+HDC group but was unchanged in the I/R+LDC group. Similarly, urinary norepinephrine levels were increased in the I/R group and were further elevated in the I/R+HDC group but unchanged in the I/R+LDC group. Conclusion These data suggest that TRPV1 activation prevents renal I/R injury-induced increase in salt sensitivity by suppressing RSNA.
Collapse
Affiliation(s)
- Shuang-Quan Yu
- Division of Nanomedicine and Molecular Intervention, Department of Medicine Michigan State University, East Lansing, Michigan, MI 48824, United States
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine Michigan State University, East Lansing, Michigan, MI 48824, United States
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine Michigan State University, East Lansing, Michigan, MI 48824, United States
| |
Collapse
|
10
|
Frame AA, Carmichael CY, Kuwabara JT, Cunningham JT, Wainford RD. Role of the afferent renal nerves in sodium homeostasis and blood pressure regulation in rats. Exp Physiol 2019; 104:1306-1323. [PMID: 31074108 PMCID: PMC6675646 DOI: 10.1113/ep087700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
New Findings What is the central question of this study? What are the differential roles of the mechanosensitive and chemosensitive afferent renal nerves in the reno‐renal reflex that promotes natriuresis, sympathoinhibition and normotension during acute and chronic challenges to sodium homeostasis? What is the main finding and its importance? The mechanosensitive afferent renal nerves contribute to an acute natriuretic sympathoinhibitory reno‐renal reflex that may be integrated within the paraventricular nucleus of the hypothalamus. Critically, the afferent renal nerves are required for the maintenance of salt resistance in Sprague–Dawley and Dahl salt‐resistant rats and attenuate the development of Dahl salt‐sensitive hypertension.
Abstract These studies tested the hypothesis that in normotensive salt‐resistant rat phenotypes the mechanosensitive afferent renal nerve (ARN) reno‐renal reflex promotes natriuresis, sympathoinhibition and normotension during acute and chronic challenges to fluid and electrolyte homeostasis. Selective ARN ablation was conducted prior to (1) an acute isotonic volume expansion (VE) or 1 m NaCl infusion in Sprague–Dawley (SD) rats and (2) chronic high salt intake in SD, Dahl salt‐resistant (DSR), and Dahl salt‐sensitive (DSS) rats. ARN responsiveness following high salt intake was assessed ex vivo in response to noradrenaline and sodium concentration (SD, DSR and DSS) and via in vivo manipulation of renal pelvic pressure and sodium concentration (SD and DSS). ARN ablation attenuated the natriuretic and sympathoinhibitory responses to an acute VE [peak natriuresis (µeq min−1) sham 52 ± 5 vs. ARN ablation 28 ± 3, P < 0.05], but not a hypertonic saline infusion in SD rats. High salt (HS) intake enhanced ARN reno‐renal reflex‐mediated natriuresis in response to direct increases in renal pelvic pressure (mechanoreceptor stimulus) in vivo and ARN responsiveness to noradrenaline ex vivo in SD, but not DSS, rats. In vivo and ex vivo ARN responsiveness to increased renal pelvic sodium concentration (chemoreceptor stimulus) was unaltered during HS intake. ARN ablation evoked sympathetically mediated salt‐sensitive hypertension in SD rats [MAP (mmHg): sham normal salt 102 ± 2 vs. sham HS 104 ± 2 vs. ARN ablation normal salt 103 ± 2 vs. ARN ablation HS 121 ± 2, P < 0.05] and DSR rats and exacerbated DSS hypertension. The mechanosensitive ARNs mediate an acute sympathoinhibitory natriuretic reflex and counter the development of salt‐sensitive hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Casey Y Carmichael
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Jill T Kuwabara
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Selective ablation of TRPV1 by intrathecal injection of resiniferatoxin in rats increases renal sympathoexcitatory responses and salt sensitivity. Hypertens Res 2018; 41:679-690. [PMID: 30006640 DOI: 10.1038/s41440-018-0073-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 01/28/2023]
Abstract
This study tested the hypothesis that selective ablation of transient receptor potential vanilloid type 1 (TRPV1)-positive nerve fibers by intrathecal injection of resiniferatoxin (RTX) enhances renal sympathoexcitatory responses and salt sensitivity. Intrathecal injection of RTX (1.8 μg/kg) to the levels of lower thoracic and upper lumbar spinal cord (T8-L3) increased mean arterial pressure (MAP) in rats fed a normal (NS, 1% NaCl) or high-sodium (HS, 8% NaCl) diet for 4 weeks compared to vehicle-treated rats (NS: 121 ± 2 vs. 111 ± 2; HS: 154 ± 2 vs. 134 ± 2 mm Hg, both P < 0.05), with a greater increase in HS compared to NS rats (9 ± 1% vs. 15 ± 1%, P < 0.05). TRPV1 contents were decreased in T8-L3 segments of spinal dorsal horn but not in corresponding dorsal root ganglia and the kidney following RTX treatment (P < 0.05). Selective activation of GABA-A receptors with intrathecal T8-L3 segment-injection of muscimol (3 nmol/kg) decreased renal sympathetic nerve activity and increased urinary excretion in both NS and HS rats, with a greater effect in RTX-treated compared to vehicle-treated rats (P < 0.05). Chronic activation of GABA-A receptors with muscimol (50 mg/kg/day × 2, p.o.) abolished RTX treatment-induced pressor effects in NS and HS rats. GAD65/67, a GABA synthetase, in the spinal cord was downregulated and tyrosine hydroxylase in the kidney upregulated in NS or HS rats treated with RTX (P < 0.05). Thus, selective ablation of TRPV1-positive central terminals of sensory neurons plays a prohypertensive role possibly via inhibition of spinal GABA system especially with HS intake, suggesting that activation of TRPV1 in central terminals of sensory neurons may convey an antihypertensive effect.
Collapse
|
12
|
Begey AL, Liu KL, Lo M, Josset-Lamaugarny A, Picard N, Gauthier C, Fromy B, Sigaudo-Roussel D, Dubourg L. Cutaneous and renal vasodilatory response to local pressure application: A comparative study in mice. Microvasc Res 2017; 115:44-51. [PMID: 28859929 DOI: 10.1016/j.mvr.2017.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/23/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM We have reported a novel relationship involving mechanical stimulation and vasodilation in rodent and human skin, referred to as pressure-induced vasodilation (PIV). It is unknown whether this mechanism exists in kidney and reflects the microcirculation in deep organs. Therefore, we compared the skin and kidney PIV to determine whether their changes were similar. METHODS In anesthetized mice fed a normal salt-diet, laser Doppler flux (LDF) signals were measured when an increase in local pressure was applied to the surface of the head skin with the rate of 2.2Pa/s (1mmHg/min) and to the left kidney with a rate of 4.4Pa/s (2mmHg/min). The mechanism underlying renal PIV was also investigated. The skin and kidney PIV were also compared during salt load (4% NaCl diet). RESULTS The kidney had higher baseline LDF and vascular conductance compared to those of the skin. Pressure application increased the LDF in the kidney as well as in the skin with a comparable maximal magnitude (about 25% from baseline value), despite different kinetics of PIV evolution. As we previously reported in the skin, the kidney PIV response was mediated by the activation of transient receptor potential vanilloid type 1 channels, the release of calcitonin gene-related peptide, and the participation of prostaglandins and nitric oxide. In the absence of hypertension, high salt intake abolished the cutaneous PIV response and markedly impaired the renal one. CONCLUSION PIV response in the mouse kidney results from a neuro-vascular interaction. Despite some differences between the skin and the kidney PIV, the similarities in their response and signaling mechanisms suggest that the cutaneous microcirculation could reflect, in part, the microcirculation of the renal cortex.
Collapse
Affiliation(s)
- Anne-Laure Begey
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, France
| | - Kiao Ling Liu
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, France; Institute of Pharmaceutical and Biological Sciences, University Lyon 1, France
| | - Ming Lo
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, France; Institute of Pharmaceutical and Biological Sciences, University Lyon 1, France
| | - Audrey Josset-Lamaugarny
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, France
| | - Nicolas Picard
- ERL 8228, INSERM UMR S1138, Centre de Recherche des Cordeliers, University Paris VI, France
| | - Catherine Gauthier
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, France
| | - Berengere Fromy
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, France
| | | | - Laurence Dubourg
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, France; Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, France; University Lyon 1, France.
| |
Collapse
|
13
|
Abstract
The objective of this review is to provide an in-depth evaluation of how renal nerves regulate renal and cardiovascular function with a focus on long-term control of arterial pressure. We begin by reviewing the anatomy of renal nerves and then briefly discuss how the activity of renal nerves affects renal function. Current methods for measurement and quantification of efferent renal-nerve activity (ERNA) in animals and humans are discussed. Acute regulation of ERNA by classical neural reflexes as well and hormonal inputs to the brain is reviewed. The role of renal nerves in long-term control of arterial pressure in normotensive and hypertensive animals (and humans) is then reviewed with a focus on studies utilizing continuous long-term monitoring of arterial pressure. This includes a review of the effect of renal-nerve ablation on long-term control of arterial pressure in experimental animals as well as humans with drug-resistant hypertension. The extent to which changes in arterial pressure are due to ablation of renal afferent or efferent nerves are reviewed. We conclude by discussing the importance of renal nerves, relative to sympathetic activity to other vascular beds, in long-term control of arterial pressure and hypertension and propose directions for future research in this field. © 2017 American Physiological Society. Compr Physiol 7:263-320, 2017.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason D Foss
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Heteroreceptors Modulating CGRP Release at Neurovascular Junction: Potential Therapeutic Implications on Some Vascular-Related Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2056786. [PMID: 28116293 PMCID: PMC5223010 DOI: 10.1155/2016/2056786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/12/2016] [Accepted: 11/27/2016] [Indexed: 01/23/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide belonging to the calcitonin gene peptide superfamily. CGRP is a potent vasodilator with potential therapeutic usefulness for treating vascular-related disease. This peptide is primarily located on C- and Aδ-fibers, which have extensive perivascular presence and a dual sensory-efferent function. Although CGRP has two major isoforms (α-CGRP and β-CGRP), the α-CGRP is the isoform related to vascular actions. Release of CGRP from afferent perivascular nerve terminals has been shown to result in vasodilatation, an effect mediated by at least one receptor (the CGRP receptor). This receptor is an atypical G-protein coupled receptor (GPCR) composed of three functional proteins: (i) the calcitonin receptor-like receptor (CRLR; a seven-transmembrane protein), (ii) the activity-modifying protein type 1 (RAMP1), and (iii) a receptor component protein (RCP). Although under physiological conditions, CGRP seems not to play an important role in vascular tone regulation, this peptide has been strongly related as a key player in migraine and other vascular-related disorders (e.g., hypertension and preeclampsia). The present review aims at providing an overview on the role of sensory fibers and CGRP release on the modulation of vascular tone.
Collapse
|
15
|
Wang DH, Yan Huang. Development of salt-sensitive hypertension in a sensory denervated model: the underlying mechanisms. J Renin Angiotensin Aldosterone Syst 2016; 2:S125-S129. [DOI: 10.1177/14703203010020012201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We use a novel salt-sensitive hypertensive model recently developed in our laboratory. This model shows that neonatal degeneration of capsaicin-sensitive sensory nerves renders a rat responsive to a salt load with a significant rise in blood pressure (BP). To test the hypothesis that development of salt-sensitive hypertension in sensory denervated rats is mediated by abnormal regulation of both circulating and tissue renin-angiotensin systems (RAS), neonatal Wistar rats were given capsaicin, 50 mg/kg s.c., on the first and second days of life. Control rats were treated with vehicle solution. After the weaning period, male rats were divided into four groups and subjected to the following treatments for three weeks: control + high sodium diet (4%, CON-HS), capsaicin pretreatment + normal sodium diet (0.5%, CAP-NS), capsaicin pretreatment + high sodium diet (CAP-HS), and capsaicin pretreatment + high sodium diet + candesartan cilexetil (10 mg/kg/per day, CAP-HS-CAN). Radioimmunoassay shows that plasma renin activity (ng/ml/hr, PRA) was higher in CAP-NS (2.58±0.17) than in CON-HS (0.14±0.03) and CAP-HS (0.74±0.15), and it was higher in CAP-HS than in CON-HS (p<0.05). Western blot analysis shows that expression of the angiotensin II (Ang II) type 1 (AT1) receptor in both the renal cortex and outer medulla was higher in CAP-HS than in CON-HS and CAP-NS rats (p<0.05). Expression of the Ang II type 2 (AT2) receptor in the renal cortex was higher in both CAP-HS and CAP-NS than in CON-HS rats (p<0.05), but there was no difference in AT2-receptor expression in the renal medulla between CAP-HS, CAP-NS, and CON-HS rats. Likewise, there was no difference in AT1-receptor expression in mesenteric resistance arteries between CAP-HS, CAP-NS, and CON-HS rats. In contrast, mesenteric AT2-receptor expression was lower in CAP-HS than in CAP-NS and CON-HS rats (p<0.05). Tail-cuff systolic BP (mmHg) shows that blockade of the AT1-receptor with candesartan prevents the development of hypertension in CAP-HS rats (by the end of the experiment, CON-HS, 122±3; CAP-NS, 118±10; CAP-HS, 169±9; CAP-HS-CAN, 129±2, p<0.05). Thus, both circulating and tissue RAS in sensory-denervated rats are abnormally regulated in response to a high-salt intake, which may contribute to increased salt sensitivity and account for the effectiveness of candesartan in lowering BP in this model.
Collapse
Affiliation(s)
- Donna H Wang
- Department of Medicine and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA,
| | - Yan Huang
- Department of Medicine and Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Wang G, Yeung CK, Wong WY, Zhang N, Wei YF, Zhang JL, Yan Y, Wong CY, Tang JJ, Chuai M, Lee KKH, Wang LJ, Yang X. Liver Fibrosis Can Be Induced by High Salt Intake through Excess Reactive Oxygen Species (ROS) Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1610-1617. [PMID: 26843032 DOI: 10.1021/acs.jafc.5b05897] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High salt intake has been known to cause hypertension and other side effects. However, it is still unclear whether it also affects fibrosis in the mature or developing liver. This study demonstrates that high salt exposure in mice (4% NaCl in drinking water) and chick embryo (calculated final osmolality of the egg was 300 mosm/L) could lead to derangement of the hepatic cords and liver fibrosis using H&E, PAS, Masson, and Sirius red staining. Meanwhile, Desmin immunofluorescent staining of mouse and chick embryo livers indicated that hepatic stellate cells were activated after the high salt exposure. pHIS3 and BrdU immunohistological staining of mouse and chick embryo livers indicated that cell proliferation decreased; as well, TUNEL analyses indicated that cell apoptosis increased in the presence of high salt exposure. Next, dihydroethidium staining on the cultured chick hepatocytes indicated the excess ROS was generated following high salt exposure. Furthermore, AAPH (a known inducer of ROS production) treatment also induced the liver fibrosis in chick embryo. Positive Nrf2 and Keap1 immunohistological staining on mouse liver suggested that Nrf2/Keap1 signaling was involved in high salt induced ROS production. Finally, the CCK8 assay was used to determine whether or not the growth inhibitory effect induced by high salt exposure can be rescued by antioxidant vitamin C. Meanwhile, the RT-PCR result indicated that the Nrf2/Keap1 downsteam genes including HO-1, NQO-1, and SOD2 were involved in this process. In sum, these experiments suggest that high salt intake would lead to high risk of liver damage and fibrosis in both adults and developing embryos. The pathological mechanism may be the result from an imbalance between oxidative stress and the antioxidant system.
Collapse
Affiliation(s)
- Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Cheung-kwan Yeung
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Wing-Yan Wong
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Nuan Zhang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Yi-fan Wei
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Jing-li Zhang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University , Guangzhou 510006, China
| | - Yu Yan
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Ching-yee Wong
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Jun-jie Tang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee , Dundee DD1 5EH, United Kingdom
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong , Shatin, Hong Kong, China
| | - Li-jing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University , Guangzhou 510006, China
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| |
Collapse
|
17
|
Foss JD, Fink GD, Osborn JW. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension. Am J Physiol Regul Integr Comp Physiol 2015; 310:R262-7. [PMID: 26661098 DOI: 10.1152/ajpregu.00408.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022]
Abstract
Clinical data suggest that renal denervation (RDNX) may be an effective treatment for human hypertension; however, it is unclear whether this therapeutic effect is due to ablation of afferent or efferent renal nerves. We have previously shown that RDNX lowers arterial pressure in hypertensive Dahl salt-sensitive (S) rats to a similar degree observed in clinical trials. In addition, we have recently developed a method for selective ablation of afferent renal nerves (renal-CAP). In the present study, we tested the hypothesis that the antihypertensive effect of RDNX in the Dahl S rat is due to ablation of afferent renal nerves by comparing the effect of complete RDNX to renal-CAP during two phases of hypertension in the Dahl S rat. In the early phase, rats underwent treatment after 3 wk of high-NaCl feeding when mean arterial pressure (MAP) was ∼ 140 mmHg. In the late phase, rats underwent treatment after 9 wk of high NaCl feeding, when MAP was ∼ 170 mmHg. RDNX reduced MAP ∼ 10 mmHg compared with sham surgery in both the early and late phase, whereas renal-CAP had no antihypertensive effect. These results suggest that, in the Dahl S rat, the antihypertensive effect of RDNX is not dependent on pretreatment arterial pressure, nor is it due to ablation of afferent renal nerves.
Collapse
Affiliation(s)
- Jason D Foss
- University of Minnesota, Department of Integrative Biology and Physiology, Minneapolis, Minnesota; and
| | - Gregory D Fink
- Michigan State University, Department of Pharmacology and Toxicology, East Lansing, Michigan
| | - John W Osborn
- University of Minnesota, Department of Integrative Biology and Physiology, Minneapolis, Minnesota; and
| |
Collapse
|
18
|
Kopp UC. Role of renal sensory nerves in physiological and pathophysiological conditions. Am J Physiol Regul Integr Comp Physiol 2015; 308:R79-95. [PMID: 25411364 PMCID: PMC4297860 DOI: 10.1152/ajpregu.00351.2014] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/26/2022]
Abstract
Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation.
Collapse
Affiliation(s)
- Ulla C Kopp
- Departments of Internal Medicine and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
19
|
Foss JD, Wainford RD, Engeland WC, Fink GD, Osborn JW. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am J Physiol Regul Integr Comp Physiol 2014; 308:R112-22. [PMID: 25411365 DOI: 10.1152/ajpregu.00427.2014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Renal denervation has been shown to lower arterial pressure in some hypertensive patients, yet it remains unclear whether this is due to ablation of afferent or efferent renal nerves. To investigate the role of afferent renal nerves in arterial pressure regulation, previous studies have used methods that disrupt both renal and nonrenal afferent signaling. The present study was conducted to develop and validate a technique for selective ablation of afferent renal nerves that does not disrupt other afferent pathways. To do this, we adapted a technique for sensory denervation of the adrenal gland by topical application of capsaicin and tested the hypothesis that exposure of the renal nerves to capsaicin (renal-CAP) causes ablation of afferent but not efferent renal nerves. Renal-CAP had no effect on renal content of the efferent nerve markers tyrosine hydroxylase and norepinephrine; however, the afferent nerve marker, calcitonin gene-related peptide was largely depleted from the kidney 10 days after intervention, but returned to roughly half of control levels by 7 wk postintervention. Moreover, renal-CAP abolished the cardiovascular responses to acute pharmacological stimulation of afferent renal nerves. Renal-CAP rats showed normal weight gain, as well as cardiovascular and fluid balance regulation during dietary sodium loading. To some extent, renal-CAP did blunt the bradycardic response and increase the dipsogenic response to increased salt intake. Lastly, renal-CAP significantly attenuated the development of deoxycorticosterone acetate-salt hypertension. These results demonstrate that renal-CAP effectively causes selective ablation of afferent renal nerves in rats.
Collapse
Affiliation(s)
- Jason D Foss
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota
| | - Richard D Wainford
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston, Massachusetts
| | | | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota;
| |
Collapse
|
20
|
Abstract
Substance P (SP), a neurokinin-1 receptor (NK-1R) agonist, is mainly produced and stored in primary sensory nerves and, upon its release, participates in cardiovascular and renal functional regulation. This study tests the hypothesis that activation of the NK-1Rs by SP occurs during hypertension induced by deoxycorticosterone (DOCA)-salt treatment, which contributes to renal injury in this model. C57BL/6 mice were subjected to uninephrectomy and DOCA-salt treatment in the presence or absence of administration of selective NK-1 antagonists, L-733,060 (20 mg/kg·d, ip) or RP-67580 (8 mg/kg·d, ip). Five weeks after the treatment, mean arterial pressure determined by the telemetry system increased in DOCA-salt mice but without difference between NK-1R antagonist-treated or NK-1R antagonist-untreated DOCA-salt groups. Plasma SP levels were increased in DOCA-salt compared with control mice (P < 0.05). Renal hypertrophy and increased urinary 8-isoprostane and albumin excretion were observed in DOCA-salt compared with control mice (P < 0.05). Periodic acid-Schiff and Masson's trichrome staining showed more severe glomerulosclerosis and tubulointerstitial injury in the renal cortex in DOCA-salt compared with control mice, respectively (P < 0.05). Hydroxyproline assay and F4/80-staining showed that renal collagen levels and interstitial monocyte/macrophage infiltration were greater in DOCA-salt compared with control mice, respectively (P < 0.05). Blockade of the NK-1R with L-733,060 or RP-67580 in DOCA-salt mice suppressed increments in urinary 8-isoprostane and albumin excretion, interstitial monocyte/macrophage infiltration, and glomerulosclerosis and tubulointerstitial injury and fibrosis (P < 0.05). Thus, our data show that blockade of the NK-1Rs alleviates renal functional and tissue injury in the absence of alteration in blood pressure in DOCA-salt-hypertensive mice. The results suggest that elevated SP levels during DOCA-salt hypertension play a significant role contributing to renal damage possibly via enhancing oxidative stress and macrophage infiltration of the kidney.
Collapse
Affiliation(s)
- Youping Wang
- Central Laboratory and Division of Cardiology, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | | |
Collapse
|
21
|
Abstract
AIM The transient receptor potential vanilloid type 1 (TRPV1) channels have been implicated to play a role in blood pressure regulation. However, contribution of tissue specific TRPV1 to blood pressure regulation is largely unknown. Here, we test the hypothesis that TRPV1 expressed in dorsal root ganglia (DRG) of lower thoracic and upper lumbar segments (T8-L3) of the spinal cord and their central and peripheral terminals constitutes a counter regulatory mechanism preventing the increases in blood pressure. METHODS The expression of TRPV1 was knocked down by intrathecal injection of TRPV1 short-hairpin RNA (shRNA) in rats. Systolic blood pressure and mean arterial pressure (MAP) were recorded. The level of TRPV1 and tyrosine hydroxylase (TH) was measured by Western blot. RESULTS Intrathecal injection of TRPV1 shRNA (6 μg kg(-1) day(-1) ) for 3 days increased systolic blood pressure and MAP when compared to rats that received control shRNA (control shRNA: 112 ± 2 vs. TRPV1 shRNA: 123 ± 2 mmHg). TRPV1 expression was suppressed in T8-L3 segments of dorsal horn and DRG as well as mesenteric arteries of rats given TRPV1 shRNA. Contents of TH, a marker of sympathetic nerves, were increased in mesenteric arteries of rats treated with TRPV1 shRNA. Pretreatment with the α1-adrenoceptor blocker, prazosin (1 mg kg(-1) day(-1) , p.o.), abolished the TRPV1 shRNA-induced pressor effects. CONCLUSION Our data show that selective knockdown of TRPV1 expressed in DRG of T8-L3 segments of the spinal cord and their central and peripheral terminals increases blood pressure, suggesting that neuronal TRPV1 in these segments possesses a tonic anti-hypertensive effect possibly via suppression of the sympathetic nerve activity.
Collapse
Affiliation(s)
- S-Q Yu
- Department of Medicine, Michigan State University, East Lansing, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- Ulla C. Kopp
- University of Iowa Carver College of Medicine and Department of Veterans Affairs Medical Center
| |
Collapse
|
23
|
Enhanced salt sensitivity following shRNA silencing of neuronal TRPV1 in rat spinal cord. Acta Pharmacol Sin 2011; 32:845-52. [PMID: 21642952 DOI: 10.1038/aps.2011.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM To investigate the effects of selective knockdown of TRPV1 channels in the lower thoracic and upper lumbar segments of spinal cord, dorsal root ganglia (DRG) and mesenteric arteries on rat blood pressure responses to high salt intake. METHODS TRPV1 short-hairpin RNA (shRNA) was delivered using intrathecal injection (6 μg · kg(-1) · d(-1), for 3 d). Levels of TRPV1 and tyrosine hydroxylase expression were determined by Western blot analysis. Systolic blood pressure and mean arterial pressure (MAP) were examined using tail-cuff and direct arterial measurement, respectively. RESULTS In rats injected with control shRNA, high-salt diet (HS) caused higher systolic blood pressure compared with normal-salt diet (NS) (HS:149 ± 4 mmHg; NS:126 ± 2 mmHg, P<0.05). Intrathecal injection of TRPV1 shRNA significantly increased the systolic blood pressure in both HS rats and NS rats (HS:169 ± 3 mmHg; NS:139 ± 2 mmHg). The increases was greater in HS rats than in NS rats (HS: 13.9% ± 1.8%; NS: 9.8 ± 0.7, P<0.05). After TRPV1 shRNA treatment, TRPV1 expression in the dorsal horn and DRG of T8-L3 segments and in mesenteric arteries was knocked down to a greater extent in HS rats compared with NS rats. Blockade of α1-adrenoceptors abolished the TRPV1 shRNA-induced pressor effects. In rats injected with TRPV1 shRNA, level of tyrosine hydroxylase in mesenteric arteries was increased to a greater extent in HS rats compared with NS rats. CONCLUSION Selective knockdown of TRPV1 expression in the lower thoracic and upper lumbar segments of spinal cord, DRG, and mesenteric arteries enhanced the prohypertensive effects of high salt intake, suggesting that TRPV1 channels in these sites protect against increased salt sensitivity, possibly via suppression of sympatho-excitatory responses.
Collapse
|
24
|
Hypotension induced by activation of the transient receptor potential vanilloid 4 channels: role of Ca2+-activated K+ channels and sensory nerves. J Hypertens 2010; 28:102-10. [PMID: 19996988 DOI: 10.1097/hjh.0b013e328332b865] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the mechanisms involved in hypotension induced by transient receptor potential vanilloid 4 (TRPV4) activation. METHODS Wistar rats were given 50 mg/kg capsaicin subcutaneously 1-2 days postnatally to cause degeneration of capsaicin-sensitive sensory nerves. Vehicle was given to the corresponding newborn rats that formed the control group. After being weaned, male rats were picked for further investigation. At the age of 8 weeks, mean arterial pressure and its response to 4alpha-phorbol 12,13-didecanoate [4alpha-PDD, a selective TRPV4 activator, 2.5 mg/kg, intravenous(ly) or i.v.] with or without CGRP8-37 (1 mg/kg per min, i.v.), an antagonist of calcitonin gene-related peptide (CGRP, a potent vasodilator released from sensory nerves), in vehicle or capsaicin-pretreated rats anesthetized with sodium pentobarbital [50 mg/kg, intraperitoneal(ly)] were monitored to observe the contributions of neuropeptides released from sensory nerves to the 4alpha-PDD-induced hypotension. To detect the roles of various vasodilating factors released by vascular endothelium in the hypotensive effect induced by TRPV4 activation, the corresponding inhibitors/blockers, including indomethacin (a cyclooxygenase inhibitor, 10 mg/kg, i.v.), Nomega-nitro-L-arginine (L-NA, a nitric oxide synthase inhibitor, 20 mg/kg, i.v.), apamin [a blocker of small conductance Ca2+-activated K+ (MaxiK) channels, 50 microg/kg, i.v.] combined with charybdotoxin (a blocker of intermediate and large conductance MaxiK channels, 50 microg/kg, i.v.), were used at various time before 4alpha-PDD injection. Plasma CGRP and substance P levels of rats before or after administration were measured using the corresponding radioimmunoassays. At last, immunohistochemistry stainings were performed to observe expression of TRPV4/CGRP/MaxiK in mesenteric resistance arteries and sensory neurons/nerve fibers. RESULTS Intravenous administration of 4alpha-PDD produced remarkable hypotension in vehicle-pretreated rats. The depressor effect was attenuated by degeneration of capsaicin-sensitive sensory nerves (P < 0.05) or administration of CGRP8-37 (P < 0.05). In both vehicle and capsaicin-pretreated rats, the combined administration of apamin and charybdotoxin markedly reduced the 4alpha-PDD-induced hypotensive effect (P < 0.05), but i.v. administration of indomethacin and Nomega-nitro-L-arginine did not produce the similar effect. Intravenous administration of 4alpha PDD increased plasma CGRP but not substance P levels in vehicle-pretreated rats only (P < 0.05), which was not affected by indomethacin, Nomega-nitro-L-arginine, or apamin and charybdotoxin. Immunohistochemistry staining showed that TRPV4 colocalized with MaxiK channels in endothelium of mesenteric resistance arteries and with CGRP in sensory neurons/nerve fibers. CONCLUSION Our data show that the hypotensive effect induced by TRPV4 activation attributes to, at least in part, activation of MaxiK channels and CGRP receptors upon CGRP release from sensory nerves.
Collapse
|
25
|
Doumas M, Faselis C, Papademetriou V. Renal sympathetic denervation and systemic hypertension. Am J Cardiol 2010; 105:570-6. [PMID: 20152255 DOI: 10.1016/j.amjcard.2009.10.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 02/08/2023]
Abstract
Hypertension represents a major health problem, with an appalling annual toll. Despite the plethora of antihypertensive drugs, hypertension remains resistant in a considerable number of patients, thus creating the need for alternative strategies, including interventional approaches. Recently, renal sympathetic denervation (RSD) using a very elegant, state-of-the-art technique (percutaneous, catheter-based radiofrequency ablation) was shown to be beneficial in patients with resistant hypertension. The pathophysiology of kidney function justifies the use of RSD in the treatment of hypertension. Data from older studies have shown that sympathectomy has efficiently lowered blood pressure and prolonged the life expectancy of patients with hypertension, but at considerable cost. RSD is devoid of the adverse effects of sympathectomy because of its localized nature, is minimally invasive, and provides short procedural and recovery times. In conclusion, this review outlines the pathophysiologic background of RSD, describes the past and the present of this interventional approach, and considers several future potential applications.
Collapse
|
26
|
Cao X, Demel SL, Quinn MT, Galligan JJ, Kreulen D. Localization of NADPH oxidase in sympathetic and sensory ganglion neurons and perivascular nerve fibers. Auton Neurosci 2009; 151:90-7. [PMID: 19716351 DOI: 10.1016/j.autneu.2009.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 06/08/2009] [Accepted: 07/10/2009] [Indexed: 11/30/2022]
Abstract
Superoxide anion (O(2)(-*)) production was previously reported to be increased in celiac ganglia (CG) during DOCA-salt hypertension, possibly via activation of the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. This suggested a role for neuronal NADPH oxidase in autonomic neurovascular control. However, the expression and localization of NADPH oxidase in the peripheral neurons are not fully known. The purpose of this study was to examine the subcellular localization of NADPH oxidase in sympathetic and sensory ganglion neurons and perivascular nerve fibers. In rat CG, p22(phox) and neuropeptide Y (NPY) were colocalized in all neurons. P22(phox) was also localized to dorsal root ganglia (DRG) neurons that contain calcitonin gene related peptide (CGRP). In mesenteric arteries, p22(phox) and p47(phox) were colocalized with NPY or CGRP in perivascular nerve terminals. A similar pattern of nerve terminal staining of p22(phox) and p47(phox) was also found in cultured CG neurons and nerve growth factor (NGF)-differentiated PC12 cells. These data demonstrate a previously uncharacterized localization of NADPH oxidase in perivascular nerve fibers. The presence of a O(2)(-*)-generating enzyme in close vicinity to the sites of neurotransmitter handling in the nerve fibers suggests the possibility of novel redox-mediated mechanisms in peripheral neurovascular control.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blood Vessels/innervation
- Blood Vessels/physiology
- Calcitonin Gene-Related Peptide/metabolism
- Ganglia, Sensory/cytology
- Ganglia, Sensory/enzymology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/enzymology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/enzymology
- NADH, NADPH Oxidoreductases/metabolism
- NADPH Oxidase 1
- NADPH Oxidases/metabolism
- Nerve Fibers, Myelinated/enzymology
- Nerve Fibers, Myelinated/ultrastructure
- Neurons/cytology
- Neurons/enzymology
- Neuropeptide Y/metabolism
- Oxidation-Reduction
- PC12 Cells
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Regional Blood Flow/physiology
- Sensory Receptor Cells/cytology
- Sensory Receptor Cells/enzymology
- Superoxides/metabolism
- Sympathetic Fibers, Postganglionic/cytology
- Sympathetic Fibers, Postganglionic/enzymology
- Vasoconstriction/physiology
- Vasodilation/physiology
Collapse
Affiliation(s)
- Xian Cao
- The Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
27
|
Transient receptor potential vanilloid channels in hypertension, inflammation, and end organ damage: an imminent target of therapy for cardiovascular disease? Curr Opin Cardiol 2008; 23:356-63. [PMID: 18520720 DOI: 10.1097/hco.0b013e32830460ad] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW The possible role of several neurohormonal factors in pathogenesis of hypertension has been studied extensively both in humans and in experimental animal models. However, controversial data from some previous studies are indecisive and call for reassessment and development of new targets. This mini-review presents some of the most recent findings about the role of transient receptor potential vanilloid type 1 channels in the development of hypertension and its pathology. RECENT FINDINGS The transient receptor potential vanilloid type 1, channel activated by novel endovanilloids or altered pH, temperature, and/or local hemodynamics, may serve as a distinct molecular sensor detecting sodium and water balance and may play a role in preventing salt-induced hypertension and tissue damage. Impairment of the function of the transient receptor potential vanilloid type 1 channels may contribute to increased salt sensitivity, inflammation, and end organ damage. SUMMARY Emerging evidence indicates that the transient receptor potential vanilloid type 1 channel plays a key role in cardiovascular health and disease by acting as a sensor and regulator of cardiovascular homeostasis and a protector against cardiovascular injury. Given the huge population who suffers from cardiovascular disease, the study of the transient receptor potential vanilloid channels may improve our understanding of pathogenesis of several common cardiovascular disorders and may lead to the development of therapy for hypertension, inflammation, and organ damage.
Collapse
|
28
|
Li J, Wang DH. Increased GFR and renal excretory function by activation of TRPV1 in the isolated perfused kidney. Pharmacol Res 2008; 57:239-46. [PMID: 18329285 DOI: 10.1016/j.phrs.2008.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/15/2008] [Accepted: 01/29/2008] [Indexed: 11/16/2022]
Abstract
To test the hypothesis that activation of the transient receptor potential vanilloid type 1 (TRPV1) channels leads to natriuresis and diuresis via an increase in glomerular filtration rate (GFR), recirculating Krebs-Henseleit buffer added with inulin was perfused in the isolated perfused kidney of male Wistar rat at a constant flow, and perfusion pressures (PPs) were pre-adjusted to three different levels ( approximately 100, approximately 150, and approximately 190mmHg) with phenylephrine. Capsaicin (Cap), a selective TRPV1 agonist, was perfused in the presence or absence of capsazepine (Capz), a selective TRPV1 antagonist, CGRP(8-37), a selective calcitonin gene-related peptide (CGRP) receptor antagonist, or spantide II (Spa), a selective substance P (SP) receptor antagonist. At the higher (150 and 190mmHg) but not baseline (100mmHg) PP levels, Cap at 10microM significantly decreased PP and increased GFR, urine flow rate (UFR) and Na+ excretion (UNaV). At the highest (190mmHg) PP level, Cap (2, 10, 30microM) dose-dependently decreased PP and increased GFR, UFR, UNaV, and the release of CGRP and SP. Capz or CGRP(8-37) combined with Spa fully blocked the effect of Cap on PP, GFR, UFR, UNaV, and the release of CGRP and SP. In conclusion, activation of TRPV1 in the isolated kidney decreases renal PP and increases GFR and water/sodium excretion possibly via simultaneous activation of CGRP and SP receptors upon their enhanced release, suggesting that TRPV1 plays a key role in modulating renal hemodynamics and excretory function.
Collapse
Affiliation(s)
- Jianping Li
- Department of Medicine, Neuroscience Program, and Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
29
|
Increased depressor response to N-arachidonoyl-dopamine during high salt intake: role of the TRPV1 receptor. J Hypertens 2008; 25:2426-33. [PMID: 17984664 DOI: 10.1097/hjh.0b013e3282efd1bf] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study was designed to test the hypothesis that the systemic administration of N-arachidonoyl-dopamine (NADA), an endovanilloid, causes a depressor effect via activation of transient receptor potential vanilloid type 1 (TRPV1) channels during high-salt intake. METHODS Wistar rats were fed a normal (0.4%) or high (4%) sodium diet for 10 days, and arteries and veins were cannulated for measurement of mean arterial pressure (MAP) or injection of drugs and collection of plasma. Radioimmunoassay and western blot were used to determine the plasma calcitonin gene-related peptide (CGRP) level and TRPV1 protein content, respectively. RESULTS The NADA-induced dose-dependent decrease in MAP was greater in high-sodium than normal-treated rats, and was abolished by capsazepine, a selective TRPV1 antagonist, or CGRP8-37, a selective CGRP receptor antagonist, but not by SR141716A, a selective cannabinoid 1 receptor antagonist. Capsaicin, a selective TRPV1 receptor agonist, or CGRP dose-dependently decreased MAP in normal or high-sodium-treated rats, with a greater effect in the latter. Baseline and NADA-induced increases in plasma CGRP levels were higher in high-sodium than normal-treated rats. TRPV1 protein expression in mesenteric arteries was higher in high-sodium than normal-treated rats. In vitro, NADA caused a greater CGRP release from mesenteric arteries of high-sodium than normal-treated rats, which was blocked by capsazepine. CONCLUSION High sodium increases the sensitivity of blood pressure responses to NADA. The enhanced depressor effect induced by NADA during high-sodium intake is prevented by blockade of the TRPV1 or CGRP receptors, but not cannabinoid 1 receptor. High sodium upregulates mesenteric TRPV1 expression, and increases NADA-induced CGRP release in vitro and in vivo.
Collapse
|
30
|
De Mey JGR, Megens R, Fazzi GE. Functional Antagonism between Endogenous Neuropeptide Y and Calcitonin Gene-Related Peptide in Mesenteric Resistance Arteries. J Pharmacol Exp Ther 2007; 324:930-7. [DOI: 10.1124/jpet.107.133660] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Wang Y, Kaminski NE, Wang DH. Endocannabinoid Regulates Blood Pressure via Activation of the Transient Receptor Potential Vanilloid Type 1 in Wistar Rats Fed a High-Salt Diet. J Pharmacol Exp Ther 2007; 321:763-9. [PMID: 17308041 DOI: 10.1124/jpet.106.112904] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to examine the role of the endocannabinoids in blood pressure regulation during high sodium (HS) intake. HS (4% Na+ by weight) intake for 3 weeks increased baseline mean arterial pressure (MAP, mm Hg) compared with normal sodium (NS, 0.4% Na+ by weight)-treated male Wistar rats. Capsazepine (3 mg/kg), a selective transient receptor potential vanilloid type 1 (TRPV1) antagonist, caused a greater increase in MAP (mm Hg) in HS-treated compared with NS-treated rats (13+/-3 versus 4+/-2, p<0.05), whereas calcitonin gene-related peptide (CGRP) dose-dependently decreased MAP in both HS- and NS-treated rats with a more profound effect in the former. HS increased plasma anandamide levels analyzed by liquid chromatography/electrospray tandem mass spectrometry (NS, 2.40+/-0.31 versus HS, 4.05+/-0.47 pmol/ml, p<0.05) and plasma CGRP levels determined by radioimmunoassay (NS, 36.6+/-3.8 versus HS, 55.7+/-6.4 pg/ml, p<0.05). Methanandamide, a metabolically stable analog of anandamide, caused a greater CGRP release in mesenteric arteries isolated from HS-treated compared with NS-treated rats. Western blot showed that expression of receptor activity-modifying protein 1, a subunit of the CGRP receptor, in mesenteric arteries was greater in HS-treated compared with NS-treated rats. These results show that HS intake increases production of anandamide, which may serve as an endovanilloid to activate TRPV1, leading to release of CGRP to blunt salt-induced increases in blood pressure. These data support the notion that TRPV1 may act as a molecular target for salt-induced elevation of endovanilloid compounds to regulate blood pressure.
Collapse
Affiliation(s)
- Youping Wang
- Department of Medicine, B316 Clinical Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
32
|
Wang Y, Chen AF, Wang DH. Enhanced oxidative stress in kidneys of salt-sensitive hypertension: role of sensory nerves. Am J Physiol Heart Circ Physiol 2006; 291:H3136-43. [PMID: 16920809 DOI: 10.1152/ajpheart.00529.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the mechanism(s) underlying enhanced oxidative stress in kidneys of salt-sensitive hypertension, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg sc) on the first and second days of life. After being weaned, male rats were assigned into four groups and treated for 2 wk with the following: vehicle + a normal sodium diet (NS, 0.4%, CON-NS), vehicle + a high-sodium diet (HS, 4%, CON-HS), CAP + NS (CAP-NS), and CAP + HS (CAP-HS). Systolic blood pressure was significantly increased in CAP-HS but not CAP-NS or CON-HS rats. Plasma and urinary 8-iso-prostaglandin F(2alpha) levels increased by approximately 40% in CON-HS and CAP-HS rats compared with their respective controls fed a NS diet (P < 0.05), and these parameters were higher in CAP-HS compared with CON-HS rats. Superoxide (O(2)(-)*) levels in the renal cortex and medulla increased by approximately 45% in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). Enhanced O(2)(-)* levels in the cortex and medulla in CAP-HS rats were prevented by preincubation of renal tissues with apocynin, a selective NAD(P)H oxidase inhibitor. Protein expression of NAD(P)H oxidase subunits, including p47(phox) and gp91(phox) in the renal cortex and medulla, was significantly increased in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats. In contrast, protein expression and activities of Cu/Zn SOD and Mn SOD were significantly increased in the renal medulla in both CAP-HS and CON-HS but in the cortex in CAP-HS rats only. Creatinine clearance decreased by approximately 45% in CAP-HS rats compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). O(2)(-)* levels in the renal cortex of CAP-HS rats negatively correlated with creatinine clearance (r = -0.76; P < 0.001). Therefore, regardless of enhanced SOD activity to suppress oxidative stress, increased oxidative stress in the kidney of CAP-treated rats fed a HS diet is likely the result of increased expression and activities of NAD(P)H oxidase, which may contribute to decreased renal function and increased blood pressure in these rats. Our results suggest that sensory nerves may play a compensatory role in attenuating renal oxidative stress during HS intake.
Collapse
Affiliation(s)
- Youping Wang
- Dept. of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
33
|
Hobara N, Goda M, Kitamura Y, Takayama F, Kawasaki H. Innervation and functional changes in mesenteric perivascular calcitonin gene-related peptide- and neuropeptide Y-containing nerves following topical phenol treatment. Neuroscience 2006; 141:1087-1099. [PMID: 16713118 DOI: 10.1016/j.neuroscience.2006.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 04/03/2006] [Accepted: 04/03/2006] [Indexed: 02/06/2023]
Abstract
We have previously shown that age-related reduction of innervation and function in mesenteric perivascular calcitonin gene-related peptide-containing vasodilator nerves takes place in spontaneously hypertensive rats. The present study was performed to investigate innervation and functional changes in perivascular calcitonin gene-related peptide- and adrenergic neuropeptide Y-containing nerves after topical treatment with phenol, which damages nerve fibers, around the rat superior mesenteric artery. Under pentobarbital-Na anesthesia, 8-week-old Wistar rats underwent in vivo topical application of phenol (10% phenol in 90% ethanol) or saline (sham rats) to the superior mesenteric artery proximal to the bifurcation of the abdominal aorta. After the treatment, the animals were subjected to immunohistochemistry of the 3rd branch of small arteries proximal to the intestine and to vascular responsiveness testing on day 3 through day 14. The innervation levels of calcitonin gene-related peptide-like immunoreactivity containing fibers and neuropeptide Y-like immunoreactivity containing fibers were markedly reduced on day 3 to day 14 and on day 5 to day 14 after the treatment, compared with those in sham-operated rats, respectively. In perfused mesenteric vascular beds isolated from phenol-treated rats, adrenergic nerve-mediated vasoconstriction and calcitonin gene-related peptide nerve-mediated vasodilation in response to periarterial nerve stimulation (2-12 Hz) were significantly decreased on day 3 and day 7. Neurogenic release of norepinephrine in phenol-treated rats on day 7 was significantly smaller that that in sham-operated rats. Nerve growth factor content in the mesenteric arteries of phenol-treated rats was significantly lower than that in sham-operated rats. Administration of nerve growth factor using osmotic mini-pumps for 7 days after the phenol treatment resulted in greater density of calcitonin gene-related peptide- and neuropeptide Y-like immunoreactivity fibers than in phenol-treated rats and restored decreased vascular responses to periarterial nerve stimulation. These results suggest that topical phenol-treatment of the mesenteric artery effectively induces functional denervation of perivascular nerves, which can be prevented or reversed by nerve growth factor treatment.
Collapse
Affiliation(s)
- N Hobara
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - M Goda
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Y Kitamura
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - F Takayama
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - H Kawasaki
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan.
| |
Collapse
|
34
|
Wang Y, Chen AF, Wang DH. ETA receptor blockade prevents renal dysfunction in salt-sensitive hypertension induced by sensory denervation. Am J Physiol Heart Circ Physiol 2005; 289:H2005-11. [PMID: 15994858 DOI: 10.1152/ajpheart.00370.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that activation of the endothelin type A (ETA) receptor contributes to decreased renal excretory function and increased blood pressure in sensory nerve-degenerated rats fed a high-salt diet, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg sc) on the first and second day of life. After being weaned, vehicle or CAP-treated rats were fed a normal (NS, 0.5%) or a high- (HS, 4%) sodium diet for 2 wk with or without ABT-627 (5 mg·kg−1·day−1, a selective ETA receptor antagonist). Systolic blood pressure increased in CAP-treated rats fed a HS diet (CAP-HS) compared with vehicle-treated rats fed a HS diet (CON-HS, 145 ± 7 vs. 89 ± 5 mmHg, P < 0.05). Creatinine clearance and fractional sodium excretion (FENa) decreased in CAP-HS rats compared with CON-HS rats (creatinine clearance, 0.54 ± 0.05 vs. 0.81 ± 0.09 ml·min−1·100 g body wt−1; FENa, 8.68 ± 0.99 vs. 12.53 ± 1.47%, respectively; P < 0.05). Water and sodium balance increased in CAP-HS rats compared with CON-HS (water balance, 20.2 ± 1.5 vs. 15.5 ± 1.9 ml/day; sodium balance, 11.9 ± 3.1 vs. 2.4 ± 0.3 meq/day, respectively; P < 0.05). The endothelin (ET)-1 levels in plasma and isolated glomeruli increased by about twofold in CAP-HS rats compared with CON-HS rats ( P < 0.05). ABT-627 prevented the decrease in creatinine clearance and FENa, the increase in water and sodium balance, and the increase in blood pressure in CAP-HS rats ( P < 0.05). Therefore, the blockade of the ETA receptor ameliorates the impairment of renal excretory function and prevents the elevation in blood pressure in salt-sensitive hypertension induced by degeneration of sensory nerves, indicating that the activation of the ETA receptor impairs renal function and contributes to the development of a salt-induced increase in blood pressure in this model.
Collapse
Affiliation(s)
- Youping Wang
- Dept. of Medicine, Michigan State Univ., E. Lansing, MI 48824, USA
| | | | | |
Collapse
|
35
|
Deng PY, Li YJ. Calcitonin gene-related peptide and hypertension. Peptides 2005; 26:1676-85. [PMID: 16112410 DOI: 10.1016/j.peptides.2005.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 11/19/2022]
Abstract
Capsaicin-sensitive sensory nerves participate in the regulation of cardiovascular functions both in the normal state and the pathophysiology of hypertension through the actions of potent vasodilator neuropeptides, including calcitonin gene-related peptide (CGRP). CGRP, a very potent vasodilator, is the predominant neurotransmitter in capsaicin-sensitive sensory nerves, and plays an important role in the initiation, progression and maintenance of hypertension via: (1) the alterations in its synthesis and release and/or in vascular sensitivity response to it; (2) interactions with pro-hypertensive systems, including renin-angiotensin-aldosterone system, sympathetic nervous system and endothelin system; and (3) anti-hypertrophy and anti-proliferation of vascular smooth muscle cells. The decrease in CGRP synthesis and release contributes to the elevated blood pressure, as shown in the spontaneously hypertensive rats, alpha-CGRP knockout mice, Dahl-salt or phenol-induced hypertensive rats. In contrast, the increase in CGRP levels or the enhancement of vascular sensitivity response to CGRP plays a beneficial compensatory depressor role in the development of hypertension, as shown in deoxycorticosterone-salt, sub-total nephrectomy-salt, N(omega)-nitro-L-arginine methyl ester or two-kidney, one-clip models of hypertension in rats. We found that rutaecarpine causes a sustained depressor action by stimulation of CGRP synthesis and release via activation of vanilloid receptor subtype 1 (VR1) in hypertensive rats, which reveals the therapeutic implications of VR1 agonists for treatment of hypertension.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road #90, Changsha, Hunan 410078, China
| | | |
Collapse
|
36
|
Nagy I, Sántha P, Jancsó G, Urbán L. The role of the vanilloid (capsaicin) receptor (TRPV1) in physiology and pathology. Eur J Pharmacol 2005; 500:351-69. [PMID: 15464045 DOI: 10.1016/j.ejphar.2004.07.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/06/2023]
Abstract
The cloning of the vanilloid receptor 1 opened a floodgate for discoveries regarding the function of this complex molecule. It has been found that, in addition to heat, protons and vanilloids, this receptor also responds to various endogenous ligands. Furthermore, it has been also emerged that, through associations with other molecules, the vanilloid receptor 1 plays an important role in the integration of various stimuli and modulation of cellular excitability. Although, originally, the vanilloid receptor 1 was associated with nociceptive primary afferent fibres, it has been gradually revealed that it is broadly expressed in the brain, epidermis and visceral cells. The expression pattern of the vanilloid receptor 1 indicates that it could be involved in various physiological functions and in the pathomechanisms of diverse diseases. Here, we summarise the molecular, pharmacological and physiological characteristics, and putative functions, of the vanilloid receptor 1, and discuss the therapeutic potential of this molecule.
Collapse
Affiliation(s)
- István Nagy
- Department of Anaesthetics and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Abstract
Mammalian transient receptor potential (TRP) channels consist of six related protein sub-families that are involved in a variety of pathophysiological function, and disease development. The TRPV1 channel, a member of the TRPV sub-family, is identified by expression cloning using the "hot" pepper-derived vanilloid compound capsaicin as a ligand. Therefore, TRPV1 is also referred as the vanilloid receptor (VR1) or the capsaicin receptor. VR1 is mainly expressed in a subpopulation of primary afferent neurons that project to cardiovascular and renal tissues. These capsaicin-sensitive primary afferent neurons are not only involved in the perception of somatic and visceral pain, but also have a "sensory-effector" function. Regarding the latter, these neurons release stored neuropeptides through a calcium-dependent mechanism via the binding of capsaicin to VR1. The most studied sensory neuropeptides are calcitonin gene-related peptide (CGRP) and substance P (SP), which are potent vasodilators and natriuretic/diuretic factors. Recent evidence using the model of neonatal degeneration of capsaicin-sensitive sensory nerves revealed novel mechanisms that underlie increased salt sensitivity and several experimental models of hypertension. These mechanisms include insufficient suppression of plasma renin activity and plasma aldosterone levels subsequent to salt loading, enhancement of sympathoexcitatory response in the face of a salt challenge, activation of the endothelin-1 receptor, and impaired natriuretic response to salt loading in capsaicin-pretreated rats. These data indicate that sensory nerves counterbalance the prohypertensive effects of several neurohormonal systems to maintain normal blood pressure when challenged with salt loading. The therapeutic utilities of vanilloid compounds, endogenous agonists, and sensory neuropeptides are also discussed.
Collapse
Affiliation(s)
- Donna H Wang
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48825, USA.
| |
Collapse
|
38
|
Offley SC, Guo TZ, Wei T, Clark JD, Vogel H, Lindsey DP, Jacobs CR, Yao W, Lane NE, Kingery WS. Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. J Bone Miner Res 2005; 20:257-67. [PMID: 15647820 DOI: 10.1359/jbmr.041108] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/26/2004] [Accepted: 08/31/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED This investigation used capsaicin to selectively lesion unmyelinated sensory neurons in rats. Neuronal lesioning induced a loss of trabecular integrity, reduced bone mass and strength, and depleted neuropeptides in nerve and bone. These data suggest that capsaicin-sensitive sensory nerves contribute to trabecular bone integrity. INTRODUCTION Familial dysautomia is an autosomal recessive disease in which patients suffer from unmyelinated sensory neuron loss, reduced BMD, and frequent fractures. It has been proposed that the loss of neurotransmitters synthesized by unmyelinated neurons adversely affects bone integrity in this hereditary syndrome. The purpose of this study was to determine whether small sensory neurons are required for the maintenance of bone integrity in rats. MATERIALS AND METHODS Ten-month-old male Sprague-Dawley rats were treated with either capsaicin or vehicle. In vivo DXA scanning and micro CT scanning, and histomorphometry were used to evaluate BMD, structure, and cellular activity. Bone strength was measured in distal femoral sections. Body weight and gastrocnemius/soleus weights were measured and spontaneous locomotor activity was monitored. Peroneal nerve morphometry was evaluated using light and electron microscopy. Substance P and calcitonin gene-related peptide (CGRP) content in the sciatic nerve and proximal tibia were determined by enzyme immunoassay (EIA). Substance P signaling was measured using a sciatic nerve stimulation extravasation assay. RESULTS Four weeks after capsaicin treatment, there was a loss of BMD in the metaphyses of the tibia and femur. In the proximal tibia, the osteoclast number and surface increased, osteoblast activity and bone formation were impaired, and trabecular bone volume and connectivity were diminished. There was also a loss of bone strength in the distal femur. No changes occurred in body weight, 24-h grid-crossing activity, weight bearing, or muscle mass after capsaicin treatment, indicating that skeletal unloading did not contribute to the loss of bone integrity. Capsaicin treatment destroyed 57% of the unmyelinated sensory axons, reduced the substance P and CGRP content in the sciatic nerve and proximal tibia, and inhibited neurogenic extravasation. CONCLUSION These results support the hypothesis that capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. Capsaicin-sensitive neurons have efferent functions in the tissues they innervate, effects mediated by transmitters released from the peripheral nerve terminals. We postulate that the deleterious effects of capsaicin treatment on trabecular bone are mediated by reductions in local neurotransmitter content and release.
Collapse
Affiliation(s)
- Sarah C Offley
- Physical Medicine and Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zeng ZH, Luo BH, Gao YJ, Su CJ, He CC, Yi JJ, Li N, Lee RMKW. Control of vascular changes by renin–angiotensin–aldosterone system in salt-sensitive hypertension. Eur J Pharmacol 2004; 503:129-33. [PMID: 15496307 DOI: 10.1016/j.ejphar.2004.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/06/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to investigate the role of the renin-angiotensin-aldosterone system in hypertension development and cardiovascular structural changes in a salt-sensitive hypertensive model induced by capsaicin (CAP). Newborn male Wistar rats were injected with either capsaicin or vehicle. After weaning at 3 weeks, these rats were divided into the following six treatment groups: capsaicin plus high-salt diet (CAP+HS), control plus high-salt diet (CON+HS), control plus normal salt diet (CON+NS), capsaicin plus high-salt diet and telmisartan (CAP+HS+T, 10 mg/kg/day), capsaicin plus high-salt diet and perindopril (CAP+HS+P, 2 mg/kg/day), and capsaicin plus high-salt diet and spironolactone (CAP+HS+S, 80 mg/kg/day). Treatment with different salt diets and drugs was initiated at 3 weeks of age and lasted 18 weeks. We found that beginning at the second week after the initiation of the treatment, blood pressure became significantly higher in CAP+HS than in other groups, accompanied by the development of cardiac hypertrophy. Treatment with telmisartan, perindopril or spironolactone prevented the development of hypertension in the CAP+HS group. Cardiac hypertrophy was prevented in the perindopril treatment group. The medial thickness, media-to-lumen ratio and cross-sectional area of the thoracic, renal and mesenteric arteries were significantly increased in CAP+HS than in other groups. Lumen diameter was similar in all the vessels among all the groups. Treatment with telmisartan, perindopril or spironolactone prevented the development of vascular remodeling, as found in the CAP+HS group. Beginning at 8 weeks after the initiation of the salt diet treatment (11 weeks of age), blood pressure also became higher in CON+HS than in CON+NS, but lower than CAP+HS. Structural changes of vessels were also present in CON+HS, but the degree of change was less when compared with CAP+HS. We conclude that neonatal treatment with capsaicin plus a high-salt diet, and a high-salt diet alone both induced hypertension development in normal Wistar rats, which are associated with cardiovascular remodeling. The renin-angiotensin-aldosterone system is involved in this salt-sensitive model because treatment that interfered with this system also prevented the development of hypertension and vascular remodeling.
Collapse
Affiliation(s)
- Zhao-Hua Zeng
- Smooth Muscle Research Program and Department of Anesthesia, McMaster University, Department of Anesthesiology (HSC-2u3), 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zeng ZH, Luo BH, Gao YJ, Su CJ, He CC, Li N, Lee RMKW. ARTERIAL STRUCTURAL CHANGES IN HYPERTENSIVE RATS INDUCED BY CAPSAICIN AND SALT LOADING. Clin Exp Pharmacol Physiol 2004; 31:502-5. [PMID: 15298541 DOI: 10.1111/j.1440-1681.2004.04037.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The objective of the present study was to investigate the arterial structural changes in a salt-sensitive hypertensive rat model induced by treatment with capsaicin. 2. Newborn male Wistar rats were treated with 50 mg/kg capsaicin subcutaneously for 2 days. Control rats were treated with vehicle solution (5% ethanol and 5% Tween 80 in saline). After weaning at 3 weeks, rats were divided into four groups: (i) control with a normal salt diet (0.5% NaCl; CON + NS); (ii) control with a high-salt diet (4% NaCl; CON + HS); (iii) capsaicin plus normal salt diet (CAP + NS); and (iv) capsaicin plus a high-salt diet (CAP + HS). Treatment with different salt diets was initiated at 3 weeks of age and lasted for 18 weeks. Tail-cuff systolic blood pressure (BP) and bodyweight were examined. At the end of the treatment period, blood vessels were prepared by perfusion fixation. Heart weight and vascular dimensions were measured in the thoracic (artery) aorta, renal artery and mesenteric artery. 3. Two weeks after the initiation of the salt diet treatment, BP became significantly higher in the CAP + HS group than in any of the other groups and this difference was maintained until the end of the treatment period. 4. Beginning at 8 weeks after the initiation of the salt diet treatment (11 weeks of age), BP became higher in the CON + HS group than in the CON + NS and CAP + NS groups. Blood pressure was not significantly different between the CON + NS and CAP + NS groups. 5. Media thickness, media thickness to lumen ratio and cross-sectional area of the aorta, renal artery and mesenteric artery were significantly increased in the CAP + HS group compared with the other groups. Heart weight was also increased in the CAP + HS and CON + HS groups compared with the other groups. 6. Similar structural changes in the blood vessels and heart were also found in the CON + HS group compared with the CON + NS group. Lumen diameter was not altered by the treatments in any of the arteries studied. 7. We conclude that treatment with capsaicin increased the sensitivity of the BP of these rats to salt and this increase in BP is correlated with hypertrophy of the arteries (vascular remodelling) with no change in lumen size. A long-term high-sodium load induced hypertension in normal Wistar rats, which was accompanied by cardiovascular hypertrophy.
Collapse
Affiliation(s)
- Zhao-Hua Zeng
- Smooth Muscle Research Program and Department of Anaesthesia, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Li J, Zhao H, Supowit SC, DiPette DJ, Wang DH. Activation of the renin–angiotensin system in α-calcitonin gene-related peptide/calcitonin gene knockout mice. J Hypertens 2004; 22:1345-9. [PMID: 15201551 DOI: 10.1097/01.hjh.0000125409.50839.f1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To test the hypotheses that circulating or tissue renin-angiotensin system (RAS) activity is increased in alpha-calcitonin gene-related peptide (alpha CGRP) knockout mice, and that this contributes to the increased blood pressure in these mice. DESIGN AND METHODS Three- to six-month-old male alpha CGRP/calcitonin knockout mice and wild-type controls were studied. Mean arterial pressure (MAP) and its response to an angiotensin II type 1 (AT1) receptor blocker, losartan (3 mg/kg intravenously), were determined in conscious, unrestrained knockout mice and wild-type mice. Radioimmunoassay and western blot were used, respectively, to determine plasma renin activity (PRA) and AT1 receptor protein content in tissues. RESULTS Basal MAP and PRA were significantly greater in the knockout mice than in the wild-type mice. In contrast, AT1 receptor content in the renal medulla was significantly decreased in the knockout mice compared with that in wild-type mice. AT1 receptor content in the renal cortex and mesenteric resistance arteries was not different in the knockout and wild-type mice. Losartan produced a significant decrease in MAP in the knockout mice compared with that in wild-type mice. CONCLUSION Activity of the circulating RAS, but not tissue AT1 receptor expression, is increased in alpha CGRP/calcitonin knockout mice, which may contribute to the increase in blood pressure in this mouse model. The mechanism(s) responsible for the increased activity of the circulating RAS in the absence of alpha CGRP throughout the developmental stages of these animals remains to be determined.
Collapse
Affiliation(s)
- Jianping Li
- Department of Medicine and Pharmacology and Toxicology, Michigan State University, East Lansing, 48824, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
OBJECTIVE To test the hypothesis that activation of the vanilloid receptor (VR1) by high salt intake prevents salt-induced increases in arterial pressure via stimulation of release of calcitonin gene-related peptide (CGRP) from sensory nerves. DESIGN AND METHODS Two protocols were used: (1) Wistar rats fed a normal sodium (NS) diet (0.5%) were given intravenous injection of vehicle, capsaicin (CAP), or capsazepine (CAPZ) (a selective VR1 antagonist) plus CAP; and (2) rats were pair-fed a high salt (HS) diet (4%) or NS diet for 3 days and used either for arterial cannulation for measurement of mean arterial pressure (MAP) or for collection of plasma and tissues. Radioimmunoassay, western blot, and fluorescent immunohistochemistry were used, respectively, to determine the plasma CGRP level, VR1 protein content, and co-localization of VR1 and CGRP. RESULTS CAP increased plasma CGRP levels and decreased MAP in rats fed a NS diet. CAPZ blocked CAP-induced increases in plasma CGRP levels and CAP-induced decreases in MAP. HS intake increased plasma CGRP levels by approximately 60% without changing the baseline MAP, but MAP was increased by CAPZ in HS-treated rats when compared with NS-treated rats. VR1 protein expression, which co-localized with CGRP, was increased in mesenteric resistance arteries and the renal medulla. CONCLUSION HS intake activates VR1, which plays a counter-regulatory role in preventing salt-induced increases in arterial pressure via stimulation of release of CGRP from sensory nerves. Increased VR1 expression in vascular and renal tissues may serve as a compensatory response to HS intake, which contributes to maintenance of normal salt sensitivity.
Collapse
Affiliation(s)
- Jianping Li
- Department of Medicine and Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
43
|
Abstract
OBJECTIVE To test the hypothesis that sensory afferents are significant functional components in preventing salt-induced increases in blood pressure. DESIGN AND METHODS Neonatal Wistar rats were subcutaneously injected with 50 mg/kg capsaicin or vehicle on the first and second days of life. After weaning, male rats were divided into three groups and treated for 4 weeks with: control plus normal (0.5%, CON-NS) or high (4%, CON-HS) sodium diet, and capsaicin pretreatment plus HS diet (CAP-HS). Mean arterial pressure (MAP) and its response to bolus injection of calcitonin gene-related peptide (CGRP) and its antagonist, CGRP(8-37), were measured by carotid arterial catheterization. Radioimmunoassay was used to measure CGRP levels in plasma and dorsal root ganglia (DRG). Expression of components of the CGRP receptor, calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1), was determined by the use of Western blot analysis. RESULTS Baseline MAP was increased in CAP-HS compared with CON-HS and CON-NS rats, and it was higher in CON-HS than in CON-NS rats. MAP response to exogenous CGRP was enhanced in CAP-HS and CON-HS than in CON-NS rats, but MAP response to CGRP(8-37) was increased only in CON-HS rats. Plasma CGRP levels were not different among three groups, but CGRP content in DRG was decreased in CAP-HS compared with CON-HS and CON-NS rats. CRLR expression in mesenteric resistance arteries was upregulated in CAP-HS and CON-HS compared with CON-NS rats, but RAMP1 content was not different among these groups. CONCLUSION Chronic high-salt intake upregulates expression of mesenteric CGRP receptors without altering CGRP levels in plasma and DRG. Increased expression of mesenteric CGRP receptors may play a counter regulatory role in attenuating salt-induced increases in blood pressure.
Collapse
Affiliation(s)
- Jianping Li
- Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
44
|
Wang DH, Zhao Y. Increased salt sensitivity induced by impairment of sensory nerves: is nephropathy the cause? J Hypertens 2003; 21:403-9. [PMID: 12569272 DOI: 10.1097/00004872-200302000-00033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE A unique model of hypertension developed in our laboratory shows that neonatal degeneration of capsaicin-sensitive sensory nerves renders a rat responsive to salt load with a significant rise in blood pressure. Considering that capsaicin impairs the micturition reflex, increased retention of urine in the bladder of capsaicin-treated rats may lead to nephropathy and therefore to an increase in blood pressure. The present study was designed to test the hypothesis that abnormalities in renal function and blood pressure in this model are independent of urine retention, and are reversible when a high-salt diet is withdrawn. DESIGN AND METHODS Newborn Wistar rats were given either 50 mg/kg capsaicin subcutaneously or vehicle on the first and second days of life. After weaning, one set of male rats was treated for 3 weeks with: capsaicin pretreatment plus high-sodium diet (4%, CAP-HS), capsaicin plus normal-sodium diet (0.5%, CAP-NS), control plus high-sodium diet (CON-HS), and control plus normal sodium diet (CON-NS). The other set of male rats was given the same treatment for 4 weeks except that the two high-salt-treated groups were switched to normal salt (CAP-HS-NS and CON-HS-NS) for the last week. Chronic bladder catheterization was carried out in all rats to maintain free flow of urine. Western blot was used for measurement of the capsaicin (vanilloid) receptor levels in dorsal root ganglia. Radioimmunoassay was used for measurement of plasma renin activity and plasma aldosterone levels. RESULTS Capsaicin (vanilloid) receptor contents in dorsal root ganglia were markedly decreased in all capsaicin-treated groups. Plasma renin activity and plasma aldosterone levels were higher in CAP-HS rats than in CON-HS rats, but were not statistically different between CAP-HS-NS and CON-HS-NS rats. Urine Na excretion but not urine volume was decreased and water intake increased in CAP-HS compared with CON-HS, but these parameters were not statistically different between CAP-HS-NS and CON-HS-NS rats. Although systolic blood pressure and mean arterial pressure were higher in CAP-HS and CAP-HS-NS rats than in CON-HS and CON-HS-NS rats, they were higher in CAP-HS than in CAP-HS-NS rats. CONCLUSION Despite elimination of urine retention, sensory denervation impairs renal function and leads to an increase in blood pressure in response to high salt intake. The abnormalities in renal function and blood pressure in sensory denervated rats are reversible, at least in part, when high salt intake is withdrawn. These data support the hypothesis that sensory innervation counterbalances the pro-hypertensive systems and serves as a modulator to control salt sensitivity and cardiovascular function.
Collapse
Affiliation(s)
- Donna H Wang
- Department of Medicine, Michigan State University, East Lansing, 48824, USA.
| | | |
Collapse
|
45
|
Elijovich F, Laffer CL. Participation of renal and circulating endothelin in salt-sensitive essential hypertension. J Hum Hypertens 2002; 16:459-67. [PMID: 12080429 DOI: 10.1038/sj.jhh.1001419] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salt sensitivity of blood pressure is a cardiovascular risk factor, independent of and in addition to hypertension. In essential hypertension, a conglomerate of clinical and biochemical characteristics defines a salt-sensitive phenotype. Despite extensive research on multiple natriuretic and antinatriuretic systems, there is no definitive answer yet about the major causes of salt-sensitivity, probably reflecting the complexity of salt-balance regulation. The endothelins, ubiquitous peptides first described as potent vasoconstrictors, also have vasodilator, natriuretic and antinatriuretic actions, depending on their site of generation and binding to different receptors. We review the available data on endothelin in salt-sensitive essential hypertension and conclude that abnormalities of renal endothelin may play a primary role. More importantly, the salt-sensitive patient may have blood pressure-dependency on endothelin in all states of salt balance, thus predicting that endothelin receptor blockers will have a major therapeutic role in salt-sensitive essential hypertension.
Collapse
Affiliation(s)
- F Elijovich
- Department of Medicine, College of Human Medicine, Michigan State University, Medical Education and Research Center of Grand Rapids, 49503, USA.
| | | |
Collapse
|
46
|
Kopp UC, Cicha MZ, Smith LA. Endogenous angiotensin modulates PGE(2)-mediated release of substance P from renal mechanosensory nerve fibers. Am J Physiol Regul Integr Comp Physiol 2002; 282:R19-30. [PMID: 11742819 DOI: 10.1152/ajpregu.2002.282.1.r19] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing renal pelvic pressure increases afferent renal nerve activity (ARNA) by a prostaglandin E2 (PGE2)-mediated release of substance P (SP) from renal pelvic sensory nerves. We examined whether the ARNA responses were modulated by high- and low-sodium diets. Increasing renal pelvic pressure resulted in greater ARNA responses in rats fed a high-sodium than in those fed a low-sodium diet. In rats fed a low-sodium diet, increasing renal pelvic pressure 2.5 and 7.5 mmHg increased ARNA 2 +/- 1 and 13 +/- 1% before and 12 +/- 1 and 22 +/- 2% during renal pelvic perfusion with 0.44 mM losartan. In rats fed a high-sodium diet, similar increases in renal pelvic pressure increased ARNA 10 +/- 1 and 23 +/- 3% before and 1 +/- 1 and 11 +/- 2% during pelvic perfusion with 15 nM ANG II. The PGE2-mediated release of SP from renal pelvic nerves in vitro was enhanced in rats fed a high-sodium diet and suppressed in rats fed a low-sodium diet. The PGE2 concentration required for SP release was 0.03, 0.14, and 3.5 microM in rats fed high-, normal-, and low-sodium diets. In rats fed a low-sodium diet, PGE2 increased renal pelvic SP release from 5 +/- 1 to 6 +/- 1 pg/min without and from 12 +/- 1 to 21 +/- 2 pg/min with losartan in the incubation bath. Losartan had no effect on SP release in rats fed normal- and high-sodium diets. ANG II modulates the responsiveness of renal pelvic mechanosensory nerves by inhibiting PGE2-mediated SP release from renal pelvic nerve fibers.
Collapse
Affiliation(s)
- Ulla C Kopp
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
47
|
Huang Y, Wang DH. Role of renin-angiotensin-aldosterone system in salt-sensitive hypertension induced by sensory denervation. Am J Physiol Heart Circ Physiol 2001; 281:H2143-9. [PMID: 11668076 DOI: 10.1152/ajpheart.2001.281.5.h2143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To define the role of the renin-angiotensin-aldosterone system in a novel salt-sensitive model, neonatal Wistar rats were given capsaicin (50 mg/kg sc) on the first and second days of life. After weaning, male rats were divided into the following six groups and treated for 3 wk with: control + normal sodium diet (CON-NS), CON + high-sodium diet (CON-HS), CON + HS + spironolactone (50 mg x kg(-1) x day(-1), CON-HS-SP), capsaicin pretreatment + NS (CAP-NS), CAP-HS, and CAP-HS-SP. Radioimmunoassay shows that plasma renin activity (PRA) and plasma aldosterone level (PAL) were suppressed by HS, but they were higher in CAP-HS than in CON-HS and CON-HS-SP (P < 0.05). Both tail-cuff systolic blood pressure and mean arterial pressure were higher in CAP-HS than in all other groups (P < 0.05). Urine water and sodium excretion were increased with HS intake, but they were lower in CAP-HS than in CON-HS (P < 0.05). Western blot did not detect differences in adrenal AT1 receptor content. Therefore, insufficiently suppressed PRA and PAL in response to HS intake by sensory denervation may contribute to increased salt sensitivity and account for effectiveness of spironolactone in lowering blood pressure in this model.
Collapse
Affiliation(s)
- Y Huang
- Department of Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
48
|
Huang Y, Wang DH. Role of AT1 and AT2 receptor subtypes in salt-sensitive hypertension induced by sensory nerve degeneration. J Hypertens 2001; 19:1841-6. [PMID: 11593105 DOI: 10.1097/00004872-200110000-00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To define the role of the type 1 angiotensin II (AT1) and type II (AT2) receptors in the development of salt-sensitive hypertension induced by sensory nerve degeneration. DESIGN AND METHODS Neonatal Wistar rats were given capsaicin 50 mg/kg s.c. on the first and second days of life. After weaning, male rats were divided into six groups and treated for 3 weeks with: control + high sodium diet (4%, CON-HS), capsaicin pretreatment + normal sodium diet (0.5%, CAP-NS), CAP-HS, CAP + HS + candesartan (10 mg/kg per day) (CAP-HS-CAN), CAP + HS + PD 123319 (30 mg/kg per day) (CAP-HS-PD), and capsaicin pretreatment + high sodium diet + candesartan + PD 123319 (CAP-HS-CAN-PD). Mean arterial pressure (MAP) was measured by carotid arterial catheterization. Urinary Na+ concentrations were determined by using a flame atomic absorption spectrophotometer. Levels of calcitonin gene-related peptide (CGRP) in dorsal root ganglia (DRG) and plasma renin activity (PRA) were determined by radioimmunoassay. RESULTS CGRP contents in DRG were decreased by capsaicin (P < 0.05). MAP was higher in CAP-HS rats compared with all the other groups (P < 0.05). The 24 h urine and sodium excretion increased when a high salt diet was given, but they were lower in CAP-HS and CAP-HS-CAN than in CON-HS (P < 0.05). PRA was suppressed in CON-HS and CAP-HS compared with CAP-NS, but it was higher in CAP-HS than in CON-HS (P < 0.05). CONCLUSION Insufficiently suppressed PRA by high salt intake may contribute to increased salt sensitivity and account for effectiveness of candesartan in lowering blood pressure in this model. Furthermore, PD 123319 attenuates the development of hypertension in salt-loaded rats neonatally treated with capsaicin, indicating that the AT2 receptor contributes to the increase in blood pressure.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Benzimidazoles/pharmacology
- Biphenyl Compounds
- Blood Pressure/drug effects
- Calcitonin Gene-Related Peptide/antagonists & inhibitors
- Calcitonin Gene-Related Peptide/metabolism
- Capsaicin/pharmacology
- Diuresis/drug effects
- Dose-Response Relationship, Drug
- Drug Synergism
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiopathology
- Hypertension/chemically induced
- Hypertension/physiopathology
- Imidazoles/pharmacology
- Male
- Natriuresis/drug effects
- Nerve Degeneration/physiopathology
- Pyridines/pharmacology
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/physiology
- Reference Values
- Renin/blood
- Sodium, Dietary/administration & dosage
- Sodium, Dietary/pharmacology
- Tetrazoles/pharmacology
Collapse
Affiliation(s)
- Y Huang
- Department of Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
49
|
Liao S, Miralles M, Kelley BJ, Curci JA, Borhani M, Thompson RW. Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors. J Vasc Surg 2001; 33:1057-64. [PMID: 11331849 DOI: 10.1067/mva.2001.112810] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PURPOSE Pathologic remodeling of the extracellular matrix is a critical mechanism in the development and progression of abdominal aortic aneurysms (AAAs). Although angiotensin-converting enzyme (ACE) inhibitors are known to alter vascular wall remodeling in other conditions, their effects on AAAs are unknown. In this study we assessed the effect of ACE inhibitors in a rodent model of aneurysm development. METHODS Male Wistar rats underwent transient aortic perfusion with porcine pancreatic elastase, followed by treatment with one of three ACE inhibitors (captopril [CP], lisinopril [LP], or enalapril [EP]), an angiotensin (AT)1 receptor antagonist (losartan [LOS]), or water alone (9 rats in each group). Blood pressure and aortic diameter (AD) were measured before elastase perfusion and on day 14, with an AAA defined as an increase in AD (DeltaAD) of more than 100%. The structural features of the aortic wall were examined by means of light microscopy. RESULTS Aneurysmal dilatation consistently developed within 14 days of elastase perfusion in untreated rats, coinciding with the development of a transmural inflammatory response and destruction of the elastic media (mean DeltaAD, 223% +/- 28%). All three ACE inhibitors prevented AAA development (mean DeltaAD: CP, 67% +/- 4%; LP, 18% +/- 12%; and EP, 14% +/- 3%; each P <.05 vs controls). ACE inhibitors also attenuated the degradation of medial elastin without diminishing the inflammatory response. Surprisingly, the aneurysm-suppressing effects of ACE inhibitors were dissociated from their effects on systemic hemodynamics, and LOS had no significant effect on aneurysm development compared with untreated controls (mean DeltaAD, 186% +/- 19%). CONCLUSION Treatment with ACE inhibitors suppresses the development of elastase-induced AAAs in the rat. Although this is associated with the preservation of medial elastin, the mechanisms underlying these effects appear to be distinct from hemodynamic alterations alone or events mediated solely by AT1 receptors. Further studies are needed to elucidate how ACE inhibitors influence aortic wall matrix remodeling during aneurysmal degeneration.
Collapse
Affiliation(s)
- S Liao
- Department of Surgery (Section of Vascular Surgery), Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
The renal nerves are the communication link between the central nervous system and the kidney. In response to multiple peripheral and central inputs, efferent renal sympathetic nerve activity is altered so as to convey information to the major structural and functional components of the kidney, the vessels, glomeruli, and tubules, each of which is innervated. At the level of each of these individual components, information transfer occurs via interaction of the neurotransmitter released at the sympathetic nerve terminal-neuroeffector junction with specific postjunctional receptors coupled to defined intracellular signaling and effector systems. In response to normal physiological stimuli, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of renal blood flow, glomerular filtration rate, renal tubular epithelial cell solute and water transport, and hormonal release. Afferent input from sensory receptors located in the kidney participates in this reflex control system via renorenal reflexes that enable total renal function to be self-regulated and balanced between the two kidneys. In pathophysiological conditions, abnormal regulation of efferent renal sympathetic nerve activity contributes significantly to the associated abnormalities of renal function which, in turn, are of importance in the pathogenesis of the disease.
Collapse
Affiliation(s)
- G F DiBona
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|