1
|
Lyu Y, Zhao H, Zeng G, Yang J, Shao Q, Wu H. Mapping the evolving trend of research on leukocyte telomere length: a text-mining study. Hum Genomics 2024; 18:117. [PMID: 39468654 PMCID: PMC11520877 DOI: 10.1186/s40246-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Substantial evidence indicates that measuring leukocyte telomere length (LTL) is a useful tool that may be considered as a valuable biomarker of individual biological age, correlating with numerous chronic disorders. However, to date, there has been a lack of in-depth understanding regarding the current landscape and forthcoming developments in the LTL field. Therefore, this study aimed to utilize bibliometric methods to summarize the knowledge structure, current focus, and emerging directions in this field. METHOD Scientific publications on LTL spanning the period from 2000 to 2022 were acquired from the Web of Science Core Collection database. Several bibliometric tools including CiteSpace, VOSviewer, and an online website were utilized for bibliometric analysis. The primary evaluations encompassed investigating the major contributors and their collaborative relationships among countries/regions, institutions, and authors, conducting co-citation analyses of authors, journals, as well as reference, examining reference bursts, as well as performing co-occurrence analyses of keywords. RESULTS There are 1818 papers with 66,668 citations identified. Both the annual publication and citation counts on LTL exhibited significant upward trends. The United States emerged as the most prominent contributor, as evidenced by the greatest volume of papers and the highest H-index value. University of California San Francisco and Aviv A were identified as the most productive institution and author in this domain, respectively. Reference analysis revealed that longitudinal study and mendelian randomization study are the most concerned research method in this field recently. Keywords analysis showed that the most concerned diseases in LTL fields were aging, inflammation, cardiovascular diseases, endocrine diseases, neurological and psychiatric diseases, and cancers. In addition, the following research directions such as "COPD", "mendelian randomization", "adiposity", "colorectal cancer", "National Health and Nutrition Examination Survey (NHNES)", "telomerase reverse transcriptase", "pregnancy" have garnered increasing attention in recent times and hold the potential to evolve into research foci in the foreseeable future. CONCLUSION This is the first bibliometric study that provides comprehensive overview of LTL research. The findings of this study could become valuable references for investigators to explore and address the current and emerging challenges in LTL research.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hongjie Zhao
- Department of Oncology, Tianjin Medical University Baodi Hospital, Tianjin, China
| | - Guiping Zeng
- Department of Orthopaedic Surgery, Yangxin People's Hospital, Yangxin, 435200, Hubei, China
| | - Jia Yang
- Department of Orthopaedics, Jincheng General Hospital, Jincheng, 048006, Shanxi Province, China
| | - Qipeng Shao
- Department of Orthopaedics, Ganzhou People's Hospital, Ganzhou, China.
| | - Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Rubio-Carrasco K, de la Torre PG, Martínez-Ezquerro JD, Sánchez-García S, García-Vences E, Camacho-Arroyo I, Rodríguez-Dorantes M, González-Covarrubias V. Hypertension Control Is Associated with Telomere Length in Older Adults. DNA Cell Biol 2024. [PMID: 39429092 DOI: 10.1089/dna.2024.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Hypertension is the leading risk for cardiovascular disease and worldwide mortality. Uncontrolled blood pressure worsens with age and its control is part of public health strategies especially for older adults. Telomere length (TL) has been associated with hypertension, with age and sex as relevant confounding factors, but it is not clear whether hypertension control in older adults impacts on TL and if this relationship is consistently age and sex dependent. TL was assessed in leukocytes of 369 hypertensive patients. Individuals were >60 years male (169) and female (200) and have been diagnosed and treated for hypertension for at least four years. TL was measured by RT-PCR using a commercial probe. Regression models were developed considering systolic and diastolic blood pressure control as dependent variables and age, sex, glucose, and lipid levels as confounding factors. TL showed a mean of 7.5 ± 5.1 Kb, and no difference between males and females was observed. We identified a significant association between systolic blood pressure control and TL (p value = 0.039) and a trend for diastolic blood pressure (p value = 0.061). These observations confirm and expand previous reports showing that hypertension control can have an impact on TL and consequently on other factors of healthy aging.
Collapse
Affiliation(s)
- Kenneth Rubio-Carrasco
- Instituto Nacional de Medicina Genómica (INMEGEN), CDMX, México
- Doctorado en Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
- Facultad de Química, Universidad Nacional Autónoma de México (UNAM), CDMX, México
| | - Paola García de la Torre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Nacional del Seguro Social (IMSS), CDMX, México
| | - José D Martínez-Ezquerro
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Nacional del Seguro Social (IMSS), CDMX, México
| | - Sergio Sánchez-García
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento, Centro Médico Nacional Siglo XXI, Instituto Nacional del Seguro Social (IMSS), CDMX, México
| | - Elisa García-Vences
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, México
- Secretaria de la Defensa Nacional, Escuela Militar de Graduados en Sanidad, CDMX, México
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología- Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | | | | |
Collapse
|
3
|
Christian LM, Wilson SJ, Madison AA, Prakash RS, Burd CE, Rosko AE, Kiecolt-Glaser JK. Understanding the health effects of caregiving stress: New directions in molecular aging. Ageing Res Rev 2023; 92:102096. [PMID: 37898293 PMCID: PMC10824392 DOI: 10.1016/j.arr.2023.102096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Dementia caregiving has been linked to multiple health risks, including infectious illness, depression, anxiety, immune dysregulation, weakened vaccine responses, slow wound healing, hypertension, cardiovascular disease, metabolic syndrome, diabetes, frailty, cognitive decline, and reduced structural and functional integrity of the brain. The sustained overproduction of proinflammatory cytokines is a key pathway behind many of these risks. However, contrasting findings suggest that some forms of caregiving may have beneficial effects, such as maintaining caregivers' health and providing a sense of meaning and purpose which, in turn, may contribute to lower rates of functional decline and mortality. The current review synthesizes these disparate literatures, identifies methodological sources of discrepancy, and integrates caregiver research with work on aging biomarkers to propose a research agenda that traces the mechanistic pathways of caregivers' health trajectories with a focus on the unique stressors facing spousal caregivers as compared to other informal caregivers. Combined with a focus on psychosocial moderators and mechanisms, studies using state-of-the-art molecular aging biomarkers such as telomere length, p16INK4a, and epigenetic age could help to reconcile mixed literature on caregiving's sequelae by determining whether and under what conditions caregiving-related experiences contribute to faster aging, in part through inflammatory biology. The biomarkers predict morbidity and mortality, and each contributes non-redundant information about age-related molecular changes -together painting a more complete picture of biological aging. Indeed, assessing changes in these biopsychosocial mechanisms over time would help to clarify the dynamic relationships between caregiving experiences, psychological states, immune function, and aging.
Collapse
Affiliation(s)
- Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Stephanie J Wilson
- Department of Psychology, Southern Methodist University, University Park, TX, USA
| | - Annelise A Madison
- The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Ruchika S Prakash
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Center for Cognitive and Behavioral Brain Imaging, Ohio State University, Columbus, OH, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Ashley E Rosko
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Janice K Kiecolt-Glaser
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
4
|
Gao S, Rohr JK, de Vivo I, Ramsay M, Krieger N, Kabudula CW, Farrell MT, Bassil DT, Harriman NW, Corona-Perez D, Pesic K, Berkman LF. Telomere Length, Health, and Mortality in a Cohort of Older Black South African Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1983-1990. [PMID: 37352164 PMCID: PMC10613001 DOI: 10.1093/gerona/glad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 06/25/2023] Open
Abstract
Telomere length (TL) may be a biomarker of aging processes as well as age-related diseases. However, most studies of TL and aging are conducted in high-income countries. Less is known in low- and middle-income countries (LMICs) such as South Africa, where life expectancy remains lower despite population aging. We conducted a descriptive analysis of TL in a cohort of older adults in rural South Africa. TL was assayed from venous blood draws using quantitative polymerase chain reaction (T/S ratio). We examined the correlation between TL and biomarkers, demographic characteristics, mental/cognitive health measures, and physical performance measures in a subsample of the Wave 1 2014-2015 "Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa" (HAALSI) cohort (n = 510). We used logistic regression to measure the association between TL and mortality through Wave 3 (2021-2022). In bivariate analyses, TL was significantly correlated with age (r = -0.29, p < .0001), self-reported female sex (r = 0.13, p = .002), mortality (r = -0.1297, p = .003), diastolic blood pressure (r = 0.09, p = .037), pulse pressure (r = -0.09, p = .045), and being a grandparent (r = -0.17, p = .0001). TL was significantly associated with age (β = -0.003; 95% confidence interval [CI] = -0.005, -0.003). TL was significantly associated in unadjusted multivariate analyses with mortality, but the relationship between TL and mortality was attenuated after adjusting for age (odds ratio [OR] = 0.19; 95% CI = 0.03, 1.27) and other covariates (OR = 0.17; 95% CI = 0.02, 1.19). Our study is the first analysis of TL in an older adult South African population. Our results corroborate existing relationships between TL and age, sex, cardiometabolic disease, and mortality found in higher-income countries.
Collapse
Affiliation(s)
- Sarah Gao
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| | - Julia K Rohr
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| | - Immaculata de Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Nancy Krieger
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Meagan T Farrell
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| | - Darina T Bassil
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| | - Nigel W Harriman
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| | - Diana Corona-Perez
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Katarina Pesic
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lisa F Berkman
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Han X, Wu T, Liu CY. Univariable and multivariable Mendelian randomization investigating the effects of telomere length on the risk of adverse pregnancy outcomes. Front Endocrinol (Lausanne) 2023; 14:1225600. [PMID: 37600718 PMCID: PMC10435990 DOI: 10.3389/fendo.2023.1225600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Numerous observational studies have revealed a correlation between telomere length (TL) and adverse pregnancy outcomes (APOs). However, the impacts of TL on APOs are still unclear. Methods Mendelian randomization (MR) was carried out using summary data from genome-wide association studies (GWAS). Inverse variance weighted (IVW) was employed as the primary analysis to explore the causal relationship between TL and APOs. The exposure data came from a GWAS dataset of IEU analysis of the United Kingdom Biobank phenotypes consisting of 472,174 European participants. Summary-level data for five APOs were obtained from the GWAS datasets of the FinnGen consortium. We also performed multivariate MR (MVMR), adjusting for smoking, alcohol intake, body mass index (BMI), and number of live births. In addition, we conducted a series of rigorous analyses to further examine the validity of our MR findings. Results After Bonferroni correction and rigorous quality control, univariable MR (UVMR) demonstrated that a shorter TL was significantly associated with an increased risk of spontaneous abortion (SA) (odds ratio [OR]: 0.815; 95% confidence interval [CI]: 0.714-0.930; P = 0.002) and preterm birth (PTB) (OR: 0.758; 95% CI: 0.632-0.908; P = 0.003) in the IVW model. There was a nominally significant relationship between TL and preeclampsia (PE) in the IVW model (OR: 0.799; 95% CI: 0.651-0.979; P = 0.031). However, no significant association was found between TL and gestational diabetes mellitus (GDM) (OR: 0.950; 95% CI: 0.804-1.122; P = 0.543) or fetal growth restriction (FGR) (OR: 1.187; 95% CI: 0.901-1.565; P = 0.223) among the five statistical models. Furthermore, we did not find a significant causal effect of APOs on TL in the reverse MR analysis. MVMR analysis showed that the causal effects of TL on SA remained significant after accounting for smoking, alcohol intake, BMI, and number of live births. Conclusion Our MR study provides robust evidence that shorter telomeres were associated with an increased risk of SA. Further work is necessary to investigate the potential mechanisms. UVMR and MVMR findings showed limited evidence that TL affects the risk of PTB, PE, GDM, and FGR, illustrating that the outcomes of previous observational studies may have been confounded.
Collapse
Affiliation(s)
- Xinyu Han
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianqiang Wu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chun yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Rampersaud R, Wu GWY, Reus VI, Lin J, Blackburn EH, Epel ES, Hough CM, Mellon SH, Wolkowitz OM. Shorter telomere length predicts poor antidepressant response and poorer cardiometabolic indices in major depression. Sci Rep 2023; 13:10238. [PMID: 37353495 PMCID: PMC10290110 DOI: 10.1038/s41598-023-35912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Telomere length (TL) is a marker of biological aging, and shorter telomeres have been associated with several medical and psychiatric disorders, including cardiometabolic dysregulation and Major Depressive Disorder (MDD). In addition, studies have shown shorter TL to be associated with poorer response to certain psychotropic medications, and our previous work suggested shorter TL and higher telomerase activity (TA) predicts poorer response to Selective Serotonin Reuptake Inhibitor (SSRI) treatment. Using a new group of unmedicated medically healthy individuals with MDD (n = 48), we sought to replicate our prior findings demonstrating that peripheral blood mononuclear cell (PBMC) TL and TA predict response to SSRI treatment and to identify associations between TL and TA with biological stress mediators and cardiometabolic risk indices. Our results demonstrate that longer pre-treatment TL was associated with better response to SSRI treatment (β = .407 p = .007). Additionally, we observed that TL had a negative relationship with allostatic load (β = - .320 p = .017) and a cardiometabolic risk score (β = - .300 p = .025). Our results suggest that PBMC TL reflects, in part, the cumulative effects of physiological stress and cardiovascular risk in MDD and may be a biomarker for predicting SSRI response.
Collapse
Affiliation(s)
- Ryan Rampersaud
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA.
| | - Gwyneth W Y Wu
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Victor I Reus
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Elissa S Epel
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Christina M Hough
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
- Department of Psychology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Synthia H Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Weill Institute for Neurosciences and Department of Psychiatry and Behavioral Sciences, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| |
Collapse
|
7
|
Doherty T, Dempster E, Hannon E, Mill J, Poulton R, Corcoran D, Sugden K, Williams B, Caspi A, Moffitt TE, Delany SJ, Murphy TM. A comparison of feature selection methodologies and learning algorithms in the development of a DNA methylation-based telomere length estimator. BMC Bioinformatics 2023; 24:178. [PMID: 37127563 PMCID: PMC10152624 DOI: 10.1186/s12859-023-05282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The field of epigenomics holds great promise in understanding and treating disease with advances in machine learning (ML) and artificial intelligence being vitally important in this pursuit. Increasingly, research now utilises DNA methylation measures at cytosine-guanine dinucleotides (CpG) to detect disease and estimate biological traits such as aging. Given the challenge of high dimensionality of DNA methylation data, feature-selection techniques are commonly employed to reduce dimensionality and identify the most important subset of features. In this study, our aim was to test and compare a range of feature-selection methods and ML algorithms in the development of a novel DNA methylation-based telomere length (TL) estimator. We utilised both nested cross-validation and two independent test sets for the comparisons. RESULTS We found that principal component analysis in advance of elastic net regression led to the overall best performing estimator when evaluated using a nested cross-validation analysis and two independent test cohorts. This approach achieved a correlation between estimated and actual TL of 0.295 (83.4% CI [0.201, 0.384]) on the EXTEND test data set. Contrastingly, the baseline model of elastic net regression with no prior feature reduction stage performed less well in general-suggesting a prior feature-selection stage may have important utility. A previously developed TL estimator, DNAmTL, achieved a correlation of 0.216 (83.4% CI [0.118, 0.310]) on the EXTEND data. Additionally, we observed that different DNA methylation-based TL estimators, which have few common CpGs, are associated with many of the same biological entities. CONCLUSIONS The variance in performance across tested approaches shows that estimators are sensitive to data set heterogeneity and the development of an optimal DNA methylation-based estimator should benefit from the robust methodological approach used in this study. Moreover, our methodology which utilises a range of feature-selection approaches and ML algorithms could be applied to other biological markers and disease phenotypes, to examine their relationship with DNA methylation and predictive value.
Collapse
Affiliation(s)
- Trevor Doherty
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland.
- SFI Centre for Research Training in Machine Learning, Technological University Dublin, Dublin, Ireland.
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Richie Poulton
- Department of Psychology, University of Otago, Dunedin, 9016, New Zealand
| | - David Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Ben Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Avshalom Caspi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Terrie E Moffitt
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Sarah Jane Delany
- School of Computer Science, Technological University Dublin, Dublin, Ireland
| | - Therese M Murphy
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Deng Y, Li Q, Zhou F, Li G, Liu J, Lv J, Li L, Chang D. Telomere length and the risk of cardiovascular diseases: A Mendelian randomization study. Front Cardiovasc Med 2022; 9:1012615. [PMID: 36352846 PMCID: PMC9637552 DOI: 10.3389/fcvm.2022.1012615] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background The causal direction and magnitude of the associations between telomere length (TL) and cardiovascular diseases (CVDs) remain uncertain due to susceptibility of reverse causation and confounding. This study aimed to investigate the associations between TL and CVDs using Mendelian randomization (MR). Materials and methods In this two-sample MR study, we identified 154 independent TL-associated genetic variants from a genome-wide association study (GWAS) consisting of 472,174 individuals (aged 40-69) in the UK Biobank. Summary level data of CVDs were obtained from different GWASs datasets. Methods of inverse variance weighted (IVW), Mendelian Randomization-Egger (MR-Egger), Mendelian Randomization robust adjusted profile score (MR-RAPS), maximum likelihood estimation, weighted mode, penalized weighted mode methods, and Mendelian randomization pleiotropy residual sum and outlier test (MR-PRESSO) were conducted to investigate the associations between TL and CVDs. Results Our findings indicated that longer TL was significantly associated with decreased risk of coronary atherosclerosis [odds ratio (OR), 0.85; 95% confidence interval (CI), 0.75-0.95; P = 4.36E-03], myocardial infarction (OR, 0.72; 95% CI, 0.63-0.83; P = 2.31E-06), ischemic heart disease (OR, 0.87; 95% CI, 0.78-0.97; P = 1.01E-02), stroke (OR, 0.87; 95% CI, 0.79-0.95; P = 1.60E-03), but an increased risk of hypertension (OR, 1.12; 95% CI, 1.02-1.23; P = 2.00E-02). However, there was no significant association between TL and heart failure (OR, 0.94; 95% CI, 0.87-1.01; P = 1.10E-01), atrial fibrillation (OR, 1.01; 95% CI, 0.93-1.11; P = 7.50E-01), or cardiac death (OR, 0.95; 95% CI, 0.82-1.10; P = 4.80E-01). Both raw and outlier corrected estimates from MR-PRESSO were consistent with those of IVW results. The sensitivity analyses showed no evidence of pleiotropy (MR-Egger intercept, P > 0.05), while Cochran's Q test and MR-Egger suggested different degrees of heterogeneity. Conclusion Our MR study suggested that longer telomeres were associated with decreased risk of several CVDs, including coronary atherosclerosis, myocardial infarction, ischemic heart disease, and stroke, as well as an increased risk of hypertension. Future studies are still warranted to validate the results and investigate the mechanisms underlying these associations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dong Chang
- Department of Cardiology, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Gkaliagkousi E, Lazaridis A, Dogan S, Fraenkel E, Tuna BG, Mozos I, Vukicevic M, Yalcin O, Gopcevic K. Theories and Molecular Basis of Vascular Aging: A Review of the Literature from VascAgeNet Group on Pathophysiological Mechanisms of Vascular Aging. Int J Mol Sci 2022; 23:ijms23158672. [PMID: 35955804 PMCID: PMC9368987 DOI: 10.3390/ijms23158672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular aging, characterized by structural and functional alterations of the vascular wall, is a hallmark of aging and is tightly related to the development of cardiovascular mortality and age-associated vascular pathologies. Over the last years, extensive and ongoing research has highlighted several sophisticated molecular mechanisms that are involved in the pathophysiology of vascular aging. A more thorough understanding of these mechanisms could help to provide a new insight into the complex biology of this non-reversible vascular process and direct future interventions to improve longevity. In this review, we discuss the role of the most important molecular pathways involved in vascular ageing including oxidative stress, vascular inflammation, extracellular matrix metalloproteinases activity, epigenetic regulation, telomere shortening, senescence and autophagy.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
- Correspondence: (E.G.); (K.G.)
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Trieda SNP 1, 04066 Košice, Slovakia
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| | - Milica Vukicevic
- Cardiac Surgery Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Kristina Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, 11000 Belgrade, Serbia
- Correspondence: (E.G.); (K.G.)
| |
Collapse
|
10
|
Daios S, Anogeianaki A, Kaiafa G, Kontana A, Veneti S, Gogou C, Karlafti E, Pilalas D, Kanellos I, Savopoulos C. Telomere Length as a marker of biological aging: A critical review of recent literature. Curr Med Chem 2022; 29:5478-5495. [PMID: 35838223 DOI: 10.2174/0929867329666220713123750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Aging is characterized as a syndrome of deleterious, progressive, universal, and irreversible function changes affecting every structural and functional aspect of the organism and accompanied by a generalized increase in mortality. Although a substantial number of candidates for biomarkers of aging have been proposed, none has been validated or universally accepted. Human telomeres constitute hexameric repetitive DNA sequence nucleoprotein complexes that cap chromosome ends, regulating gene expression and modulating stress-related pathways. Telomere length (TL) shortening is observed both in cellular senescence and advanced age, leading to the investigation of TL as a biomarker for aging and a risk factor indicator for the development and progression of the most common age-related diseases. OBJECTIVE The present review underlines the connection between TL and the pathophysiology of the diseases associated with telomere attrition. METHODS We performed a structured search of the PubMed database for peer-reviewed research of the literature regarding leukocyte TL and cardiovascular diseases (CVD), more specifically stroke and heart disease, and focused on the relevant articles published during the last 5 years. We also applied Hill's criteria of causation to strengthen this association. RESULTS We analyzed the recent literature regarding TL length, stroke, and CVD. Although approximately one-third of the available studies support the connection, the results of different studies seem to be rather conflicting as a result of different study designs, divergent methods of TL determination, small study samples, and patient population heterogeneity. After applying Hill's criteria, we can observe that the literature conforms to them weakly, with chronology being the only Hill criterion of causality that probably cannot be contested. CONCLUSION The present review attempted to examine the purported relation between leukocyte TL and age-related diseases such as CVD and more specific stroke and heart disease in view of the best established, comprehensive, medical and epidemiological criteria that have characterized the focused recent relevant research. Although several recommendations have been made that may contribute significantly to the field, a call for novel technical approaches and studies is mandatory to further elucidate the possible association.
Collapse
Affiliation(s)
- Stylianos Daios
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Antonia Anogeianaki
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Kaiafa
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Anastasia Kontana
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Stavroula Veneti
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Christiana Gogou
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Eleni Karlafti
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Dimitrios Pilalas
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Ilias Kanellos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Christos Savopoulos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
11
|
Analysis of Telomere Length and Its Implication in Neurocognitive Functions in Elderly Women. J Clin Med 2022; 11:jcm11061728. [PMID: 35330058 PMCID: PMC8955297 DOI: 10.3390/jcm11061728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
During the normal aging process, a series of events occur, such as a decrease in telomere length and a decrease in various cognitive functions, such as attention, memory, or perceptual-motor speed. Several studies have attempted to establish a correlation between both variables; however, there is considerable controversy in the scientific literature. The aim of our study was to establish a correlation between the scores obtained in the following different cognitive tests: the Mini-Mental State Examination, the Benton Visual Retention Test, the Trail Making Test, the Rey Auditory Verbal Learning Test, the Stroop Test, and the measurement of telomere length. The sample consisted of a total of 41 physically active, healthy women, with a mean age of 71.21 (±4.32) and of 33 physically inactive, healthy women, with a mean age of 72.70 (±4.13). Our results indicate that there is no correlation between the scores obtained by the women in either group and their telomere length. Therefore, it is not possible to conclude that telomere length can be correlated with cognitive performance.
Collapse
|
12
|
Cheng F, Luk AO, Shi M, Huang C, Jiang G, Yang A, Wu H, Lim CKP, Tam CHT, Fan B, Lau ESH, Ng ACW, Wong KK, Carroll L, Lee HM, Kong AP, Keech AC, Chow E, Joglekar MV, Tsui SKW, So WY, So HC, Hardikar AA, Jenkins AJ, Chan JCN, Ma RCW. Shortened Leukocyte Telomere Length Is Associated With Glycemic Progression in Type 2 Diabetes: A Prospective and Mendelian Randomization Analysis. Diabetes Care 2022; 45:701-709. [PMID: 35085380 PMCID: PMC8918237 DOI: 10.2337/dc21-1609] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Several studies support associations between relative leukocyte telomere length (rLTL), a biomarker of biological aging and type 2 diabetes. This study investigates the relationship between rLTL and the risk of glycemic progression in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS In this cohort study, consecutive Chinese patients with type 2 diabetes (N = 5,506) from the Hong Kong Diabetes Register with stored baseline DNA and available follow-up data were studied. rLTL was measured using quantitative PCR. Glycemic progression was defined as the new need for exogenous insulin. RESULTS The mean (SD) age of the 5,349 subjects was 57.0 (13.3) years, and mean (SD) follow-up was 8.8 (5.4) years. Baseline rLTL was significantly shorter in the 1,803 subjects who progressed to insulin requirement compared with the remaining subjects (4.43 ± 1.16 vs. 4.69 ± 1.20). Shorter rLTL was associated with a higher risk of glycemic progression (hazard ratio [95% CI] for each unit decrease [to ∼0.2 kilobases]: 1.10 [1.06-1.14]), which remained significant after adjusting for confounders. Baseline rLTL was independently associated with glycemic exposure during follow-up (β = -0.05 [-0.06 to -0.04]). Each 1-kilobase decrease in absolute LTL was on average associated with a 1.69-fold higher risk of diabetes progression (95% CI 1.35-2.11). Two-sample Mendelian randomization analysis showed per 1-unit genetically decreased rLTL was associated with a 1.38-fold higher risk of diabetes progression (95% CI 1.12-1.70). CONCLUSIONS Shorter rLTL was significantly associated with an increased risk of glycemic progression in individuals with type 2 diabetes, independent of established risk factors. Telomere length may be a useful biomarker for glycemic progression in people with type 2 diabetes.
Collapse
Affiliation(s)
- Feifei Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Andrea O Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chuiguo Huang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Hongjiang Wu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Eric S H Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Alex C W Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Kwun Kiu Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Luke Carroll
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Alice P Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Anthony C Keech
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Mugdha V Joglekar
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.,Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Hon Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.,Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Alicia J Jenkins
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Prince of Wales Hospital, Hong Kong SAR, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
13
|
Rai S, Badarinath ARS, George A, Sitaraman S, Bronson SC, Anandt S, Babu KT, Moses A, Saraswathy R, Hande MP. Association of telomere length with diabetes mellitus and idiopathic dilated cardiomyopathy in a South Indian population: A pilot study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503439. [PMID: 35151422 DOI: 10.1016/j.mrgentox.2021.503439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Telomere shortening has been associated with ageing and with many age-related diseases including cancer, coronary artery disease, heart failure and diabetes. We sought to investigate the link between telomere shortening and age-related diseases like type 2 diabetes mellitus (DM) (without any complications: DM; with neuropathic complication: DN) and idiopathic dilated cardiomyopathy (IDCM) in south Indian population. We compared telomere lengths of blood lymphocytes taken from patients with associated age-related diseases, namely DM (n = 47), DN (n = 52) and IDCM (n = 34) and controls (n = 46). In addition, we evaluated the relationship between echocardiographic left ventricular ejection fraction (LVEF), left ventricular end diastolic and systolic diameters (LVEDd and LVESd) and telomere length in IDCM patients. Telomere length negatively correlated with age in the cohorts with diabetes and IDCM, and in controls. Average telomere length in diabetes and IDCM patients was significantly shorter than that of controls either before or after adjustments for age and sex. Duration of diabetes in patients with type 2 diabetes did not correlate with telomere length. No correlation was found between the length of telomeres and echocardiography parameters like LVEF, LVEDd and LVESd in IDCM patients. Though echocardiographic characteristics of IDCM did not correlate with telomere length, telomere shortening was found to be accelerated in diabetes (both DM and DN) and IDCM in a south Indian population. Neuropathic complication in diabetes had no effect on telomere shortening. While telomere shortening is a cause or a consequence of diabetic and cardiac pathology remains further investigation, the current study substantiates the usefulness of telomere length measurements as a marker in conjunction with other biochemical markers of age-related diseases.
Collapse
Affiliation(s)
- Shivam Rai
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - A R S Badarinath
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Alex George
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Sneha Sitaraman
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Stephen Charles Bronson
- Institute of Diabetology, Madras Medical College & Rajiv Gandhi Government General Hospital, Chennai, Tamil Nadu, India
| | | | - K Thirumal Babu
- Heartline Clinic and Research Centre, Vellore, Tamil Nadu, India
| | - Anand Moses
- Institute of Diabetology, Madras Medical College & Rajiv Gandhi Government General Hospital, Chennai, Tamil Nadu, India
| | - Radha Saraswathy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - M Prakash Hande
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
14
|
Wang Y, Chen S, Feng S, Wang C, Jiang H, Rong S, Hermann H, Chen J, Zhang P. Telomere shortening in patients on long-term hemodialysis. Chronic Dis Transl Med 2021; 7:266-275. [PMID: 34786545 PMCID: PMC8579019 DOI: 10.1016/j.cdtm.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/14/2023] Open
Abstract
Background Leukocyte telomere length shortening is a characteristic of premature senescence, a process that can be accelerated by oxidative stress. In general, patients with end-stage renal disease undergoing regular hemodialysis (HD) are repeatedly exposed to oxidative stress. Patients undergoing HD tend to have cardiovascular diseases associated with oxidative stress and inflammation. Therefore, we assumed that telomere length is associated with HD vintage and the degree of vascular calcification. Methods A total of 144 patients undergoing regular HD before kidney transplantation and 62 patients on hemodialysis, but not undergoing kidney transplantation, were enrolled. We measured common laboratory values, such as calcium, phosphate, and hemoglobin levels, and assessed the degree of vascular calcification in the patients. The leukocyte telomere length was measured using reverse transcription polymerase chain reaction, and Spearman correlation was used for correlation analysis. Results The leukocyte telomere length was negatively associated with age (rho = −0.306, P<0.01); it was shorter in middle-aged patients than in young patients (13.48 ± 4.80 vs. 15.86 ± 4.51, P < 0.01). The telomere length was significantly different among patients aged 52–74 years in groups with different HD vintages. Additionally, the telomere length was positively associated with serum hemoglobin (Hb) levels in all patients (rho = 0.290, P < 0.01). There was a significant difference among patients divided into three groups according to the degree of anemia (17.09 ± 5.64 vs. 14.40 ± 4.07 vs. 13.99 ± 3.95, P < 0.01). Further, a significant difference was observed in the telomere length among patients with different degrees of vascular calcification (16.79 ± 4.91 vs. 13.61 ± 2.82 vs. 14.62 ± 3.63 vs. 10.71 ± 3.74, P < 0.01). The telomere length was shorter in the patients on hemodialysis who did not receive a kidney transplant than in the surgical patients (8.12 ± 1.83 vs. 14.33 ± 4.63, P < 0.01). Conclusion This study demonstrated that the telomere length was significantly correlated with HD vintage in patients of a certain age group. The telomere length was shorter in patients on hemodialysis who matched for age and dialysis vintage with kidney transplant patients. It was also associated with vascular calcification and serum Hb levels in all patients undergoing HD.
Collapse
Affiliation(s)
- Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Nephropathy, Hangzhou, Zhejiang 310003, China
- Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, Zhejiang 310003, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Siyu Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Nephropathy, Hangzhou, Zhejiang 310003, China
- Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, Zhejiang 310003, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Shi Feng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Nephropathy, Hangzhou, Zhejiang 310003, China
- Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, Zhejiang 310003, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Nephropathy, Hangzhou, Zhejiang 310003, China
- Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, Zhejiang 310003, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Nephropathy, Hangzhou, Zhejiang 310003, China
- Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, Zhejiang 310003, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Song Rong
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Lower Saxony, 30625, Germany
| | - Haller Hermann
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Lower Saxony, 30625, Germany
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Nephropathy, Hangzhou, Zhejiang 310003, China
- Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, Zhejiang 310003, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Corresponding author. Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China.
| | - Ping Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Nephropathy, Hangzhou, Zhejiang 310003, China
- Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, Zhejiang 310003, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, Zhejiang 310003, China
- Corresponding author. Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
15
|
Romero CA, Tabares AH, Orias M. Is Isolated Diastolic Hypertension an Important Phenotype? Curr Cardiol Rep 2021; 23:177. [PMID: 34657205 DOI: 10.1007/s11886-021-01609-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Isolated diastolic hypertension (IDH) is a frequent hypertension phenotype. We review IDH pathophysiology, risk stratification, and therapeutic decisions. RECENT FINDINGS Recent guidelines lowering blood pressure cutoff levels have increased IDH prevalence and likely decreased associated cardiovascular risk. Long-term cardiovascular risk and pharmacological intervention in IDH are controversial. Narrow pulse pressure and other physiological and epidemiological characteristics are shared with a systodiastolic hypertension (SDH) subgroup. We propose that IDH be incorporated into a broader category, predominantly diastolic hypertension (PDH), defined by pulse pressure ≤ 45 mmHg and includes IDH and SDH with a narrow pulse pressure. IDH-PDH is associated with cardiovascular risk in the long term, especially in young patients. Standardization of the IDH definition and population may contribute to future research to understand genetics, pathophysiology, and eventually therapy in this important subgroup of hypertensive patients.
Collapse
Affiliation(s)
- Cesar A Romero
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Marcelo Orias
- Section of Nephrology, Yale University, 25 Glenbrook Rd, Stamford, CT, 06902, USA.
| |
Collapse
|
16
|
Paltoglou G, Raftopoulou C, Nicolaides NC, Genitsaridi SM, Karampatsou SI, Papadopoulou M, Kassari P, Charmandari E. A Comprehensive, Multidisciplinary, Personalized, Lifestyle Intervention Program Is Associated with Increased Leukocyte Telomere Length in Children and Adolescents with Overweight and Obesity. Nutrients 2021; 13:nu13082682. [PMID: 34444842 PMCID: PMC8402072 DOI: 10.3390/nu13082682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/12/2023] Open
Abstract
Leucocyte telomere length (LTL) is a robust marker of biological aging and is associated with obesity and cardiometabolic risk factors in childhood and adolescence. We investigated the effect of a structured, comprehensive, multidisciplinary, personalized, lifestyle intervention program of healthy diet and physical exercise on LTL in 508 children and adolescents (239 males, 269 females; 282 prepubertal, 226 pubertal), aged 10.14 ± 0.13 years. Participants were classified as obese (n = 267, 52.6%), overweight (n = 174, 34.2%), or of normal BMI (n = 67, 13.2%) according to the International Obesity Task Force (IOTF) cutoff points and were studied prospectively for one year. We demonstrated that LTL increased significantly after 1 year of the lifestyle interventions, irrespective of gender, pubertal status, or body mass index (BMI). Waist circumference was the best negative predictor of LTL at initial assessment. The implementation of the lifestyle interventions also resulted in a significant improvement in clinical (BMI, BMI z-score and waist to height ratio) and body composition indices of obesity, inflammatory markers, hepatic enzymes, glycated hemoglobin (HbA1C), quantitative insulin sensitivity check index (QUICKI), and lipid profile in all participants. These findings indicate that the increased LTL may be associated with a more favorable metabolic profile and decreased morbidity later in life.
Collapse
Affiliation(s)
- George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.P.); (N.C.N.); (S.M.G.); (S.I.K.); (M.P.); (P.K.)
| | - Christina Raftopoulou
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Nicolas C. Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.P.); (N.C.N.); (S.M.G.); (S.I.K.); (M.P.); (P.K.)
| | - Sofia M. Genitsaridi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.P.); (N.C.N.); (S.M.G.); (S.I.K.); (M.P.); (P.K.)
| | - Sofia I. Karampatsou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.P.); (N.C.N.); (S.M.G.); (S.I.K.); (M.P.); (P.K.)
| | - Marina Papadopoulou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.P.); (N.C.N.); (S.M.G.); (S.I.K.); (M.P.); (P.K.)
| | - Penio Kassari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.P.); (N.C.N.); (S.M.G.); (S.I.K.); (M.P.); (P.K.)
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (G.P.); (N.C.N.); (S.M.G.); (S.I.K.); (M.P.); (P.K.)
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel./Fax: +30-21-3201-3384
| |
Collapse
|
17
|
Tsai CW, Chang WS, Xu J, Xu Y, Huang M, Pettaway C, Bau DT, Gu J. Leukocyte telomere length is associated with aggressive prostate cancer in localized African American prostate cancer patients. Carcinogenesis 2021; 41:1213-1218. [PMID: 32614411 DOI: 10.1093/carcin/bgaa070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 01/03/2023] Open
Abstract
Telomeres play important roles in cancer initiation and progression. Leukocyte telomere length (LTL) has been associated with the risk and prognosis of several cancers, but its association with prostate cancer (PCa) prognosis in African Americans (AAs) has not been reported. In this study, we measured relative LTL from 317 AA PCa patients and assessed its associations with aggressive disease characteristics at diagnosis and biochemical recurrence (BCR) after radical prostatectomy and radiotherapy. LTL was shorter in patients with higher Gleason scores (GS) at diagnosis. Dichotomized into short and long LTL groups, patients with short LTL exhibited a 1.91-fold (95% confidence interval, CI, 1.14-3.20, P = 0.013) increased risk of being diagnosed with high-risk disease (GS =7 [4 + 3] and GS ≥8) than those with long LTL in multivariable logistic regression analysis. Moreover, shorter LTL was significantly associated with an increased risk of BCR (hazard ratio = 1.68, 95% CI, 1.18-11.44, P = 0.024) compared with longer LTL in localized patients receiving prostatectomy or radiotherapy in multivariable Cox analysis. Kaplan-Meier survival analysis showed patients with short LTL had significantly shorter BCR-free survival time than patients with long LTL (Log rank P = 0.011). In conclusion, our results showed for the first time that LTL was shorter in PCa patients with higher GS and short LTL was associated with worse prognosis in AA PCa patients receiving prostatectomy or radiotherapy.
Collapse
Affiliation(s)
- Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. BIOLOGY 2021; 10:253. [PMID: 33804844 PMCID: PMC8063797 DOI: 10.3390/biology10040253] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
A great amount of scientific evidence supports that Oxidative Stress (OxS) can contribute to telomeric attrition and also plays an important role in the development of certain age-related diseases, among them the metabolic syndrome (MetS), which is characterised by clinical and biochemical alterations such as obesity, dyslipidaemia, arterial hypertension, hyperglycaemia, and insulin resistance, all of which are considered as risk factors for type 2 diabetes mellitus (T2DM) and cardiovascular diseases, which are associated in turn with an increase of OxS. In this sense, we review scientific evidence that supports the association between OxS with telomere length (TL) dynamics and the relationship with MetS components in aging. It was analysed whether each MetS component affects the telomere length separately or if they all affect it together. Likewise, this review provides a summary of the structure and function of telomeres and telomerase, the mechanisms of telomeric DNA repair, how telomere length may influence the fate of cells or be linked to inflammation and the development of age-related diseases, and finally, how the lifestyles can affect telomere length.
Collapse
Affiliation(s)
- Graciela Gavia-García
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Juana Rosado-Pérez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Taide Laurita Arista-Ugalde
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| | - Itzen Aguiñiga-Sánchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (I.A.-S.); (E.S.-O.)
| | - Víctor Manuel Mendoza-Núñez
- Research Unit on Gerontology, FES Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.G.-G.); (J.R.-P.); (T.L.A.-U.)
| |
Collapse
|
19
|
Gutierrez-Rodrigues F, Alves-Paiva RM, Scatena NF, Martinez EZ, Scheucher PS, Calado RT. Association between leukocyte telomere length and sex by quantile regression analysis. Hematol Transfus Cell Ther 2021; 44:346-351. [PMID: 33593713 PMCID: PMC9477766 DOI: 10.1016/j.htct.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 12/02/2022] Open
Abstract
Introduction Telomere length (TL) is a biomarker of cellular proliferative history. In healthy individuals, leukocyte TL shortens with age and associates with the lifespan of men and women. However, most of studies had used linear regression models to address the association of the TL attrition, aging and sex. Methods We evaluated the association between the TL, aging and sex in a cohort of 180 healthy subjects by quantile regression. The TL of nucleated blood cells was measured by fluorescent in situ hypridization (flow-FISH) in a cohort of 89 men, 81 women, and 10 umbilical cord samples. The results were validated by quantitative polymerase chain reaction (qPCR) and compared to a linear regression analysis. Results By quantile regression, telomere dynamics slightly differed between sexes with aging: women had longer telomeres at birth and slower attrition rate than men until the sixth decade of life; after that, TL eroded faster and became shorter than that in men. These differences were not observed by linear regression analysis, as the overall telomere attrition rates in women and men were similar (42 pb per year, p < 0.0001 vs. 45 pb kb per year, p < 0.0001). Also, qPCR did not recapitulate flow-FISH findings, as the telomere dynamics by qPCR followed a linear model. Conclusion The quantile regression analysis accurately reproduced a third-order polynomial TL attrition rate in both women and men, but it depended on the technique applied to measure TL. The Flow-FISH reproduced the expected telomere dynamics through life and, differently from the qPCR, was able to detect the subtle TL variations associated with sex and aging.
Collapse
Affiliation(s)
| | | | - Natália F Scatena
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Edson Z Martinez
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Priscila S Scheucher
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Rodrigo T Calado
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
20
|
The correlation of salivary telomere length and single nucleotide polymorphisms of the ADIPOQ, SIRT1 and FOXO3A genes with lifestyle-related diseases in a Japanese population. PLoS One 2021; 16:e0243745. [PMID: 33507936 PMCID: PMC7842940 DOI: 10.1371/journal.pone.0243745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background It has been reported that genetic factors are associated with risk factors and onset of lifestyle-related diseases, but this finding is still the subject of much debate. Objective The aim of the present study was to investigate the correlation of genetic factors, including salivary telomere length and three single nucleotide polymorphisms (SNPs) that may influence lifestyle-related diseases, with lifestyle-related diseases themselves. Methods In one year at a single facility, relative telomere length and SNPs were determined by using monochrome multiplex quantitative polymerase chain reaction and TaqMan SNP Genotyping Assays, respectively, and were compared with lifestyle-related diseases in 120 Japanese individuals near our university. Results In men and all participants, age was inversely correlated with relative telomere length with respective p values of 0.049 and 0.034. In men, the frequency of hypertension was significantly higher in the short relative telomere length group than in the long group with unadjusted p value of 0.039, and the difference in the frequency of hypertension between the two groups was of borderline statistical significance after adjustment for age (p = 0.057). Furthermore, in men and all participants, the sum of the number of affected lifestyle-related diseases, including hypertension, was significantly higher in the short relative telomere length group than in the long group, with p values of 0.004 and 0.029, respectively. For ADIPOQ rs1501299, men’s ankle brachial index was higher in the T/T genotype than in the G/G and G/T genotypes, with p values of 0.001 and 0.000, respectively. For SIRT1 rs7895833, men’s body mass index and waist circumference and all participants’ brachial-ankle pulse wave velocity were higher in the A/G genotype than in the G/G genotype, with respective p values of 0.048, 0.032 and 0.035. For FOXO3A rs2802292, women’s body temperature and all participants’ saturation of peripheral oxygen were lower in the G/T genotype than in the T/T genotype, with respective p values of 0.039 and 0.032. However, relative telomere length was not associated with physiological or anthropometric measurements except for height in men (p = 0.016). ADIPOQ rs1501299 in men, but not the other two SNPs, was significantly associated with the sum of the number of affected lifestyle-related diseases (p = 0.013), by genotype. For each SNPs, there was no significant difference in the frequency of hypertension or relative telomere length by genotype. Conclusion Relative telomere length and the three types of SNPs determined using saliva have been shown to be differentially associated with onset of and measured risk factors for lifestyle-related diseases consisting mainly of cardiovascular diseases and cancer.
Collapse
|
21
|
Brown R, Hailu EM, Needham BL, Roux AD, Seeman TE, Lin J, Mujahid MS. Neighborhood social environment and changes in leukocyte telomere length: The Multi-Ethnic Study of Atherosclerosis (MESA). Health Place 2020; 67:102488. [PMID: 33276262 DOI: 10.1016/j.healthplace.2020.102488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
Given limited research on the impact of neighborhood environments on accelerated biological aging, we examined whether changes in neighborhood socioeconomic and social conditions were associated with change in leukocyte telomere length using 10 years of longitudinal data from the Multi-Ethnic Study of Atherosclerosis (years 2000-2011; N = 1031; mean age = 61, SD = 9.4). Leukocyte telomere length change was corrected for regression to the mean and neighborhood was defined as census tract. Neighborhood socioeconomic indicators (factor-based score of income, education, occupation, and wealth of neighborhood) and neighborhood social environment indicators (aesthetic quality, social cohesion, safety) were obtained from the U.S Census/American Community Survey and via study questionnaire, respectively. Results of linear mixed-effects models showed that independent of individual sociodemographic characteristics, each unit of improvement in neighborhood socioeconomic status was associated with slower telomere length attrition over 10-years (β = 0.002; 95% Confidence Interval (CI): 0.0001, 0.004); whereas each unit of increase in safety (β = -0.043; 95% CI: -0.069, -0.016) and overall neighborhood social environment score (β = -0.005; 95% CI: -0.009, -0.0004) were associated with more pronounced telomere attrition, after additionally adjusting for neighborhood socioeconomic status. This study provides support for considerations of the broader social and socioeconomic contexts in relation to biological aging. Future research should explore potential psychosocial mechanisms underlying these associations using longitudinal study designs with repeated observations.
Collapse
Affiliation(s)
- Rashida Brown
- Division of Epidemiology, School of Public Health, University of California Berkeley, 2121 Berkeley Way West #5302, Berkeley, CA, 94720, USA
| | - Elleni M Hailu
- Division of Epidemiology, School of Public Health, University of California Berkeley, 2121 Berkeley Way West #5302, Berkeley, CA, 94720, USA.
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Ana Diez Roux
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3215 Market Street, Philadelphia, PA, 19104, USA
| | - Teresa E Seeman
- Department of Geriatrics, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA
| | - Mahasin S Mujahid
- Division of Epidemiology, School of Public Health, University of California Berkeley, 2121 Berkeley Way West #5302, Berkeley, CA, 94720, USA
| |
Collapse
|
22
|
Linghui D, Shi Q, Chi C, Xiaolei L, Lixing Z, Zhiliang Z, Birong D. The Association Between Leukocyte Telomere Length and Cognitive Performance Among the American Elderly. Front Aging Neurosci 2020; 12:527658. [PMID: 33192450 PMCID: PMC7661855 DOI: 10.3389/fnagi.2020.527658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Background Age-related cognitive decline begins in middle age and persists with age. Leukocyte telomere length (LTL) decreases with age and is enhanced by inflammation and oxidative stress. However, whether shorter LTL correlates with cognitive decline remains controversial. Aims We aimed to investigate the relationship between LTL and cognitive decline in the American elderly. Methods We used data from the 1999 to 2002 U.S. National Health and Nutrition Examination Survey (NHANES). We included participants aged 65–80 with available data on LTL and cognitive assessments. The cognitive function assessment used the digit symbol substitution test (DSST). We applied multivariate modeling to estimate the association between LTL and cognitive performance. Additionally, to ensure robust data analysis, we converted LTL into categorical variables through quartile and then calculated the P for trend. Results After adjusting for age, cardiovascular disease (CAD) score, gender, race, body mass index (BMI), and educational level, LTL showed a positive correlation with DSST score (odds ratio [OR] 3.47 [0.14, 6.79], P = 0.04). Additionally, to further quantify the LTL–DSST interaction, we found a similar trend when LTL was regarded as a categorical variable (quartile) (P for trend = 0.03). Conclusion LTL was associated with cognitive capabilities among the elderly, implying that LTL might be a biomarker of cognitive aging.
Collapse
Affiliation(s)
- Deng Linghui
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu Shi
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Chi
- Department of Immunology and Microbiology, Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Liu Xiaolei
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Lixing
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zuo Zhiliang
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Birong
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Chen M, Xu Y, Xu J, Chancoco H, Gu J. Leukocyte Telomere Length and Bladder Cancer Risk: A Large Case–Control Study and Mendelian Randomization Analysis. Cancer Epidemiol Biomarkers Prev 2020; 30:203-209. [DOI: 10.1158/1055-9965.epi-20-0351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
|
24
|
Lulkiewicz M, Bajsert J, Kopczynski P, Barczak W, Rubis B. Telomere length: how the length makes a difference. Mol Biol Rep 2020; 47:7181-7188. [PMID: 32876842 PMCID: PMC7561533 DOI: 10.1007/s11033-020-05551-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Telomerase is perceived as an immortality enzyme that might provide longevity to cells and whole organisms. Importantly, it is generally inactive in most somatic cells of healthy, adult men. Consequently, its substrates, i.e. telomeres, get shorter in most human cells with time. Noteworthy, cell life limitation due to telomere attrition during cell divisions, may not be as bad as it looks since longer cell life means longer exposition to harmful factors. Consequently, telomere length (attrition rate) becomes a factor that is responsible for inducing the signaling that leads to the elimination of cells that lived long enough to acquire severe damage. It seems that telomere length that depends on many different factors (including telomerase activity but also genetic factors, a hormonal profile that reflects sex, etc.) might become a useful marker of aging and exposition to stress. Thus in the current paper, we review the factors that affect telomere length in human cells focusing on sex that all together with different environmental and hormonal regulations as well as parental aspect affect telomere attrition rate. We also raise some limitations in the assessment of telomere length that hinders a trustworthy meta-analysis that might lead to acknowledgment of the real value of this parameter.
Collapse
Affiliation(s)
- M Lulkiewicz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznan, Poland
| | - J Bajsert
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznan, Poland
| | - P Kopczynski
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812, Poznan, Poland
| | - W Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866, Poznan, Poland.,Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre, 61-866, Poznan, Poland
| | - B Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355, Poznan, Poland.
| |
Collapse
|
25
|
Zhang S, Li R, Yang Y, Chen Y, Yang S, Li J, Wu C, Kong T, Liu T, Cai J, Fu L, Zhao Y, Hui R, Zhang W. Longitudinal Association of Telomere Attrition with the Effects of Antihypertensive Treatment and Blood Pressure Lowering. Aging Dis 2020; 11:494-508. [PMID: 32489697 PMCID: PMC7220288 DOI: 10.14336/ad.2019.0721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/21/2019] [Indexed: 11/01/2022] Open
Abstract
Leukocytes telomere length has been associated with hypertension, but, whether longitudinal telomeres change could serve as a useful predictive tool in hypertension remains uncertain. This study aimed to examine the longitudinal trajectory of leukocytes telomere length in a population-based prospective study of 1,108 individuals with hypertension. Leukocytes telomere length were measured at baseline and again after a median 2.2 (range 1.5-2.4) years of follow-up. Age as an independent predictor was inversely associated with baseline telomeres and follow-up telomeres. Annual telomere attrition rate was calculated as (follow-up telomeres-baseline telomeres)/follow-up years, and participants were categorized into the shorten and the lengthen groups. Results showed that telomere lengthening was significantly correlated with decreased systolic blood pressure (SBP) (β=-3.28; P=0.02) and pulse pressure (PP) (β=-2.53; P=0.02), and the differences were respectively -3.3 mmHg (95%CI, -6.2 to -0.3; P=0.03) in ∆SBP and -2.4 mmHg (95%CI, -4.9 to -0.1; P=0.04) in ∆PP between two groups after adjustment for vascular risk factors and baseline blood pressures. When stratified by age and gender, the correlations were observed in women and patients ≤60 years. Furthermore, among patients using calcium channel blocker (CCB) and angiotensin receptor blocker (ARB), those with telomeres lengthening showed a significantly lower level of ∆SBP and ∆PP. There was no correlation between telomere attrition and incidence of cardiovascular events. Our data indicated that increased telomere length of leukocytes was associated with decreased SBP and PP, particularly for patients who received CCB and ARB, supporting that telomere attrition may provide new sight in clinical intervention for hypertension.
Collapse
Affiliation(s)
- Shuyuan Zhang
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Rongxia Li
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yunyun Yang
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Chen
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Shujun Yang
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Li
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Cunjin Wu
- 2 The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tao Kong
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Tianlong Liu
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Cai
- 3 Hypertension Centre, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Li Fu
- 4Benxi Railway Hospital, Liaoning, China
| | - Yanan Zhao
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Rutai Hui
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Weili Zhang
- 1State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Heritability of telomere length across three generations of Korean families. Pediatr Res 2020; 87:1060-1065. [PMID: 31783399 PMCID: PMC7199797 DOI: 10.1038/s41390-019-0699-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/19/2019] [Accepted: 11/02/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND Leukocyte telomere length (LTL), an indicator of aging, is influenced by both genetic and environmental factors; however, its heritability is unknown. We determined heritability and inheritance patterns of telomere length across three generations of families. METHODS We analyzed 287 individuals from three generations of 41 Korean families, including newborns, parents, and grandparents. LTL (the ratio of telomere repeat copy number to single gene copy number) was measured by quantitative real-time PCR. We estimated heritability using the SOLAR software maximum-likelihood variance component methods and a pedigree dataset. With adjustment for age and length of marriage, Pearson's partial correlation was performed for spousal pairs. RESULTS Heritability of LTL was high in all participants (h2 = 0.64). There were no significant differences in correlation coefficients of telomere length between paternal and maternal lines. There was a positive LTL correlation in grandfather-grandmother pairs (r = 0.25, p = 0.03) but not in father-mother pairs. After adjusting for age and length of marriage, the relationship between telomere lengths in grandfathers and grandmothers disappeared. There were inverse correlations between spousal rank differences of telomere length and length of marriage. CONCLUSIONS LTL is highly heritable without a sex-specific inheritance pattern and may be influenced by a shared environment.
Collapse
|
27
|
Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers (Basel) 2020; 12:cancers12030594. [PMID: 32150919 PMCID: PMC7139681 DOI: 10.3390/cancers12030594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Leukocyte telomere length (LTL) has been associated with the risks of several cancers in observational studies. Mendelian randomization (MR) studies, using genetic variants as instrumental variables, have also shown associations of genetically predicted LTL with cancer risks. In this study, we performed the first MR analysis on soft tissue sarcoma (STS) to investigate the causal relationship between LTL and the risk of STS. Methods: Genotypes from eleven LTL-associated single nucleotide polymorphisms (SNPs) in 821 STS cases and 851 cancer-free controls were aggregated into a weighted genetic risk score (GRS) to predict LTL. Multivariate logistic regression was used to assess the association of STS risk with individual SNPs and aggregated GRS. Results: Four SNPs displayed evidence for an individual association between long LTL-conferring allele and increased STS risk: rs7675998 (odds ratio (OR) = 1.21, 95% confidence interval (CI) = 1.02–1.43), rs9420907 (OR = 1.31, 95% CI = 1.08–1.59), rs8105767 (OR = 1.18, 95% CI = 1.02–1.37), and rs412658 (OR = 1.18, 95% CI = 1.02–1.36). Moreover, longer genetically predicted LTL, calculated as GRS, was strongly associated with an increased risk of STS (OR = 1.44, 95% CI = 1.18–1.75, p < 0.001), and there was a significant dose-response association (p for trend <0.001 in tertile and quartile analyses). The association of longer LTL with higher STS risk was more evident in women than in men. In stratified analyses by major STS subtypes, longer LTL was significantly associated with higher risks of leiomyosarcoma and gastrointestinal stromal tumors. Conclusions: Longer LTL is associated with increased risks of STS.
Collapse
|
28
|
Michels KB, De Vivo I, Calafat AM, Binder AM. In utero exposure to endocrine-disrupting chemicals and telomere length at birth. ENVIRONMENTAL RESEARCH 2020; 182:109053. [PMID: 31923847 PMCID: PMC8667573 DOI: 10.1016/j.envres.2019.109053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Telomere length correlates with morbidity and mortality. While telomere length appears to be influenced by hormone levels, the potential impact of exposure to endocrine-disrupting chemicals (EDCs) has not been studied. We examined the association between maternal gestational concentrations of biomarkers of EDC exposure and telomere length at birth in the Harvard Epigenetic Birth Cohort. EDC (phenols and phthalates) biomarker concentrations were measured in maternal spot urine samples during the first trimester and telomere length in maternal and cord blood collected at delivery among 181 mother-newborn singleton dyads. Maternal and newborn telomere length exhibited a positive correlation (Spearman ρ = 0.20 (p-value< 0.01). Infant telomere length was associated with maternal biomarker concentrations of specific EDCs, and most of these associations were observed to be infant sex-specific. Prenatal exposure to triclosan, a non-paraben phenol with antimicrobial properties, was one of the most strongly associated EDCs with telomere length; telomere length was 20% (95% CI 5%-33%) shorter among boys in the highest quartile of maternal biomarker concentrations compared to the lowest quartile. In contrast, we observed longer telomere length associated with increased gestational concentrations of mono-isobutyl phthalate, and among boys, with increased concentrations of mono-2-ethylhexyl phthalate. In this birth cohort, we observed associations between maternal gestational exposure to select EDC biomarkers and telomere length, most of which were sex-specific. These findings need to be confirmed in future studies.
Collapse
Affiliation(s)
- Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA; Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Germany.
| | - Immaculata De Vivo
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Xu J, Chang WS, Tsai CW, Bau DT, Xu Y, Davis JW, Thompson TC, Logothetis CJ, Gu J. Leukocyte telomere length is associated with aggressive prostate cancer in localized prostate cancer patients. EBioMedicine 2020; 52:102616. [PMID: 31981976 PMCID: PMC6992931 DOI: 10.1016/j.ebiom.2019.102616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Telomeres play important roles in cancer initiation and progression. The aim of this study is to investigate whether leukocyte telomere length (LTL) is associated with aggressive prostate cancer (PCa). METHODS We measured relative LTL in a cohort of 1,889 white PCa patients who were treated and followed up at the University of Texas MD Anderson Cancer Center and assessed its associations with aggressive disease characteristics at diagnosis and biochemical recurrence (BCR) after active treatments (radical prostatectomy and radiotherapy). We further used a Mendelian randomization (MR) approach to compute a weighted genetic risk score (GRS) predictive of LTL using 10 established LTL-associated genetic variants and determined whether this GRS is associated with aggressive PCa. FINDINGS LTL was significantly shorter in patients with higher Gleason scores at diagnosis. Dichotomized at the median value of LTL, patients with short LTL exhibited a 2.74-fold (95% confidence interval, 1.79-4.18, P = 3.11 × 10-6) increased risk of presenting with GS≥8 disease than those with long LTL in multivariate logistic regression analysis. Moreover, shorter LTL was significantly associated with an increased risk of BCR (hazard ratio = 1.53, 95% confidence interval, 1.01-2.34) compared to longer LTL in localized patients receiving prostatectomy or radiotherapy with a significant dose-response association (P for trend = 0.017) in multivariate Cox proportional hazards regression analysis. In MR analysis, genetically predicted short LTL was also associated with an increased risk of BCR (HR=1.73, 95% CI, 1.08-2.78). INTERPRETATION Our results showed for the first time that LTL was shorter in PCa patients with high Gleason scores and that short LTL and genetically predicted short LTL are associated with worse prognosis in PCa patients receiving prostatectomy or radiotherapy. FUNDING Cancer Prevention and Research Institute of Texas (CPRIT) grant (RP140556), National Cancer Institute Specialized Program of Research Excellence (SPORE) grant (CA140388), and MD Anderson Cancer Center start-up fund.
Collapse
Affiliation(s)
- Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States; Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - John W Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
30
|
Kalstad AA, Tveit S, Myhre PL, Laake K, Opstad TB, Tveit A, Schmidt EB, Solheim S, Arnesen H, Seljeflot I. Leukocyte telomere length and serum polyunsaturated fatty acids, dietary habits, cardiovascular risk factors and features of myocardial infarction in elderly patients. BMC Geriatr 2019; 19:376. [PMID: 31881852 PMCID: PMC6935134 DOI: 10.1186/s12877-019-1383-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Telomeres are non-coding sequences at the end of eukaryote chromosomes, which in complex with associated proteins serve to protect subtelomeric DNA. Telomeres shorten with each cell division, are regarded as a biomarker for aging and have also been suggested to play a role in atherosclerosis and cardiovascular disease (CVD). The aim of the present study was to explore the associations between leukocyte telomere length and serum polyunsaturated fatty acids, diet, cardiovascular risk factors and features of myocardial infarction (MI) in elderly patients. METHODS The material is based upon the first 299 included patients in the OMEMI trial, where patients aged 70-82 years of age are randomized to receive omega-3 supplements or corn oil (placebo) after MI. Patients were included 2-8 weeks after the index MI. DNA was extracted from whole blood, and leukocyte telomere length (LTL) was analyzed by qPCR and reported as a number relative to a reference gene. Serum long chain polyunsaturated fatty acid (LCPUFA) content was analyzed by gas chromatography. Diet was evaluated with the validated SmartDiet food frequency questionnaire. Medical records, patient interviews and clinical examination provided previous medical history and anthropometric data. Non-parametric statistical tests were used. RESULTS Median (25, 75 percentile) LTL was 0.55 (0.42, 0.72). Patients had a median age of 75 years, 70.2% were male and 45.2% used omega-3 supplements. There was a weak, but significant correlation between LTL and linoleic acid (r = 0.139, p = 0.017), but not with other LCPUFAs. There was a trend towards longer telomeres with a healthier diet, but this did not reach statistical significance (p = 0.073). No associations were found between LTL and CVD risk factors or features of MI. CONCLUSIONS In our population of elderly with a recent myocardial infarction LTL was associated with linoleic acid concentrations, but not with other LCPUFAs. Patients with a healthy diet tended to have longer telomeres. The limited associations may be due to age and the narrow age-span in our population. Further studies, designed to detect longitudinal changes should be performed to explore the role of telomeres in cardiovascular aging. TRIAL REGISTRATION Clinical trials no. NCT01841944, registration date April 29, 2013.
Collapse
Affiliation(s)
- Are A Kalstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Postboks 4956 Nydalen, 0424, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Sjur Tveit
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Akershus University Hospital HF, Lørenskog, Norway
| | - Peder L Myhre
- Department of Cardiology, Akershus University Hospital HF, Lørenskog, Norway
| | - Kristian Laake
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Postboks 4956 Nydalen, 0424, Oslo, Norway
| | - Trine B Opstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Postboks 4956 Nydalen, 0424, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arnljot Tveit
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Research, Vestre Viken Hospital Trust, Bærum Hospital, Gjettum, Norway
| | - Erik B Schmidt
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Postboks 4956 Nydalen, 0424, Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Postboks 4956 Nydalen, 0424, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Postboks 4956 Nydalen, 0424, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Ilska-Warner JJ, Psifidi A, Seeker LA, Wilbourn RV, Underwood SL, Fairlie J, Whitelaw B, Nussey DH, Coffey MP, Banos G. The Genetic Architecture of Bovine Telomere Length in Early Life and Association With Animal Fitness. Front Genet 2019; 10:1048. [PMID: 31749836 PMCID: PMC6843005 DOI: 10.3389/fgene.2019.01048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Health and survival are key goals for selective breeding in farm animals. Progress, however, is often limited by the low heritability of these animal fitness traits in addition to measurement difficulties. In this respect, relevant early-life biomarkers may be useful for breeding purposes. Telomere length (TL), measured in leukocytes, is a good candidate biomarker since TL has been associated with health, ageing, and stress in humans and other species. However, telomere studies are very limited in farm animals. Here, we examined the genetic background, genomic architecture, and factors affecting bovine TL measurements in early life, and the association of the latter with animal fitness traits expressed later in life associated with survival, longevity, health, and reproduction. We studied two TL measurements, one at birth (TLB) and another during the first lactation (TLFL) of a cow. We performed a genome-wide association study of dairy cattle TL, the first in a non-human species, and found that TLB and TLFL are complex, polygenic, moderately heritable, and highly correlated traits. However, genomic associations with distinct chromosomal regions were identified for the two traits suggesting that their genomic architecture is not identical. This is reflected in changes in TL throughout an individual’s life. TLB had a significant association with survival, length of productive life and future health status of the animal, and could be potentially used as an early-life biomarker for disease predisposition and longevity in dairy cattle.
Collapse
Affiliation(s)
- Joanna J Ilska-Warner
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.,Royal Veterinary College, University of London, London, United Kingdom
| | - Luise A Seeker
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer Fairlie
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mike P Coffey
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Georgios Banos
- Animal and Veterinary Sciences, Scotland's Rural College, Edinburgh, United Kingdom.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Meier HCS, Hussein M, Needham B, Barber S, Lin J, Seeman T, Diez Roux A. Cellular response to chronic psychosocial stress: Ten-year longitudinal changes in telomere length in the Multi-Ethnic Study of Atherosclerosis. Psychoneuroendocrinology 2019; 107:70-81. [PMID: 31112903 PMCID: PMC6635040 DOI: 10.1016/j.psyneuen.2019.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/14/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Previous studies have demonstrated an inverse association between chronic psychosocial stress and leukocyte telomere length (LTL), a potential marker of cellular aging. However, due to paucity of longitudinal data, responses of LTL and the LTL aging trajectory to changes in chronic stress exposure remain less well understood. Using data from the Stress I and II ancillary studies of the Multi-Ethnic Study of Atherosclerosis, we estimated the 10-year longitudinal (n = 1,158) associations of within-person changes in chronic stress with changes in LTL, as well as the pooled, cross-sectional associations of chronic stress and LTL (total n = 2,231). We measured chronic stress from both individual and neighborhood-environment sources. At the individual level, we calculated a summary score of each participant's rating of their ongoing (>6 months) material/social problems as moderately/very stressful on the Chronic Burden Scale. Neighborhood-level stress was measured using a summary score of reverse-coded MESA Neighborhood safety, aesthetic quality, and social cohesion scales. Quantiles of these scores were empirically categorized as high, moderate, or low stress. We then summed these individual- and neighborhood-level categorical variables for a total stress measure. Longitudinal within-person associations were estimated with fixed-effects models, which control for all time-invariant confounding, with additional control for time-varying demographics, lagged behaviors and chronic conditions, and specimen storage duration, as well as correction for regression to the mean. Change from low to high total chronic stress was associated with telomere shortening by 0.054 units [95% confidence interval: -0.095, -0.013] over 10 years. This was consistent with, though stronger in magnitude than, cross-sectional estimates. Change in individual-level stress was the primary driver of this effect. We also found suggestive evidence that 1) individuals with persistently high stress experienced the least shortening of telomeres, and 2) changes in individual-level stress were associated with stronger telomere shortening among women, whereas changes in neighborhood stress were associated with stronger shortening among men. Our findings provide longitudinal support to existing evidence, and point to interesting dynamics in telomere attrition across stress levels and genders.
Collapse
Affiliation(s)
- Helen C S Meier
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N. 10th St., Milwaukee, WI, 53205, USA.
| | - Mustafa Hussein
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, 1240 N. 10th St., Milwaukee, WI, 53205, USA.
| | - Belinda Needham
- Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109, USA.
| | - Sharrelle Barber
- Department of Epidemiology and Biostatistics, and the Urban Health Collaborative, Drexel University Dornsife School of Public Health, 3215 Market St., Philadelphia, PA, 19104, USA.
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Room S312F Genentech Hall, San Francisco, CA, 94158, USA.
| | - Teresa Seeman
- Department of Medicine, Division of Geriatrics, University of California, Los Angeles, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA, 90095, USA.
| | - Ana Diez Roux
- Department of Epidemiology and Biostatistics, and the Urban Health Collaborative, Drexel University Dornsife School of Public Health, 3215 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Tian Y, Wang S, Jiao F, Kong Q, Liu C, Wu Y. Telomere Length: A Potential Biomarker for the Risk and Prognosis of Stroke. Front Neurol 2019; 10:624. [PMID: 31263449 PMCID: PMC6585102 DOI: 10.3389/fneur.2019.00624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Age is associated with increased risk of stroke, while telomere length shortening plays a pivotal role in the process of aging. Moreover, telomere length shortening is associated with many risk factors of stroke in addition to age. Accumulated evidence shows that short leukocyte telomere length is not only associated with stroke occurrence but also associated with post-stroke recovery in the elderly population. In this review, we aimed to summarize the association between leukocyte telomere length and stroke, and discuss that telomere length might serve as a potential biomarker to predict the risk and prognosis of stroke.
Collapse
Affiliation(s)
- Yanjun Tian
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Qingsheng Kong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Chuanxin Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Yili Wu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
34
|
Herrmann M, Pusceddu I, März W, Herrmann W. Telomere biology and age-related diseases. Clin Chem Lab Med 2019; 56:1210-1222. [PMID: 29494336 DOI: 10.1515/cclm-2017-0870] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/30/2018] [Indexed: 11/15/2022]
Abstract
Telomeres are the protective end caps of chromosomes and shorten with every cell division. Telomere length has been proposed as a biomarker of biological age and a risk factor for age-related diseases. Epidemiologic studies show an association between leukocyte telomere length (LTL) and mortality. There is solid evidence that links LTL with cardiovascular disease. Short telomeres promote atherosclerosis and impair the repair of vascular lesions. Alzheimer's disease patients have also a reduced LTL. Telomeres measured in tumor tissue from breast, colon and prostate are shorter than in healthy tissue from the same organ and the same patient. In healthy tissue directly adjacent to these tumors, telomeres are also shorter than in cells that are more distant from the cancerous lesion. A reduced telomere length in cancer tissue from breast, colon and prostate is associated with an advanced disease state at diagnosis, faster disease progression and poorer survival. By contrast, results regarding LTL and cancer are inconsistent. Furthermore, the majority of studies did not find significant associations between LTL, bone mineral density (BMD) and osteoporosis. The present manuscript gives an overview about our current understanding of telomere biology and reviews existing knowledge regarding the relationship between telomere length and age-related diseases.
Collapse
Affiliation(s)
- Markus Herrmann
- Department of Clinical Pathology, Bolzano Hospital, Lorenz-Boehler-Str. 5, 39100 Bolzano, Italy.,Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Irene Pusceddu
- Laboratory of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria.,Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany.,Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
| | - Wolfgang Herrmann
- Department of Clinical Chemistry, University of Saarland, Homburg, Germany
| |
Collapse
|
35
|
Han P, Dang Z, Shen Z, Dai H, Bai Y, Li B, Shao Y. Association of SNPs in the OBFC1 gene and laryngeal carcinoma in Chinese Han male population. Int J Clin Oncol 2019; 24:1042-1048. [PMID: 31016429 DOI: 10.1007/s10147-019-01442-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/01/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND Laryngeal carcinoma (LC) is one of common diagnosed head and neck malignancies. Telomere length has been reported involved in malignant transformation and tumorigenesis. We speculate that single nucleotide polymorphisms (SNPs) in telomere length-related gene oligonucleotide/oligosaccharide-binding folds containing 1 (OBFC1) may have an association with LC in Chinese Han male population. METHODS To prove this hypothesis, we performed a case-control study to analyze the OBFC1 polymorphisms in 172 LC patients and 180 healthy controls. A total of five SNPs (i.e., rs9325507, rs3814220, rs12765878, rs11191865, rs9420707) were selected for further genotyping. RESULTS There was a significant difference in rs9325507 T allele frequency (OR = 0.88, 95% CI 0.64-1.21, P = 0.036) and rs11191865 A allele frequency (OR = 0.86, 95% CI 0.62-1.18, P = 0.009) between patient and control groups. In addition, the rs9325507 T/C genotype, rs3814220 G/A genotype, rs12765878 C/T genotype and rs11191865 A/G genotype had a lower risk of LC based on the results of logistic regression model analysis. CONCLUSIONS The results indicate a potential association between OBFC1 and LC risk in Chinese Han male population. Further work is required to confirm these results and explore the mechanisms of these effects.
Collapse
Affiliation(s)
- Peng Han
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Zhongping Dang
- Department of Operation, Chang'an District Hospital of Xi'an Jiaotong University, Xi'an, 710100, Shaanxi, China
| | - Zhen Shen
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Hao Dai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yanxia Bai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Baiya Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| | - Yuan Shao
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, #227 Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
36
|
Saberi S, Kalloger SE, Zhu MMT, Sattha B, Maan EJ, van Schalkwyk J, Money DM, Côté HCF. Dynamics of leukocyte telomere length in pregnant women living with HIV, and HIV-negative pregnant women: A longitudinal observational study. PLoS One 2019; 14:e0212273. [PMID: 30840638 PMCID: PMC6402636 DOI: 10.1371/journal.pone.0212273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/30/2019] [Indexed: 12/25/2022] Open
Abstract
Background HIV-mediated inflammation and immune activation can accelerate telomere attrition. In addition, antiretrovirals can inhibit telomerase, possibly shortening telomeres. We examined the longitudinal dynamics of leukocyte telomere length (LTL) during pregnancy in a unique cohort of women living with HIV (WLWH) treated with combination antiretroviral therapy (cART), and HIV-negative control women. Methods Blood was collected at three visits during pregnancy, at 13–23, >23–30, and >30–40 weeks of gestation, and for WLWH only, at 6 weeks post-partum. LTL was measured by qPCR and both cross-sectional and longitudinal (MANOVA) models were used to examine possible predictors of LTL among participants who attended all three visits during pregnancy. Results Among WLWH (n = 64) and HIV-negative women (n = 41), within participant LTL were correlated throughout pregnancy (p<0.001). LTL was shorter among WLWH at first visit, but this difference waned by the second visit. WLWH who discontinued cART post-partum experienced a decrease in LTL. Longitudinally, LTL was similar in both groups and increased as gestation progressed, a change that was more pronounced among women under 35 years. Among WLWH, both smoking throughout pregnancy (p = 0.04) and receiving a ritonavir-boosted protease inhibitor-based regimen (p = 0.03) were independently associated with shorter LTL. Conclusions LTL increases as pregnancy progresses; the reasons for this are unknown but may relate to changes in blood volume, hormones, and/or cell subset distribution. While our observations need confirmation in an independent cohort, our data suggest that although some cART regimens may influence LTL, being on cART appears overall protective and that stopping cART post-partum may negatively impact LTL. The effect of smoking on LTL is clearly negative, stressing the importance of smoking cessation.
Collapse
Affiliation(s)
- Sara Saberi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve E. Kalloger
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mayanne M. T. Zhu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beheroze Sattha
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evelyn J. Maan
- British Columbia Women’s Hospital and Health Centre, Vancouver, British Columbia, Canada
| | - Julianne van Schalkwyk
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Women’s Hospital and Health Centre, Vancouver, British Columbia, Canada
- Women’s Health Research Institute, Vancouver, British Columbia, Canada
| | - Deborah M. Money
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Women’s Hospital and Health Centre, Vancouver, British Columbia, Canada
- Women’s Health Research Institute, Vancouver, British Columbia, Canada
| | - Hélène C. F. Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Women’s Health Research Institute, Vancouver, British Columbia, Canada
- Centre for Blood Research, Vancouver, British Columbia, Canada
- * E-mail:
| | | |
Collapse
|
37
|
Dugdale HL, Richardson DS. Heritability of telomere variation: it is all about the environment! Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0450. [PMID: 29335377 PMCID: PMC5784070 DOI: 10.1098/rstb.2016.0450] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 01/07/2023] Open
Abstract
Individual differences in telomere length have been linked to survival and senescence. Understanding the heritability of telomere length can provide important insight into individual differences and facilitate our understanding of the evolution of telomeres. However, to gain accurate and meaningful estimates of telomere heritability it is vital that the impact of the environment, and how this may vary, is understood and accounted for. The aim of this review is to raise awareness of this important, but much under-appreciated point. We outline the factors known to impact telomere length and discuss the fact that telomere length is a trait that changes with age. We highlight statistical methods that can separate genetic from environmental effects and control for confounding variables. We then review how well previous studies in vertebrate populations including humans have taken these factors into account. We argue that studies to date either use methodological techniques that confound environmental and genetic effects, or use appropriate methods but lack sufficient power to fully separate these components. We discuss potential solutions. We conclude that we need larger studies, which also span longer time periods, to account for changing environmental effects, if we are to determine meaningful estimates of the genetic component of telomere length. This article is part of the theme issue ‘Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Hannah L Dugdale
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
38
|
Gielen M, Hageman GJ, Antoniou EE, Nordfjall K, Mangino M, Balasubramanyam M, de Meyer T, Hendricks AE, Giltay EJ, Hunt SC, Nettleton JA, Salpea KD, Diaz VA, Farzaneh-Far R, Atzmon G, Harris SE, Hou L, Gilley D, Hovatta I, Kark JD, Nassar H, Kurz DJ, Mather KA, Willeit P, Zheng YL, Pavanello S, Demerath EW, Rode L, Bunout D, Steptoe A, Boardman L, Marti A, Needham B, Zheng W, Ramsey-Goldman R, Pellatt AJ, Kaprio J, Hofmann JN, Gieger C, Paolisso G, Hjelmborg JBH, Mirabello L, Seeman T, Wong J, van der Harst P, Broer L, Kronenberg F, Kollerits B, Strandberg T, Eisenberg DTA, Duggan C, Verhoeven JE, Schaakxs R, Zannolli R, dos Reis RMR, Charchar FJ, Tomaszewski M, Mons U, Demuth I, Iglesias Molli AE, Cheng G, Krasnienkov D, D'Antono B, Kasielski M, McDonnell BJ, Ebstein RP, Sundquist K, Pare G, Chong M, Zeegers MP. Body mass index is negatively associated with telomere length: a collaborative cross-sectional meta-analysis of 87 observational studies. Am J Clin Nutr 2018; 108:453-475. [PMID: 30535086 PMCID: PMC6454526 DOI: 10.1093/ajcn/nqy107] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Background Even before the onset of age-related diseases, obesity might be a contributing factor to the cumulative burden of oxidative stress and chronic inflammation throughout the life course. Obesity may therefore contribute to accelerated shortening of telomeres. Consequently, obese persons are more likely to have shorter telomeres, but the association between body mass index (BMI) and leukocyte telomere length (TL) might differ across the life span and between ethnicities and sexes. Objective A collaborative cross-sectional meta-analysis of observational studies was conducted to investigate the associations between BMI and TL across the life span. Design Eighty-seven distinct study samples were included in the meta-analysis capturing data from 146,114 individuals. Study-specific age- and sex-adjusted regression coefficients were combined by using a random-effects model in which absolute [base pairs (bp)] and relative telomere to single-copy gene ratio (T/S ratio) TLs were regressed against BMI. Stratified analysis was performed by 3 age categories ("young": 18-60 y; "middle": 61-75 y; and "old": >75 y), sex, and ethnicity. Results Each unit increase in BMI corresponded to a -3.99 bp (95% CI: -5.17, -2.81 bp) difference in TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a -7.67 bp (95% CI: -10.03, -5.31 bp) difference. Each unit increase in BMI corresponded to a -1.58 × 10(-3) unit T/S ratio (0.16% decrease; 95% CI: -2.14 × 10(-3), -1.01 × 10(-3)) difference in age- and sex-adjusted relative TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a -2.58 × 10(-3) unit T/S ratio (0.26% decrease; 95% CI: -3.92 × 10(-3), -1.25 × 10(-3)). The associations were predominantly for the white pooled population. No sex differences were observed. Conclusions A higher BMI is associated with shorter telomeres, especially in younger individuals. The presently observed difference is not negligible. Meta-analyses of longitudinal studies evaluating change in body weight alongside change in TL are warranted.
Collapse
Affiliation(s)
| | - Geja J Hageman
- Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht University, Netherlands
| | - Evangelia E Antoniou
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Netherlands
| | | | - Massimo Mangino
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- NIHR Biomedical Research Center at Guy's and St. Thomas’ Foundation Trust, London, United Kingdom
| | | | - Tim de Meyer
- Department of Mathematical Modeling, Statistics, and Bioinformatics, Ghent University, Ghent, Belgium
| | - Audrey E Hendricks
- Population Sciences Branch of the National Heart, Lung, and Blood Institute (NHLBI), NIH, NHLBI's Framingham Heart Study, Framingham, MA
- Department of Mathematical and Statistical Sciences, University of Colorado–Denver, Denver, CO
| | - Erik J Giltay
- Department of Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Steven C Hunt
- Cardiovascular Genetics Division, Department of Medicine, University of Utah, Salt Lake City, UT
| | - Jennifer A Nettleton
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center, Houston, TX
| | - Klelia D Salpea
- Department of Molecular Biology and Genetics, BSRC “Alexander Fleming,” Athens, Greece
| | - Vanessa A Diaz
- Department of Family Medicine, Medical University of South Carolina, Charleston, SC
| | - Ramin Farzaneh-Far
- Division of Cardiology, San Francisco General Hospital, San Francisco, CA
| | - Gil Atzmon
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, and Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Sarah E Harris
- Center for Cognitive Aging and Cognitive Epidemiology and Medical Genetics Section and Center for Genomics and Experimental Medicine and MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Lifang Hou
- Department of Preventive Medicine and Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Gilley
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Iiris Hovatta
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Jeremy D Kark
- Epidemiology Unit, Hebrew University–Hadassah School of Public Health and Community Medicine, Jerusalem, Israel
| | - Hisham Nassar
- Department of Cardiology, Hadassah University Medical Center, Jerusalem, Israel
| | - David J Kurz
- Department of Cardiology, Triemli Hospital, Zurich, Switzerland
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Psychiatry, UNSW Australia, Sydney, Australia
| | - Peter Willeit
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria, and Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Yun-Ling Zheng
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC
| | - Sofia Pavanello
- Department of Cardiac, Thoracic, and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova, Italy
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN
| | - Line Rode
- The Copenhagen General Population Study, Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Daniel Bunout
- Institute of Nutrition and Food Technology University of Chile, Santiago, Chile
| | - Andrew Steptoe
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Lisa Boardman
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN
| | - Amelia Marti
- Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Belinda Needham
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | | | | | - Jaakko Kaprio
- Department of Public Health
- Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Christian Gieger
- Research Unit of Molecular Epidemiology and Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples, Italy
| | - Jacob B H Hjelmborg
- Department of Epidemiology, Biostatistics, and Biodemography, Institute of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Lisa Mirabello
- Department of Medical, Surgical, Neurological, Metabolic, and Geriatric Sciences, Second University of Naples, Naples, Italy
| | - Teresa Seeman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jason Wong
- Stanford University School of Medicine, Stanford, CA
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, Groningen, Netherlands
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular, and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Kollerits
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular, and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Timo Strandberg
- University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Center for Life Course Epidemiology, University of Oulu, Oulu, Finland
| | - Dan T A Eisenberg
- Department of Anthropology and Center for Studies in Demography and Ecology, University of Washington, Seattle, WA
| | | | - Josine E Verhoeven
- Department of Psychiatry, VU University Medical Center, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Roxanne Schaakxs
- Department of Psychiatry, VU University Medical Center, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Raffaela Zannolli
- Pediatrics Unit, Azienda Ospedaliera Universitaria, Senese/University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Rosana M R dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fadi J Charchar
- School of Science and Technology, Federation University Australia, Department of Physiology, University of Melbourne, Melbourne, Australia, and Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology, and Health, University of Manchester, Manchester, United Kingdom
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ute Mons
- Division of Clinical Epidemiology and Aging Research
- Cancer Prevention Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilja Demuth
- Charité–Universitätsmedizin Berlin (corporate member of Freie Universität Berlin), Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Berlin, Germany
| | - Andrea Elena Iglesias Molli
- CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM). Laboratorio de Diabetes y Metabolismo, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Guo Cheng
- Department of Nutrition, Food Safety, and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Dmytro Krasnienkov
- Department of Epigenetics, DF Chebotarev State Institute of Gerontology NAMS of Ukraine, Kyiv, Ukraine
| | - Bianca D'Antono
- Research Center, Montreal Heart Institute, and Psychology Department, University of Montreal, Montreal, Quebec, Canada
| | - Marek Kasielski
- Bases of Clinical Medicine Teaching Center, Medical University of Lodz, Lodz, Poland
| | - Barry J McDonnell
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | | | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Region Skåne, Lund, Sweden
| | - Guillaume Pare
- Population Health Research Institute and McMaster University, Hamilton, Canada
| | - Michael Chong
- Population Health Research Institute and McMaster University, Hamilton, Canada
| | - Maurice P Zeegers
- Departments of Complex Genetics
- CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
39
|
Martens DS, Nawrot TS. Ageing at the level of telomeres in association to residential landscape and air pollution at home and work: a review of the current evidence. Toxicol Lett 2018; 298:42-52. [PMID: 29944903 DOI: 10.1016/j.toxlet.2018.06.1213] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/06/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
Studies suggest that leukocyte telomere length is an index of systemic ageing. Here, we discuss telomere length as a marker of biological ageing in relation to residential landscape (greenness), residential air pollution and work-related exposures. Telomere lengths are memories of cumulative oxidative and inflammatory stress, and show to have inverse associations with the risk of non-communicable diseases. For this reason, telomeres are considered as markers of biological ageing. Studies at birth, in children, young adulthood, and elderly show that residential green space, lower traffic exposure and long-term lower exposure to particulate air pollution are associated with longer telomeres. Work-related exposures including exposure to toxic metals, polycyclic aromatic hydrocarbons and particulate matter are associated with shorter telomeres for a given age. In contrast to chronic exposures, evidence is present of the observation that recent exposure is associated with longer telomeres. Our overview shows that the magnitude of residential and work-related environmental factors on telomere length are often as important as many classical lifestyle factors.
Collapse
Affiliation(s)
- Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Leuven University, Leuven, Belgium.
| |
Collapse
|
40
|
Das UN. Ageing: Is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res 2018; 11:67-79. [PMID: 30034877 PMCID: PMC6052661 DOI: 10.1016/j.jare.2018.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022] Open
Abstract
Ageing is inevitable. Recent studies suggest that it could be delayed. Low-grade systemic inflammation is seen in type 2 diabetes mellitus, hypertension and endothelial dysfunction that are common with increasing age. In all these conditions, an alteration in arachidonic acid (AA) metabolism is seen in the form of increased formation of pro-inflammatory eicosanoids and decreased production of anti-inflammatory lipoxins, resolvins, protectins and maresins and decreased activity of desaturases. Calorie restriction, exercise and parabiosis delay age-related changes that could be related to enhanced proliferation of stem cells, decrease in inflammation and transfer of GDF-11 (growth differentiation factor-11) and other related molecules from the young to the old, increase in the formation of lipoxin A4, resolvins, protectins and maresins, hydrogen sulfide (H2S) and nitric oxide (NO); inhibition of ageing-related hypothalamic or brain IKK-β and NF-kB activation, decreased gonadotropin-releasing hormone (GnRH) release resulting in increased neurogenesis and consequent decelerated ageing. This suggests that hypothalamus participates in ageing process. N-acylethanolamines (NAEs) and lipid-derived signalling molecules can be tuned favorably under dietary restriction to extend lifespan and/or prevent advanced age associated diseases in an mTOR dependent pathway manner. Sulfur amino acid (SAA) restriction increased hydrogen sulfide (H2S) production and protected tissues from hypoxia and tissue damage. Anti-inflammatory metabolites formed from AA such as LXA4, resolvins, protectins and maresins enhance production of NO, CO, H2S; suppress NF-kB expression and alter mTOR expression and thus, may aid in delaying ageing process. Dietary restriction and exercise enhance AA metabolism to form LXA4, resolvins, protectins and maresins that have anti-inflammatory actions. AA and their metabolites also influence stem cell biology, enhance neurogenesis to improve memory and augment autophagy to prolong life span. Thus, AA and other PUFAs and their anti-inflammatory metabolites inhibit inflammation, augment stem cell proliferation, restore to normal lipid-derived signaling molecules and NO and H2S production, enhance autophagy and prolong life span.
Collapse
|
41
|
Entringer S, de Punder K, Buss C, Wadhwa PD. The fetal programming of telomere biology hypothesis: an update. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170151. [PMID: 29335381 PMCID: PMC5784074 DOI: 10.1098/rstb.2017.0151] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing-related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal-placental-fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Sonja Entringer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
- Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA
| | - Karin de Punder
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
- Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA
| | - Pathik D Wadhwa
- Department of Psychiatry and Human Behavior, University of California, School of Medicine, Irvine, CA, USA
- Department of Obstetrics and Gynecology, University of California, School of Medicine, Irvine, CA, USA
- Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA
- Department of Epidemiology, University of California, School of Medicine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA
| |
Collapse
|
42
|
Sillanpää E, Sipilä S, Törmäkangas T, Kaprio J, Rantanen T. Genetic and Environmental Effects on Telomere Length and Lung Function: A Twin Study. J Gerontol A Biol Sci Med Sci 2017; 72:1561-1568. [PMID: 27856493 DOI: 10.1093/gerona/glw178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 07/25/2016] [Indexed: 12/17/2022] Open
Abstract
Background The purpose of the study was to estimate the heritability of leukocyte telomere length (LTL) and lung function and to examine whether LTL and lung function share genetic or environmental effects in common. Methods 386 monozygotic and dizygotic Finnish twin sisters (age 68.4±3.4 years) were included. Relative LTL was determined from peripheral blood DNA by qPCR. Lung function measures of FEV1, FVC, FEV1/FVC, and PEF were derived from spirometry. Genetic modeling was performed with MPlus statistical software. Results Univariate analysis revealed that in LTL, 62% (95% confidence interval 50-72) of the variance was explained by additive genetic and 38% (28-50) by unique environmental factors. For FEV1, FVC, and PEF, the corresponding estimates were 65%-67% for additive genetic and 33%-35% for unique environmental factors. Across the sample, the phenotypic correlation between LTL and FEV1 was modest (r = .104, p = .041). Bivariate correlated factors model revealed that the genetic correlation between LTL and FEV1 was .18 (-0.19 to 0.64) and environmental correlation was -.10 (-0.84 to 0.55). Conclusions Both LTL and lung function variables are moderately to highly genetically determined. The associations between LTL and the lung function variables were weak. However, the positive genetic correlation point estimate gave minor suggestions that, in a larger sample, genetic factors in common might play a role in the phenotypic correlation between LTL and FEV1. Future studies with larger samples are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Elina Sillanpää
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Finland
| | - Sarianna Sipilä
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Finland
| | - Timo Törmäkangas
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Finland
| | - Jaakko Kaprio
- Department of Public Health and Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Taina Rantanen
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Finland
| |
Collapse
|
43
|
Ravlić S, Škrobot Vidaček N, Nanić L, Laganović M, Slade N, Jelaković B, Rubelj I. Mechanisms of fetal epigenetics that determine telomere dynamics and health span in adulthood. Mech Ageing Dev 2017; 174:55-62. [PMID: 28847485 DOI: 10.1016/j.mad.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023]
Abstract
Advances in epigenetics now enable us to better understand environmental influences on the genetic background of human diseases. This refers especially to fetal development where an adverse intrauterine environment impacts oxygen and nutrient supply to the fetus. Recently, differences in telomere length and telomere loss dynamics among individuals born with intrauterine growth restriction compared to normal controls have been described. In this paper we propose possible molecular mechanisms that (pre)program telomere epigenetics during pregnancy. This programming sets differences in telomere lengths and dynamics of telomere shortening in adulthood and therefore dictates the dynamics of aging and morbidity in later life.
Collapse
Affiliation(s)
- Sanda Ravlić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Nikolina Škrobot Vidaček
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Mario Laganović
- Department for Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Neda Slade
- Laboratory for Protein Dynamics, Division of Molecular Medicine, RBI, Zagreb, Croatia.
| | - Bojan Jelaković
- Department for Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| |
Collapse
|
44
|
Song Y, Yan M, Li J, Li J, Jin T, Chen C. Association between TNIP1, MPHOSPH6 and ZNF208 genetic polymorphisms and the coronary artery disease risk in Chinese Han population. Oncotarget 2017; 8:77233-77240. [PMID: 29100383 PMCID: PMC5652776 DOI: 10.18632/oncotarget.20432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/24/2017] [Indexed: 11/27/2022] Open
Abstract
Introduction Coronary artery disease (CAD) is a common disease and among the leading cause of death in the general population. Inherited factors are involved in the pathogenesis of CAD. Aims Our study examined whether SNPs in TNIP1, MPHOSPH6, ZNF208 to be associated with CAD risk in a Chinese Han population. We recruited 596 CAD patients, 603 controls and genotyping fifteen SNPs using Sequenom MassARRAY. For association analysis between TNIP1, MPHOSPH6 and ZNF208 and CAD was determined by Odds ratios (ORs) with 95% confidence intervals (CIs) using Logistic Regression. Results The results indicated in allel model, the rs960709 in TNIP1 was associated with CAD risk (OR = 0.78, 95%CI = 0.65-0.94, P=0.010). The genetic model results showed that the rs960709 (A/G) polymorphism was associated with the risk of developing CAD in codominant, Dominant and Log-additive. The rs1056654 A/A allele and CAD patients compared to the healthy controls in recessive model (OR = 0.55, 95%CI = 0.34-0.90; P = 0.018). We also found that three SNPS in ZNF208 associated with CAD, respectively, rs2188971, rs8103163 and rs7248488. Linkage disequilibrium (LD) and haplotype analyses of the SNPs found that the CTA haplotype (rs1056675, rs1056654, rs11859599) and rs2188972A/rs2188971T/rs8103163A/rs7248488A (ATAA) were associated with CAD. Conclusion In conclusion, the present study provided evidence that SNPs in the TNIP1, ZNF208 and MPHOSPH6 were associated with CAD in Chinese Han population. It is possible that these SNPs are CAD risk factors and these data can provide.
Collapse
Affiliation(s)
- Yanbin Song
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,Department of Cardiovascular, Yanan University Affiliated Hospital, Yanan, Shaanxi 716000, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jingjie Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chao Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,School of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
45
|
Booth SA, Charchar FJ. Cardiac telomere length in heart development, function, and disease. Physiol Genomics 2017; 49:368-384. [DOI: 10.1152/physiolgenomics.00024.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury.
Collapse
Affiliation(s)
- S. A. Booth
- Faculty of Science and Technology, School of Applied and Biomedical Sciences, Federation University Australia, Balllarat, Australia
| | - F. J. Charchar
- Faculty of Science and Technology, School of Applied and Biomedical Sciences, Federation University Australia, Balllarat, Australia
- Department of Physiology, The University of Melbourne, Melbourne, Australia; and
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
46
|
Picarelli MM, Danzmann LC, Grun LK, Júnior NTR, Lavandovsky P, Guma FTCR, Stein RT, Barbé-Tuana F, Jones MH. Arterial stiffness by oscillometric device and telomere lenght in juvenile idiopathic artrhitis with no cardiovascular risk factors: a cross-sectional study. Pediatr Rheumatol Online J 2017; 15:34. [PMID: 28472973 PMCID: PMC5418721 DOI: 10.1186/s12969-017-0165-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/20/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Advances in juvenile idiopathic arthritis (JIA) treatment is promoting free disease survival. Cardiovascular disease (CVD) may emerge as an important cause of morbidity and mortality. Pulse wave velocity (PWV), a surrogate marker of arterial stiffness, and telomere length (TL) are considered as potential predictors of CVD and its outcomes. The study aim was to assess PWV, TL in a JIA population and to test its correlation. In a cross sectional study, 24 JIA patients, 21 controls for TL and 20 controls for PWV were included. PWV was assessed by an oscillometric device. TL was assessed by qPCR. JIA activity was accessed by JADAS-27. Smoking, diabetes, obesity, renal impairment, hypertension, dyslipidemia and inflammatory diseases were excluded. FINDINGS Between cases and controls for TL, there was significant difference in age. No differences in gender, ethnics and bone mass index between JIA and control groups for PWV and TL. The JADAS-27 median was 8. TL was significantly reduced in JIA (0.85 ± 0.34 vs. 1. 67 ± 1.38, P = 0.025). When age adjusted by ANCOVA, the difference remained significant (P = 0,032). PWV was normal in all patients (5.1 ± 0.20 m/s vs. 4.98 ± 0.06 m/s, P = 0, 66). There was no correlation between TL, PWV or JADAS-27. CONCLUSION Compared to controls, JIA with high disease activity and no CVD risk factors have shorter telomeres and normal PWV. As far as we know, this first time this correlation is being tested in rheumatic disease and in paediatrics.
Collapse
Affiliation(s)
- Maria Mercedes Picarelli
- Rheumatology Department, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Ipiranga Avenue, 6690/220, Porto Alegre, 90610 000, Brazil.
| | | | - Lucas Kich Grun
- 0000 0001 2200 7498grid.8532.cUniversidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Patrícia Lavandovsky
- 0000 0001 2200 7498grid.8532.cUniversidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Renato T. Stein
- 0000 0001 2198 7041grid.411379.9Rheumatology Department, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Ipiranga Avenue, 6690/220, Porto Alegre, 90610 000 Brazil
| | - Florência Barbé-Tuana
- 0000 0001 2200 7498grid.8532.cUniversidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcus Herbert Jones
- 0000 0001 2198 7041grid.411379.9Rheumatology Department, Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Ipiranga Avenue, 6690/220, Porto Alegre, 90610 000 Brazil
| |
Collapse
|
47
|
Allegra A, Innao V, Penna G, Gerace D, Allegra AG, Musolino C. Telomerase and telomere biology in hematological diseases: A new therapeutic target. Leuk Res 2017; 56:60-74. [PMID: 28196338 DOI: 10.1016/j.leukres.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.
Collapse
Affiliation(s)
- Alessandro Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vanessa Innao
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppa Penna
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Demetrio Gerace
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Andrea G Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Caterina Musolino
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
48
|
Rask L, Bendix L, Harbo M, Fagerlund B, Mortensen EL, Lauritzen MJ, Osler M. Cognitive Change during the Life Course and Leukocyte Telomere Length in Late Middle-Aged Men. Front Aging Neurosci 2016; 8:300. [PMID: 28018213 PMCID: PMC5145851 DOI: 10.3389/fnagi.2016.00300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/23/2016] [Indexed: 11/13/2022] Open
Abstract
Importance: Cognitive skills are known to decline through the lifespan with large individual differences. The molecular mechanisms for this decline are incompletely understood. Although leukocyte telomere length provides an index of cellular age that predicts the incidence of age-related diseases, it is unclear whether there is an association between cognitive decline and leukocyte telomere length. Objective: To examine the association between changes in cognitive function during adult life and leukocyte telomere length after adjusting for confounding factors such as education, mental health and life style. Design, Setting, and Participants: Two groups of men with negative (n = 97) and positive (n = 93) change in cognitive performance were selected from a birth cohort of 1985 Danish men born in 1953. Cognitive performance of each individual was assessed at age ~20 and 56 years. Leukocyte telomere length at age ~58 was measured using qPCR. Linear regression models were used to investigate the association between cognitive function and leukocyte telomere length. Results: Men with negative change in cognitive performance during adult life had significantly shorter mean leukocyte telomere length than men with positive change in cognitive performance (unadjusted difference β = −0.09, 95% CI −0.16 to −0.02, p = 0.02). This association remained significant after adjusting for smoking, alcohol consumption, leisure time activity, body mass index (BMI) and cholesterol (adjusted difference β = −0.09, 95% CI −0.17 to −0.01, p = 0.02) but was non-significant after adjusting for smoking, alcohol consumption, leisure time activity, BMI, cholesterol, current cognitive function, depression and education (adjusted difference β = −0.07, 95% CI −0.16 to −0.01, p = 0.08). Conclusion and Relevance: Preclinical cognitive changes may be associated with leukocyte telomere length.
Collapse
Affiliation(s)
- Lene Rask
- Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark; Department of Clinical Neurophysiology, Rigshospitalet - GlostrupGlostrup, Denmark; Center for Healthy Aging, University of CopenhagenCopenhagen, Denmark
| | - Laila Bendix
- Pain Research Group, Department of Anaesthesiology and Intensive Care Medicine, Odense University Hospital Odense, Denmark
| | - Maria Harbo
- Department of Clinical Genetics, Vejle Hospital Vejle, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Lundbeck Foundation Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, University of Copenhagen, Psychiatric Centre Glostrup Glostrup, Denmark
| | - Erik L Mortensen
- Center for Healthy Aging, University of CopenhagenCopenhagen, Denmark; Department of Public Health, University of CopenhagenCopenhagen, Denmark
| | - Martin J Lauritzen
- Department of Neuroscience and Pharmacology, University of CopenhagenCopenhagen, Denmark; Department of Clinical Neurophysiology, Rigshospitalet - GlostrupGlostrup, Denmark; Center for Healthy Aging, University of CopenhagenCopenhagen, Denmark
| | - Merete Osler
- Department of Public Health, University of CopenhagenCopenhagen, Denmark; Research Center for Prevention and Health, Rigshospitalet - GlostrupGlostrup, Denmark
| |
Collapse
|
49
|
Mennan C, Brown S, McCarthy H, Mavrogonatou E, Kletsas D, Garcia J, Balain B, Richardson J, Roberts S. Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton's jelly and bone marrow. FEBS Open Bio 2016; 6:1054-1066. [PMID: 27833846 PMCID: PMC5095143 DOI: 10.1002/2211-5463.12104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/27/2016] [Accepted: 07/20/2016] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSC) can be isolated from several regions of human umbilical cords, including Wharton's jelly (WJ), artery, vein or cord lining. These MSC appear to be immune privileged and are promising candidates for cell therapy. However, isolating MSC from WJ, artery, vein or cord lining requires time-consuming tissue dissection. MSC can be obtained easily via briefly digesting complete segments of the umbilical cord, likely containing heterogenous or mixed populations of MSC (MC-MSC). MC-MSC are generally less well characterized than WJ-MSC, but nevertheless represent a potentially valuable population of MSC. This study aimed to further characterize MC-MSC in comparison to WJ-MSC and also the better-characterized bone marrow-derived MSC (BM-MSC). MC-MSC proliferated faster, with significantly faster doubling times reaching passage one 8.8 days sooner and surviving longer in culture than WJ-MSC. All MSC retained the safety aspect of reducing telomere length with increasing passage number. MSC were also assessed for their ability to suppress T-cell proliferation and for the production of key markers of pluripotency, embryonic stem cells, tolerogenicity (CD40, CD80, CD86 and HLA-DR) and immunomodulation (indoleamine 2,3-dioxygenase [IDO] and HLA-G). The MC-MSC population displayed all of the positive attributes of WJ-MSC and BM-MSC, but they were more efficient to obtain and underwent more population doublings than from WJ, suggesting that MC-MSC are promising candidates for allogeneic cell therapy in regenerative medicine.
Collapse
Affiliation(s)
- Claire Mennan
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Sharon Brown
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Helen McCarthy
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and AgeingInstitute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and AgeingInstitute of Biosciences and ApplicationsNational Centre for Scientific Research “Demokritos”AthensGreece
| | - John Garcia
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Birender Balain
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - James Richardson
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| | - Sally Roberts
- The Robert Jones & Agnes Hunt Orthopaedic Hospital NHS Foundation Trust & Institute of Science & Technology in MedicineKeele UniversityOswestryShropshireUK
| |
Collapse
|
50
|
Impact of Oxidative Stress in Premature Aging and Iron Overload in Hemodialysis Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1578235. [PMID: 27800120 PMCID: PMC5069386 DOI: 10.1155/2016/1578235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/15/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
Background. Increased oxidative stress is a well described feature of patients in hemodialysis. Their need for multiple blood transfusions and supplemental iron causes a significant iron overload that has recently been associated with increased oxidation of polyunsaturated lipids and accelerated aging due to DNA damage caused by telomere shortening. Methods. A total of 70 patients were evaluated concomitantly, 35 volunteers with ferritin levels below 500 ng/mL (Group A) and 35 volunteers with ferritin levels higher than 500 ng/mL (Group B). A sample of venous blood was taken to extract DNA from leukocytes and to measure relative telomere length by real-time PCR. Results. Patients in Group B had significantly higher plasma TBARS (p = 0.008), carbonyls (p = 0.0004), and urea (p = 0.02) compared with those in Group A. Telomeres were significantly shorter in Group B, 0.66 (SD, 0.051), compared with 0.75 (SD, 0.155) in Group A (p = 0.0017). We observed a statistically significant association between relative telomere length and ferritin levels (r = −0.37, p = 0.001). Relative telomere length was inversely related to time on hemodialysis (r = −0.27, p = 0.02). Conclusions. Our findings demonstrate that iron overload was associated with increased levels of oxidative stress and shorter relative telomere length.
Collapse
|