1
|
Rahimi Kahmini A, Valera IC, Crawford RQ, Samarah L, Reis G, Elsheikh S, Kanashiro-Takeuchi RM, Mohammadipoor N, Olateju BS, Matthews AR, Parvatiyar MS. Aging reveals a sex-dependent susceptibility of sarcospan-deficient mice to cardiometabolic disease. Am J Physiol Heart Circ Physiol 2024; 327:H1067-H1085. [PMID: 39120469 PMCID: PMC11482229 DOI: 10.1152/ajpheart.00702.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Numerous genes including sarcospan (SSPN) have been designated as obesity-susceptibility genes by human genome-wide association studies. Variants in the SSPN locus have been linked with sex-dependent obesity-associated traits; however, this association has not been investigated in vivo. To delineate the role SSPN plays in regulating metabolism with potential to impact cardiac function, we subjected young and aged global SSPN-deficient (SSPN-/-) male and female mice to obesogenic conditions (60% fat diet). We hypothesized that loss of SSPN combined with metabolic stress would increase susceptibility of mice to cardiometabolic disease. Baseline and end-point assessments of several anthropometric parameters were performed including weight, glucose tolerance, and fat distribution of mice fed control (CD) and high-fat (HFD) diet. Doppler echocardiography was used to monitor cardiac function. White adipose and cardiac tissues were assessed for inflammation by histological, gene expression, and cytokine analysis. Overall, SSPN deficiency protected both sexes and ages from diet-induced obesity, with a greater effect in females. SSPN-/- HFD mice gained less weight than wild-type (WT) cohorts, while SSPN-/- CD groups increased weight. Furthermore, aged SSPN-/- mice developed glucose intolerance regardless of diet. Echocardiography showed preserved systolic function for all groups; however, aged SSPN-/- males exhibited significant increases in left ventricular mass (CD) and signs of diastolic dysfunction (HFD). Cytokine analysis revealed significantly increased IL-1α and IL-17Α in white adipose tissue from young SSPN-/- male mice, which may be protective from diet-induced obesity. Overall, these studies suggest that several sex-dependent mechanisms influence the role SSPN plays in metabolic responses that become evident with age.NEW & NOTEWORTHY Young and aged sarcospan (SSPN)-deficient mice were examined to assess the role of SSPN in obesity and cardiometabolic disease. Both sexes displayed a "leaner" phenotype in response to high-fat diet (HFD). Notably, several sex differences were identified in aged SSPN-deficient mice: 1) females developed glucose intolerance (control and HFD) and 2) males exhibited increased left ventricular mass (control) and diastolic dysfunction (HFD). Therefore, we conclude that SSPN exerts a sex-dependent influence on obesity-associated diseases.
Collapse
Affiliation(s)
- Aida Rahimi Kahmini
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isela C Valera
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rhiannon Q Crawford
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Luaye Samarah
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Gisienne Reis
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Salma Elsheikh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nazanin Mohammadipoor
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Bolade S Olateju
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Aaron R Matthews
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Michelle S Parvatiyar
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
2
|
Chatham JC, Patel RP. Protein glycosylation in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:525-544. [PMID: 38499867 DOI: 10.1038/s41569-024-00998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Protein glycosylation, which involves the attachment of carbohydrates to proteins, is one of the most abundant protein co-translational and post-translational modifications. Advances in technology have substantially increased our knowledge of the biosynthetic pathways involved in protein glycosylation, as well as how changes in glycosylation can affect cell function. In addition, our understanding of the role of protein glycosylation in disease processes is growing, particularly in the context of immune system function, infectious diseases, neurodegeneration and cancer. Several decades ago, cell surface glycoproteins were found to have an important role in regulating ion transport across the cardiac sarcolemma. However, with very few exceptions, our understanding of how changes in protein glycosylation influence cardiovascular (patho)physiology remains remarkably limited. Therefore, in this Review, we aim to provide an overview of N-linked and O-linked protein glycosylation, including intracellular O-linked N-acetylglucosamine protein modification. We discuss our current understanding of how all forms of protein glycosylation contribute to normal cardiovascular function and their roles in cardiovascular disease. Finally, we highlight potential gaps in our knowledge about the effects of protein glycosylation on the heart and vascular system, highlighting areas for future research.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Rakesh P Patel
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Granados A, Zamperoni M, Rapone R, Moulin M, Boyarchuk E, Bouyioukos C, Del Maestro L, Joliot V, Negroni E, Mohamed M, Piquet S, Bigot A, Le Grand F, Albini S, Ait-Si-Ali S. SETDB1 modulates the TGFβ response in Duchenne muscular dystrophy myotubes. SCIENCE ADVANCES 2024; 10:eadj8042. [PMID: 38691608 PMCID: PMC11062573 DOI: 10.1126/sciadv.adj8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Overactivation of the transforming growth factor-β (TGFβ) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFβ induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFβ signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFβ target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFβ-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.
Collapse
Affiliation(s)
- Alice Granados
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maeva Zamperoni
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maryline Moulin
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Sandra Piquet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Fabien Le Grand
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle (PGNM) Unit, 69008 Lyon, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| |
Collapse
|
4
|
Alizadeh F, Abraghan YJ, Farrokhi S, Yousefi Y, Mirahmadi Y, Eslahi A, Mojarrad M. Production of Duchenne muscular dystrophy cellular model using CRISPR-Cas9 exon deletion strategy. Mol Cell Biochem 2024; 479:1027-1040. [PMID: 37289342 DOI: 10.1007/s11010-023-04759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a progressive muscle wasting disorder caused by loss-of-function mutations in the dystrophin gene. Although the search for a definitive cure has failed to date, extensive efforts have been made to introduce effective therapeutic strategies. Gene editing technology is a great revolution in biology, having an immediate application in the generation of research models. DMD muscle cell lines are reliable sources to evaluate and optimize therapeutic strategies, in-depth study of DMD pathology, and screening the effective drugs. However, only a few immortalized muscle cell lines with DMD mutations are available. In addition, obtaining muscle cells from patients also requires an invasive muscle biopsy. Mostly DMD variants are rare, making it challenging to identify a patient with a particular mutation for a muscle biopsy. To overcome these challenges and generate myoblast cultures, we optimized a CRISPR/Cas9 gene editing approach to model the most common DMD mutations that include approximately 28.2% of patients. GAP-PCR and sequencing results show the ability of the CRISPR-Cas9 system to efficient deletion of mentioned exons. We showed producing truncated transcript due to the targeted deletion by RT-PCR and sequencing. Finally, mutation-induced disruption of dystrophin protein expression was confirmed by western blotting. All together, we successfully created four immortalized DMD muscle cell lines and showed the efficacy of the CRISPR-Cas9 system for the generation of immortalized DMD cell models with the targeted deletions.
Collapse
Affiliation(s)
- Farzaneh Alizadeh
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Jafari Abraghan
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yousefi
- Department of Biochemistry, Mashhad University of Ferdowsi, Mashhad, Iran
| | - Yeganeh Mirahmadi
- Department of Biochemistry, Genetics and Molecular Biology, Islamic Azad University, Mashhad, Iran
| | - Atieh Eslahi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Genetic Center of Khorasan Razavi, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Yamanouchi K, Kato S, Tanaka Y, Ikeda M, Oshimo Y, Shiga T, Hatamoto K, Chambers J, Imamura T, Hiramatsu R, Uchida K, Matsuda F, Matsuwaki T, Kohsaka T. Identification and characterization of dystrophin-locus-derived testis-specific protein: A testis-specific gene within the intronic region of the rat dystrophin gene. J Reprod Dev 2024; 70:55-64. [PMID: 38246612 PMCID: PMC11017100 DOI: 10.1262/jrd.2023-073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
The mammalian X chromosome exhibits enrichment in genes associated with germ cell development. Previously, we generated a rat model of Becker muscular dystrophy (BMD) characterized by an in-frame mutation in the dystrophin gene, situated on the X chromosome and responsible for encoding a protein crucial for muscle integrity. Male BMD rats are infertile owing to the absence of normal spermatids in the epididymis. Within the seminiferous tubules of BMD rats, elongated spermatids displayed abnormal morphology. To elucidate the cause of infertility, we identified a putative gene containing an open reading frame situated in the intronic region between exons 6 and 7 of the dystrophin gene, specifically deleted in male BMD rats. This identified gene, along with its encoded protein, exhibited specific detection within the testes, exclusively localized in round to elongated spermatids during spermiogenesis. Consequently, we designated the encoded protein as dystrophin-locus-derived testis-specific protein (DTSP). Given the absence of DTSP in the testes of BMD rats, we hypothesized that the loss of DTSP contributes to the infertility observed in male BMD rats.
Collapse
Affiliation(s)
- Keitaro Yamanouchi
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shizuka Kato
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yukie Tanaka
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masanari Ikeda
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yukina Oshimo
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takanori Shiga
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kei Hatamoto
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8526, Japan
| | - Ryuji Hiramatsu
- Laboratory of Veterinary Anatomy, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fuko Matsuda
- Laboratory of Theriogenology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Matsuwaki
- Laboratory of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tetsuya Kohsaka
- Faculty of Health Science, Butsuryo College of Osaka, Osaka 593-8328, Japan
| |
Collapse
|
6
|
Gharibi S, Vaillend C, Lindsay A. The unconditioned fear response in vertebrates deficient in dystrophin. Prog Neurobiol 2024; 235:102590. [PMID: 38484964 DOI: 10.1016/j.pneurobio.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
Collapse
Affiliation(s)
- Saba Gharibi
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay 91400, France.
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Department of Medicine, University of Otago, Christchurch 8014, New Zealand.
| |
Collapse
|
7
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Fortunato F, Tonelli L, Farnè M, Selvatici R, Ferlini A. DMD deletions underlining mild dystrophinopathies: literature review highlights phenotype-related mutation clusters and provides insights about genetic mechanisms and prognosis. Front Neurol 2024; 14:1288721. [PMID: 38288333 PMCID: PMC10823016 DOI: 10.3389/fneur.2023.1288721] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 01/31/2024] Open
Abstract
DMD gene pathogenic variations cause a spectrum of phenotypes, ranging from severe Duchenne muscular dystrophy, the Becker milder cases, the intermediate or very mild muscle phenotypes invariably characterized by high CK, and the ultrarare fully-asymptomatic cases. Besides these phenotypes, X-linked dilated cardiomyopathy is also caused by DMD mutations. Males carrying DMD deletions with absent or very mild phenotypes have been sparsely described. We performed a horizon scan on public datasets to enroll males with the above phenotypes and carrying DMD deletions to delineate myopathic genotype-phenotype relationships. We inventoried 81 males, who were divided into the following clinical categorization: fully-asymptomatic males aged >43 years (A, N = 22); isolated hyperCKemia (CK, N = 35); and mild weakness (any age) with or without high CK (WCK, N = 24). In all cases, deleted intervals were exons 2 to 55, and no downstream exons were ever involved, apart from an exon 78 deletion in a WCK patient. All deletions were in-frame apart from the known exception to the rule of exon 2 and exon 78. We correlated the mild phenotypes (A and CK) to deleted exons, intronic breakpoints, exon-exon junctions, 3' isoforms rule, and protein epitopes, and we found that some genetic profiles are exclusively/mainly occurring in A/CK phenotypes, suggesting they are compatible with a quasi-normal muscular performance. We discussed diverse pathogenic mechanisms that may contribute to mild dystrophinopathic phenotypes, and we tried to address some "critical" genetic configurations or exon content needed to preserve a semi-functional DMD gene.
Collapse
Affiliation(s)
| | | | | | | | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Krishna S, Echevarria KG, Reed CH, Eo H, Wintzinger M, Quattrocelli M, Valentine RJ, Selsby JT. A fat- and sucrose-enriched diet causes metabolic alterations in mdx mice. Am J Physiol Regul Integr Comp Physiol 2023; 325:R692-R711. [PMID: 37811713 PMCID: PMC11178302 DOI: 10.1152/ajpregu.00246.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
Duchenne muscular dystrophy (DMD), a progressive muscle disease caused by the absence of functional dystrophin protein, is associated with multiple cellular, physiological, and metabolic dysfunctions. As an added complication to the primary insult, obesity/insulin resistance (O/IR) is frequently reported in patients with DMD; however, how IR impacts disease severity is unknown. We hypothesized a high-fat, high-sucrose diet (HFHSD) would induce O/IR, exacerbate disease severity, and cause metabolic alterations in dystrophic mice. To test this hypothesis, we treated 7-wk-old mdx (disease model) and C57 mice with a control diet (CD) or an HFHSD for 15 wk. The HFHSD induced insulin resistance, glucose intolerance, and hyperglycemia in C57 and mdx mice. Of note, mdx mice on CD were also insulin resistant. In addition, visceral adipose tissue weights were increased with HFHSD in C57 and mdx mice though differed by genotype. Serum creatine kinase activity and histopathological analyses using Masson's trichrome staining in the diaphragm indicated muscle damage was driven by dystrophin deficiency but was not augmented by diet. In addition, markers of inflammatory signaling, mitochondrial abundance, and autophagy were impacted by disease but not diet. Despite this, in addition to disease signatures in CD-fed mice, metabolomic and lipidomic analyses demonstrated a HFHSD caused some common changes in C57 and mdx mice and some unique signatures of O/IR within the context of dystrophin deficiency. In total, these data revealed that in mdx mice, 15 wk of HFHSD did not overtly exacerbate muscle injury but further impaired the metabolic status of dystrophic muscle.
Collapse
Affiliation(s)
- Swathy Krishna
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| | | | - Carter H Reed
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, Iowa, United States
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, Iowa, United States
| |
Collapse
|
10
|
Hasan MS, Wang Y, Feugang JM, Zhou H, Liao SF. RNA sequencing analysis revealed differentially expressed genes and their functional annotation in porcine longissimus dorsi muscle affected by dietary lysine restriction. Front Vet Sci 2023; 10:1233292. [PMID: 38026666 PMCID: PMC10668494 DOI: 10.3389/fvets.2023.1233292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary lysine restriction on the global gene expression profile of skeletal muscle in growing pigs. Twelve crossbred (Yorkshire × Landrace) barrows (initial BW 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (LDD: a lysine-deficient diet; LAD: a lysine-adequate diet) according to a completely randomized experiment design (n = 6). After feeding for 8 weeks, skeletal muscle was sampled from the longissimus dorsi of individual pigs. The muscle total RNA was isolated and cDNA libraries were prepared for RNA sequencing (RNA-Seq) analysis. The RNA-Seq data obtained was then analyzed using the CLC Genomics Workbench to identify differentially expressed genes (DEGs). A total of 80 genes (padj ≤ 0.05) were differentially expressed in the longissimus dorsi muscle of the pigs fed LDD vs. LAD, of which 46 genes were downregulated and 34 genes were upregulated. Gene Ontology (GO) analysis of the DEGs (padj ≤ 0.05) for functional annotation identified those GO terms that are mostly associated with the molecular functions of structural molecules and metabolic enzymes (e.g., oxidoreductase and endopeptidase), biological process of acute-phase response, and amino acid metabolism including synthesis and degradation in the extracellular matrix region. Collectively, the results of this study have provided some novel insight regarding the molecular mechanisms of muscle growth that are associated with dietary lysine supply.
Collapse
Affiliation(s)
- Md. Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
11
|
Yang TL, Ting J, Lin MR, Chang WC, Shih CM. Identification of Genetic Variants Associated with Severe Myocardial Bridging through Whole-Exome Sequencing. J Pers Med 2023; 13:1509. [PMID: 37888120 PMCID: PMC10608235 DOI: 10.3390/jpm13101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Myocardial bridging (MB) is a congenital coronary artery anomaly and an important cause of angina. The genetic basis of MB is currently unknown. This study used a whole-exome sequencing technique and analyzed genotypic differences. Eight coronary angiography-confirmed cases of severe MB and eight age- and sex-matched control patients were investigated. In total, 139 rare variants that are potentially pathogenic for severe MB were identified in 132 genes. Genes with multiple rare variants or co-predicted by ClinVar and CADD/REVEL for severe MB were collected, from which heart-specific genes were selected under the guidance of tissue expression levels. Functional annotation indicated significant genetic associations with abnormal skeletal muscle mass, cardiomyopathies, and transmembrane ion channels. Candidate genes were reviewed regarding the functions and locations of each individual gene product. Among the gene candidates for severe MB, rare variants in DMD, SGCA, and TTN were determined to be the most crucial. The results suggest that altered anchoring proteins on the cell membrane and intracellular sarcomere unit of cardiomyocytes play a role in the development of the missed trajectory of coronary vessels. Additional studies are required to support the diagnostic application of cardiac sarcoglycan and dystroglycan complexes in patients with severe MB.
Collapse
Affiliation(s)
- Tsung-Lin Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Jafit Ting
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
| | - Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (J.T.); (M.-R.L.)
- Master’ Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chun-Ming Shih
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
13
|
Lek A, Wong B, Keeler A, Blackwood M, Ma K, Huang S, Sylvia K, Batista AR, Artinian R, Kokoski D, Parajuli S, Putra J, Carreon CK, Lidov H, Woodman K, Pajusalu S, Spinazzola JM, Gallagher T, LaRovere J, Balderson D, Black L, Sutton K, Horgan R, Lek M, Flotte T. Death after High-Dose rAAV9 Gene Therapy in a Patient with Duchenne's Muscular Dystrophy. N Engl J Med 2023; 389:1203-1210. [PMID: 37754285 DOI: 10.1056/nejmoa2307798] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
We treated a 27-year-old patient with Duchenne's muscular dystrophy (DMD) with recombinant adeno-associated virus (rAAV) serotype 9 containing dSaCas9 (i.e., "dead" Staphylococcus aureus Cas9, in which the Cas9 nuclease activity has been inactivated) fused to VP64; this transgene was designed to up-regulate cortical dystrophin as a custom CRISPR-transactivator therapy. The dose of rAAV used was 1×1014 vector genomes per kilogram of body weight. Mild cardiac dysfunction and pericardial effusion developed, followed by acute respiratory distress syndrome (ARDS) and cardiac arrest 6 days after transgene treatment; the patient died 2 days later. A postmortem examination showed severe diffuse alveolar damage. Expression of transgene in the liver was minimal, and there was no evidence of AAV serotype 9 antibodies or effector T-cell reactivity in the organs. These findings indicate that an innate immune reaction caused ARDS in a patient with advanced DMD treated with high-dose rAAV gene therapy. (Funded by Cure Rare Disease.).
Collapse
Affiliation(s)
- Angela Lek
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Brenda Wong
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Allison Keeler
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Meghan Blackwood
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Kaiyue Ma
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Shushu Huang
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Katelyn Sylvia
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - A Rita Batista
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Rebecca Artinian
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Danielle Kokoski
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Shestruma Parajuli
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Juan Putra
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - C Katte Carreon
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Hart Lidov
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Keryn Woodman
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Sander Pajusalu
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Janelle M Spinazzola
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Thomas Gallagher
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Joan LaRovere
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Diane Balderson
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Lauren Black
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Keith Sutton
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Richard Horgan
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Monkol Lek
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| | - Terence Flotte
- From the Department of Genetics, Yale School of Medicine, New Haven (A.L., K.M., S.H., K.W., S. Pajusalu, M.L.), and Cure Rare Disease, Woodbridge (R.H.) - both in Connecticut; the Departments of Pediatrics (B.W., A.K., R.A., D.K., T.F.) and Neurology (A.R.B.) and Horae Gene Therapy Center and the Li Weibo Institute for Rare Diseases Research (A.K., M.B., K. Sylvia, A.R.B., R.A., D.K., S. Parajuli, T.G., T.F.), University of Massachusetts Chan Medical School, Worcester, the Department of Pathology (J.P., C.K.C., H.L.), the Division of Genetics (J.M.S.), and Department of Cardiology (J.L.), Boston Children's Hospital, and Harvard Medical School (J.P., C.K.C., H.L.), Boston, and Charles River Laboratories, Wilmington (L.B., K. Sutton) - all in Massachusetts; the Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu (S. Pajusalu), and the Genetics and Personalized Medicine Clinic, Tartu University Hospital (S. Pajusalu) - both in Tartu, Estonia; and Regulatory Innovation, Raleigh, NC (D.B.)
| |
Collapse
|
14
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
15
|
Kotsaris G, Qazi TH, Bucher CH, Zahid H, Pöhle-Kronawitter S, Ugorets V, Jarassier W, Börno S, Timmermann B, Giesecke-Thiel C, Economides AN, Le Grand F, Vallecillo-García P, Knaus P, Geissler S, Stricker S. Odd skipped-related 1 controls the pro-regenerative response of fibro-adipogenic progenitors. NPJ Regen Med 2023; 8:19. [PMID: 37019910 PMCID: PMC10076435 DOI: 10.1038/s41536-023-00291-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Skeletal muscle regeneration requires the coordinated interplay of diverse tissue-resident- and infiltrating cells. Fibro-adipogenic progenitors (FAPs) are an interstitial cell population that provides a beneficial microenvironment for muscle stem cells (MuSCs) during muscle regeneration. Here we show that the transcription factor Osr1 is essential for FAPs to communicate with MuSCs and infiltrating macrophages, thus coordinating muscle regeneration. Conditional inactivation of Osr1 impaired muscle regeneration with reduced myofiber growth and formation of excessive fibrotic tissue with reduced stiffness. Osr1-deficient FAPs acquired a fibrogenic identity with altered matrix secretion and cytokine expression resulting in impaired MuSC viability, expansion and differentiation. Immune cell profiling suggested a novel role for Osr1-FAPs in macrophage polarization. In vitro analysis suggested that increased TGFβ signaling and altered matrix deposition by Osr1-deficient FAPs actively suppressed regenerative myogenesis. In conclusion, we show that Osr1 is central to FAP function orchestrating key regenerative events such as inflammation, matrix secretion and myogenesis.
Collapse
Affiliation(s)
- Georgios Kotsaris
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Taimoor H Qazi
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Bioengineering, University of Pennsylvania, 19104, Philadelphia, USA
- Weldon School of Biomedical Engineering, Purdue University, 47907, West Lafayette, IN, USA
| | - Christian H Bucher
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Hafsa Zahid
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
- International Max Planck Research School for Biology and Computing IMPRS-BAC, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Sophie Pöhle-Kronawitter
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Vladimir Ugorets
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - William Jarassier
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195, Berlin, Germany
| | | | | | - Fabien Le Grand
- Institut NeuroMyoGène, CNRS UMR 5261, Inserm U1315, Université Claude Bernard Lyon 1, 69008, Lyon, France
| | - Pedro Vallecillo-García
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Petra Knaus
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Chemistry and Biochemistry, Cell Signaling Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Julius Wolff Institute, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
- Berlin Center for Advanced Therapies (BECAT), Charité Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Musculoskeletal Development and Regeneration Group, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany.
| |
Collapse
|
16
|
Milcheva R, Mečiarová I, Todorova K, Dilcheva V, Petkova S, Babál P. Trichinella spiralis (Owen, 1835) Induces Increased Dystrophin Expression in Invaded Cross-striated Muscle. Acta Parasitol 2023:10.1007/s11686-023-00673-2. [PMID: 36988857 DOI: 10.1007/s11686-023-00673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
PURPOSE Dystrophin and the dystrophin glycoprotein complex serve as a cytoskeletal integrator, critical for muscle membrane stability. The aim of the present study was to clarify the expression of dystrophin protein and mRNA in the skeletal muscle tissue during the muscle phase of trichinellosis in mice. METHODS Muscle tissue was collected from mice experimentally infected with Trichinella spiralis at days 0, 14 and 40 after infection. The expression of dystrophin in the muscle tissue was investigated by immunohistochemistry with antibodies against three different domains of the protein, and the expression levels of Dys mRNA by real-time PCR. RESULTS The presence of dystrophin protein was increased in the de-differentiating cytoplasm at the early stage of muscle infection and was persisting also in the mature Nurse cell harbouring the parasite. It was accompanied by significantly elevated expression of Dys mRNA at days 14 and 40 after infection. CONCLUSION Our findings indicate that dystrophin plays a role in regeneration of the muscle and in the Nurse cell formation and stability for security of the parasite survival.
Collapse
Affiliation(s)
- Rositsa Milcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum-Bulgarian Academy of Sciences, "Acad. G. Bonchev'' Str., block 25, 1113, Sofia, Bulgaria.
| | | | - Katerina Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum-Bulgarian Academy of Sciences, "Acad. G. Bonchev'' Str., block 25, 1113, Sofia, Bulgaria
| | - Valeria Dilcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum-Bulgarian Academy of Sciences, "Acad. G. Bonchev'' Str., block 25, 1113, Sofia, Bulgaria
| | - Svetlozara Petkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum-Bulgarian Academy of Sciences, "Acad. G. Bonchev'' Str., block 25, 1113, Sofia, Bulgaria
| | - Pavel Babál
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
17
|
Terrill JR, Huchet C, Le Guiner C, Lafoux A, Caudal D, Tulangekar A, Bryson-Richardson RJ, Sztal TE, Grounds MD, Arthur PG. Muscle Pathology in Dystrophic Rats and Zebrafish Is Unresponsive to Taurine Treatment, Compared to the mdx Mouse Model for Duchenne Muscular Dystrophy. Metabolites 2023; 13:metabo13020232. [PMID: 36837851 PMCID: PMC9963000 DOI: 10.3390/metabo13020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Inflammation and oxidative stress are strongly implicated in the pathology of Duchenne muscular dystrophy (DMD), and the sulphur-containing amino acid taurine ameliorates both and decreases dystropathology in the mdx mouse model for DMD. We therefore further tested taurine as a therapy using dystrophic DMDmdx rats and dmd zebrafish models for DMD that have a more severe dystropathology. However, taurine treatment had little effect on the indices of dystropathology in both these models. While we and others have previously observed a deficiency in taurine in mdx mice, in the current study we show that the rat and zebrafish models had increased taurine content compared with wild-type, and taurine treatment did not increase muscle taurine levels. We therefore hypothesised that endogenous levels of taurine are a key determinate in potential taurine treatment efficacy. Because of this, we felt it important to measure taurine levels in DMD patient plasma samples and showed that in non-ambulant patients (but not in younger patients) there was a deficiency of taurine. These data suggest that taurine homeostasis varies greatly between species and may be influenced by age and disease progression. The potential for taurine to be an effective therapy may depend on such variables.
Collapse
Affiliation(s)
- Jessica R. Terrill
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
- Correspondence:
| | - Corinne Huchet
- TaRGeT Lab, Translational Research for Gene Therapy, INSERM, UMR 1089, Nantes Université, CHU Nantes, 440200 Nantes, France
| | - Caroline Le Guiner
- TaRGeT Lab, Translational Research for Gene Therapy, INSERM, UMR 1089, Nantes Université, CHU Nantes, 440200 Nantes, France
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Nantes Université, 44007 Nantes, France
| | - Dorian Caudal
- Therassay Platform, CAPACITES, Nantes Université, 44007 Nantes, France
| | - Ankita Tulangekar
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | | | - Tamar E. Sztal
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Miranda D. Grounds
- School of Human Sciences, the University of Western Australia, Perth 6009, Australia
| | - Peter G. Arthur
- School of Molecular Sciences, The University of Western Australia, Perth 6009, Australia
| |
Collapse
|
18
|
Morishita Y, Tamura S, Mochizuki K, Harada Y, Takamatsu T, Hosoi H, Tanaka H. Generation of myocyte agonal Ca 2+ waves and contraction bands in perfused rat hearts following irreversible membrane permeabilisation. Sci Rep 2023; 13:803. [PMID: 36646772 PMCID: PMC9842683 DOI: 10.1038/s41598-023-27807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Although irreversible cardiomyocyte injury provokes intracellular Ca2+ ([Ca2+]i) overload, the underlying dynamics of this response and its effects on cellular morphology remain unknown. We therefore visualised rapid-scanning confocal fluo4-[Ca2+]i dynamics and morphology of cardiomyocytes in Langendorff-perfused rat hearts following saponin-membrane permeabilisation. Our data demonstrate that 0.4% saponin-treated myocytes immediately exhibited high-frequency Ca2+ waves (131.3 waves/min/cell) with asynchronous, oscillatory contractions having a mean propagation velocity of 117.8 μm/s. These waves slowly decreased in frequency, developed a prolonged decay phase, and disappeared in 10 min resulting in high-static, fluo4-fluorescence intensity. The myocytes showing these waves displayed contraction bands, i.e., band-like actin-fibre aggregates with disruption of sarcomeric α-actinin. The contraction bands were not attenuated by the abolition of Ca2+ waves under pretreatment with ryanodine plus thapsigargin, but were partially attenuated by the calpain inhibitor MDL28170, while mechanical arrest of the myocytes by 2,3-butanedione monoxime completely attenuated contraction-band formation. The depletion of adenosine 5'-triphosphate by the mitochondrial electron uncoupler carbonyl cyanide 4-trifluoromethoxy phenylhydrazone also attenuated Ca2+ waves and contraction bands. Overall, saponin-induced myocyte [Ca2+]i overload provokes agonal Ca2+ waves and contraction bands. Contraction bands are not the direct consequence of the waves but are caused by cross-bridge interactions of the myocytes under calpain-mediated proteolysis.
Collapse
Affiliation(s)
- Yuma Morishita
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan.,Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Shoko Tamura
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan.
| |
Collapse
|
19
|
Fortunato F, Ferlini A. Biomarkers in Duchenne Muscular Dystrophy: Current Status and Future Directions. J Neuromuscul Dis 2023; 10:987-1002. [PMID: 37545256 PMCID: PMC10657716 DOI: 10.3233/jnd-221666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy is a severe, X-linked disease characterized by decreased muscle mass and function in children. Genetic and biochemical research over the years has led to the characterization of the cause and the pathophysiology of the disease. Moreover, the elucidation of genetic mechanisms underlining Duchenne muscular dystrophy has allowed for the design of innovative personalized therapies.The identification of specific, accurate, and sensitive biomarkers is becoming crucial for evaluating muscle disease progression and response to therapies, disease monitoring, and the acceleration of drug development and related regulatory processes.This review illustrated the up-to-date progress in the development of candidate biomarkers in DMD at the level of proteins, metabolites, micro-RNAs (miRNAs) and genetic modifiers also highlighting the complexity of translating research results to clinical practice.We highlighted the challenges encountered in translating biomarkers into the clinical context and the existing bottlenecks hampering the adoption of biomarkers as surrogate endpoints. These challenges could be overcome by national and international collaborative efforts, multicenter data sharing, definition of public biobanks and patients' registries, and creation of large cohorts of patients. Novel statistical tools/ models suitable to analyze small patient numbers are also required.Finally, collaborations with pharmaceutical companies would greatly benefit biomarker discovery and their translation in clinical trials.
Collapse
Affiliation(s)
- Fernanda Fortunato
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
The Synthesis of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase (GNE), α-dystroglycan, and β-galactoside α-2,3-sialyltransferase 6 (ST3Gal6) By Skeletal Muscle Cell As a Response To Infection with Trichinella Spiralis. Helminthologia 2022; 59:217-225. [PMID: 36694833 PMCID: PMC9831521 DOI: 10.2478/helm-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
The Nurse cell of the parasitic nematode Trichinella spiralis is a unique structure established after genetic, morphological and functional modification of a small portion of invaded skeletal muscle fiber. Even if the newly developed cytoplasm of the Nurse cell is no longer contractile, this structure remains well integrated within the surrounding healthy tissue. Our previous reports suggested that this process is accompanied by an increased local biosynthesis of sialylated glycoproteins. In this work we examined the expressions of three proteins, functionally associated with the process of sialylation. The enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key initiator of the sialic acid biosynthetic pathway. The α-dystroglycan was the only identified sialylated glycoprotein in skeletal muscles by now, bearing sialyl-α-2,3-Gal-β-1,4-Gl-cNAc-β-1,2-Man-α-1-O-Ser/Thr glycan. The third protein of interest for this study was the enzyme β-galactoside α-2,3-sialyltransferase 6 (ST3Gal6), which transfers sialic acid preferably onto Gal-β-1,4-GlcNAc as an acceptor, and thus it was considered as a suitable candidate for the sialylation of the α-dystroglycan. The expressions of the three proteins were analyzed by real time-PCR and immunohistochemistry on modified methacarn fixed paraffin tissue sections of mouse skeletal muscle samples collected at days 0, 14 and 35 post infection. According to our findings, the up-regulation of GNE was a characteristic of the early and the late stage of the Nurse cell development. Additional features of this process were the elevated expressions of α-dystroglycan and the enzyme ST3Gal6. We provided strong evidence that an increased local synthesis of sialic acids is a trait of the Nurse cell of T. spiralis, and at least in part due to an overexpression of α-dystroglycan. In addition, circumstantially we suggest that the enzyme ST3Gal6 is engaged in the process of sialylation of the major oligosaccharide component of α-dystroglycan.
Collapse
|
21
|
Fujikura Y, Yamanouchi K, Sugihara H, Hatakeyama M, Abe T, Ato S, Oishi K. Ketogenic diet containing medium-chain triglyceride ameliorates transcriptome disruption in skeletal muscles of rat models of duchenne muscular dystrophy. Biochem Biophys Rep 2022; 32:101378. [PMID: 36386439 PMCID: PMC9661647 DOI: 10.1016/j.bbrep.2022.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a myopathy characterized by progressive muscle weakness caused by a mutation in the dystrophin gene on the X chromosome. We recently showed that a medium-chain triglyceride-containing ketogenic diet (MCTKD) improves skeletal muscle myopathy in a CRISPR/Cas9 gene-edited rat model of DMD. We examined the effects of the MCTKD on transcription profiles in skeletal muscles of the model rats to assess the underlying mechanism of the MCTKD-induced improvement in DMD. DMD rats were fed MCTKD or normal diet (ND) from weaning to 9 months, and wild-type rats were fed with the ND, then tibialis anterior muscles were sampled for mRNA-seq analysis. Pearson correlation heatmaps revealed a one-node transition in the expression profile between DMD and wild-type rats. A total of 10,440, 11,555 and 11,348 genes were expressed in the skeletal muscles of wild-type and ND-fed DMD rats the MCTKD-fed DMD rats, respectively. The MCTKD reduced the number of DMD-specific mRNAs from 1624 to 1350 and increased the number of mRNAs in common with wild-type rats from 9931 to 9998. Among 2660 genes were differentially expressed in response to MCTKD intake, the mRNA expression of 1411 and 1249 of them was respectively increased and decreased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses suggested that the MCTKD significantly suppressed the mRNA expression of genes associated with extracellular matrix organization and inflammation. This suggestion was consistent with our previous findings that the MCTKD significantly suppressed fibrosis and inflammation in DMD rats. In contrast, the MCTKD significantly increased the mRNA expression of genes associated with oxidative phosphorylation and ATP production pathways, suggesting altered energy metabolism. The decreased and increased mRNA expression of Sln and Atp2a1 respectively suggested that Sarco/endoplasmic reticulum Ca2+-ATPase activation is involved in the MCTKD-induced improvement of skeletal muscle myopathy in DMD rats. This is the first report to examine transcription profiles in the skeletal muscle of CRISPR/Cas9 gene-edited DMD model rats and the effect of MCTKD feeding on it. We evaluated the effects of an MCTKD on the global transcriptome of DMD rats. DMD rats are suitable models of human DMD for assessing transcriptome changes. MCTKD suppressed fibrosis and inflammatory pathways at the transcriptional level. MCTKD upregulated oxidative phosphorylation and ATP production pathways. MCTKD might activate SERCA at the transcriptional level.
Collapse
Affiliation(s)
- Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Corresponding author. Laboratory of Veterinary Physiology, Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | - Tomoki Abe
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Satoru Ato
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Chiba, Noda, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Kashiwa, Japan
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding author. Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| |
Collapse
|
22
|
Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison DDW, Bentzinger CF. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol 2022; 10:1056523. [PMID: 36523505 PMCID: PMC9745096 DOI: 10.3389/fcell.2022.1056523] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.
Collapse
Affiliation(s)
- Svenja C. Schüler
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - DDW Cornelison
- Division of Biological Sciences Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - C. Florian Bentzinger
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
23
|
Goult BT, von Essen M, Hytönen VP. The mechanical cell - the role of force dependencies in synchronising protein interaction networks. J Cell Sci 2022; 135:283155. [PMID: 36398718 PMCID: PMC9845749 DOI: 10.1242/jcs.259769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK,Authors for correspondence (; )
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland,Fimlab Laboratories, FI-33520 Tampere, Finland,Authors for correspondence (; )
| |
Collapse
|
24
|
Mianesaz H, Ghalamkari S, Salehi M, Behnam M, Hosseinzadeh M, Basiri K, Ghasemi M, Sedghi M, Ansari B. Causative variants linked with limb girdle muscular dystrophy in an Iranian population: 6 novel variants. Mol Genet Genomic Med 2022; 11:e2101. [PMID: 36374152 PMCID: PMC9938754 DOI: 10.1002/mgg3.2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Limb-girdle muscular dystrophy (LGMD) is a non-syndromic muscular dystrophy caused by variations in the genes involved in muscle structure, function and repair. The heterogeneity in the severity, progression, age of onset, and causative genes makes next-generation sequencing (NGS) a necessary approach for the proper diagnosis of LGMD. METHODS In this article, 26 Iranian patients with LGMD criteria were diagnosed with disease variants in the genes encoding calpain3, dysferlin, sarcoglycans and Laminin α-2. Patients were referred to the hospital with variable distribution of muscle wasting and progressive weakness in the body. The symptoms along with biochemical and EMG tests were suggestive of LGMD; thus the genomic DNA of patients were investigated by whole-exome sequencing including flanking intronic regions. The target genes were explored for the disease-causing variants. Moreover, the consequence of the amino acid alterations on proteins' secondary structure and function was investigated for a better understanding of the pathogenicity of variants. Variants were sorted based on the genomic region, type and clinical significance. RESULTS In a comprehensive investigation of previous clinical records, 6 variations were determined as novel, including c.1354-2 A > T and c.3169_3172dupCGGC in DYSF, c.568 G > T in SGCD, c.7243 C > T, c.8662_8663 insT and c. 4397G > C in LAMA2. Some of the detected variants were located in functional domains and/or near to the post-translational modification sites, altering or removing highly conserved regions of amino acid sequence.
Collapse
Affiliation(s)
- Hamidreza Mianesaz
- Department of Human Genetics, Medical SchoolUniversity of DebrecenDebrecenHungary,Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran
| | - Safoura Ghalamkari
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran,Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Mansoor Salehi
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran,Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Mahdiyeh Behnam
- Cellular, Molecular and Genetics Research CenterIsfahan University of Medical SciencesIsfahanIran,Student Research CommitteeSemnan University of Medical ScienceSemnanIran
| | - Majid Hosseinzadeh
- Department of Genetics and Molecular BiologyIsfahan University of Medical SciencesIsfahanIran,Medical Genetics Laboratory, Alzahra University HospitalIsfahan University of Medical SciencesIsfahanIran
| | - Keivan Basiri
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical ScienceTehranIran,Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Majid Ghasemi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical ScienceTehranIran,Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University HospitalIsfahan University of Medical SciencesIsfahanIran,Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical ScienceTehranIran
| | - Behnaz Ansari
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran,Isfahan Neuroscience Research Center, ALzahra Research InstituteIsfahan University of Medical ScienceIsfahanIran
| |
Collapse
|
25
|
Himelman E, Nouet J, Lillo MA, Chong A, Zhou D, Wehrens XHT, Rodney GG, Xie LH, Shirokova N, Contreras JE, Fraidenraich D. A microtubule-connexin-43 regulatory link suppresses arrhythmias and cardiac fibrosis in Duchenne muscular dystrophy mice. Am J Physiol Heart Circ Physiol 2022; 323:H983-H995. [PMID: 36206047 PMCID: PMC9639757 DOI: 10.1152/ajpheart.00179.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Dilated cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), an inherited degenerative disease of the cardiac and skeletal muscle caused by absence of the protein dystrophin. We showed one hallmark of DMD cardiomyopathy is the dysregulation of cardiac gap junction channel protein connexin-43 (Cx43). Proper Cx43 localization and function at the cardiac intercalated disc (ID) is regulated by post-translational phosphorylation of Cx43-carboxy-terminus residues S325/S328/S330 (pS-Cx43). Concurrently, Cx43 traffics along microtubules (MTs) for targeted delivery to the ID. In DMD hearts, absence of dystrophin results in a hyperdensified and disorganized MT cytoskeleton, yet the link with pS-Cx43 remains unaddressed. To gain insight into the relationship between MTs and pS-Cx43, DMD mice (mdx) and pS-Cx43-deficient (mdxS3A) mice were treated with an inhibitor of MT polymerization, colchicine (Colch). Colch treatment protected mdx, not mdxS3A mice, against Cx43 remodeling, improved MT directionality, and enhanced pS-Cx43/tubulin interaction. Likewise, severe arrhythmias were prevented in isoproterenol-stressed mdx, not mdxS3A mice. Furthermore, MT directionality was improved in pS-Cx43-mimicking mdx (mdxS3E). Mdxutr+/- and mdxutr+/-S3A mice, lacking one copy of dystrophin homolog utrophin, displayed enhanced cardiac fibrosis and reduced lifespan compared with mdxutr+/-S3E; and Colch treatment corrected cardiac fibrosis in mdxutr+/- but not mdxutr+/-S3A. Collectively, the data suggest that improved MT directionality reduces Cx43 remodeling and that pS-Cx43 is necessary and sufficient to regulate MT organization, which plays crucial role in correcting cardiac dysfunction in DMD mice. Thus, identification of novel organizational mechanisms acting on pS-Cx43-MT will help develop novel cardioprotective therapies for DMD cardiomyopathy.NEW & NOTEWORTHY We found that colchicine administration to Cx43-phospho-deficient dystrophic mice fails to protect against Cx43 remodeling. Conversely, Cx43-phospho-mimic dystrophic mice display a normalized MT network. We envision a bidirectional regulation whereby correction of the dystrophic MTs leads to correction of Cx43 remodeling, which in turn leads to further correction of the MTs. Our findings suggest a link between phospho-Cx43 and MTs that provides strong foundations for novel therapeutics in DMD cardiomyopathy.
Collapse
Affiliation(s)
- Eric Himelman
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Julie Nouet
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Alexander Chong
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Delong Zhou
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Medicine, Neuroscience, and Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Medicine, Neuroscience, and Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| |
Collapse
|
26
|
Wei X, Chen Q, Bu L, Wan X, Jiao Z, Han Z, Zou D, Zheng J, Yang C. Improved Muscle Regeneration into a Joint Prosthesis with Mechano-Growth Factor Loaded within Mesoporous Silica Combined with Carbon Nanotubes on a Porous Titanium Alloy. ACS NANO 2022; 16:14344-14361. [PMID: 36053268 DOI: 10.1021/acsnano.2c04591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Total joint replacement (TJR) is widely applied as a promising treatment for the reconstruction of serious joint diseases but is usually characterized by critical loss of skeletal muscle attachment to metal joint prostheses, resulting in fibrous scar tissue formation and subsequent motor dysfunction. Tissue engineering technology may provide a potential strategy for skeletal muscle regeneration into metal joint prostheses. Here, a porous titanium (Ti) alloy scaffold coated with carbon nanotubes (CNTs) and mesoporous silica nanoparticles (MSNs) through electrophoretic deposition (EPD) was designed as a mechano-growth factor (MGF) carrier. This two-layered coating exhibits a nanostructured topology, excellent MGF loading, and prolonged release performance via covalent bonding to improve myoblast adhesion, proliferation and myogenic differentiation in porous Ti alloy scaffolds without cytotoxicity. The Akt/mTOR signaling pathway plays a key role in this process. Furthermore, in vivo studies show that the scaffold promotes the growth of muscle, rather than fibrotic tissue, into the porous Ti alloy structure and improves muscle-derived mechanical properties, the migration of satellite cells, and possibly immunomodulation. In summary, this nanomaterial-coated scaffold provides a practical biomaterial platform to regenerate periprosthetic muscle tissue and restore comparable motor function to that of the natural joint.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Qin Chen
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Lingtong Bu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xi Wan
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zixian Jiao
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Zixiang Han
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Duohong Zou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Jisi Zheng
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, and National Clinical Research Center of Stomatology, Shanghai 200011, China
| |
Collapse
|
27
|
Wu Y, Guo X, Han T, Feng K, Zhang P, Xu Y, Yang Y, Xia Y, Chen Y, Xi J, Yang H, Wan X, Kang J. Cmarr/miR-540-3p axis promotes cardiomyocyte maturation transition by orchestrating Dtna expression. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:481-497. [PMID: 36035750 PMCID: PMC9382425 DOI: 10.1016/j.omtn.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/20/2022] [Indexed: 10/31/2022]
Abstract
The immature phenotype of embryonic stem cell-derived cardiomyocytes (ESC-CMs) limits their application. However, the molecular mechanisms of cardiomyocyte maturation remain largely unexplored. This study found that overexpression of long noncoding RNA (lncRNA)-Cmarr, which was highly expressed in cardiomyocytes, promoted the maturation change and physiological maturation of mouse ESC-CMs (mESC-CMs). Moreover, transplantation of cardiac patch overexpressing Cmarr exhibited better retention of mESC-CMs, reduced infarct area by enhancing vascular density in the host heart, and improved cardiac function in mice after myocardial infarction. Mechanism studies identified that Cmarr acted as a competitive endogenous RNA to impede the repression of miR-540-3p on Dtna expression and promoted the binding of the dystrophin-glycoprotein complex (DGC) and yes-associated protein (YAP), which in turn reduced the proportion of nuclear YAP and the expression of YAP target genes. Therefore, this study revealed the function and mechanism of Cmarr in promoting cardiomyocyte maturation and provided a lncRNA that can be used as a functional factor in the construction of cardiac patches for the treatment of myocardial infarction.
Collapse
|
28
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
A medium-chain triglyceride containing ketogenic diet exacerbates cardiomyopathy in a CRISPR/Cas9 gene-edited rat model with Duchenne muscular dystrophy. Sci Rep 2022; 12:11580. [PMID: 35803994 PMCID: PMC9270409 DOI: 10.1038/s41598-022-15934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy caused by dystrophin mutations. Although respiratory management has improved the prognosis of patients with DMD, inevitable progressive cardiomyopathy is a current leading cause of premature death. Recently, we showed that a medium-chain triglyceride containing ketogenic diet (MCTKD) improves skeletal muscle function and pathology in a CRISPR/Cas9 gene-edited rat model with DMD. In this study, we sought to clarify whether MCTKD also improves the cardiomyopathy in these rats. DMD rats were fed either the MCTKD or normal diet (ND) from ages of 3 weeks to 9 months old. Compared with the ND-fed rats, MCTKD-fed rats showed significantly prolonged QRS duration, decreased left ventricular fractional shortening, an increased heart weight/body weight ratio, and progression of cardiac fibrosis. In contrast to our previous study which found that MCTKD improved skeletal myopathy, the current study showed unexpected exacerbation of the cardiomyopathy. Further studies are needed to explore the underlying mechanisms for these differences and to explore modified dietary options that improve skeletal and cardiac muscles simultaneously.
Collapse
|
30
|
Dystrophin missense mutations alter focal adhesion tension and mechanotransduction. Proc Natl Acad Sci U S A 2022; 119:e2205536119. [PMID: 35700360 PMCID: PMC9231619 DOI: 10.1073/pnas.2205536119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a mechanical organ that not only produces force but also uses mechanical stimuli as a signal to regulate cellular responses. Duchenne and Becker muscular dystrophy are lethal muscle wasting diseases that affect 1 in 3,500 boys and is caused by the absence or malfunction of dystrophin protein, respectively. There is a lack of understanding on how the integration of these mechanical signals is dysregulated in muscular dystrophy and how they may contribute to disease progression. In this study, we show that patient-relevant dystrophin mutations alter the mechanical signaling axis in muscle cells, leading to impaired migration. This work proposes dystrophin as a component of the cellular force-sensing machinery, furthering our knowledge in the pathomechanism of muscular dystrophy. Dystrophin is an essential muscle protein that contributes to cell membrane stability by mechanically linking the actin cytoskeleton to the extracellular matrix via an adhesion complex called the dystrophin–glycoprotein complex. The absence or impaired function of dystrophin causes muscular dystrophy. Focal adhesions (FAs) are also mechanosensitive adhesion complexes that connect the cytoskeleton to the extracellular matrix. However, the interplay between dystrophin and FA force transmission has not been investigated. Using a vinculin-based bioluminescent tension sensor, we measured FA tension in transgenic C2C12 myoblasts expressing wild-type (WT) dystrophin, a nonpathogenic single nucleotide polymorphism (SNP) (I232M), or two missense mutations associated with Duchenne (L54R), or Becker muscular dystrophy (L172H). Our data revealed cross talk between dystrophin and FAs, as the expression of WT or I232M dystrophin increased FA tension compared to dystrophin-less nontransgenic myoblasts. In contrast, the expression of L54R or L172H did not increase FA tension, indicating that these disease-causing mutations compromise the mechanical function of dystrophin as an FA allosteric regulator. Decreased FA tension caused by these mutations manifests as defective migration, as well as decreased Yes-associated protein 1 (YAP) activation, possibly by the disruption of the ability of FAs to transmit forces between the extracellular matrix and cytoskeleton. Our results indicate that dystrophin influences FA tension and suggest that dystrophin disease-causing missense mutations may disrupt a cellular tension-sensing pathway in dystrophic skeletal muscle.
Collapse
|
31
|
Consalvi S, Tucciarone L, Macrì E, De Bardi M, Picozza M, Salvatori I, Renzini A, Valente S, Mai A, Moresi V, Puri PL. Determinants of epigenetic resistance to HDAC inhibitors in dystrophic fibro-adipogenic progenitors. EMBO Rep 2022; 23:e54721. [PMID: 35383427 PMCID: PMC9171680 DOI: 10.15252/embr.202254721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre-clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late-stage mdx mice exhibit aberrant HDAC activity and genome-wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo-acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late-stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi-induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper-acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late-stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease-associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti-fibrotic effects at late stages of DMD.
Collapse
Affiliation(s)
- Silvia Consalvi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Luca Tucciarone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Elisa Macrì
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Marco De Bardi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Mario Picozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| | - Illari Salvatori
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, University of Rome "La Sapienza", Rome, Italy
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, DAHFMO, University of Rome "La Sapienza", Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council (CNR), Rome Unit, Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
32
|
Diversity of Dystrophin Gene Mutations and Disease Progression in a Contemporary Cohort of Duchenne Muscular Dystrophy. Pediatr Cardiol 2022; 43:855-867. [PMID: 35064276 DOI: 10.1007/s00246-021-02797-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023]
Abstract
Abnormal dystrophin production due to mutations in the dystrophin gene causes Duchenne Muscular Dystrophy (DMD). Cases demonstrate considerable genetic and disease progression variability. It is unclear if specific gene mutations are prognostic of outcomes in this population. We conducted a retrospective cohort study of DMD patients followed at 17 centers across the USA and Canada from 2005 to 2015 with goal of understanding the genetic variability of DMD and its impact on clinical outcomes. Cumulative incidence of clinically relevant outcomes was stratified by genetic mutation type, exon mutation location, and extent of exon deletion. Of 436 males with DMD, 324 (74.3%) underwent genetic testing. Deletions were the most common mutation type (256, 79%), followed by point mutations (45, 13.9%) and duplications (23, 7.1%). There were 131 combinations of mutations with most mutations located along exons 45 to 52. The number of exons deleted varied between 1 and 52 with a median of 3 exons deleted (IQR 1-6). Subjects with mutations starting at exon positions 40-54 had a later onset of arrhythmias occurring at median age 25 years (95% CI 18-∞), p = 0.01. Loss of ambulation occurred later at median age of 13 years (95% CI 12-15) in subjects with mutations that started between exons 55-79, p = 0.01. There was no association between mutation type or location and onset of cardiac dysfunction. We report the genetic variability in DMD and its association with timing of clinical outcomes. Genetic modifiers may explain some phenotypic variability.
Collapse
|
33
|
Bowers SL, Meng Q, Molkentin JD. Fibroblasts orchestrate cellular crosstalk in the heart through the ECM. NATURE CARDIOVASCULAR RESEARCH 2022; 1:312-321. [PMID: 38765890 PMCID: PMC11101212 DOI: 10.1038/s44161-022-00043-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/02/2022] [Indexed: 05/22/2024]
Abstract
Cell communication is needed for organ function and stress responses, especially in the heart. Cardiac fibroblasts, cardiomyocytes, immune cells, and endothelial cells comprise the major cell types in ventricular myocardium that together coordinate all functional processes. Critical to this cellular network is the non-cellular extracellular matrix (ECM) that provides structure and harbors growth factors and other signaling proteins that affect cell behavior. The ECM is not only produced and modified by cells within the myocardium, largely cardiac fibroblasts, it also acts as an avenue for communication among all myocardial cells. In this Review, we discuss how the development of therapeutics to combat cardiac diseases, specifically fibrosis, relies on a deeper understanding of how the cardiac ECM is intertwined with signaling processes that underlie cellular activation and behavior.
Collapse
Affiliation(s)
| | | | - Jeffery D. Molkentin
- Cincinnati Children’s Hospital, Division of Molecular Cardiovascular Biology; University of Cincinnati, Department of Pediatrics, Cincinnati, OH
| |
Collapse
|
34
|
García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA. Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nat Commun 2022; 13:1174. [PMID: 35246520 PMCID: PMC8897400 DOI: 10.1038/s41467-022-28693-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/19/2022] [Indexed: 12/31/2022] Open
Abstract
Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk. The translation of mechanical cues into gene expression changes is dependent on the nuclear import of mechanoresponsive transcriptional regulators. Here the authors identify that Importin-7 drives the nuclear import of one such regulator YAP while YAP then controls Importin-7 response to mechanical cues and restricts Importin-7 binding to other cargoes.
Collapse
Affiliation(s)
- María García-García
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez-Perales
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Patricia Jarabo
- Instituto Cajal-CSIC, Avda. Doctor Arce, 37, 28002, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Liran Fu
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Sheung Chun Ng
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Laura Sotodosos-Alonso
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit. Area of Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory. Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Calle Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
35
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
36
|
Yu HL, Hwang SPL. Zebrafish integrin a3b is required for cardiac contractility and cardiomyocyte proliferation. Biochem Biophys Res Commun 2022; 595:89-95. [PMID: 35121232 DOI: 10.1016/j.bbrc.2022.01.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
In cardiac muscle cells, heterodimeric integrin transmembrane receptors are known to serve as mechanotransducers, translating mechanical force to biochemical signaling. However, the roles of many individual integrins have still not been delineated. In this report, we demonstrate that Itga3b is localized to the sarcolemma of cardiomyocytes from 24 to 96 hpf. We further show that heterozygous and homozygous itga3b/bdf mutant embryos display a cardiomyopathy phenotype, with decreased cardiac contractility and reduced cardiomyocyte number. Correspondingly, proliferation of ventricular and atrial cardiomyoctyes and ventricular epicardial cells is decreased in itga3b mutant hearts. The contractile dysfunction of itga3b mutants can be attributed to cardiomyocyte sarcomeric disorganization, including thin myofilaments with blurred and shortened Z-discs. Together, our results reveal that Itga3b localizes to the myocardium sarcolemma, and it is required for cardiac contractility and cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Hsiang-Ling Yu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Sheng-Ping L Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
37
|
Abstract
PURPOSE The ability of skeletal muscle to adapt to eccentric (ECC) contraction-induced injury is known as the repeated bout effect (RBE). Despite the RBE being a well-established phenomenon observed in skeletal muscle, cellular and molecular events particularly those at the membranes that contribute to the adaptive potential of muscle have yet to be established. Therefore, the purpose of this study was to examine how membrane-associated proteins respond to the RBE. METHODS Anterior crural muscles of C57BL/6 female mice (3-5 months) were subjected to repeated bouts of in vivo ECCs, with isometric torque being measured immediately before and after injury. A total of six bouts were completed with 7 d between each bout. Protein content of dystrophin, β-sarcoglycan, and junctophilin were then assessed via immunoblotting in injured and uninjured muscles. RESULTS When expressed relative to preinjury isometric torque of bout 1, deficits in postinjury isometric torque during bout 2 (38%) did not differ from bout 1 (36%; P = 0.646) and were attenuated during bouts 3 through 6 (range, 24%-15%; P ≤ 0.014). Contents of dystrophin, β-sarcoglycan, and junctophilin did not change immediately after a single bout of 50 maximal ECCs (P ≥ 0.155); however, as a result of repeated bouts, contents of dystrophin, β-sarcoglycan, and junctophilin all increased compared with muscles that completed one or no bouts of ECC contractions (P ≤ 0.003). CONCLUSIONS The RBE represents a physiological measure of skeletal muscle plasticity. Here, we demonstrate that repeated bouts of ECC contractions increase contents of dystrophin, β-sarcoglycan, and junctophilin and attenuate postinjury torque deficits. Given our results, accumulation of membrane-associated proteins likely contributes to strength adaptations observed after repeated bouts of ECC contractions.
Collapse
Affiliation(s)
- Sylvia R. Sidky
- Division of Rehabilitation Science & Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN
| | | | - Dawn A. Lowe
- Division of Rehabilitation Science & Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN
| | - Cory W. Baumann
- Division of Rehabilitation Science & Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN
- Ohio Musculoskeletal and Neurological Institute (OMNI), Department of Biomedical Sciences, Ohio University, Athens, OH
| |
Collapse
|
38
|
Atak E, Karaoğlu D, Serttürk S, Koyuncu Irmak D, Yenenler-Kutlu A. Performing the comparative analysis to understand the functional roles of genes in different pathways of cardiomyopathy disease. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Gilbert G, Kadur Nagaraju C, Duelen R, Amoni M, Bobin P, Eschenhagen T, Roderick HL, Sampaolesi M, Sipido KR. Incomplete Assembly of the Dystrophin-Associated Protein Complex in 2D and 3D-Cultured Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Cell Dev Biol 2021; 9:737840. [PMID: 34805146 PMCID: PMC8599983 DOI: 10.3389/fcell.2021.737840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) are increasingly used to study genetic diseases on a human background. However, the lack of a fully mature adult cardiomyocyte phenotype of hiPSC-CM may be limiting the scope of these studies. Muscular dystrophies and concomitant cardiomyopathies result from mutations in genes encoding proteins of the dystrophin-associated protein complex (DAPC), which is a multi-protein membrane-spanning complex. We examined the expression of DAPC components in hiPSC-CM, which underwent maturation in 2D and 3D culture protocols. The results were compared with human adult cardiac tissue and isolated cardiomyocytes. We found that similarly to adult cardiomyocytes, hiPSC-CM express dystrophin, in line with previous studies on Duchenne’s disease. β-dystroglycan was also expressed, but, contrary to findings in adult cardiomyocytes, none of the sarcoglycans nor α-dystroglycan were, despite the presence of their mRNA. In conclusion, despite the robust expression of dystrophin, the absence of several other DAPC protein components cautions for reliance on commonly used protocols for hiPSC-CM maturation for functional assessment of the complete DAPC.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Chandan Kadur Nagaraju
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Matthew Amoni
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pierre Bobin
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Nicin L, Wagner JUG, Luxán G, Dimmeler S. Fibroblast-mediated intercellular crosstalk in the healthy and diseased heart. FEBS Lett 2021; 596:638-654. [PMID: 34787896 DOI: 10.1002/1873-3468.14234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023]
Abstract
Cardiac fibroblasts constitute a major cell population in the heart. They secrete extracellular matrix components and various other factors shaping the microenvironment of the heart. In silico analysis of intercellular communication based on single-cell RNA sequencing revealed that fibroblasts are the source of the majority of outgoing signals to other cell types. This observation suggests that fibroblasts play key roles in orchestrating cellular interactions that maintain organ homeostasis but that can also contribute to disease states. Here, we will review the current knowledge of fibroblast interactions in the healthy, diseased, and aging heart. We focus on the interactions that fibroblasts establish with other cells of the heart, specifically cardiomyocytes, endothelial cells and immune cells, and particularly those relying on paracrine, electrical, and exosomal communication modes.
Collapse
Affiliation(s)
- Luka Nicin
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
| | - Julian U G Wagner
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
| | - Guillermo Luxán
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
| |
Collapse
|
41
|
Baumann CW, Lindsay A, Sidky SR, Ervasti JM, Warren GL, Lowe DA. Contraction-Induced Loss of Plasmalemmal Electrophysiological Function Is Dependent on the Dystrophin Glycoprotein Complex. Front Physiol 2021; 12:757121. [PMID: 34764884 PMCID: PMC8576390 DOI: 10.3389/fphys.2021.757121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
Weakness and atrophy are key features of Duchenne muscular dystrophy (DMD). Dystrophin is one of the many proteins within the dystrophin glycoprotein complex (DGC) that maintains plasmalemmal integrity and cellular homeostasis. The dystrophin-deficient mdx mouse is also predisposed to weakness, particularly when subjected to eccentric (ECC) contractions due to electrophysiological dysfunction of the plasmalemma. Here, we determined if maintenance of plasmalemmal excitability during and after a bout of ECC contractions is dependent on intact and functional DGCs rather than, solely, dystrophin expression. Wild-type (WT) and dystrophic mice (mdx, mL172H and Sgcb-/- mimicking Duchenne, Becker and Limb-girdle Type 2E muscular dystrophies, respectively) with varying levels of dystrophin and DGC functionality performed 50 maximal ECC contractions with simultaneous torque and electromyographic measurements (M-wave root-mean-square, M-wave RMS). ECC contractions caused all mouse lines to lose torque (p<0.001); however, deficits were greater in dystrophic mouse lines compared to WT mice (p<0.001). Loss of ECC torque did not correspond to a reduction in M-wave RMS in WT mice (p=0.080), while deficits in M-wave RMS exceeded 50% in all dystrophic mouse lines (p≤0.007). Moreover, reductions in ECC torque and M-wave RMS were greater in mdx mice compared to mL172H mice (p≤0.042). No differences were observed between mdx and Sgcb-/- mice (p≥0.337). Regression analysis revealed ≥98% of the variance in ECC torque loss could be explained by the variance in M-wave RMS in dystrophic mouse lines (p<0.001) but not within WT mice (R 2=0.211; p=0.155). By comparing mouse lines that had varying amounts and functionality of dystrophin and other DGC proteins, we observed that (1) when all DGCs are intact, plasmalemmal action potential generation and conduction is maintained, (2) deficiency of the DGC protein β-sarcoglycan is as disruptive to plasmalemmal excitability as is dystrophin deficiency and, (3) some functionally intact DGCs are better than none. Our results highlight the significant role of the DGC plays in maintaining plasmalemmal excitability and that a collective synergism (via each DGC protein) is required for this complex to function properly during ECC contractions.
Collapse
Affiliation(s)
- Cory W. Baumann
- Department of Biomedical Sciences, Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, United States
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Angus Lindsay
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Sylvia R. Sidky
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Gordon L. Warren
- Department of Physical Therapy, Georgia State University, Atlanta, GA, United States
| | - Dawn A. Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
42
|
Verdile V, Guizzo G, Ferrante G, Paronetto MP. RNA Targeting in Inherited Neuromuscular Disorders: Novel Therapeutic Strategies to Counteract Mis-Splicing. Cells 2021; 10:cells10112850. [PMID: 34831073 PMCID: PMC8616048 DOI: 10.3390/cells10112850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023] Open
Abstract
Neuromuscular disorders represent multifaceted abnormal conditions, with little or no cure, leading to patient deaths from complete muscle wasting and atrophy. Despite strong efforts in the past decades, development of effective treatments is still urgently needed. Advent of next-generation sequencing technologies has allowed identification of novel genes and mutations associated with neuromuscular pathologies, highlighting splicing defects as essential players. Deciphering the significance and relative contributions of defective RNA metabolism will be instrumental to address and counteract these malignancies. We review here recent progress on the role played by alternative splicing in ensuring functional neuromuscular junctions (NMJs), and its involvement in the pathogenesis of NMJ-related neuromuscular disorders, with particular emphasis on congenital myasthenic syndromes and muscular dystrophies. We will also discuss novel strategies based on oligonucleotides designed to bind their cognate sequences in the RNA or targeting intermediary of mRNA metabolism. These efforts resulted in several chemical classes of RNA molecules that have recently proven to be clinically effective, more potent and better tolerated than previous strategies.
Collapse
Affiliation(s)
- Veronica Verdile
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, 00135 Rome, Italy
| | - Gloria Guizzo
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, CERC, 00143 Rome, Italy; (V.V.); (G.G.); (G.F.)
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
43
|
Gao Z, Lu A, Daquinag AC, Yu Y, Huard M, Tseng C, Gao X, Huard J, Kolonin MG. Partial Ablation of Non-Myogenic Progenitor Cells as a Therapeutic Approach to Duchenne Muscular Dystrophy. Biomolecules 2021; 11:biom11101519. [PMID: 34680151 PMCID: PMC8534118 DOI: 10.3390/biom11101519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by the loss of dystrophin, remains incurable. Reduction in muscle regeneration with DMD is associated with the accumulation of fibroadipogenic progenitors (FAPs) differentiating into myofibroblasts and leading to a buildup of the collagenous tissue aggravating DMD pathogenesis. Mesenchymal stromal cells (MSCs) expressing platelet-derived growth factor receptors (PDGFRs) are activated in muscle during DMD progression and give rise to FAPs promoting DMD progression. Here, we hypothesized that muscle dysfunction in DMD could be delayed via genetic or pharmacologic depletion of MSC-derived FAPs. In this paper, we test this hypothesis in dystrophin-deficient mdx mice. To reduce fibro/adipose infiltration and potentiate muscle progenitor cells (MPCs), we used a model for inducible genetic ablation of proliferating MSCs via a suicide transgene, viral thymidine kinase (TK), expressed under the Pdgfrb promoter. We also tested if MSCs from fat tissue, the adipose stromal cells (ASCs), contribute to FAPs and could be targeted in DMD. Pharmacological ablation was performed with a hunter-killer peptide D-CAN targeting ASCs. MSC depletion with these approaches resulted in increased endurance, measured based on treadmill running, as well as grip strength, without significantly affecting fibrosis. Although more research is needed, our results suggest that depletion of pathogenic MSCs mitigates muscle damage and delays the loss of muscle function in mouse models of DMD.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Proliferation/genetics
- Disease Models, Animal
- Dystrophin/genetics
- Humans
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myofibroblasts/cytology
- Myofibroblasts/metabolism
- Promoter Regions, Genetic/genetics
- Receptors, Platelet-Derived Growth Factor/genetics
- Stem Cells/cytology
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Zhanguo Gao
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Aiping Lu
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Alexes C. Daquinag
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Yongmei Yu
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
| | - Matthieu Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Chieh Tseng
- M.D. Anderson Cancer Center, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Xueqin Gao
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA; (A.L.); (M.H.); (X.G.)
- Correspondence: (J.H.); (M.G.K.); Tel.: +970-479-1595 (J.H.); +713-500-3146 (M.G.K.)
| | - Mikhail G. Kolonin
- Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA; (Z.G.); (A.C.D.); (Y.Y.)
- Correspondence: (J.H.); (M.G.K.); Tel.: +970-479-1595 (J.H.); +713-500-3146 (M.G.K.)
| |
Collapse
|
44
|
Saclier M, Ben Larbi S, My Ly H, Moulin E, Mounier R, Chazaud B, Juban G. Interplay between myofibers and pro-inflammatory macrophages controls muscle damage in mdx mice. J Cell Sci 2021; 134:272022. [PMID: 34471933 DOI: 10.1242/jcs.258429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Duchenne muscular dystrophy is a genetic muscle disease characterized by chronic inflammation and fibrosis mediated by a pro-fibrotic macrophage population expressing pro-inflammatory markers. Our aim was to characterize cellular events leading to the alteration of macrophage properties and to modulate macrophage inflammatory status using the gaseous mediator hydrogen sulfide (H2S). Using co-culture experiments, we first showed that myofibers derived from mdx mice strongly skewed the polarization of resting macrophages towards a pro-inflammatory phenotype. Treatment of mdx mice with NaHS, an H2S donor, reduced the number of pro-inflammatory macrophages in skeletal muscle, which was associated with a decreased number of nuclei per fiber, as well as reduced myofiber branching and fibrosis. Finally, we established the metabolic sensor AMP-activated protein kinase (AMPK) as a critical NaHS target in muscle macrophages. These results identify an interplay between myofibers and macrophages where dystrophic myofibers contribute to the maintenance of a highly inflammatory environment sustaining a pro-inflammatory macrophage status, which in turn favors myofiber damage, myofiber branching and establishment of fibrosis. Our results also highlight the use of H2S donors as a potential therapeutic strategy to improve the dystrophic muscle phenotype by dampening chronic inflammation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marielle Saclier
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Sabrina Ben Larbi
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Ha My Ly
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Eugénie Moulin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| |
Collapse
|
45
|
Ghori FF, Wahid M. Induced pluripotent stem cells from urine of Duchenne muscular dystrophy patients. Pediatr Int 2021; 63:1038-1047. [PMID: 33599058 DOI: 10.1111/ped.14655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The most common muscular dystrophy, Duchenne muscular dystrophy (DMD), is a lethal, X-linked disorder with no widespread cure. Worldwide, in vitro studies involving new, mutation-specific cures and regenerative therapies are employing disease-specific patient-specific cells. However, these may not be completely relevant for Pakistani children because of the human genome diversities and geographic variation in mutation type and frequency. Therefore, this study aimed to generate DMD induced pluripotent stem cells (iPSCs) from the urine of Pakistani children with DMD, to serve as a precious source of differentiated cells, such as Pakistani DMD-cardiomyocytes, for future disease-modelling, drug testing, and gene therapy. METHODS Urine-derived cells (UDCs) isolated from mid-stream urine underwent molecular characterization and cellular reprogramming towards iPSCs using the episomal vector system followed by molecular profiling of the iPSCs. RESULTS Colonies of elongated and spindle-shaped or rounded rice-grain like UDCs were spotted 4-7 days after plating and expanded rapidly with a second passage at 2-3 weeks. Multicolor flow cytometry confirmed the expression of mesenchymal stem-cell markers. The reprogramed iPSCs consisted of colonies of round, tightly-packed cells with large nuclei that were positively fluorescent for the pluripotency markers octamer binding transcription factor-4 (OCT-4), tumour resistance antigen 1-60 (TRA-1-60), and stage specific embryonic 4 antigen (SSEA-4), but not for the negative pluripotency marker SSEA-1. To the best of our knowledge, this was the first time DMD-iPSCs have been generated for Pakistani children. CONCLUSION This integration-free, feeder-free, efficient, and reproducible reprogramming method employed UDCs. Urine is a low-cost, non-invasive, painless, and repeatable source of rapidly expandable cells from children and morbid individuals for obtaining autologous cells for drug-assays and disease-modelling, suitable for DMD and other debilitating diseases.
Collapse
Affiliation(s)
- Fareeha Faizan Ghori
- Stem Cells and Regenerative Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Mohsin Wahid
- Stem Cells and Regenerative Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan.,Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
46
|
Parente JM, Blascke de Mello MM, Silva PHLD, Omoto ACM, Pernomian L, Oliveira ISD, Mahmud Z, Fazan R, Arantes EC, Schulz R, Castro MMD. MMP inhibition attenuates hypertensive eccentric cardiac hypertrophy and dysfunction by preserving troponin I and dystrophin. Biochem Pharmacol 2021; 193:114744. [PMID: 34453903 DOI: 10.1016/j.bcp.2021.114744] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Cardiac transition from concentric (C-LVH) to eccentric left ventricle hypertrophy (E-LVH) is a maladaptive response of hypertension. Matrix metalloproteinases (MMPs), in particular MMP-2, may contribute to tissue remodeling by proteolyzing extra- and intracellular proteins. Troponin I and dystrophin are two potential targets of MMP-2 examined in this study and their proteolysis would impair cardiac contractile function. We hypothesized that MMP-2 contributes to the decrease in troponin I and dystrophin in the hypertensive heart and thereby controls the transition from C-LVH to E-LVH and cardiac dysfunction. METHODS Male Wistar rats were divided into sham or two kidney-1 clip (2K-1C) hypertensive groups and treated with water (vehicle) or doxycycline (MMP inhibitor, 15 mg/kg/day) by gavage from the tenth to the sixteenth week post-surgery. Tail-cuff plethysmography, echocardiography, gelatin zymography, confocal microscopy, western blot, mass spectrometry, in silico protein analysis and immunofluorescence were performed. RESULTS 6 out of 23 2K-1C rats (26%) had E-LVH followed by reduced ejection fraction. The remaining had C-LVH with preserved cardiac function. Doxycycline prevented the transition from C-LVH to E-LVH. MMP activity is increased in C-LVH and E-LVH hearts which was inhibited by doxycycline. This effect was associated with an increase in troponin I cleavage products and a decline in dystrophin in the left ventricle of E-LVH rats, which was prevented by doxycycline. CONCLUSION Hypertension causes increased cardiac MMP-2 activity which proteolyzes troponin I and dystrophin, contributing to the transition from C-LVH to E-LVH and cardiac dysfunction.
Collapse
Affiliation(s)
- Juliana Montenegro Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Marcela Maria Blascke de Mello
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Pedro Henrique Leite da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Ana Carolina Mieko Omoto
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Laena Pernomian
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Zabed Mahmud
- Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Rubens Fazan
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, University of Alberta, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Center, T6G 2S2 Edmonton, AB, Canada
| | - Michele Mazzaron de Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
47
|
Fujikura Y, Sugihara H, Hatakeyama M, Oishi K, Yamanouchi K. Ketogenic diet with medium-chain triglycerides restores skeletal muscle function and pathology in a rat model of Duchenne muscular dystrophy. FASEB J 2021; 35:e21861. [PMID: 34416029 DOI: 10.1096/fj.202100629r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 12/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an intractable genetic disease associated with progressive skeletal muscle weakness and degeneration. Recently, it was reported that intraperitoneal injections of ketone bodies partially ameliorated muscular dystrophy by increasing satellite cell (SC) proliferation. Here, we evaluated whether a ketogenic diet (KD) with medium-chain triglycerides (MCT-KD) could alter genetically mutated DMD in model rats. We found that the MCT-KD significantly increased muscle strength and fiber diameter in these rats. The MCT-KD significantly suppressed the key features of DMD, namely, muscle necrosis, inflammation, and subsequent fibrosis. Immunocytochemical analysis revealed that the MCT-KD promoted the proliferation of muscle SCs, suggesting enhanced muscle regeneration. The muscle strength of DMD model rats fed with MCT-KD was significantly improved even at the age of 9 months. Our findings suggested that the MCT-KD ameliorates muscular dystrophy by inhibiting myonecrosis and promoting the proliferation of muscle SCs. As far as we can ascertain, this is the first study to apply a functional diet as therapy for DMD in experimental animals. Further studies are needed to elucidate the underlying mechanisms of the MCT-KD-induced improvement of DMD.
Collapse
Affiliation(s)
- Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | | | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.,School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
48
|
Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype. Int J Mol Sci 2021; 22:ijms22147349. [PMID: 34298968 PMCID: PMC8307986 DOI: 10.3390/ijms22147349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
Collapse
|
49
|
Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): lessons learned from in vitro modeling. Pflugers Arch 2021; 473:1099-1115. [DOI: 10.1007/s00424-021-02589-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
|
50
|
Sullivan RT, Lam NT, Haberman M, Beatka MJ, Afzal MZ, Lawlor MW, Strande JL. Cardioprotective effect of nicorandil on isoproterenol induced cardiomyopathy in the Mdx mouse model. BMC Cardiovasc Disord 2021; 21:302. [PMID: 34130633 PMCID: PMC8207777 DOI: 10.1186/s12872-021-02112-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) associated cardiomyopathy is a major cause of morbidity and mortality. In an in vitro DMD cardiomyocyte model, nicorandil reversed stress-induced cell injury through multiple pathways implicated in DMD. We aimed to test the efficacy of nicorandil on the progression of cardiomyopathy in mdx mice following a 10-day treatment protocol. METHODS A subset of mdx mice was subjected to low-dose isoproterenol injections over 5 days to induce a cardiac phenotype and treated with vehicle or nicorandil for 10 days. Baseline and day 10 echocardiograms were obtained to assess cardiac function. At 10 days, cardiac tissue was harvested for further analysis, which included histologic analysis and assessment of oxidative stress. Paired student's t test was used for in group comparison, and ANOVA was used for multiple group comparisons. RESULTS Compared to vehicle treated mice, isoproterenol decreased ejection fraction and fractional shortening on echocardiogram. Nicorandil prevented isoproterenol induced cardiac dysfunction. Isoproterenol increased cardiac fibrosis, which nicorandil prevented. Isoproterenol increased gene expression of NADPH oxidase, which decreased to baseline with nicorandil treatment. Superoxide dismutase 2 protein expression increased in those treated with nicorandil, and xanthine oxidase activity decreased in mice treated with nicorandil during isoproterenol stress compared to all other groups. CONCLUSIONS In conclusion, nicorandil is cardioprotective in mdx mice and warrants continued investigation as a therapy for DMD associated cardiomyopathy.
Collapse
Affiliation(s)
- Rachel T Sullivan
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Ngoc T Lam
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Margaret Haberman
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Margaret J Beatka
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Muhammad Z Afzal
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Jennifer L Strande
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| |
Collapse
|