1
|
Gonçalves A, Machado R, Gomes AC. Self-assembled nanoparticles of hybrid elastin-like and Oncostatin M polymers for improved wound healing. BIOMATERIALS ADVANCES 2025; 169:214150. [PMID: 39693870 DOI: 10.1016/j.bioadv.2024.214150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine that can significantly enhance wound healing. Here, we report on the use of nanoparticles (NPs) formulated from a genetically engineered A200_hOSM protein polymer, which combines an elastin-like recombinamer (A200) with human OSM (hOSM) in the same molecule, aiming at enhancing wound healing processes. A200_hOSM NPs were obtained by self-assembly and evaluated for their bioactivity in human keratinocytes and fibroblasts. The NPs demonstrated superior efficacy in promoting cell proliferation in a dose-dependent manner, exhibiting nearly threefold greater proliferation at 48 and 72 h, compared to cells treated with commercial hOSM. Moreover, the NPs stimulated cell migration and collagen production through activation of JAK/STAT3 signaling. They also promoted the production of IL-6 and IL-8, pro-inflammatory cytokines with a critical role for wound healing. Promotion of keratinocyte proliferation and differentiation were further validated in non-commercial 3D skin equivalents. The A200_hOSM NPs revealed potential in accelerating wound healing, evidenced by reduced wound size and a thicker epidermal layer. This system represents a significant advancement in the field of bioinspired biomaterials by improving cytokine bioavailability, allowing for localized therapy and offering a cost-effective strategy for employing hOSM in wound healing management.
Collapse
Affiliation(s)
- Anabela Gonçalves
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology)/ Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
2
|
Xu X, Wang R, Pei L, Wang Q, Liu C. Glucose Transport by Follicle-Stimulating Hormone Is Mediated Through the Akt/FOXO1 Pathway in Ovine Granulosa Cells. Vet Med Sci 2025; 11:e70294. [PMID: 40065595 PMCID: PMC11893720 DOI: 10.1002/vms3.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 03/14/2025] Open
Abstract
Glycolysis in granulosa cells (GCs) is the primary location of energy metabolism and its substrates in oocytes and is closely related to follicular development in mammals. The complex morphological structure and physiological functions of GCs are regulated by follicle-stimulating hormone (FSH), but little is known about how FSH regulates glycolysis in GCs, and its mechanism remains unclear. The purpose of this study is to investigate the mechanism by which FSH activates the Akt/FOXO1 pathway, thereby regulating glucose metabolism in ovine GCs. Granulosa cells were cultured in the presence of different concentrations of FSH and a CCK-8 assay was used to measure the proliferation of the treated cells. Next, qRT-PCR was performed to measure the transcription of the target genes, glucose transporter (GLUT). Western-blot analysis of the phospho-Akt and -FOXO1 levels induced by FSH through the glucose signalling pathway, in addition to the effects of these proteins on the expression levels of the downstream GLUT genes, was measured. Results showed that the addition of 10ng/mL FSH to the culture medium increased the viability of granulosa cells. Transcription of GLUT1 and 4 was significantly up-regulated in FSH-treated cells through activation of the Akt/FOXO1 phosphorylation pathway, thereby affecting glucose metabolism. This study contributes to the current understanding of the metabolic features of and the associated developmental pathways of ovine follicular GCs.
Collapse
Affiliation(s)
- Xin Xu
- College of Life Science and TechnologyState Key Laboratory Incubation Base for Conservation and Utilization of Bio‐Resource in Tarim BasinTarim UniversityAlarChina
| | - Ruotong Wang
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| | - Linlin Pei
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| | - Quanfeng Wang
- Jinken Animal Husbandry Technology Co., Ltd.HetianChina
| | - Chunjie Liu
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| |
Collapse
|
3
|
Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Iadicicco I, Donnarumma M, Galiero R, Acierno C, Sardu C, Russo V, Vetrano E, Conte C, Marfella R, Rinaldi L, Sasso FC. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants (Basel) 2025; 14:72. [PMID: 39857406 PMCID: PMC11759781 DOI: 10.3390/antiox14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly increases the risk of cardiovascular disease, which is the leading cause of morbidity and mortality among diabetic patients. A central pathophysiological mechanism linking T2DM to cardiovascular complications is oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production and the body's antioxidant defenses. Hyperglycemia in T2DM promotes oxidative stress through various pathways, including the formation of advanced glycation end products, the activation of protein kinase C, mitochondrial dysfunction, and the polyol pathway. These processes enhance ROS generation, leading to endothelial dysfunction, vascular inflammation, and the exacerbation of cardiovascular damage. Additionally, oxidative stress disrupts nitric oxide signaling, impairing vasodilation and promoting vasoconstriction, which contributes to vascular complications. This review explores the molecular mechanisms by which oxidative stress contributes to the pathogenesis of cardiovascular disease in T2DM. It also examines the potential of lifestyle modifications, such as dietary changes and physical activity, in reducing oxidative stress and mitigating cardiovascular risks in this high-risk population. Understanding these mechanisms is critical for developing targeted therapeutic strategies to improve cardiovascular outcomes in diabetic patients.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Mariarosaria Donnarumma
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100 Potenza, Italy;
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099 Milan, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
4
|
Higashi Y. Noninvasive Assessment of Vascular Function: From Physiological Tests to Biomarkers. JACC. ASIA 2024; 4:898-911. [PMID: 39802992 PMCID: PMC11711812 DOI: 10.1016/j.jacasi.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 01/16/2025]
Abstract
Vascular function is impaired by conditions such as hypertension, dyslipidemia, and diabetes as well as coronary risk factors including age, smoking, obesity, menopause and physical inactivity. Measurement of vascular function is useful not only for assessment of atherosclerosis itself but also in many other aspects such as understanding the pathophysiology, assessing treatment efficacy, and predicting prognosis of cardiovascular events. It is therefore important to accurately assess the extent of vascular function. A variety of vascular function assessments are currently used in clinical practice, including flow-mediated vasodilation, reactive hyperemia index, strain-gauge pulse plethysmographs, pulse wave velocity, augmentation index, intima media thickness, and chemical biomarkers. However, it is also true that there is no gold standard method for measuring vascular function in humans. To use vascular function effectively, it is necessary to understand the measurement-related pitfalls.
Collapse
Affiliation(s)
- Yukihito Higashi
- Address for correspondence: Dr Yukihito Higashi, Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
5
|
Zhou M, Zhang Y, Shi L, Li L, Zhang D, Gong Z, Wu Q. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions - A review. Pharmacol Res 2024; 206:107282. [PMID: 38914383 DOI: 10.1016/j.phrs.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Chronic inflammation is a common foundation for the development of many non-communicable diseases, particularly diabetes, atherosclerosis, and tumors. The activation of the axis involving Advanced Glycation End products (AGEs) and their receptor RAGE is a key promotive factor in the chronic inflammation process, influencing the pathological progression of these diseases. The accumulation of AGEs in the body results from an increase in glycation reactions and oxidative stress, especially pronounced in individuals with diabetes. By binding to RAGE, AGEs activate signaling pathways such as NF-κB, promoting the release of inflammatory factors, exacerbating cell damage and inflammation, and further advancing the formation of atherosclerotic plaques and tumor development. This review will delve into the molecular mechanisms by which the AGEs-RAGE axis activates chronic inflammation in the aforementioned diseases, as well as strategies to inhibit the AGEs-RAGE axis, aiming to slow or halt the progression of chronic inflammation and related diseases. This includes the development of AGEs inhibitors, RAGE antagonists, and interventions targeting upstream and downstream signaling pathways. Additionally, the early detection of AGEs levels and RAGE expression as biomarkers provides new avenues for the prevention and treatment of diabetes, atherosclerosis, and tumors.
Collapse
Affiliation(s)
- Mengzhou Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yuyan Zhang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430068, PR China
| | - Liangchao Li
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Duo Zhang
- Hubei Standardization and Quality Institute, Wuhan,Hubei 430068, PR China
| | - Zihao Gong
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
6
|
Wang X, He B. Endothelial dysfunction: molecular mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e651. [PMID: 39040847 PMCID: PMC11261813 DOI: 10.1002/mco2.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiovascular disease (CVD) and its complications are a leading cause of death worldwide. Endothelial dysfunction plays a crucial role in the initiation and progression of CVD, serving as a pivotal factor in the pathogenesis of cardiovascular, metabolic, and other related diseases. The regulation of endothelial dysfunction is influenced by various risk factors and intricate signaling pathways, which vary depending on the specific disease context. Despite numerous research efforts aimed at elucidating the mechanisms underlying endothelial dysfunction, the precise molecular pathways involved remain incompletely understood. This review elucidates recent research findings on the pathophysiological mechanisms involved in endothelial dysfunction, including nitric oxide availability, oxidative stress, and inflammation-mediated pathways. We also discuss the impact of endothelial dysfunction on various pathological conditions, including atherosclerosis, heart failure, diabetes, hypertension, chronic kidney disease, and neurodegenerative diseases. Furthermore, we summarize the traditional and novel potential biomarkers of endothelial dysfunction as well as pharmacological and nonpharmacological therapeutic strategies for endothelial protection and treatment for CVD and related complications. Consequently, this review is to improve understanding of emerging biomarkers and therapeutic approaches aimed at reducing the risk of developing CVD and associated complications, as well as mitigating endothelial dysfunction.
Collapse
Affiliation(s)
- Xia Wang
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben He
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Deręgowska A, Tomaszek N, Cuch P, Kozioł K, Kaniuka O, Sabadashka M, Bandura Y, Sybirna N. Glucotoxicity is mediated by cytoplasmic distribution of RAP1 in pancreatic β-cells. Arch Biochem Biophys 2024; 755:109982. [PMID: 38570110 DOI: 10.1016/j.abb.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Diabetes mellitus (DM) is a group of chronic metabolic disorders characterized by persistent hyperglycemia. In our study, we analyzed the level and location of RAP1 changes in the development of β-cell dysfunction induced by glucotoxicity. We employed three pancreatic β-cell lines, namely INS-1, 1.2B4, and NIT-1, as well as a streptozotocin-induced diabetes rat model. We demonstrate that after high glucose treatment, RAP1 is increased, probably through induction by AKT, allowing RAP1 to shuttle from the nucleus to the cytoplasm and activate NF-κB signaling. Furthermore, non-enzymatic post-translational modifications of RAP1, such as advanced glycation end products and carbonylation may affect the function of RAP1, such as activation of the NF-κB signaling. Taken together, we showed that RAP1 is a new player in the mechanism of glucotoxicity in pancreatic β-cells.
Collapse
Affiliation(s)
- A Deręgowska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - N Tomaszek
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - P Cuch
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - K Kozioł
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - O Kaniuka
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000, Lviv, Ukraine
| | - M Sabadashka
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000, Lviv, Ukraine
| | - Yu Bandura
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000, Lviv, Ukraine
| | - N Sybirna
- Department of Biochemistry, Ivan Franko National University of Lviv, 1, Universytetska St., 79000, Lviv, Ukraine
| |
Collapse
|
8
|
He H, Wei Q, Chang J, Yi X, Yu X, Luo G, Li X, Yang W, Long Y. Exploring the hypoglycemic mechanism of chlorogenic acids from Pyrrosia petiolosa (Christ) Ching on type 2 diabetes mellitus based on network pharmacology and transcriptomics strategy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117580. [PMID: 38104881 DOI: 10.1016/j.jep.2023.117580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyrrosia petiolosa (Christ) Ching (YBSW) is a Traditional Chinese medicine rich in chlorogenic acids. It is an important component in many Traditional Chinese medicinal hypoglycemic formulas and is commonly used by the Miao people to treat diabetes with good efficacy. Our previous research has suggested that chlorogenic acids may be the active ingredients in YBSW. AIM OF THE STUDY To explore the mechanisms underlying the anti-type 2 diabetes mellitus (T2DM) hypoglycemic effects of chlorogenic acids contained in YBSW. MATERIALS AND METHODS In vivo experiments, hematoxylin-eosin staining (HE) staining, and immunohistochemistry (IHC) were used to determine the effects of chlorogenic acids contained in YBSW in rats. mRNA expression profiling, microarray analysis, and network pharmacology were used to analyze the underlying mechanisms of the effects. Finally, apoptosis and changes in the related pathways were evaluated in vitro using a 3-(4,5-dimethyl-2-thia-zolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, quantitative real-time polymerase chain reaction, immunofluorescence (IF) assessment, and flow cytometry. RESULTS After the administration of isochlorogenic acid B, the levels of triglycerides, serum total cholesterol, and fasting blood glucose significantly decreased. HE and IHC staining revealed that isochlorogenic acid B significantly increased insulin expression in islet cells. Using network pharmacology and RNA-seq Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, we screened the advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) signaling pathway. We also verified that YBSW and its chlorogenic acid can inhibit apoptosis and downregulate the expression of related mRNA in the AGE-RAGE pathway in RIN-m5f cells. CONCLUSIONS YBSW exhibits a significant hypoglycemic effect, with chlorogenic acid being an effective component. The therapeutic effect of chlorogenic acids contained in YBSW is mainly realized by promoting insulin secretion and pancreatic tissue repair. Moreover, YBSW substantially mitigates apoptosis via the AGE-RAGE pathway in T2DM.
Collapse
Affiliation(s)
- Hanjiao He
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Qing Wei
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Jiao Chang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Xu Yi
- Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, No. 32 Feishan Road, Nanming District, Guiyang, Guizhou 550002, PR China
| | - Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Guoyong Luo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China
| | - Xinfeng Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China.
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China.
| | - Yi Long
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
9
|
Ravi R, Nagarajan H, Muralikumar S, Vetrivel U, Subramaniam Rajesh B. Unveiling the therapeutic potential of a mutated paraoxonase 2 in diabetic retinopathy: Defying glycation, mitigating oxidative stress, ER stress and inflammation. Int J Biol Macromol 2024; 258:128899. [PMID: 38141706 DOI: 10.1016/j.ijbiomac.2023.128899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Paraoxonase 2 (PON2) is an intracellular anti-oxidant protein ubiquitously expressed in all cells and reduces reactive oxygen species, endoplasmic reticulum (ER) stress, further improves mitochondrial function and thereby shows anti-apoptotic function. In diabetes and its complications this PON gets glycated and becomes in effective. The PON activity is reported to be reduced in diabetic retinopathy and we have earlier showed Carboxy methyl lysine (AGE) decreased PON2 expression and activity in Human retinal endothelial cells (HREC) . In this study, we have designed and developed a mutated PON2 by in silico and in vitro approach which can resist glycation. Where in glycation-prone residues in PON2 was predicted using in silico analyses and a mutated PON2 was developed using in vitro site directed mutagenesis (SDM) assay mPON2 (mutant PON2-PON2-K70A) and its efficacy was compared with wPON2 (wild type PON2). CML glycated wPON2 and reduced its activity when compared with mPON2 in HREC confirmed by immunoprecipitation and in vitro experiments. Additionally, mPON2 interaction efficiency with its substrates was higher than wPON2 by insilico assay and demonstrated enhanced inhibition against CML-induced oxidative stress, ER stress, pro-inflammation, and mitochondrial fission than wPON2 by invitro assay. Further mPON2 showed increased inhibition of phosphorylation of NFĸB induced by CML. Our investigation establishes that the over expression of mPON2 in HREC can defy glycation and therefore mitigate ER stress and inflammation against CML than endogenous wPON2. These findings imply that mPON2 can be a beneficial therapeutic target against diabetic retinopathy.
Collapse
Affiliation(s)
- Ramya Ravi
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India; School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hemavathy Nagarajan
- Centre for Bioinformatics, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India
| | - Shalini Muralikumar
- Centre for Bioinformatics, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India; Department of Bioinformatics, ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, Karnataka 590 010, India
| | - Bharathidevi Subramaniam Rajesh
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India.
| |
Collapse
|
10
|
Yi M, Cruz Cisneros L, Cho EJ, Alexander M, Kimelman FA, Swentek L, Ferrey A, Tantisattamo E, Ichii H. Nrf2 Pathway and Oxidative Stress as a Common Target for Treatment of Diabetes and Its Comorbidities. Int J Mol Sci 2024; 25:821. [PMID: 38255895 PMCID: PMC10815857 DOI: 10.3390/ijms25020821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes is a chronic disease that induces many comorbidities, including cardiovascular disease, nephropathy, and liver damage. Many mechanisms have been suggested as to how diabetes leads to these comorbidities, of which increased oxidative stress in diabetic patients has been strongly implicated. Limited knowledge of antioxidative antidiabetic drugs and substances that can address diabetic comorbidities through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway calls for detailed investigation. This review will describe how diabetes increases oxidative stress, the general impact of that oxidative stress, and how oxidative stress primarily contributes to diabetic comorbidities. It will also address how treatments for diabetes, especially focusing on their effects on the Nrf2 antioxidative pathway, have been shown to similarly affect the Nrf2 pathway of the heart, kidney, and liver systems. This review demonstrates that the Nrf2 pathway is a common pathogenic component of diabetes and its associated comorbidities, potentially identifying this pathway as a target to guide future treatments.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Leslie Cruz Cisneros
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Eric J. Cho
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Francesca A. Kimelman
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (L.C.C.); (E.J.C.); (M.A.); (F.A.K.); (L.S.)
| |
Collapse
|
11
|
Liu J, Hua Z, Liao S, Li B, Tang S, Huang Q, Wei Z, Lu R, Lin C, Ding X. Prediction of the active compounds and mechanism of Biochanin A in the treatment of Legg-Calvé-Perthes disease based on network pharmacology and molecular docking. BMC Complement Med Ther 2024; 24:26. [PMID: 38195507 PMCID: PMC10775507 DOI: 10.1186/s12906-023-04298-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Legg-Calvé-Perthes disease is a special self-limited disease in pediatric orthopedics with a high disability rate and a long-term course, and there is still no clear and effective therapeutic drug in clinic. This study aimed to investigate the potential efficacy of biochanin A, a kind of oxygen-methylated isoflavone compound, in treating Perthes disease based on network pharmacology, molecular docking and in vitro experiments. METHODS IL-6 was used to stimulate human umbilical vein endothelial cells to construct endothelial cell dysfunction model. We demonstrated whether biochanin A could alleviate endothelial dysfunction through CCK8 assay, immunofluorescence. Targets of biochanin A from pharmMappeer, SWISS, and TargetNet databases were screened. Targets of endothelial dysfunction were obtained from Genecards and OMIM databases. Protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomics analyses were used to analyze the potential target and the key pathway of the anti-endothelial dysfunction activity of biochanin A. To validate the potential target-drug interactions, molecular docking and molecular dynamics simulations were performed and the result was proved by western blot. RESULTS It was found that biochanin A can promote the expression of ZO-1, reduce the expression of ICAM-1, which means improving endothelial dysfunction. A total of 585 targets of biochanin A from pharmMappeer, SWISS, and TargetNet databases were screened. A total of 10,832 targets of endothelial dysfunction were obtained from Genecards and OMIM databases. A total of 527 overlapping targets of endothelial dysfunction and biochanin A were obtained. AKT1, TNF-α, VCAM1, ICAM1, and NOS3 might be the key targets of the anti-endothelial dysfunction activity of biochanin A, and the key pathways might be PI3K-Akt and TNF signaling pathways. Molecular docking results indicated that the AKT1 and TNF-α had the highest affinity binding with biochanin A. CONCLUSION This study indicates that biochanin A can target AKT1 and TNF-α to alleviate endothelial dysfunction induced by IL-6 in Perthes disease, which provides a theoretical basis for the treatment of Perthes disease by using biochanin A.
Collapse
Affiliation(s)
- Jianhong Liu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhirui Hua
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Boxiang Li
- Department of Orthopedics, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Shengping Tang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Huang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhendi Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Rongbin Lu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chengsen Lin
- Trauma Center, Emergency Department, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| | - Xiaofei Ding
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
12
|
Yang S, Zeng Z, Yuan Q, Chen Q, Wang Z, Xie H, Liu J. Vascular calcification: from the perspective of crosstalk. MOLECULAR BIOMEDICINE 2023; 4:35. [PMID: 37851172 PMCID: PMC10584806 DOI: 10.1186/s43556-023-00146-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
Vascular calcification (VC) is highly correlated with cardiovascular disease morbidity and mortality, but anti-VC treatment remains an area to be tackled due to the ill-defined molecular mechanisms. Regardless of the type of VC, it does not depend on a single cell but involves multi-cells/organs to form a complex cellular communication network through the vascular microenvironment to participate in the occurrence and development of VC. Therefore, focusing only on the direct effect of pathological factors on vascular smooth muscle cells (VSMCs) tends to overlook the combined effect of other cells and VSMCs, including VSMCs-VSMCs, ECs-VMSCs, Macrophages-VSMCs, etc. Extracellular vesicles (EVs) are a collective term for tiny vesicles with a membrane structure that are actively secreted by cells, and almost all cells secrete EVs. EVs docked on the surface of receptor cells can directly mediate signal transduction or transfer their contents into the cell to elicit a functional response from the receptor cells. They have been proven to participate in the VC process and have also shown attractive therapeutic prospects. Based on the advantages of EVs and the ability to be detected in body fluids, they may become a novel therapeutic agent, drug delivery vehicle, diagnostic and prognostic biomarker, and potential therapeutic target in the future. This review focuses on the new insight into VC molecular mechanisms from the perspective of crosstalk, summarizes how multi-cells/organs interactions communicate via EVs to regulate VC and the emerging potential of EVs as therapeutic methods in VC. We also summarize preclinical experiments on crosstalk-based and the current state of clinical studies on VC-related measures.
Collapse
Affiliation(s)
- Shiqi Yang
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qing Yuan
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
- Department of Clinical Laboratory Medicine, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Chen
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hui Xie
- Department of Orthopaedics, Movement System Injury and Repair Research Centre, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jianghua Liu
- Department of Metabolism and Endocrinology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y, Jiang ZZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 2023; 22:237. [PMID: 37660030 PMCID: PMC10475205 DOI: 10.1186/s12933-023-01965-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by long-term hyperglycaemia, which leads to microangiopathy and macroangiopathy and ultimately increases the mortality of diabetic patients. Endothelial dysfunction, which has been recognized as a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy, is characterized by a reduction in NO bioavailability. Oxidative stress, which is the main pathogenic factor in diabetes, is one of the major triggers of endothelial dysfunction through the reduction in NO. In this review, we summarize the four sources of ROS in the diabetic vasculature and the underlying molecular mechanisms by which the pathogenic factors hyperglycaemia, hyperlipidaemia, adipokines and insulin resistance induce oxidative stress in endothelial cells in the context of diabetes. In addition, we discuss oxidative stress-targeted interventions, including hypoglycaemic drugs, antioxidants and lifestyle interventions, and their effects on diabetes-induced endothelial dysfunction. In summary, our review provides comprehensive insight into the roles of oxidative stress in diabetes-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Bu-Tuo Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Xiu-Mei Ma
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
14
|
Hardy E, Sarker H, Fernandez-Patron C. Could a Non-Cellular Molecular Interactome in the Blood Circulation Influence Pathogens' Infectivity? Cells 2023; 12:1699. [PMID: 37443732 PMCID: PMC10341357 DOI: 10.3390/cells12131699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
We advance the notion that much like artificial nanoparticles, relatively more complex biological entities with nanometric dimensions such as pathogens (viruses, bacteria, and other microorganisms) may also acquire a biomolecular corona upon entering the blood circulation of an organism. We view this biomolecular corona as a component of a much broader non-cellular blood interactome that can be highly specific to the organism, akin to components of the innate immune response to an invading pathogen. We review published supporting data and generalize these notions from artificial nanoparticles to viruses and bacteria. Characterization of the non-cellular blood interactome of an organism may help explain apparent differences in the susceptibility to pathogens among individuals. The non-cellular blood interactome is a candidate therapeutic target to treat infectious and non-infectious conditions.
Collapse
Affiliation(s)
- Eugenio Hardy
- Center of Molecular Immunology, P.O. Box 16040, Havana 11600, Cuba
| | - Hassan Sarker
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
15
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 89.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
16
|
Brom J, Petrikis RG, Pielak GJ. How Sugars Protect Dry Protein Structure. Biochemistry 2023; 62:1044-1052. [PMID: 36802580 PMCID: PMC10126877 DOI: 10.1021/acs.biochem.2c00692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/27/2023] [Indexed: 02/20/2023]
Abstract
Extremotolerant organisms and industry exploit sugars as desiccation protectants, with trehalose being widely used by both. How sugars, in general, and the hydrolytically stable sugar trehalose, in particular, protect proteins is poorly understood, which hinders the rational design of new excipients and implementation of novel formulations for preserving lifesaving protein drugs and industrial enzymes. We employed liquid-observed vapor exchange nuclear magnetic resonance (LOVE NMR), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) to show how trehalose and other sugars protect two model proteins: the B1 domain of streptococcal protein G (GB1) and truncated barley chymotrypsin inhibitor 2 (CI2). Residues with intramolecular H-bonds are most protected. The LOVE NMR and DSC data indicate that vitrification may be protective. Combining LOVE NMR and TGA data shows that water retention is not important. Our data suggest that sugars protect protein structure as they dry by strengthening intraprotein H-bonds and water replacement and that trehalose is the stress-tolerance sugar of choice because of its covalent stability.
Collapse
Affiliation(s)
- Julia
A. Brom
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599-3290, United States
| | - Ruta G. Petrikis
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599-3290, United States
| | - Gary J. Pielak
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599-3290, United States
- Department
of Biochemistry & Biophysics, UNC-CH, Chapel Hill, North Carolina 27599, United States
- Lineberger
Cancer Center, UNC-CH, Chapel Hill, North Carolina 27599, United States
- Integrative
Program for Biological and Genome Sciences, UNC-CH, Chapel Hill, North Carolina 27599-7100, United States
| |
Collapse
|
17
|
Inhibition of Advanced Glycation End-Products by Tamarindus indica and Mitragyna inermis Extracts and Effects on Human Hepatocyte and Fibroblast Viability. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010393. [PMID: 36615587 PMCID: PMC9823519 DOI: 10.3390/molecules28010393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Tamarindus indica and Mitragyna inermis are widely used by herbalists to cure diabetes mellitus. The aim of this study is to investigate the inhibitory potential of aqueous and various organic solvent fractions from both plants and some isolated compounds against advanced glycation end-products (AGEs). For this purpose, an in vitro BSA-fructose glycation model was used to evaluate the inhibition of AGE formation. Furthermore, the effects of the fractions on mouse fibroblast (NIH-3T3) and human hepatocyte (HepG2) survival were evaluated. The leaf, stem, and root fractions of both plants exhibited significant inhibition of AGEs formation. The IC50 values appeared to be less than 250 µg/mL; however, all fractions presented no adverse effects on NIH-3T3 up to 500 µg/mL. Otherwise, our phytochemical investigation afforded the isolation of a secoiridoid from the Mitragyna genus named secoiridoid glucoside sweroside (1), along with three known quinovic acid glycosides: quinovic acid-3β-O-β-d-glucopyranoside (2), quinovic acid-3-O-β-d-6-deoxy-glucopyranoside, 28-O-β-d-glucopyranosyl ester (3), and quinovic acid 3-O-α-l-rhamnopyranosyl-(4→1)-β-d-glucopyranoside (4). In particular, 1-3 are compounds which have not previously been described in Mitragyna inermis roots. However, the isolated compounds did not exhibit AGE inhibitory activity. Further investigation on these potent antiglycation fractions may allow for the isolation of new antidiabetic drug candidates.
Collapse
|
18
|
Perkins RK, van Vliet S, Miranda ER, Fuller KNZ, Beisswenger PJ, Wilund KR, Paluska SA, Burd NA, Haus JM. Advanced Glycation End Products and Inflammatory Cytokine Profiles in Maintenance Hemodialysis Patients After the Ingestion of a Protein-Dense Meal. J Ren Nutr 2023; 33:181-192. [PMID: 34923111 PMCID: PMC10580815 DOI: 10.1053/j.jrn.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The goal of this investigation was to evaluate circulating and skeletal muscle inflammatory biomarkers between maintenance hemodialysis (MHD) and demographic-matched control subjects (CON) before and after ingestion of a protein-rich meal. DESIGN AND METHODS CON (n = 8; 50 ± 2 years; 31 ± 1 kg/m2) and MHD patients (n = 8; 56 ± 5 years; 32 ± 2 kg/m2) underwent a basal blood draw and muscle biopsy and serial blood draws after the ingestion of a mixed meal on a nondialysis day. Plasma advanced glycation end products (AGEs) and markers of oxidation were assessed via liquid chromatography-tandem mass spectrometry before and after the meal (+240 min). Circulating inflammatory cytokines and soluble receptors for AGE (sRAGE) isoforms (endogenous secretory RAGEs and cleaved RAGEs) were determined before and after the meal (+240 min). Basal muscle was probed for inflammatory cytokines and protein expression of related signaling components (RAGE, Toll-like receptor 4, oligosaccharyltransferase subunit 48, TIR-domain-containing adapter-inducing interferon-β, total IκBα, and pIκBα). RESULTS Basal circulating AGEs were 7- to 343-fold higher (P < .001) in MHD than those in CON, but only MG-H1 increased in CON after the meal (P < .001). There was a group effect (MHD > CON) for total sRAGEs (P = .02) and endogenous secretory RAGEs (P < .001) and a trend for cleaved RAGEs (P=.09), with no meal effect. In addition, there was a group effect (MHD < CON; P < .05) for circulating fractalkine, interleukin (IL)10, IL17A, and IL1β and a trend (P < .10) for IL6 and macrophage inflammatory protein 1 alpha, whereas tumor necrosis factor alpha was higher in MHD (P < .001). In muscle, Toll-like receptor 4 (P = .03), TIR-domain-containing adapter-inducing interferon-β (P = .002), and oligosaccharyltransferase subunit 48 (P = .02) expression was lower in MHD than that in CON, whereas IL6 was higher (P = .01) and IL8 (P = .08) tended to be higher in MHD. CONCLUSION Overall, MHD exhibited an exaggerated, circulating, and skeletal muscle inflammatory biomarker environment, and the meal did not appreciably affect the inflammatory status.
Collapse
Affiliation(s)
- Ryan K Perkins
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
19
|
Diabetes-Induced Cardiac Autonomic Neuropathy: Impact on Heart Function and Prognosis. Biomedicines 2022; 10:biomedicines10123258. [PMID: 36552014 PMCID: PMC9775487 DOI: 10.3390/biomedicines10123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular autonomic neuropathy (CAN) is a severe complication of the advance stage of diabetes. More than 50% of diabetic patients diagnosed with peripheral neuropathy will have CAN, with clinical manifestations including tachycardia, severe orthostatic hypotension, syncope, and physical exercise intolerance. Since the prevalence of diabetes is increasing, a concomitant increase in CAN is expected and will reduce quality of life and increase mortality. Autonomic dysfunction is associated with reduced baroreflex sensitivity and impairment of sympathetic and parasympathetic modulation. Various autonomic function tests are used to diagnose CAN, a condition without adequate treatment. It is important to consider the control of glucose level and blood pressure as key factors for preventing CAN progression. However, altered biomarkers of inflammatory and endothelial function, increased purinergic receptor expression, and exacerbated oxidative stress lead to possible targets for the treatment of CAN. The present review describes the molecular alterations seen in CAN, diagnosis, and possible alternative treatments.
Collapse
|
20
|
Affiliation(s)
- Mark A Chaney
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Prisco SZ, Hartweck L, Keen JL, Vogel N, Kazmirczak F, Eklund M, Hemnes AR, Brittain EL, Prins KW. Glyoxylase-1 combats dicarbonyl stress and right ventricular dysfunction in rodent pulmonary arterial hypertension. Front Cardiovasc Med 2022; 9:940932. [PMID: 36093169 PMCID: PMC9452736 DOI: 10.3389/fcvm.2022.940932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 01/06/2023] Open
Abstract
Background Heightened glycolytic flux is associated with right ventricular (RV) dysfunction in pulmonary arterial hypertension (PAH). Methylglyoxal, a glycolysis byproduct, is a highly reactive dicarbonyl that has toxic effects via non-enzymatic post-translational modifications (protein glycation). Methylglyoxal is degraded by the glyoxylase system, which includes the rate-limiting enzyme glyoxylase-1 (GLO1), to combat dicarbonyl stress. However, the potential consequences of excess protein glycation on RV function are unknown. Methods Bioinformatics analysis of previously identified glycated proteins predicted how protein glycation regulated cardiac biology. Methylglyoxal treatment of H9c2 cardiomyocytes evaluated the consequences of excess protein glycation on mitochondrial respiration. The effects of adeno-associated virus serotype 9-mediated (AAV9) GLO1 expression on RV function in monocrotaline rats were quantified with echocardiography and hemodynamic studies. Immunoblots and immunofluorescence were implemented to probe the effects of AAV-Glo1 on total protein glycation and fatty acid oxidation (FAO) and fatty acid binding protein levels. Results In silico analyses highlighted multiple mitochondrial metabolic pathways may be affected by protein glycation. Exogenous methylglyoxal minimally altered mitochondrial respiration when cells metabolized glucose, however methylglyoxal depressed FAO. AAV9-Glo1 increased RV cardiomyocyte GLO1 expression, reduced total protein glycation, partially restored mitochondrial density, and decreased lipid accumulation. In addition, AAV9-Glo1 increased RV levels of FABP4, a fatty acid binding protein, and hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunits alpha and beta (HADHA and HADHB), the two subunits of the mitochondrial trifunctional protein for FAO. Finally, AAV9-Glo1 blunted RV fibrosis and improved RV systolic and diastolic function. Conclusion Excess protein glycation promotes RV dysfunction in preclinical PAH, potentially through suppression of FAO.
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Lynn Hartweck
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Jennifer L. Keen
- Pulmonary and Critical Care, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Neal Vogel
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Felipe Kazmirczak
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan Eklund
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anna R. Hemnes
- Division of Allergy Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Evan L. Brittain
- Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, United States
| | - Kurt W. Prins
- Cardiovascular Division, Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Rotariu D, Babes EE, Tit DM, Moisi M, Bustea C, Stoicescu M, Radu AF, Vesa CM, Behl T, Bungau AF, Bungau SG. Oxidative stress - Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 2022; 152:113238. [PMID: 35687909 DOI: 10.1016/j.biopha.2022.113238] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/07/2022] Open
Abstract
Oxidative stress is a complex biological process characterized by the excessive production of reactive oxygen species (ROS) that act as destroyers of the REDOX balance in the body and, implicitly, inducing oxidative damage. All the metabolisms are impaired in oxidative stress and even nucleic acid balance is influenced. ROS will promote structural changes of the tissues and organs due to interaction with proteins and phospholipids. The constellation of the cardiovascular risk factors (CVRFs) will usually develop in subjects with predisposition to cardiac disorders. Oxidative stress is usually related with hypertension (HTN), diabetes mellitus (DM), obesity and cardiovascular diseases (CVDs) like coronary artery disease (CAD), cardiomyopathy or heart failure (HF), that can develop in subjects with the above-mentioned diseases. Elements describing the complex relationship between CVD and oxidative stress should be properly explored and described because prevention may be the optimal approach. Our paper aims to expose in detail the complex physiopathology of oxidative stress in CVD occurrence and novelties regarding the phenomenon. Biomarkers assessing oxidative stress or therapy targeting specific pathways represent a major progress that actually change the outcome of subjects with CVD. New antioxidants therapy specific for each CVD represents a captivating and interesting future perspective with tremendous benefits on subject's outcome.
Collapse
Affiliation(s)
- Dragos Rotariu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania.
| | - Emilia Elena Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Delia Mirela Tit
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Madalina Moisi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy of Oradea, University of Oradea, 410073 Oradea, Romania.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | | | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
23
|
Guo B, Shan SK, Xu F, Lin X, Li FXZ, Wang Y, Xu QS, Zheng MH, Lei LM, Li CC, Zhou ZA, Ullah MHE, Wu F, Liao XB, Yuan LQ. Protective role of small extracellular vesicles derived from HUVECs treated with AGEs in diabetic vascular calcification. J Nanobiotechnology 2022; 20:334. [PMID: 35842695 PMCID: PMC9287893 DOI: 10.1186/s12951-022-01529-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
The pathogenesis of vascular calcification in diabetic patients remains elusive. As an effective information transmitter, small extracellular vesicles (sEVs) carry abundant microRNAs (miRNAs) that regulate the physiological and pathological states of recipient cells. In the present study, significant up-regulation of miR-126-5p was observed in sEVs isolated from human umbilical vein endothelial cells (HUVECs) stimulated with advanced glycation end-products (A-EC/sEVs). Intriguingly, these sEVs suppressed the osteogenic differentiation of vascular smooth muscle cells (VSMCs) by targeting BMPR1B, which encodes the receptor for BMP, thereby blocking the smad1/5/9 signalling pathway. In addition, knocking down miR-126-5p in HUVECs significantly diminished the anti-calcification effect of A-EC/sEVs in a mouse model of type 2 diabetes. Overall, miR-126-5p is highly enriched in sEVs derived from AGEs stimulated HUVECs and can target BMPR1B to negatively regulate the trans-differentiation of VSMCs both in vitro and in vivo.
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fu-Xing-Zi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
24
|
Vascular Permeability in Diseases. Int J Mol Sci 2022; 23:ijms23073645. [PMID: 35409010 PMCID: PMC8998843 DOI: 10.3390/ijms23073645] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Vascular permeability is a selective mechanism that maintains the exchange between vessels, tissues, and organs. The regulation was mostly studied during the nineteenth century by physiologists who defined physical laws and equations, taking blood, tissue interstitial, and oncotic pressure into account. During the last decades, a better knowledge of vascular cell functions and blood-vessel interactions opens a new area of vascular biology. Endothelial cell receptors vascular cell adhesion molecule (VCAM), intercellular cell adhesion molecule (ICAM), vascular endothelial growth factor receptor (VEGFR-2), receptor for advanced glycation end products (RAGE), and mediators were identified and their role in homeostasis and pathological situations was described. The molecular differences of endothelial cell junctions (tight, gap, and adherens junctions) and their role in vascular permeability were characterized in different organs. The main mediators of vasomotricity and permeability, such as prostaglandins, nitric oxide (NO), prostacyclin, vascular growth factor (VEGF), and cytokines, have been demonstrated to possess major functions in steady state and pathological situations. Leukocytes were shown to adhere to endothelium and migrate during inflammatory situations and infectious diseases. Increased vascular permeability is linked to endothelium integrity. Glycocalyx, when intact, may limit cancer cell metastasis. Biological modifications of blood and tissue constituents occurring in diabetes mellitus were responsible for increased permeability and, consequently, ocular and renal complications. Vascular pressure and fluidity are major determinants of pulmonary and cerebral edema. Beside the treatment of the infectious disease, of the blood circulation dysfunction and inflammatory condition, drugs (cyclooxygenase inhibitors) and specific antibodies anti-cytokine (anti-VEGF) have been demonstrated to reduce the severity and the mortality in diseases that exhibited enhanced vascular permeability.
Collapse
|
25
|
Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis 2022; 25:307-329. [PMID: 35303170 DOI: 10.1007/s10456-022-09835-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Coronary microvascular endothelial dysfunction is both a culprit and a victim of diabetes, and can accelerate diabetes-related microvascular and macrovascular complications by promoting vasoconstrictive, pro-inflammatory and pro-thrombotic responses. Perturbed mitochondrial function induces oxidative stress, disrupts metabolism and activates apoptosis in endothelial cells, thus exacerbating the progression of coronary microvascular complications in diabetes. The mitochondrial quality surveillance (MQS) system responds to stress by altering mitochondrial metabolism, dynamics (fission and fusion), mitophagy and biogenesis. Dysfunctional mitochondria are prone to fission, which generates two distinct types of mitochondria: one with a normal and the other with a depolarized mitochondrial membrane potential. Mitochondrial fusion and mitophagy can restore the membrane potential and homeostasis of defective mitochondrial fragments. Mitophagy-induced decreases in the mitochondrial population can be reversed by mitochondrial biogenesis. MQS abnormalities induce pathological mitochondrial fission, delayed mitophagy, impaired metabolism and defective biogenesis, thus promoting the accumulation of unhealthy mitochondria and the activation of mitochondria-dependent apoptosis. In this review, we examine the effects of MQS on mitochondrial fitness and explore the association of MQS disorders with coronary microvascular endothelial dysfunction in diabetes. We also discuss the potential to treat diabetes-related coronary microvascular endothelial dysfunction using novel MQS-altering drugs.
Collapse
|
26
|
Das A, Madeshiya AK, Biswas N, Ghosh N, Gorain M, Rawat A, Mahajan SP, Khanna S, Sen CK, Roy S. Oncostatin M Improves Cutaneous Wound Re-Epithelialization and Is Deficient under Diabetic Conditions. J Invest Dermatol 2022; 142:679-691.e3. [PMID: 34534575 PMCID: PMC8860865 DOI: 10.1016/j.jid.2021.04.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Impaired re-epithelialization characterized by hyperkeratotic nonmigratory wound epithelium is a hallmark of nonhealing diabetic wounds. In chronic wounds, the copious release of oncostatin M (OSM) from wound macrophages is evident. OSM is a potent keratinocyte (KC) activator. This work sought to understand the signal transduction pathway responsible for wound re-epithelialization, the primary mechanism underlying wound closure. Daily topical treatment of full-thickness excisional wounds of C57BL/6 mice with recombinant murine OSM improved wound re-epithelialization and accelerated wound closure by bolstering KC proliferation and migration. OSM activated the Jak-signal transducer and activator of transcription pathway as manifested by signal transducer and activator of transcription 3 phosphorylation. Such signal transduction in the human KC induced TP63, the master regulator of KC function. Elevated TP63 induced ITGB1, a known effector of KC migration. In diabetic wounds, OSM was more abundant than the level in nondiabetic wounds. However, in diabetic wounds, OSM activity was compromised by glycation. Aminoguanidine, a deglycation agent, rescued the compromised KC migration caused by glycated OSM. Finally, topical application of recombinant OSM improved KC migration and accelerated wound closure in db/db mice. This work recognizes that despite its abundance at the wound site, OSM is inactivated by glycation, and topical delivery of exogenous OSM is likely to be productive in accelerating diabetic wound closure.
Collapse
Affiliation(s)
- Amitava Das
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Amit K. Madeshiya
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nirupam Biswas
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Nandini Ghosh
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Mahadeo Gorain
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Atul Rawat
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sanskruti P. Mahajan
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Savita Khanna
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Chandan K. Sen
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Sashwati Roy
- Department of Surgery, IU Health Comprehensive Wound Center, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
27
|
Zhang N, Jiang H, Zhang K, Zhu J, Wang Z, Long Y, He Y, Feng F, Liu W, Ye F, Qu W. OGT as potential novel target: Structure, function and inhibitors. Chem Biol Interact 2022; 357:109886. [DOI: 10.1016/j.cbi.2022.109886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
28
|
Wu CJ, Cheng PW, Kung MH, Ho CY, Pan JY, Tseng CJ, Chen HH. Glut5 Knockdown in the Nucleus Tractus Solitarii Alleviates Fructose-Induced Hypertension in Rats. J Nutr 2022; 152:448-457. [PMID: 34687200 DOI: 10.1093/jn/nxab374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Several studies have suggested mechanisms whereby excessive fructose intake increases blood pressure (BP). Glucose transporter 5 (GLUT5) is a fructose transporter expressed on enterocytes, and its involvement in the nucleus tractus solitarius (NTS)-modulated increase in BP following fructose intake remains unclear. OBJECTIVES Herein, we investigated whether NTS Glut5 knockdown (KD) can alleviate fructose-induced hypertension in rat models. METHODS Male Wistar-Kyoto rats (6-8 weeks old; average weight: 230 g) were randomly assigned into 4 groups [control (Con), fructose (Fru), fructose + scrambled (Fru + S), and Fru + KD]. The Con group rats had ad libitum access to regular water, and the other 3 groups were provided 10% fructose water ad libitum for 4 weeks (2 weeks before lentiviral transfection in the Fru + S and Fru + KD groups). Glut5 short hairpin RNA was delivered into the NTS of rats using a lentivirus system. Fructose-induced hypertension was assessed via the tail-cuff technique, a noninvasive blood pressure measurement approach. GLUT5-associated and other insulin signaling pathways in the NTS of rats were assessed using immunofluorescence and immunoblotting analyses. We evaluated between-group differences using the Mann-Whitney U test or Kruskal-Wallis 1-way ANOVA. RESULTS Compared with the Fru + S group, the Fru + KD group had reduced sympathetic nerve hyperactivity (48.8 ± 3.2 bursts/min; P < 0.05), improved central insulin signaling, upregulated protein kinase B (AKT; 3.0-fold) and neuronal NO synthase (nNOS; 2.78-fold) expression, and lowered BP (17 ± 1 mmHg, P < 0.05). Moreover, Glut5 KD restored signaling dependent on adenosine 5'-monophosphate-activated protein kinase and reduced fructose-induced oxidative stress 2.0-fold, and thus decreased NAD(P)H oxidase in p67-phox 1.9-fold within the NTS. CONCLUSIONS Fructose-induced reactive oxygen species generates in the NTS of rats through GLUT5 and receptor for advanced glycation end products signaling, thus impairing the AKT-nNOS-NO signaling pathway and ultimately causing hypertension.
Collapse
Affiliation(s)
- Chieh-Jen Wu
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Hsiang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chiu-Yi Ho
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jun-Yen Pan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3447. [PMID: 33760363 DOI: 10.1002/dmrr.3447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis. Vitamin D, traditionally known as an essential nutrient crucial in bone metabolism, has also been proven to be a very effective antioxidant. It has been demonstrated that it modulates the production of advanced glycosylated end products, as well as several pathways including protein kinase C, the polyol pathway leading to the reduction of free radical formation. It prevents the translocation of nuclear factor kappa B, preventing the inflammatory response, acting as an immunomodulator, and modulates autophagy and apoptosis. In this review, we explore the molecular mechanisms by which vitamin D protects the eye from oxidative stress, in order to evaluate whether vitamin D supplementation may be useful to mitigate the deleterious effects of free radicals in DR.
Collapse
Affiliation(s)
- Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes (Basel) 2021; 12:genes12081200. [PMID: 34440374 PMCID: PMC8394456 DOI: 10.3390/genes12081200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication of diabetes and a leading cause of blindness in the industrialized world. Traditional risk factors, such as glycemic control and duration of diabetes, are unable to explain why some individuals remain protected while others progress to a more severe form of the disease. Differences are also observed in DR heritability as well as the response to anti-vascular endothelial growth factor (VEGF) treatment. This review discusses various aspects of genetics in DR to shed light on DR pathogenesis and treatment. First, we discuss the global burden of DR followed by a discussion on disease pathogenesis as well as the role genetics plays in the prevalence and progression of DR. Subsequently, we provide a review of studies related to DR’s genetic contribution, such as candidate gene studies, linkage studies, and genome-wide association studies (GWAS) as well as other clinical and meta-analysis studies that have identified putative candidate genes. With the advent of newer cutting-edge technologies, identifying the genetic components in DR has played an important role in understanding DR incidence, progression, and response to treatment, thereby developing newer therapeutic targets and therapies.
Collapse
|
31
|
Hydroxytyrosol Selectively Affects Non-Enzymatic Glycation in Human Insulin and Protects by AGEs Cytotoxicity. Antioxidants (Basel) 2021; 10:antiox10071127. [PMID: 34356360 PMCID: PMC8301023 DOI: 10.3390/antiox10071127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Hydroxytyrosol (HT), the major phenolic compound in olive oil, is attracting increasing interest for its beneficial properties including a notable antioxidant and anti-inflammatory power. In this study, using a combination of biophysical and cell biology techniques, we have tested the role of HT in the formation of advanced glycation end-products (AGEs). AGEs have a key role in clinical sciences as they have been associated to diabetes, neurodegenerative and cardiovascular diseases. In addition, as the incidence of Alzheimer’s disease (AD) is strongly increased in diabetic patients, AGE formation is supposed to be involved in the development of the pathological hallmarks of AD. Our data show that HT selectively inhibits protein glycation reaction in human insulin, and it is able to counteract the AGE-induced cytotoxicity in human neurotypical cells by acting on SIRT1 level and oxidative stress, as well as on inflammatory response. This study identifies new beneficial properties for HT and suggests it might be a promising molecule in protecting against the AGE-induced toxicity, a key mechanism underlying the development and progression of neurodegenerative disorders.
Collapse
|
32
|
Каландия ММ, Токмакова АЮ, Галстян ГР. [The role of glycation end products in the development and progression of diabetic neuroarthropathy]. PROBLEMY ENDOKRINOLOGII 2021; 67:4-9. [PMID: 34297497 PMCID: PMC9112848 DOI: 10.14341/probl12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 12/16/2022]
Abstract
Diabetic neuroarthropathy (DNOAP, Charcot's foot) is a serious complication of diabetes mellitus, the genesis of which is not fully understood. In most cases, this pathology is diagnosed late, which leads to the development of severe deformities of the foot, up to the loss of support ability of the limb. There is no single hypothesis for the formation of Charcot's foot, but there are factors predisposing to its development, as well as a few likely provoking events. Excessive formation and accumulation of end products of glycation may play an important role in the pathogenesis of this complication of diabetes. End products of glycation (AGE) are a variety of compounds formed as a result of a non-enzymatic reaction between carbohydrates and free amino groups of proteins, lipids and nucleic acids. There are various factors that lead to the accumulation of AGE in the human body. Allocate endogenous and exogenous factors. The former include certain diseases, such as diabetes mellitus, renal failure, which accelerate glycation processes. Exogenous factors leading to the formation of lipo-oxidation and glyco-oxidation products include tobacco smoke and prolonged heat treatment of food.This review provides information on the role of glycation end products in the development and progression of complications in patients with diabetes mellitus.
Collapse
Affiliation(s)
- М. М. Каландия
- Национальный медицинский исследовательский центр эндокринологии
| | - А. Ю. Токмакова
- Национальный медицинский исследовательский центр эндокринологии
| | - Г. Р. Галстян
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
33
|
Rojas A, Lindner C, Gonzàlez I, Morales MA. Advanced-glycation end-products axis: A contributor to the risk of severe illness from COVID-19 in diabetes patients. World J Diabetes 2021; 12:590-602. [PMID: 33995847 PMCID: PMC8107984 DOI: 10.4239/wjd.v12.i5.590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Compelling pieces of evidence derived from both clinical and experimental research has demonstrated the crucial role of the receptor for advanced-glycation end-products (RAGE) in orchestrating a plethora of proinflammatory cellular responses leading to many of the complications and end-organ damages reported in patients with diabetes mellitus (DM). During the coronavirus disease 2019 (COVID-19) pandemic, many clinical reports have pointed out that DM increases the risk of COVID-19 complications, hospitalization requirements, as well as the overall severe acute respiratory syndrome coronavirus 2 case-fatality rate. In the present review, we intend to focus on how the basal activation state of the RAGE axis in common preexisting conditions in DM patients such as endothelial dysfunction and hyperglycemia-related prothrombotic phenotype, as well as the contribution of RAGE signaling in lung inflammation, may then lead to the increased mortality risk of COVID-19 in these patients. Additionally, the cross-talk between the RAGE axis with either another severe acute respiratory syndrome coronavirus 2 receptor molecule different of angiotensin-converting enzyme 2 or the renin-angiotensin system imbalance produced by viral infection, as well as the role of this multi-ligand receptor on the obesity-associated low-grade inflammation in the higher risk for severe illness reported in diabetes patients with COVID-19, are also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Ileana Gonzàlez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
34
|
Komati A, Anand A, Shaik H, Mudiam MKR, Suresh Babu K, Tiwari AK. Bombax ceiba (Linn.) calyxes ameliorate methylglyoxal-induced oxidative stress via modulation of RAGE expression: identification of active phytometabolites by GC-MS analysis. Food Funct 2021; 11:5486-5497. [PMID: 32500907 DOI: 10.1039/c9fo02714a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-enzymatic reactions between proteins and methylglyoxal (MG) result in the formation of advanced glycation end products (AGEs). These AGEs play a vital role in the development of diabetic complications by stimulating oxidative stress and acting upon their receptor RAGE (Receptor for Advanced Glycation End products). This study examined the effect of aqueous methanol extract of Bombax ceiba L. calyxes (BCCE) on MG induced protein glycation and oxidative stress, followed by the identification of phytometabolites present in the calyxes using gas chromatography-mass spectrometry (GC-MS). The study revealed that priming of bovine serum albumin protein with the BCCE inhibited MG induced AGE formation in vitro and restrained AGE-induced RAGE up-regulation in HEK-293 cells. The BCCE significantly (p < 0.001) reduced the MG induced increase in reactive oxygen species (ROS), NADPH oxidase (NOX), and mitochondrial dysfunction. Improvements in the levels of antioxidant enzymes such as Mn and Cu/Zn-superoxide dismutase and glutathione reductase were also observed in HEK-293 cells. Furthermore, the decrease in primary cellular defense against AGEs, the glyoxalase 1 (Glo-1) activity, due to MG treatment was restored in BCCE treated cells. GC-MS analysis revealed the presence of antioxidant and antiglycation compounds such as myo-ionisitol, scopoletin, d-sedoheptulose, succinic acid, and xylitol in B. ceiba calyxes. The observed beneficial effect in our study might be attributed to the presence of these compounds in B. Ceiba calyxes. This is the first report presenting the antioxidant and antiglycation activities of B. ceiba calyxes and GC-MS analysis of active phytometabolites. These observations show that B. ceiba calyxes may become a potent and promising functional food to manage/control the development of diabetic complications.
Collapse
Affiliation(s)
- Anusha Komati
- Centre for Natural Products & Traditional Knowledge, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India. and Academy of Scientific & Innovative Research, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Ajay Anand
- Centre for Natural Products & Traditional Knowledge, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India. and Academy of Scientific & Innovative Research, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Hussain Shaik
- Academy of Scientific & Innovative Research, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India and Department of Analytical & Structural Chemistry, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific & Innovative Research, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India and Department of Analytical & Structural Chemistry, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Katragadda Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India. and Academy of Scientific & Innovative Research, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Ashok Kumar Tiwari
- Centre for Natural Products & Traditional Knowledge, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India. and Academy of Scientific & Innovative Research, CSIR Indian Institute of Chemical Technology, Hyderabad-500007, India
| |
Collapse
|
35
|
Nair M, Jagadeeshan S, Katselis G, Luan X, Momeni Z, Henao-Romero N, Chumala P, Tam JS, Yamamoto Y, Ianowski JP, Campanucci VA. Lipopolysaccharides induce a RAGE-mediated sensitization of sensory neurons and fluid hypersecretion in the upper airways. Sci Rep 2021; 11:8336. [PMID: 33863932 PMCID: PMC8052339 DOI: 10.1038/s41598-021-86069-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Thoracic dorsal root ganglia (tDRG) contribute to fluid secretion in the upper airways. Inflammation potentiates DRG responses, but the mechanisms remain under investigation. The receptor for advanced glycation end-products (RAGE) underlies potentiation of DRG responses in pain pathologies; however, its role in other sensory modalities is less understood. We hypothesize that RAGE contributes to electrophysiological and biochemical changes in tDRGs during inflammation. We used tDRGs and tracheas from wild types (WT), RAGE knock-out (RAGE-KO), and with the RAGE antagonist FPS-ZM1, and exposed them to lipopolysaccharides (LPS). We studied: capsaicin (CAP)-evoked currents and action potentials (AP), tracheal submucosal gland secretion, RAGE expression and downstream pathways. In WT neurons, LPS increased CAP-evoked currents and AP generation, and it caused submucosal gland hypersecretion in tracheas from WT mice exposed to LPS. In contrast, LPS had no effect on tDRG excitability or gland secretion in RAGE-KO mice or mice treated with FPS-ZM1. LPS upregulated full-length RAGE (encoded by Tv1-RAGE) and downregulated a soluble (sRAGE) splice variant (encoded by MmusRAGEv4) in tDRG neurons. These data suggest that sensitization of tDRG neurons contributes to hypersecretion in the upper airways during inflammation. And at least two RAGE variants may be involved in these effects of LPS.
Collapse
Affiliation(s)
- Manoj Nair
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Santosh Jagadeeshan
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - George Katselis
- Department of Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Xiaojie Luan
- Department of Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Zeinab Momeni
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Nicolas Henao-Romero
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Paulos Chumala
- Department of Medicine, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Julian S Tam
- Department of Medicine, Division of Respirology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, 920-8640, Japan
| | - Juan P Ianowski
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Verónica A Campanucci
- Department of Anatomy, Physiology and Pharmacology (APP), College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
36
|
Salivary Biomarkers of Oxidative Stress and Inflammation in Stroke Patients: From Basic Research to Clinical Practice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5545330. [PMID: 33897941 PMCID: PMC8052150 DOI: 10.1155/2021/5545330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral stroke is a serious worldwide health problem, as can be seen by the global epidemic of the disease. In this disorder, when the blood flow is compromised by ruptures or blocked arteries, sudden death of neurons is observed as a result of a lack of oxygen and nutrients. Numerous severe problems and frequent complications also exist in stroke patients; therefore, there is an urgent need to develop new therapeutic, diagnostic, and prognostic methods for the disease. At present, the diagnosis of stroke is based on a neurological examination, medical history, and neuroimaging, due to the fact that rapid and noninvasive diagnostic tests are unavailable. Nevertheless, oxidative stress and inflammation are considered key factors in stroke pathogenesis. Oxygen free radicals are responsible for oxidation of lipids, proteins, and DNA/RNA, which in turn contributes to oxidative damage of the brain. Toxic products of the oxidation reactions act cytostatically on the cell by damaging cell membranes and leading to neuronal death by apoptosis or necrosis. Thus, it seems that redox/inflammatory biomarkers might be used in the diagnosis of the disease. Nowadays, saliva is of increasing interest in clinical laboratory medicine. Redox biomarkers could be obtained easily, noninvasively, cheaply, and stress-free from saliva. This minireview is aimed at presenting the current knowledge concerning the use of salivary biomarkers of oxidative stress and inflammation in the diagnosis and prognosis of stroke.
Collapse
|
37
|
Galluccio E, Spadoni S, Fontana B, Bosi E, Piatti P, Monti LD. Long lasting protective effects of early l-arginine treatment on endothelium in an in vitro study. Clin Nutr 2021; 40:1519-1529. [PMID: 33743287 DOI: 10.1016/j.clnu.2021.02.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/09/2020] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Excess nutrient supply, such as high fat and high glucose intake, promotes oxidative stress and advanced glycation end products accumulation. Oxidative stress and AGE accumulation cause pathological elevation of arginase activity and pro-inflammatory signaling implicated in endothelial dysfunction. Several studies showed positive effects of l-arginine supplementation in endothelial function but little is currently known about the role of l-arginine as prevention of endothelial dysfunction caused by excessive nutrient supply (overfeeding). Our aim was to evaluate a possible protective effect of l-arginine on endothelial dysfunction caused by excessive nutrient supply (overfeeding), using human endothelial cells line in an in vitro study. METHODS Endothelial EA.hy926 cells were pre-treated with 1.72 mM of l-arginine for 24 h and afterwards subjected to nutritional stress (high lipid, high insulin and high glucose concentrations) for further 24 h. After treatment discontinuation, the cells were kept in culture for 48 h, in physiological condition, to evaluate the effects of treatments after normalization. RESULTS Excess nutrient supply in EA.hy926 cell line showed an increase of oxidative and nitrosative stress, a rise of AGEs production, high arginase activity, leading the cells to acidosis and to cell death. l-arginine pretreatment protects the cells by reducing apoptosis, acidosis, oxidative and nitrosative stress, arginase activity and AGE accumulation. l-arginine pretreatment reduces AGEs generation and accumulation by regulating STAB1 and RAGE gene expression levels. STAB1, acting as receptor scavenger of AGEs, interferes with AGE-RAGE binding and thus prevents activation of intracellular signaling pathways leading to cell damage. Moreover the reduction of oxidative stress promotes a decrease of excessive activation of arginase involved in endothelial dysfunction. The effects of pretreatment with l-arginine last even in the absence of stimuli and despite after treatment discontinuation. CONCLUSIONS An early l-arginine treatment is able to prevent oxidative stress and AGEs accumulation caused by overfeeding in human endothelial cell line by regulating STAB1/RAGE gene expression and by reducing excess arginase activity. The positive effects of l-arginine pretreatment continue even after treatment discontinuation in normal conditions.
Collapse
Affiliation(s)
- Elena Galluccio
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Serena Spadoni
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Barbara Fontana
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Emanuele Bosi
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Piermarco Piatti
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Lucilla D Monti
- Cardio-Diabetes and Core Lab Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy; Cardio-Metabolism and Clinical Trials Unit, Diabetes Research Institute, Department of Internal Medicine, IRCCS San Raffaele Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
38
|
Roy D, Ramasamy R, Schmidt AM. Journey to a Receptor for Advanced Glycation End Products Connection in Severe Acute Respiratory Syndrome Coronavirus 2 Infection: With Stops Along the Way in the Lung, Heart, Blood Vessels, and Adipose Tissue. Arterioscler Thromb Vasc Biol 2021; 41:614-627. [PMID: 33327744 PMCID: PMC7837689 DOI: 10.1161/atvbaha.120.315527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and the pandemic has yet to wane. Despite its associated significant morbidity and mortality, there are no definitive cures and no fully preventative measures to combat SARS-CoV-2. Hence, the urgency to identify the pathobiological mechanisms underlying increased risk for and the severity of SARS-CoV-2 infection is mounting. One contributing factor, the accumulation of damage-associated molecular pattern molecules, is a leading trigger for the activation of nuclear factor-kB and the IRF (interferon regulatory factors), such as IRF7. Activation of these pathways, particularly in the lung and other organs, such as the heart, contributes to a burst of cytokine release, which predisposes to significant tissue damage, loss of function, and mortality. The receptor for advanced glycation end products (RAGE) binds damage-associated molecular patterns is expressed in the lung and heart, and in priming organs, such as the blood vessels (in diabetes) and adipose tissue (in obesity), and transduces the pathological signals emitted by damage-associated molecular patterns. It is proposed that damage-associated molecular pattern-RAGE enrichment in these priming tissues, and in the lungs and heart during active infection, contributes to the widespread tissue damage induced by SARS-CoV-2. Accordingly, the RAGE axis might play seminal roles in and be a target for therapeutic intervention in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Divya Roy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
- New York Institute of Technology College of Osteopathic Medicine, Glen Head (D.R.)
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine (D.R., R.R., A.M.S.)
| |
Collapse
|
39
|
Filip P, Canna A, Moheet A, Bednarik P, Grohn H, Li X, Kumar AF, Olawsky E, Eberly LE, Seaquist ER, Mangia S. Structural Alterations in Deep Brain Structures in Type 1 Diabetes. Diabetes 2020; 69:2458-2466. [PMID: 32839347 PMCID: PMC7576566 DOI: 10.2337/db19-1100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 08/19/2020] [Indexed: 01/28/2023]
Abstract
Even though well known in type 2 diabetes, the existence of brain changes in type 1 diabetes (T1D) and both their neuroanatomical and clinical features are less well characterized. To fill the void in the current understanding of this disease, we sought to determine the possible neural correlate in long-duration T1D at several levels, including macrostructural, microstructural cerebral damage, and blood flow alterations. In this cross-sectional study, we compared a cohort of 61 patients with T1D with an average disease duration of 21 years with 54 well-matched control subjects without diabetes in a multimodal MRI protocol providing macrostructural metrics (cortical thickness and structural volumes), microstructural measures (T1-weighted/T2-weighted [T1w/T2w] ratio as a marker of myelin content, inflammation, and edema), and cerebral blood flow. Patients with T1D had higher T1w/T2w ratios in the right parahippocampal gyrus, the executive part of both putamina, both thalami, and the cerebellum. These alterations were reflected in lower putaminal and thalamic volume bilaterally. No cerebral blood flow differences between groups were found in any of these structures, suggesting nonvascular etiologies of these changes. Our findings implicate a marked nonvascular disruption in T1D of several essential neural nodes engaged in both cognitive and motor processing.
Collapse
Affiliation(s)
- Pavel Filip
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- First Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital of St. Anne, Brno, Czech Republic
| | - Antonietta Canna
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Amir Moheet
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Petr Bednarik
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Heidi Grohn
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Xiufeng Li
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Anjali F Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Evan Olawsky
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | | | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| |
Collapse
|
40
|
Tummakomma P, Durvasula S, Soorneedi N, Mohammed K, Abidullah M, Tabassum SN. The Effect of Phase I Therapy on the Clinical Parameters, VSC Levels, and RBS Levels in Chronic Periodontitis Patients With Diagnosed Diabetes. J Pharm Bioallied Sci 2020; 12:S78-S85. [PMID: 33149435 PMCID: PMC7595510 DOI: 10.4103/jpbs.jpbs_31_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 11/25/2022] Open
Abstract
Introduction: The relationship between chronic periodontitis and type 2 diabetes mellitus (DM) is bidirectional. Halitosis or oral malodor has an effect on psychological and social life of persons, and is seen in individuals with diabetes. Aims and Objectives: The aim of this study was to find out the effect of phase I therapy on the clinical parameters, volatile sulfur compound (VSC) levels, and random blood sugar (RBS) levels in chronic periodontitis patients with diagnosed DM. Materials and Methods: Our study included 80 patients with diabetes and chronic periodontitis. We collected subgingival plaque samples at 1 week and 1 month after scaling and root planing. The parameters measured were probing pocket depth and clinical attachment level for all the teeth at four sites per each tooth. RBS levels were recorded for all the patients. Malodor was measured with Tanita Breath Checker (Tanita India Private Limited, Mumbai, Maharashtra, India). Results: We found a statistically significant reduction in clinical parameter levels, VSC levels, and N-benzoyl-DL-arginine-2-naphthylamide (BANA) levels in both the groups from baseline to 4 weeks with highest levels in diabetic chronic generalized periodontitis (CGP) and lowest in nondiabetic CGP at baseline. The mean intergroup comparison of BANA levels was statistically significant at all intervals of time between the two the groups. Conclusion: There is a significant correlation observed between oral malodor levels, RBS, and clinical parameters in the diabetic group.
Collapse
Affiliation(s)
- Pushpalatha Tummakomma
- Department of Periodontics, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Satyanarayana Durvasula
- Department of Periodontics, Kamineni Institute of Dental Sciences, Nalgonda, Telangana, India
| | - Neeharika Soorneedi
- Department of Oral Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Khurramuddin Mohammed
- Department of Conservative, Endodontics, and Aesthetic Dentistry, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Mohammed Abidullah
- Department of Dental and Biomedical Sciences, Faculty of Dentistry, Al Baha University, Al Baha, Saudi Arabia
| | | |
Collapse
|
41
|
Cellular and Molecular Aspects of Blood Cell-Endothelium Interactions in Vascular Disorders. Int J Mol Sci 2020; 21:ijms21155315. [PMID: 32727002 PMCID: PMC7432596 DOI: 10.3390/ijms21155315] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 12/21/2022] Open
Abstract
In physiology and pathophysiology the molecules involved in blood cell–blood cell and blood cell–endothelium interactions have been identified. Platelet aggregation and adhesion to the walls belonging to vessels involve glycoproteins (GP), GP llb and GP llla and the GP Ib–IX–V complex. Red blood cells (RBCs) in normal situations have little interaction with the endothelium. Abnormal adhesion of RBCs was first observed in sickle cell anemia involving vascular cell adhesion molecule (VCAM)-1, α4β1, Lu/BCAM, and intercellular adhesion molecule (ICAM)-4. More recently RBC adhesion was found to be increased in retinal-vein occlusion (RVO) and in polycythemia vera (PV). The molecules which participate in this process are phosphatidylserine and annexin V in RVO, and phosphorylated Lu/BCAM and α5 laminin chain in PV. The additional adhesion in diabetes mellitus occurs due to the glycated RBC band 3 and the advanced glycation end-product receptors. The multiligand receptor binds advanced glycation end products (AGEs) or S100 calgranulins, or β-amyloid peptide. This receptor for advanced glycation end products is known as RAGE. The binding to RAGE-activated endothelial cells leads to an inflammatory reaction and a prothrombotic state via NADPH activation and altered gene expression. RAGE blockade is a potential target for drugs preventing the deleterious consequences of RAGE activation.
Collapse
|
42
|
Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol Res 2020; 160:105083. [PMID: 32679182 DOI: 10.1016/j.phrs.2020.105083] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 01/11/2023]
Abstract
Diabetes-induced dementia is an emerging neurodisorder all over the world. The prevalence rates of dementia and diabetes have been gradually increasing worldwide. Diabetes has been known to lead to oxidative stress, inflammation aggravation, and hyperglycemia conditions in the brain. Various diabetic implications cause the lower secretion of brain-derived neurotrophic factor (BDNF) and the increase of receptor for advanced glycation end products (RAGE), ultimately leading to both cerebrovascular dysfunction and cognitive decline. Here, we summarized the significant evidences highlighting the specific mechanisms between BDNF and RAGE and cerebrovascular dysfunction and memory function and how these relate to diabetes-induced dementia. Especially, we review that the association between BDFN and RAGE in neuroinflammation, the reduction of long-term potentiation, and the vascular implications in brain.
Collapse
Affiliation(s)
- Oh Yoen Kim
- The Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea; The Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Republic of Korea.
| | - Juhyun Song
- The Department of Anatomy, Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
43
|
Autophagy Induced by ROS Aggravates Testis Oxidative Damage in Diabetes via Breaking the Feedforward Loop Linking p62 and Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7156579. [PMID: 32509151 PMCID: PMC7254092 DOI: 10.1155/2020/7156579] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022]
Abstract
Testicular dysfunction due to hyperglycemia is the main cause of infertility in diabetic men. Over the years, in order to solve this growing problem, a lot of research has been done and a variety of treatments have been created, but so far, there is no safe, effective, and practical method to prevent male infertility caused by diabetes. In this review, we emphasize the male infertility mechanism caused by diabetes from the effects of oxidative stress and autophagy on the function of testes via the PI3K/Akt/mTOR signaling pathway, and we highlight that oxidative stress-induced autophagy breaks the feedforward loop linking Nrf2 and p62 and promotes oxidative damage in diabetic testes.
Collapse
|
44
|
Haque E, Kamil M, Hasan A, Irfan S, Sheikh S, Khatoon A, Nazir A, Mir SS. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis. Glycobiology 2020; 30:49-57. [PMID: 31508802 DOI: 10.1093/glycob/cwz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Protein glycation and protein aggregation are two distinct phenomena being observed in cancer cells as factors promoting cancer cell viability. Protein aggregation is an abnormal interaction between proteins caused as a result of structural changes in them after any mutation or environmental assault. Protein aggregation is usually associated with neurodegenerative diseases like Alzheimer's and Parkinson's, but of late, research findings have shown its association with the development of different cancers like lung, breast and ovarian cancer. On the contrary, protein glycation is a cascade of irreversible nonenzymatic reaction of reducing sugar with the amino group of the protein resulting in the modification of protein structure and formation of advanced glycation end products (AGEs). These AGEs are reported to obstruct the normal function of proteins. Lately, it has been reported that protein aggregation occurs as a result of AGEs. This aggregation of protein promotes the transformation of healthy cells to neoplasia leading to tumorigenesis. In this review, we underline the current knowledge of protein aggregation and glycation along with the cross talk between the two, which may eventually lead to the development of cancer.
Collapse
Affiliation(s)
- Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia
| | - Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India.,Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanskaul. 2, 21000, Split, Croatia.,Department of Microbiology, Beykoz Life Sciences and Biotechnology Institute (BILSAB), Bezmialem Vakif University, Istanbul, Turkey
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Safia Irfan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Aisha Khatoon
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, Lucknow, 226031, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| |
Collapse
|
45
|
Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med 2020; 14:583-600. [PMID: 32248333 DOI: 10.1007/s11684-019-0729-1] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus is one of the major public health problems worldwide. Considerable recent evidence suggests that the cellular reduction-oxidation (redox) imbalance leads to oxidative stress and subsequent occurrence and development of diabetes and related complications by regulating certain signaling pathways involved in β-cell dysfunction and insulin resistance. Reactive oxide species (ROS) can also directly oxidize certain proteins (defined as redox modification) involved in the diabetes process. There are a number of potential problems in the clinical application of antioxidant therapies including poor solubility, storage instability and nonselectivity of antioxidants. Novel antioxidant delivery systems may overcome pharmacokinetic and stability problem and improve the selectivity of scavenging ROS. We have therefore focused on the role of oxidative stress and antioxidative therapies in the pathogenesis of diabetes mellitus. Precise therapeutic interventions against ROS and downstream targets are now possible and provide important new insights into the treatment of diabetes.
Collapse
Affiliation(s)
- Pengju Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tao Li
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xingyun Wu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Canhua Huang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yuanyuan Zhang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
46
|
Boulanger E. Peritoneal and Systemic Inflammation: The Benefits of Using Biocompatible Peritoneal Dialysis Fluids. Perit Dial Int 2020. [DOI: 10.1177/089686080802800106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eric Boulanger
- Biology of Vascular Aging University Hospital, Medical School Lille, France
| |
Collapse
|
47
|
Boulanger E, Moranne O, Wautier MP, Witko-Sarsat V, Descamps-Latscha B, Kandoussi A, Grossin N, Wautier JL. Changes in Glycation and Oxidation Markers in Patients Starting Peritoneal Dialysis: A Pilot Study. Perit Dial Int 2020. [DOI: 10.1177/089686080602600216] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The high incidence of cardiovascular disease in uremic patients makes it a major cause of morbidity and mortality in those patients. Uremia is associated with carbonyl and oxidative stress, which result in the enhanced formation of glycation and oxidation products respectively. In the present study, the blood levels of advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs) were investigated in uremic patients prior to and after initiation of peritoneal dialysis (PD). Methods 22 patients [11 nondiabetic (G1) and 11 diabetic (G2) subjects] were enrolled in a single-center prospective study. Prior to starting PD (T0) and 6 and 12 months later, changes in AGE and AOPP levels were analyzed in the total study population and in each group (Friedman test, intragroup). At each time point, a comparison was made between the levels of the above-mentioned products in G1 and G2 (Mann–Whitney test, intergroup). Correlations between AGE or AOPP levels and residual renal function, peritoneal creatinine clearance, glucose peritoneal equilibration test, or daily dextrose exposure were analyzed using the Pearson test. Results At T0, no significant difference was found between the two groups for AGE or AOPP levels. Initiation of PD was followed by an increase in AGE levels in all patients ( p < 0.01 at 6 and 12 months). AGE levels were higher in G2 than in G1 at 12 months after the start of PD ( p < 0.05). In contrast to G2 results, initiation of PD in G1 led to reduced AOPP levels (at 6 and 12 months, p = 0.01 and p < 0.05 respectively). However, no correlation between AGE or AOPP levels and residual renal function, peritoneal creatinine clearance, glucose peritoneal equilibration test, or daily dextrose exposure could be established. Conclusion This study demonstrates that PD is associated with an increase in levels of blood glycation end products, particularly in diabetic patients, but also with a decrease in oxidative products such as AOPPs, especially in nondiabetic subjects.
Collapse
Affiliation(s)
- Eric Boulanger
- Laboratory of Vascular and Cellular Biology, Necker Hospital, Paris
- Department of Nephrology, Pasteur Institute, Lille, France
| | | | | | | | | | | | - Nicolas Grossin
- Laboratory of Vascular and Cellular Biology, Necker Hospital, Paris
| | - Jean-Luc Wautier
- Laboratory of Vascular and Cellular Biology, Necker Hospital, Paris
| |
Collapse
|
48
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
49
|
Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Mechanisms underlying suppression of noradrenaline-induced contraction by prolonged treatment with advanced glycation end-products in organ-cultured rat carotid artery. Pflugers Arch 2020; 472:355-366. [DOI: 10.1007/s00424-020-02349-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023]
|
50
|
Sun F, Suttapitugsakul S, Xiao H, Wu R. Comprehensive Analysis of Protein Glycation Reveals Its Potential Impacts on Protein Degradation and Gene Expression in Human Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2480-2490. [PMID: 31073893 PMCID: PMC6842084 DOI: 10.1007/s13361-019-02197-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 05/02/2023]
Abstract
Glycation as a type of non-enzymatic protein modification is related to aging and chronic diseases, especially diabetes. Global analysis of protein glycation will aid in a better understanding of its formation mechanism and biological significance. In this work, we comprehensively investigated protein glycation in human cells (HEK293T, Jurkat, and MCF7 cells). The current results indicated that this non-enzymatic modification was not random, and protein at the extracellular regions and the nucleus were more frequently glycated. Systematic and site-specific analysis of glycated proteins allowed us to study the effect of the primary sequences and secondary structures of proteins on glycation. Furthermore, nearly every enzyme in the glycolytic pathway was found to be glycated and a possible mechanism was proposed. Many glycation sites were also previously reported as acetylation and ubiquitination sites, which strongly suggested that this non-enzymatic modification may disturb protein degradation and gene expression. The current results will facilitate further studies of protein glycation in biomedical and clinical research.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|