1
|
Guo J, Sun J, Xiong M, Wang L, Han N, Wang T, He Z, Yuan C, Ma Y, Qi H, Hou Y, Jia Z. Pulmonary microvascular endothelial glycocalyx degradation as a key driver in COPD progression and its protection by Tongxinluo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156878. [PMID: 40424984 DOI: 10.1016/j.phymed.2025.156878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/15/2025] [Accepted: 05/18/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a major cause of morbidity and mortality worldwide. Pulmonary microvascular endothelial glycocalyx (PMEG) has been found to be significantly reduced in COPD, but the mechanism, cause, and effect of the reduction on COPD progression are inconclusive. OBJECTIVE This study aims to explore the mechanisms and consequences underlying PMEG degradation in COPD. Additionally, we strive to ascertain whether Tongxinluo (TXL)'s protective role in COPD is mediated through the preservation of PMEG integrity. METHODS A staged cigarette smoke (CS) exposure model was employed to investigate the timeline, trajectory, mechanisms, and causes of glycocalyx degradation, with in vitro validation. The in vivo glycocalyx degradation model was induced by intravenous injection of glycocalyx hydrolase along with CS exposure. The protective effect of TXL on glycocalyx integrity was examined in CS-exposed mice treated with TXL. RESULTS PMEG degradation occurs as early as 2 weeks after CS exposure and worsens as the disease advances. Multiple glycocalyx degrading enzyme upregulation at different time points collectively results in consistent glycocalyx component degradation. Mechanistically, CS or reactive oxygen species (ROS) exposure elevates pro-inflammatory cytokine secretion, leading to an increase in glycocalyx hydrolysis expression and subsequent PMEG degradation on the endothelial cell (EC) surface. PMEG degradation further promotes inflammatory cell infiltration and accelerates endothelial apoptosis, ultimately driving disease progression in COPD. TXL alleviates oxidative stress, reverses the upregulation of PMEG degrading enzyme, preserves PMEG integrity, reduces endothelial cell apoptosis, and mitigates COPD pathology. CONCLUSION In summary, this study provides groundbreaking insights into the role of PMEG degradation in COPD pathogenesis and introduces TXL as a novel therapeutic agent with the potential to preserve PMEG integrity and mitigate COPD progression. These findings significantly advance our understanding of COPD and offer innovative directions for future research and therapeutic development.
Collapse
Affiliation(s)
- Jing Guo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China; The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China
| | - Jiemeng Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China; The First Hospital of Hebei University of Chinese Medicine, Shijiazhuang 050011, Hebei, China
| | - Mingyu Xiong
- Graduate School, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Le Wang
- Graduate School, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ningxin Han
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, Hebei, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050035, Hebei, China
| | - Tongxing Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, Hebei, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050035, Hebei, China
| | - Zhuo He
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China
| | - Caiyun Yuan
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China
| | - Yan Ma
- Hebei Yiling Hospital, High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang 050091, Hebei, China
| | - Hui Qi
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, Hebei, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050035, Hebei, China.
| | - Yunlong Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, Hebei, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050035, Hebei, China.
| | - Zhenhua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050090, Hebei, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, Hebei, China; Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050035, Hebei, China; Hebei Yiling Hospital, High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine-Luobing Theory, Shijiazhuang 050091, Hebei, China.
| |
Collapse
|
2
|
Carnazzo V, Gulli F, Basile V, Di Santo R, Niccolini B, Redi S, Vinante I, Napodano C, Pocino K, Rapaccini GL, Lizzio MM, Marino M, Ciasca G, Basile U. Serum levels of free light chains and syndecan-1 in patients with rheumatoid arthritis and systemic lupus erythematosus. Rheumatology (Oxford) 2025; 64:2422-2431. [PMID: 39509329 PMCID: PMC12048053 DOI: 10.1093/rheumatology/keae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
OBJECTIVES Systemic autoimmune rheumatic diseases (SARDs) are characterized by chronic inflammation. Reliable biomarkers are crucial for diagnosis, monitoring disease progression and therapeutic responses. This study explores serum syndecan-1 (SDC-1) as a biomarker for these conditions and its relationship with free light chain (FLC) levels. METHODS A retrospective analysis was performed on sera from 60 patients with rheumatoid arthritis (RA) and from 60 with systemic lupus erythematosus (SLE), alongside 50 healthy donors (HD). Κ- and λ- FLCs were determined by turbidimetric assay, while SDC-1 levels were determined by ELISA. Kruskal-Wallis test, Wilcoxon Mann-Whitney U test, multivariable linear regression and Spearman's correlation were employed to compare biomarker levels across groups and to explore correlations. RESULTS SDC-1, κ-FLC and λ-FLC were significantly increased in RA and SLE patients compared with HD (P < 0.001), while no significant differences in the κ/λ ratio were observed among the groups (P = 0.4). A significant difference in subject age was also identified. However, multivariate regression analysis indicated that RA and SLE are significantly associated with the levels of these markers, with minimal confounding by age. A significant correlation was observed separately in all groups between the FLC markers. Conversely, no correlation was detected between SDC-1 and FLCs, nor between these markers and age or disease activity indices. CONCLUSION Elevated serum levels of FLCs and SDC-1 in RA and SLE patients compared with HD underscore their potential as biomarkers for SARDs. The findings also suggest sustained plasma cell activation, supporting the multifaceted role of SDC-1 in the pathogenesis of SARDs.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Unità Operativa Complessa di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L., Latina, Italy
| | - Francesca Gulli
- Clinical Biochemistry Laboratory, I.R.C.C.S. ‘Bambino Gesu’ Children’s Hospital, Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario ‘A. Gemelli’ I.R.C.C.S., Rome, Italy
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Link Campus University, Rome, Italy
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche IFN-CNR, Rome, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario ‘A. Gemelli’ I.R.C.C.S., Rome, Italy
| | - Serena Redi
- Unità Operativa Complessa di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L., Latina, Italy
| | - Ilaria Vinante
- Unità Operativa Complessa di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L., Latina, Italy
| | - Cecilia Napodano
- Department of Laboratory of Medicine and Pathology, S. Agostino Estense Hospital, Modena, Italy
| | - Krizia Pocino
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, Rome, Italy
| | - Gian Ludovico Rapaccini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario ‘A. Gemelli’ I.R.C.C.S., Rome, Italy
| | - Marco Maria Lizzio
- UOC di Reumatologia, Fondazione Policlinico Universitario ‘A. Gemelli’ I.R.C.C.S., Rome, Italy
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario ‘A. Gemelli’ I.R.C.C.S., Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario ‘A. Gemelli’ I.R.C.C.S., Rome, Italy
| | - Umberto Basile
- Unità Operativa Complessa di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L., Latina, Italy
| |
Collapse
|
3
|
Zhou Y, Zhu H, Zhao L, Zhao G, Sun J. Bidirectional Mendelian randomization and potential mechanistic insights into the causal relationship between gut microbiota and malignant mesothelioma. Medicine (Baltimore) 2025; 104:e42245. [PMID: 40295238 PMCID: PMC12040020 DOI: 10.1097/md.0000000000042245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Malignant mesothelioma (MM) is a rare but aggressive cancer originating from mesothelial cells, which presents significant challenges to patients' physical and psychological well-being. The gut-lung axis underscores the connection between gut microbiota and respiratory diseases, with emerging evidence suggesting a strong association between gut microbiota and the development of MM. In this study, we conducted a two-sample Mendelian randomization (MR) analysis to investigate the potential causal relationship between gut microbiota and MM, while also exploring the underlying mechanisms through bioinformatics approaches. Gut microbiota summary data were obtained from the MiBioGen consortium, while MM data were sourced from the FinnGen R11 dataset. Causality was examined using the inverse variance weighted method as the primary analysis. Additional methods, including the weighted median, simple mode, MR-Egger, and weighted mode, were also employed. The robustness of the findings was validated through sensitivity analyses, and reverse causality was considered to further strengthen the MR results. Moreover, bioinformatics analyses were conducted on genetic loci associated with both gut microbiota and MM to explore potential underlying mechanisms. Our study suggests that genetically predicted increases in class.Bacilli, family.Rikenellaceae, genus.Clostridium innocuum group, and order.Lactobacillales were suggestively associated with a higher risk of MM, whereas increases in genus.Ruminococcaceae UCG004, genus.Flavonifractor, phylum.Firmicutes, genus.Anaerofilum, genus.Clostridium sensu stricto 1, and genus.Lactobacillus appeared to confer protective effects. Bioinformatics analysis indicated that differentially expressed genes near loci associated with gut microbiota might affect MM by modulating pathways and the tumor microenvironment. The results of this study point to a potential genetic predisposition linking gut microbiota to MM. Further experimental validation is crucial to confirm these candidate microbes, establish causality, and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yinjie Zhou
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Huangkai Zhu
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Long Zhao
- Department of Cardiovascular Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Jiaen Sun
- Department of Cardiovascular Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Hudák A, Letoha T. Endocytic Pathways Unveil the Role of Syndecans in the Seeding and Spreading of Pathological Protein Aggregates: Insights into Neurodegenerative Disorders. Int J Mol Sci 2025; 26:4037. [PMID: 40362276 PMCID: PMC12071627 DOI: 10.3390/ijms26094037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease and other neurodegenerative disorders are characterized by the accumulation of misfolded proteins, such as amyloid-beta, tau, and α-synuclein, which disrupt neuronal function and contribute to cognitive decline. Heparan sulfate proteoglycans, particularly syndecans, play a pivotal role in the seeding, aggregation, and spreading of toxic protein aggregates through endocytic pathways. Among these, syndecan-3 is particularly critical in regulating the internalization of misfolded proteins, facilitating their propagation in a prion-like manner. This review examines the mechanisms by which syndecans, especially SDC3, contribute to the seeding and spreading of pathological protein aggregates in neurodegenerative diseases. Understanding these endocytic pathways provides valuable insights into the potential of syndecans as biomarkers and therapeutic targets for early intervention in Alzheimer's disease and other related neurodegenerative disorders.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., 6726 Szeged, Hungary;
- Doctoral School of Theoretical Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Tamás Letoha
- Pharmacoidea Ltd., 6726 Szeged, Hungary;
- Doctoral School of Theoretical Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
5
|
Çakir MU, Karduz G, Aksu U. Experimental and clinical perspectives on glycocalyx integrity and its relation to acute respiratory distress syndrome. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167745. [PMID: 39987847 DOI: 10.1016/j.bbadis.2025.167745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/02/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
The development of microcirculation imaging devices has significantly advanced our comprehension of the capillary environment's dynamics. Early research suggested that erythrocytes did not contact the vessel's inner surface due to the Fåhraeus effect, implying the presence of a covering on the endothelial cell surface. Subsequent electron microscopy studies revealed this layer to be a complex part of the vessel wall, now known as the endothelial glycocalyx (EG). The EG is a network of proteoglycans and glycoproteins bound to the endothelial membrane, incorporating soluble molecules from the endothelium and plasma. Over time, studies have elucidated the structure, function, and therapeutic targets of the glycocalyx, underscoring its pivotal role in vascular biology. The presence of cellular extensions of lung tissue cells in both vascular and nonvascular areas demonstrates the pivotal role of the glycocalyx in pulmonary vascular leak, surfactant dysfunction, impaired lung compliance and gas exchange abnormalities, which are hallmarks of acute respiratory distress syndrome (ARDS). It is of the utmost importance to elucidate the mechanisms underlying alveolocapillary glycocalyx degradation to develop efficacious treatments for ARDS, which has a mortality rate of 35 %. An understanding of the glycocalyx's role in vascular integrity provides a foundation for exploring new therapeutic avenues to mitigate lung injury and improve clinical outcomes in ARDS patients.
Collapse
Affiliation(s)
- Muzaffer Utku Çakir
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Gülsüm Karduz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ugur Aksu
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
6
|
Koelsch N, Mirshahi F, Aqbi HF, Seneshaw M, Idowu MO, Olex AL, Sanyal AJ, Manjili MH. Anti-tumor immunity relies on targeting tissue homeostasis through monocyte-driven responses rather than direct tumor cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.12.598563. [PMID: 38903113 PMCID: PMC11188117 DOI: 10.1101/2024.06.12.598563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Metabolic dysfunction-associated fatty liver disease (MAFLD) can progress to hepatocellular carcinoma (HCC), yet the immune mechanisms driving this transition remain unclear. Methods In a chronic Western diet (WD) mouse model, we performed single-nuclei RNA sequencing to track MAFLD progression into HCC and subsequent tumor inhibition upon dietary correction. Results Carcinogenesis begins during MAFLD, with tumor cells entering dormancy when HCC is mitigated. Rather than purely tolerogenic, the liver actively engages immune responses targeting myofibroblasts, fibroblasts and hepatocytes to maintain tissue homeostasis. Cytotoxic cells contribute to turnover of liver cells but do not primarily target the tumor. NKT cells predominate under chronic WD, while monocytes join them in HCC progression on a WD. Upon dietary correction, monocyte-driven immunity confers protection against HCC through targeting tissue homeostatic pathways and antioxidant mechanisms. Crucially, liver tissue response-not merely immune activation-dictates whether tumors grow or regress, emphasizing the importance of restoring liver tissue integrity. Also, protection against HCC is linked to a distinct immunological pattern, differing from healthy controls, underscoring the need for immune reprogramming. Conclusion These findings reveal the dual roles of similar pathways, where immune patterns targeting different cells shape distinct outcomes. Restoring tissue homeostasis and regeneration creates a tumor-hostile microenvironment, whereas tumor-directed approaches fail to remodel the TME. This underscores the need for tissue remodeling strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicholas Koelsch
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
| | - Hussein F. Aqbi
- College of Science, Mustansiriyah University, Baghdad, P.O. Box 14022, Iraq
| | - Mulugeta Seneshaw
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
| | - Michael O. Idowu
- Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Amy L. Olex
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine
| | - Arun J. Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Masoud H. Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Richmond VA 23298
| |
Collapse
|
7
|
Cheng PP, He XL, Jia ZH, Hu SH, Feng X, Jiang YH, Li Q, Zhao LQ, Cui XL, Ye SY, Liang LM, Song LJ, Wang M, Yu F, Xiong L, Xiang F, Wang X, Ma WL, Ye H. Midkine, a novel MCP-1 activator mediated PM2.5-aggravated experimental pulmonary fibrosis. ENVIRONMENT INTERNATIONAL 2025; 197:109354. [PMID: 40049042 DOI: 10.1016/j.envint.2025.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/21/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
Exposure to fine particulate matter (PM2.5) is associated with increased morbidity and mortality among patients with idiopathic pulmonary fibrosis (IPF). Pathological alterations in IPF typically originate in the subpleural regions of the lungs. However, it was unclear how PM2.5 affected subpleural pulmonary fibrosis. In this study, atmospheric PM2.5 and carbon blacks were utilized as representative particulate matter to investigate these effects. Mouse models and cell models were made to investigate macrophage chemotaxis changes under PM2.5 exposure in vivo and in vitro. The findings indicated that PM2.5 promoted macrophage aggregation in the subpleural region of lung and aggravated bleomycin-induced pulmonary fibrosis in mice. At the same time, we uncovered for the first time that PM2.5 exposure led to an upregulation of midkine, which subsequently enhanced the production of monocyte chemotactic protein-1 (MCP-1) through the cell surface receptor Syndecan 4 (SDC4) in pleural mesothelial cells (PMCs), thereby, inducing macrophage aggregation in subpleural region of lung. Furthermore, our results indicated that PM2.5 and bleomycin facilitated macrophage M1 polarization and the production of profibrotic inflammatory factors, culminating in fibrotic alterations in PMCs, lung fibroblasts, and alveolar epithelial cells. Finally, we demonstrated that inhibition of midkine ameliorated lung function and mitigated pulmonary fibrosis in vivo. In conclusion, our findings elucidated that midkine acted as a novel MCP-1 activator, mediating PM2.5-aggravated experimental pulmonary fibrosis, and suggested that the midkine/SDC4/MCP-1 signal should be a new therapeutic target for the treatment of PM2.5-related IPF.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Zi-Heng Jia
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shi-He Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ye-Han Jiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Qin Zhao
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Lin Cui
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu-Yi Ye
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China.
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China.
| |
Collapse
|
8
|
Rossi F, Luppi S, Fejza A, Giolo E, Ricci G, Andreuzzi E. Extracellular matrix and pregnancy: functions and opportunities caught in the net. Reprod Biol Endocrinol 2025; 23:24. [PMID: 39953593 PMCID: PMC11827249 DOI: 10.1186/s12958-025-01348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix is a complex network of macromolecules that support the growth and homeostatic development of organisms. By conveying multiple signaling cascades, it impacts on several biological processes and influences the behaviour of numerous cell types. During the endometrial cycle and the key events necessary for a correct embryo implantation and placentation, this bioactive meshwork is substantially modified to favour endometrial receptivity and vascular adaptation, trophoblast cell migration, and immune activation as well. A correct extracellular remodeling is fundamental for the establishment of a physiological pregnancy; indeed, the occurrence of altered matrix modifications associates with gestational disorders such as preeclampsia. In the present review, we will critically evaluate the role of pivotal matrix constituents in regulating the key steps of embryo implantation and placentation, provide up-to-date information concerning their primary mechanisms of action and discuss on their potential as a novel source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Francesca Rossi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Albina Fejza
- UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina, 10000, Kosovo
| | - Elena Giolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Eva Andreuzzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy.
| |
Collapse
|
9
|
Dong J, Qi F, Qie H, Du S, Li L, Zhang Y, Xu K, Li D, Xu Y. Oleic Acid Inhibits SDC4 and Promotes Ferroptosis in Lung Cancer Through GPX4/ACSL4. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70014. [PMID: 39400975 PMCID: PMC11471947 DOI: 10.1111/crj.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION As a common malignancy, lung cancer has a relatively poor prognosis and a low survival rate. In recent years, ferroptosis, as an emerging filed, has great promise in the potential treatment of cancer. Brucea javanica oil (BJO) is often used to treat various cancers. Oleic acid (OA) is the main ingredient of BJO. In this study, we investigated the role and molecular mechanism of OA in lung cancer treatment by promoting ferroptosis. METHODS In this study, A549 cells and H1299 cells were used for in vitro experiments, and a CCK-8 test, scratch test, and MTT experiment were carried out. We examined reactive oxygen species (ROS), the JC-1 probe, glutathione (GSH) expression, lipid peroxidation, SDC4 mRNA levels, and ACSL4, SLC7A11, GPX4, and SDC4 protein levels. RESULTS The results showed that OA could inhibit the proliferation and migration of A549 cells and H1299 cells, SDC4 was a potential therapeutic target of OA against lung cancer, and OA treatment significantly inhibited the expression of SDC4 in A549 cells and H1299 cells. OA induces ferroptosis in A549 cells and H1299 cells, decreases GSH levels, increases lipid peroxidation levels, and decreases SDC4 mRNA expression; in addition, OA upregulates ACSL4 expression and decreases SLC7A11, GPX4, and SDC4 expression. CONCLUSION This study confirmed that OA could inhibit SDC4 expression and promote the occurrence of ferroptosis in A549 cells and H1299 cells through the GPX4/ACSL4 pathway, providing an effective basis for the use of drugs targeting ferroptosis in lung cancer treatment.
Collapse
Affiliation(s)
- Jingfei Dong
- Department of Clinical LaboratoryHebei Provincial Hospital of Chinese MedicineShijiazhuangHebeiChina
| | - Fei Qi
- School of Basic Medical SciencesChengde Medical UniversityChengdeHebeiChina
| | - Huiqing Qie
- Department of Clinical LaboratoryHebei Provincial Hospital of Chinese MedicineShijiazhuangHebeiChina
| | - Shibu Du
- Department of Clinical LaboratoryHebei Provincial Hospital of Chinese MedicineShijiazhuangHebeiChina
| | - Li Li
- Department of Health CareHebei General HospitalShijiazhuangHebeiChina
| | - Yan Zhang
- Department of Functional MedicineHebei Provincial Hospital of Chinese MedicineShijiazhuangHebeiChina
| | - Kaiyue Xu
- Department of Clinical LaboratoryHebei Provincial Hospital of Chinese MedicineShijiazhuangHebeiChina
| | - Dehui Li
- Department of OncologyHebei Provincial Hospital of Chinese MedicineShijiazhuangHebeiChina
| | - Yapei Xu
- Gastrointestinal Endoscopy RoomHebei Provincial Hospital of Chinese MedicineShijiazhuangHebeiChina
| |
Collapse
|
10
|
Hagen MW, Setiawan NJ, Woodruff KA, Termini CM. Syndecans in hematopoietic cells and their niches. Am J Physiol Cell Physiol 2024; 327:C372-C378. [PMID: 38912739 PMCID: PMC11427021 DOI: 10.1152/ajpcell.00326.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Heparan sulfate proteoglycans are a family of glycoproteins that modulate cell signaling by binding growth factors and changing their bioavailability. Syndecans are a specific family of transmembrane heparan sulfate proteoglycans that regulate cell adhesion, migration, and signaling. In this review, we will summarize emerging evidence for the functions of syndecans in the normal and malignant blood systems and their microenvironments. More specifically, we detail the known functions of syndecans within normal hematopoietic stem cells. Furthermore, we discuss the functions of syndecans in hematological malignancies, including myeloid malignancies, lymphomas, and bleeding disorders. As normal and malignant hematopoietic cells require cues from their microenvironments to function, we also summarize the roles of syndecans in cells of the stromal, endothelial, and osteolineage compartments. Syndecan biology is a rapidly evolving field; a comprehensive understanding of these molecules and their place in the hematopoietic system promises to improve our grasp on disease processes and better predict the efficacies of growth factor-targeting therapies.
Collapse
Affiliation(s)
- Matthew W Hagen
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Nicollette J Setiawan
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Kelsey A Woodruff
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Christina M Termini
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
11
|
Wu Y, Wagner WD. Syndecan-4 Functionalization Reduces the Thrombogenicity of Engineered Vascular Biomaterials. Ann Biomed Eng 2024; 52:1873-1882. [PMID: 37071281 PMCID: PMC11169030 DOI: 10.1007/s10439-023-03199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Blood-biomaterial compatibility is essential for tissue repair especially for endovascular biomaterials where small-diameter vessel patency and endothelium formation is crucial. To address this issue, a composite biomaterial termed PFC fabricated from poly (glycerol sebacate), silk fibroin, and collagen was used to determine if functionalization with syndecan-4 (SYN4) would reduce thrombogenesis through the action of heparan sulfate. The material termed, PFC_SYN4, has structure and composition similar to native arterial tissue and has been reported to facilitate the binding and differentiation of endothelial colony-forming cells (ECFCs). In this study, the hemocompatibility of PFC_SYN4 was evaluated and compared with non-functionalized PFC, electrospun collagen, ePTFE, and bovine pericardial patch (BPV). Ultrastructurally, platelets were less activated when cultured on PFC and PFC_SYN4 compared to collagen where extensive platelet degranulation was observed. Quantitatively, 31% and 44% fewer platelets adhered to PFC_SYN4 compared to non-functionalized PFC and collagen, respectively. Functionalization of PFC resulted in reduced levels of complement activation compared to PFC, collagen, and BPV. Whole blood clotting times indicated that PFC_SYN4 was less thrombogenic compared with PFC, collagen, and BPV. These results suggest that syndecan-4 functionalization of blood-contacting biomaterials provides a novel solution for generating a reduced thrombogenic surface.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Plastic & Reconstructive Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - William D Wagner
- Department of Plastic & Reconstructive Surgery, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, USA.
| |
Collapse
|
12
|
Michel M, Renaud D, Schmidt R, Einkemmer M, Laser LV, Michel E, Dubowy KO, Karall D, Laser KT, Scholl-Bürgi S. Altered Serum Proteins Suggest Inflammation, Fibrogenesis and Angiogenesis in Adult Patients with a Fontan Circulation. Int J Mol Sci 2024; 25:5416. [PMID: 38791454 PMCID: PMC11121818 DOI: 10.3390/ijms25105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Previous omics research in patients with complex congenital heart disease and single-ventricle circulation (irrespective of the stage of palliative repair) revealed alterations in cardiac and systemic metabolism, inter alia abnormalities in energy metabolism, and inflammation, oxidative stress or endothelial dysfunction. We employed an affinity-proteomics approach focused on cell surface markers, cytokines, and chemokines in the serum of 20 adult Fontan patients with a good functioning systemic left ventricle, and we 20 matched controls to reveal any specific processes on a cellular level. Analysis of 349 proteins revealed 4 altered protein levels related to chronic inflammation, with elevated levels of syndecan-1 and glycophorin-A, as well as decreased levels of leukemia inhibitory factor and nerve growth factor-ß in Fontan patients compared to controls. All in all, this means that Fontan circulation carries specific physiological and metabolic instabilities, including chronic inflammation, oxidative stress imbalance, and consequently, possible damage to cell structure and alterations in translational pathways. A combination of proteomics-based biomarkers and the traditional biomarkers (uric acid, γGT, and cholesterol) performed best in classification (patient vs. control). A metabolism- and signaling-based approach may be helpful for a better understanding of Fontan (patho-)physiology. Syndecan-1, glycophorin-A, leukemia inhibitory factor, and nerve growth factor-ß, especially in combination with uric acid, γGT, and cholesterol, might be interesting candidate parameters to complement traditional diagnostic imaging tools and the determination of traditional biomarkers, yielding a better understanding of the development of comorbidities in Fontan patients, and they may play a future role in the identification of targets to mitigate inflammation and comorbidities in Fontan patients.
Collapse
Affiliation(s)
- Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David Renaud
- Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France;
- Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
| | | | - Matthias Einkemmer
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Lea Valesca Laser
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Erik Michel
- Clinic for Pediatrics, Medizin Campus Bodensee, 88048 Friedrichshafen, Germany;
| | - Karl Otto Dubowy
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Daniela Karall
- Department of Child and Adolescent Health, Division Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria (S.S.-B.)
| | - Kai Thorsten Laser
- Center of Pediatric Cardiology and Congenital Heart Disease, Heart and Diabetes Center North Rhine-Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany; (L.V.L.); (K.O.D.); (K.T.L.)
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria (S.S.-B.)
| |
Collapse
|
13
|
Vercellino J, Małachowska B, Kulkarni S, Bell BI, Shajahan S, Shinoda K, Eichenbaum G, Verma AK, Ghosh SP, Yang WL, Frenette PS, Guha C. Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome. Stem Cell Res Ther 2024; 15:123. [PMID: 38679747 PMCID: PMC11057170 DOI: 10.1186/s13287-024-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.
Collapse
Affiliation(s)
- Justin Vercellino
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Beata Małachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Shilpa Kulkarni
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Brett I Bell
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shahin Shajahan
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gary Eichenbaum
- Johnson & Johnson, Office of the Chief Medical Officer, New Brunswick, NJ, USA
- Bioconvergent Health, LLC, Purchase, NY, USA
| | - Amit K Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Paul S Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Bioconvergent Health, LLC, Purchase, NY, USA.
| |
Collapse
|
14
|
Morimoto K, Ishitobi J, Noguchi K, Kira R, Kitayama Y, Goto Y, Fujiwara D, Michigami M, Harada A, Takatani-Nakase T, Fujii I, Futaki S, Kanada M, Nakase I. Extracellular Microvesicles Modified with Arginine-Rich Peptides for Active Macropinocytosis Induction and Delivery of Therapeutic Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17069-17079. [PMID: 38563247 PMCID: PMC11011658 DOI: 10.1021/acsami.3c14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), transfer bioactive molecules from donor to recipient cells in various pathophysiological settings, thereby mediating intercellular communication. Despite their significant roles in extracellular signaling, the cellular uptake mechanisms of different EV subpopulations remain unknown. In particular, plasma membrane-derived MVs are larger vesicles (100 nm to 1 μm in diameter) and may serve as efficient molecular delivery systems due to their large capacity; however, because of size limitations, receptor-mediated endocytosis is considered an inefficient means for cellular MV uptake. This study demonstrated that macropinocytosis (lamellipodia formation and plasma membrane ruffling, causing the engulfment of large fluid volumes outside cells) can enhance cellular MV uptake. We developed experimental techniques to induce macropinocytosis-mediated MV uptake by modifying MV membranes with arginine-rich cell-penetrating peptides for the intracellular delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Kenta Morimoto
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Jojiro Ishitobi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Kosuke Noguchi
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Ryoichi Kira
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yukiya Kitayama
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Yuto Goto
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Daisuke Fujiwara
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Masataka Michigami
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Atsushi Harada
- Department
of Applied Chemistry, Graduate School of
Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho,
Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Tomoka Takatani-Nakase
- Department
of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
- Institute
for Bioscience, Mukogawa Women’s University, 11-68, Koshien Kyuban-cho, Nishinomiya 663-8179, Hyogo, Japan
| | - Ikuo Fujii
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| | - Shiroh Futaki
- Institute
for Chemical Research, Kyoto University, Uji 611-0011, Kyoto, Japan
| | - Masamitsu Kanada
- Institute
for Quantitative Health Science and Engineering (IQ), Michigan State
University, East Lansing, Michigan 48824, United States
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ikuhiko Nakase
- Department
of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai 599-8531, Osaka, Japan
| |
Collapse
|
15
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
16
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Hernández-Espinosa LC, Hernández-Muñoz R. Blood flow-bearing physical forces, endothelial glycocalyx, and liver enzyme mobilization: A hypothesis. J Gen Physiol 2024; 156:e202313462. [PMID: 38231124 PMCID: PMC10794122 DOI: 10.1085/jgp.202313462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/13/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Numerous elements involved in shear stress-induced signaling have been identified, recognizing their functions as mechanotransducing ion channels situated at cellular membranes. This form of mechanical signaling relies on transmembrane proteins and cytoplasmic proteins that restructure the cytoskeleton, contributing to mechanotransduction cascades. Notably, blood flow generates mechanical forces that significantly impact the structure and remodeling of blood vessels. The primary regulation of blood vessel responses occurs through hemodynamic forces acting on the endothelium. These mechanical events intricately govern endothelial biophysical, biochemical, and genetic responses. Endothelial cells, positioned on the intimal surface of blood vessels, have the capability to express components of the glycocalyx. This endothelial structure emerges as a pivotal factor in mechanotransduction and the regulation of vascular tone. The endothelial glycocalyx assumes diverse roles in both health and disease. Our findings propose a connection between the release of specific enzymes from the rat liver and variations in the hepatic blood flow/mass ratio. Importantly, this phenomenon is not correlated with liver necrosis. Consequently, this review serves as an exploration of the potential involvement of membrane proteins in a hypothetical mechanotransducing phenomenon capable of controlling the release of liver enzymes.
Collapse
Affiliation(s)
- Lorena Carmina Hernández-Espinosa
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
18
|
Vercellino J, Małachowska B, Kulkarni S, Bell BI, Shajahan S, Shinoda K, Eichenbaum G, Verma AK, Ghosh SP, Yang WL, Frenette PS, Guha C. Thrombopoietin mimetic stimulates bone marrow vascular and stromal niches to mitigate acute radiation syndrome. RESEARCH SQUARE 2024:rs.3.rs-3946910. [PMID: 38463959 PMCID: PMC10925435 DOI: 10.21203/rs.3.rs-3946910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating the regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is a key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has not yet been elucidated. Methods C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 hours post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. Results At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. Conclusions TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.
Collapse
Affiliation(s)
| | | | - Shilpa Kulkarni
- NIAID: National Institute of Allergy and Infectious Diseases
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Afsar B, Afsar RE. The role of glycosaminoglycans in blood pressure regulation. Microcirculation 2023; 30:e12832. [PMID: 37794746 DOI: 10.1111/micc.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Essential hypertension (HT) is the global health problem and is a major risk factor for the development of cardiovascular and kidney disease. High salt intake has been associated with HT and impaired kidney sodium excretion is considered to be a major mechanism for the development of HT. Although kidney has a very important role in regulation of BP, this traditional view of BP regulation was challenged by recent findings suggesting that nonosmotic tissue sodium deposition is very important for BP regulation. This new paradigm indicates that sodium can be stored and deposited nonosmotically in the interstitium without water retention and without increased BP. One of the major determinants of this deposition is glycosaminoglycans (GAGs). By binding to GAGs found in the endothelial surface layer (ESL) which contains glycocalyx, sodium is osmotically inactivated and not induce concurrent water retention. Thus, GAGs has important function for homeostatic BP and sodium regulation. In the current review, we summarized the role of GAGs in ESL and BP regulation.
Collapse
Affiliation(s)
- Baris Afsar
- School of Medicine, Department of Nephrology, Suleyman Demirel University, Isparta, Turkey
| | - Rengin Elsurer Afsar
- School of Medicine, Department of Nephrology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
20
|
Vahldieck C, Fels B, Löning S, Nickel L, Weil J, Kusche-Vihrog K. Prolonged Door-to-Balloon Time Leads to Endothelial Glycocalyx Damage and Endothelial Dysfunction in Patients with ST-Elevation Myocardial Infarction. Biomedicines 2023; 11:2924. [PMID: 38001925 PMCID: PMC10669223 DOI: 10.3390/biomedicines11112924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Damage to the endothelial glycocalyx (eGC) has been reported during acute ischemic events like ST-elevation myocardial infarction (STEMI). In STEMI, a door-to-balloon time (D2B) of <60 min was shown to reduce mortality and nonfatal complications. Here, we hypothesize that eGC condition is associated with D2B duration and endothelial function during STEMI. One hundred and twenty-six individuals were analyzed in this study (STEMI patients vs. age-/sex-matched healthy volunteers). After stimulating endothelial cells with patient/control sera, the eGC's nanomechanical properties (i.e., height/stiffness) were analyzed using the atomic force microscopy-based nanoindentation technique. eGC components were determined via ELISA, and measurements of nitric oxide levels (NO) were based on chemiluminescence. eGC height/stiffness (both p < 0.001), as well as NO concentration (p < 0.001), were reduced during STEMI. Notably, the D2B had a strong impact on the endothelial condition: a D2B > 60 min led to significantly higher serum concentrations of eGC components (syndecan-1: p < 0.001/heparan sulfate: p < 0.001/hyaluronic acid: p < 0.0001). A D2B > 60 min led to the pronounced loss of eGC height/stiffness (both, p < 0.001) with reduced NO concentrations (p < 0.01), activated the complement system (p < 0.001), and prolonged the hospital stay (p < 0.01). An increased D2B led to severe eGC shedding, with endothelial dysfunction in a temporal context. eGC components and pro-inflammatory mediators correlated with a prolonged D2B, indicating a time-dependent immune reaction during STEMI, with a decreased NO concentration. Thus, D2B is a crucial factor for eGC damage during STEMI. Clinical evaluation of the eGC condition might serve as an important predictor for the endothelial function of STEMI patients in the future.
Collapse
Affiliation(s)
- Carl Vahldieck
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, 23538 Luebeck, Germany
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
| | - Laura Nickel
- Medizinische Klinik II, Sana Kliniken Luebeck, 23560 Luebeck, Germany (J.W.)
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, 23560 Luebeck, Germany (J.W.)
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, 23562 Luebeck, Germany; (B.F.); (K.K.-V.)
- DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, 23562 Luebeck, Germany
| |
Collapse
|
21
|
Letoha A, Hudák A, Letoha T. Exploring the Syndecan-Mediated Cellular Internalization of the SARS-CoV-2 Omicron Variant. Int J Mol Sci 2023; 24:14140. [PMID: 37762442 PMCID: PMC10531417 DOI: 10.3390/ijms241814140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 variants evolve to rely more on heparan sulfate (HS) for viral attachment and subsequent infection. In our earlier work, we demonstrated that the Delta variant's spike protein binds more strongly to HS compared to WT SARS-CoV-2, leading to enhanced cell internalization via syndecans (SDCs), a family of transmembrane HS proteoglycans (HSPGs) facilitating the cellular entry of the original strain. Using our previously established ACE2- or SDC-overexpressing cellular models, we now compare the ACE2- and SDC-dependent cellular uptake of heat-inactivated WT SARS-CoV-2 with the Delta and Omicron variants. Internalization studies with inactivated virus particles showed that ACE2 overexpression could not compensate for the loss of HS in Omicron's internalization, suggesting that this variant primarily uses HSPGs to enter cells. Although SDCs increased the internalization of all three viruses, subtle differences could be detected between their SDC isoform preferences. The Delta variant particularly benefitted from SDC1, 2, and 4 overexpression for cellular entry, while SDC4 had the most prominent effect on Omicron internalization. The SDC4 knockdown (KD) in Calu-3 cells reduced the cellular uptake of all three viruses, but the inhibition was the most pronounced for Omicron. The polyanionic heparin also hindered the cellular internalization of all three viruses with a dominant inhibitory effect on Omicron. Omicron's predominant HSPG affinity, combined with its preference for the universally expressed SDC4, might account for its efficient transmission yet reduced pathogenicity.
Collapse
Affiliation(s)
- Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | | | | |
Collapse
|
22
|
Montazeri Aliabadi H, Manda A, Sidgal R, Chung C. Targeting Breast Cancer: The Familiar, the Emerging, and the Uncharted Territories. Biomolecules 2023; 13:1306. [PMID: 37759706 PMCID: PMC10526846 DOI: 10.3390/biom13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment. While this has resulted in the approval of a few molecularly targeted drugs by the FDA (including drugs targeting immune checkpoints), a wide array of signaling pathways seem to be still underexplored. Also, while combinatorial treatments have become common practice in clinics, the majority of these approaches seem to combine molecularly targeted drugs with chemotherapeutic agents. In this manuscript, we start by analyzing the list of FDA-approved molecularly targeted drugs for breast cancer to evaluate where molecular targeting stands in breast cancer treatment today. We will then provide an overview of other options currently under clinical trial or being investigated in pre-clinical studies.
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | | | | | | |
Collapse
|
23
|
Hattori Y, Hasegawa M, Iino T, Imanaka-Yoshida K, Sudo A. Role of Syndecan-4 in the Inhibition of Articular Cartilage Degeneration in Osteoarthritis. Biomedicines 2023; 11:2257. [PMID: 37626753 PMCID: PMC10452293 DOI: 10.3390/biomedicines11082257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Despite its widespread existence, there are relatively few drugs that can inhibit the progression of osteoarthritis (OA). Syndecan-4 (SDC4) is a transmembrane heparan sulfate proteoglycan that modulates cellular interactions with the extracellular matrix. Upregulated SDC4 expression in articular cartilage chondrocytes correlates with OA progression. In the present study, we treated osteoarthritic cartilage with SDC4 to elucidate its role in the disease's pathology. In this in vitro study, we used real-time polymerase chain reaction (PCR) to investigate the effects of SDC4 on anabolic and catabolic factors in cultured chondrocytes. In the in vivo study, we investigated the effect of intra-articular injection of SDC4 into the knee joints of an OA mouse model. In vitro, SDC4 upregulated the expression of tissue inhibitor of metalloproteinase (TIMP)-3 and downregulated the expression of matrix metalloproteinase (MMP)-13 and disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 in chondrocytes. Injection of SDC4 into the knee joints of OA model mice prevented articular cartilage degeneration 6 and 8 weeks postoperatively. Immunohistochemical analysis 8 weeks after SDC4 injection into the knee joint revealed decreased ADAMTS-5 expression and increased TIMP-3 expression. The results of this study suggest that the treatment of osteoarthritic articular cartilage with SDC4 inhibits cartilage degeneration.
Collapse
Affiliation(s)
- Yoshio Hattori
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.H.); (T.I.); (A.S.)
| | - Masahiro Hasegawa
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.H.); (T.I.); (A.S.)
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.H.); (T.I.); (A.S.)
| | - Kyoko Imanaka-Yoshida
- Departments of Pathology & Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan;
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan; (Y.H.); (T.I.); (A.S.)
| |
Collapse
|
24
|
Makarova N, Lekka M, Gnanachandran K, Sokolov I. Mechanical Way To Study Molecular Structure of Pericellular Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35962-35972. [PMID: 37489588 PMCID: PMC10401571 DOI: 10.1021/acsami.3c06341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Atomic force microscopy (AFM) has been used to study the mechanical properties of cells, in particular, malignant cells. Softening of various cancer cells compared to their nonmalignant counterparts has been reported for various cell types. However, in most AFM studies, the pericellular layer was ignored. As was shown, it could substantially change the measured cell rigidity and miss important information on the physical properties of the pericellular layer. Here we take into account the pericellular layer by using the brush model to do the AFM indentation study of bladder epithelial bladder nonmalignant (HCV29) and cancerous (TCCSUP) cells. It allows us to measure not only the quasistatic Young's modulus of the cell body but also the physical properties of the pericellular layer (the equilibrium length and grafting density). We found that the inner pericellular brush was longer for cancer cells, but its grafting density was similar to that found for nonmalignant cells. The outer brush was much shorter and less dense for cancer cells. Furthermore, we demonstrate a method to convert the obtained physical properties of the pericellular layer into biochemical language better known to the cell biology community. It is done by using heparinase I and neuraminidase enzymatic treatments that remove specific molecular parts of the pericellular layer. The presented here approach can also be used to decipher the molecular composition of not only pericellular but also other molecular layers.
Collapse
Affiliation(s)
- Nadezda Makarova
- Department
of Mechanical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Małgorzata Lekka
- Department
of Biophysical Microstructures, Institute
of Nuclear Physics PAN, PL-31342 Kraków, Poland
| | - Kajangi Gnanachandran
- Department
of Biophysical Microstructures, Institute
of Nuclear Physics PAN, PL-31342 Kraków, Poland
| | - Igor Sokolov
- Department
of Mechanical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department
of Physics, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
25
|
Vuorinen SI, Okolicsanyi RK, Gyimesi M, Meyjes-Brown J, Saini D, Pham SH, Griffiths LR, Haupt LM. SDC4-rs1981429 and ATM-rs228590 may provide early biomarkers of breast cancer risk. J Cancer Res Clin Oncol 2023; 149:4563-4578. [PMID: 36152082 PMCID: PMC10349731 DOI: 10.1007/s00432-022-04236-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/23/2022] [Indexed: 01/20/2023]
Abstract
In Australia, 13% of women are diagnosed with breast cancer (BC) in their lifetime with approximately 20,000 women diagnosed with the disease in 2021. BC is characterised by complex histological and genomic influences with recent advances in cancer biology improving early diagnosis and personalised treatment interventions. The Phosphatidyl-inositol-3-kinase/Protein kinase B (PI3K/AKT) pathway is essential in apoptosis resistance, cell survival, activation of cellular responses to DNA damage and DNA repair. Heparan sulfate proteoglycans (HSPGs) are ubiquitous molecules found on the cell surface and in the extracellular matrix with essential functions in regulating cell survival, growth, adhesion and as mediators of cell differentiation and migration. HSPGs, particularly the syndecans (SDCs), have been linked to cancers, making them an exciting target for anticancer treatments. In the PI3K/AKT pathway, syndecan-4 (SDC4) has been shown to downregulate AKT Serine/Threonine Kinase (AKT1) gene expression, while the ATM Serine/Threonine Kinase (ATM) gene has been found to inhibit this pathway upstream of AKT. We investigated single-nucleotide polymorphisms (SNPs) in HSPG and related genes SDC4, AKT1 and ATM and their influence on the prevalence of BC. SNPs were genotyped in the Australian Caucasian Genomics Research Centre Breast Cancer (GRC-BC) population and in the Griffith University-Cancer Council Queensland Breast Cancer Biobank (GU-CCQ BB) population. We identified that SDC4-rs1981429 and ATM-rs228590 may influence the development and progression of BC, having the potential to become biomarkers in early BC diagnosis and personalised treatment.
Collapse
Affiliation(s)
- Sofia I Vuorinen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Martina Gyimesi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Jacob Meyjes-Brown
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Deepa Saini
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Son H Pham
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
| |
Collapse
|
26
|
Sligar AD, Howe G, Goldman J, Felli P, Gómez-Hernández A, Takematsu E, Veith A, Desai S, Riley WJ, Singeetham R, Mei L, Callahan G, Ashirov D, Smalling R, Baker AB. Syndecan-4 Proteoliposomes Enhance Revascularization in a Rabbit Hind Limb Ischemia Model of Peripheral Ischemia. Acta Biomater 2023:S1742-7061(23)00331-8. [PMID: 37321528 DOI: 10.1016/j.actbio.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.
Collapse
Affiliation(s)
- Andrew D Sligar
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Julia Goldman
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Austin Veith
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Shubh Desai
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - William J Riley
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Rohan Singeetham
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Lei Mei
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gregory Callahan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - David Ashirov
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX; Memorial Hermann Heart and Vascular Institute, Houston, TX
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX.
| |
Collapse
|
27
|
Vahldieck C, Cianflone E, Fels B, Löning S, Depelmann P, Sabatino J, Salerno N, Karsten CM, Torella D, Weil J, Sun D, Goligorsky MS, Kusche-Vihrog K. Endothelial Glycocalyx and Cardiomyocyte Damage Is Prevented by Recombinant Syndecan-1 in Acute Myocardial Infarction. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:474-492. [PMID: 36669683 PMCID: PMC10123521 DOI: 10.1016/j.ajpath.2022.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
The outer layer of endothelial cells (ECs), consisting of the endothelial glycocalyx (eGC) and the cortex (CTX), provides a protective barrier against vascular diseases. Structural and functional impairments of their mechanical properties are recognized as hallmarks of endothelial dysfunction and can lead to cardiovascular events, such as acute myocardial infarction (AMI). This study investigated the effects of AMI on endothelial nanomechanics and function and the use of exogenous recombinant syndecan-1 (rSyn-1), a major component of the eGC, as recovering agent. ECs were exposed in vitro to serum samples collected from patients with AMI. In addition, in situ ECs of ex vivo aorta preparations derived from a mouse model for AMI were employed. Effects were quantified by using atomic force microscopy-based nanoindentation measurements, fluorescence staining, and histologic examination of the mouse hearts. AMI serum samples damaged eGC/CTX and augmented monocyte adhesion to the endothelial surface. In particular, the anaphylatoxins C3a and C5a played an important role in these processes. The impairment of endothelial function could be prevented by rSyn-1 treatment. In the mouse model of myocardial infarction, pretreatment with rSyn-1 alleviated eGC/CTX deterioration and reduced cardiomyocyte damage in histologic analyses. However, echocardiographic measurements did not indicate a functional benefit. These results provide new insights into the underlying mechanisms of AMI-induced endothelial dysfunction and perspectives for future studies on the benefit of rSyn-1 in post-AMI treatment.
Collapse
Affiliation(s)
- Carl Vahldieck
- Institute of Physiology, University of Luebeck, Luebeck, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, University of Luebeck, Luebeck, Germany.
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, Luebeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | - Patrik Depelmann
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy; Division of Pediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy; Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Dong Sun
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, Luebeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| |
Collapse
|
28
|
Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio 2023; 19:100589. [PMID: 36880081 PMCID: PMC9984902 DOI: 10.1016/j.mtbio.2023.100589] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The skin is one of the most essential organs in the human body, interacting with the external environment and shielding the body from diseases and excessive water loss. Thus, the loss of the integrity of large portions of the skin due to injury and illness may lead to significant disabilities and even death. Decellularized biomaterials derived from the extracellular matrix of tissues and organs are natural biomaterials with large quantities of bioactive macromolecules and peptides, which possess excellent physical structures and sophisticated biomolecules, and thus, promote wound healing and skin regeneration. Here, we highlighted the applications of decellularized materials in wound repair. First, the wound-healing process was reviewed. Second, we elucidated the mechanisms of several extracellular matrix constitutes in facilitating wound healing. Third, the major categories of decellularized materials in the treatment of cutaneous wounds in numerous preclinical models and over decades of clinical practice were elaborated. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues for research on decellularized biomaterials-based wound treatment.
Collapse
Affiliation(s)
- Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.,Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
29
|
Sioud M, Olberg A. Antibody Surface Profiling Identifies Glycoforms in Multiple Myeloma as Targets for Immunotherapy: From Antibody Derivatives to Mimetic Peptides for Killing Tumor Cells. Cancers (Basel) 2023; 15:cancers15071934. [PMID: 37046595 PMCID: PMC10093763 DOI: 10.3390/cancers15071934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Despite therapeutic advances in recent years, there are still unmet medical needs for patients with multiple myeloma (MM). Hence, new therapeutic strategies are needed. Using phage display for screening a large repertoire of single chain variable fragments (scFvs), we isolated several candidates that recognize a heavily sulfated MM-specific glycoform of the surface antigen syndecan-1 (CD138). One of the engineered scFv-Fc antibodies, named MM1, activated NK cells and induced antibody-dependent cellular cytotoxicity against MM cells. Analysis of the binding specificity by competitive binding assays with various glycan ligands identified N-sulfation of glucosamine units as essential for binding. Additionally, site-directed mutagenesis revealed that the amino acids arginine and histidine in the complementarily determining regions (CDRs) 2 and 3 of the heavy chain are important for binding. Based on this observation, a heavy-chain antibody, known as a nanobody, and a peptide mimicking the CDR loop sequences were designed. Both variants exhibited high affinity and specificity to MM cells as compared to blood lymphocytes. Specific killing of MM cells was achieved by conjugating the CDR2/3 mimic peptide to a pro-apoptotic peptide (KLAKLAK)2. In a co-culture model, the fusion peptide killed MM cells, while leaving normal peripheral blood mononuclear cells unaffected. Collectively, the development of antibodies and peptides that detect tumor-specific glycoforms of therapeutic targets holds promise for improving targeted therapies and tumor imaging.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
| | - Anniken Olberg
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
| |
Collapse
|
30
|
Wu Y, Yazdani SK, Bolander JEM, Wagner WD. Syndecan-4 and stromal cell-derived factor-1 alpha functionalized endovascular scaffold facilitates adhesion, spreading and differentiation of endothelial colony forming cells and functions under flow and shear stress conditions. J Biomed Mater Res B Appl Biomater 2023; 111:538-550. [PMID: 36208170 PMCID: PMC10092721 DOI: 10.1002/jbm.b.35170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 01/25/2023]
Abstract
Acellular vascular scaffolds with capture molecules have shown great promise in recruiting circulating endothelial colony forming cells (ECFCs) to promote in vivo endothelialization. A microenvironment conducive to cell spreading and differentiation following initial cell capture are key to the eventual formation of a functional endothelium. In this study, syndecan-4 and stromal cell-derived factor-1 alpha were used to functionalize an elastomeric biomaterial composed of poly(glycerol sebacate), Silk Fibroin and Type I Collagen, termed PFC, to enhance ECFC-material interaction. Functionalized PFC (fPFC) showed significantly greater ECFCs capture capability under physiological flow. Individual cell spreading area on fPFC (1474 ± 63 μm2 ) was significantly greater than on PFC (1187 ± 54 μm2 ) as early as 2 h, indicating enhanced cell-material interaction. Moreover, fPFC significantly upregulated the expression of endothelial cell specific markers such as platelet endothelial cell adhesion molecule (24-fold) and Von Willebrand Factor (11-fold) compared with tissue culture plastic after 7 days, demonstrating differentiation of ECFCs into endothelial cells. fPFC fabricated as small diameter conduits and tested using a pulsatile blood flow bioreactor were stable and maintained function. The findings suggest that the new surface functionalization strategy proposed here results in an endovascular material with enhanced endothelialization.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.,Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University School, Winston-Salem, North Carolina, USA
| | - Saami K Yazdani
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Johanna Elin Marie Bolander
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - William D Wagner
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.,Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University School, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| |
Collapse
|
31
|
Syndecan-4 Mediates the Cellular Entry of Adeno-Associated Virus 9. Int J Mol Sci 2023; 24:ijms24043141. [PMID: 36834552 PMCID: PMC9963952 DOI: 10.3390/ijms24043141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Due to their low pathogenicity, immunogenicity, and long-term gene expression, adeno-associated virus (AAV) vectors emerged as safe and efficient gene delivery tools, over-coming setbacks experienced with other viral gene delivery systems in early gene therapy trials. Among AAVs, AAV9 can translocate through the blood-brain barrier (BBB), making it a promising gene delivery tool for transducing the central nervous system (CNS) via systemic administration. Recent reports on the shortcomings of AAV9-mediated gene delivery into the CNS require reviewing the molecular base of AAV9 cellular biology. A more detailed understanding of AAV9's cellular entry would eradicate current hurdles and enable more efficient AAV9-based gene therapy approaches. Syndecans, the transmembrane family of heparan-sulfate proteoglycans, facilitate the cellular uptake of various viruses and drug delivery systems. Utilizing human cell lines and syndecan-specific cellular assays, we assessed the involvement of syndecans in AAV9's cellular entry. The ubiquitously expressed isoform, syndecan-4 proved its superiority in facilitating AAV9 internalization among syndecans. Introducing syndecan-4 into poorly transducible cell lines enabled robust AAV9-dependent gene transduction, while its knockdown reduced AAV9's cellular entry. Attachment of AAV9 to syndecan-4 is mediated not just by the polyanionic heparan-sulfate chains but also by the cell-binding domain of the extracellular syndecan-4 core protein. Co-immunoprecipitation assays and affinity proteomics also confirmed the role of syndecan-4 in the cellular entry of AAV9. Overall, our findings highlight the universally expressed syndecan-4 as a significant contributor to the cellular internalization of AAV9 and provide a molecular-based, rational explanation for the low gene delivery potential of AAV9 into the CNS.
Collapse
|
32
|
Bunch CM, Chang E, Moore EE, Moore HB, Kwaan HC, Miller JB, Al-Fadhl MD, Thomas AV, Zackariya N, Patel SS, Zackariya S, Haidar S, Patel B, McCurdy MT, Thomas SG, Zimmer D, Fulkerson D, Kim PY, Walsh MR, Hake D, Kedar A, Aboukhaled M, Walsh MM. SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock. Front Physiol 2023; 14:1094845. [PMID: 36923287 PMCID: PMC10009294 DOI: 10.3389/fphys.2023.1094845] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function-including fibrinolysis-to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states.
Collapse
Affiliation(s)
- Connor M Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Eric Chang
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States
| | - Hunter B Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States.,Department of Transplant Surgery, Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hau C Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph B Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Mahmoud D Al-Fadhl
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Anthony V Thomas
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Nuha Zackariya
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Shivani S Patel
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sufyan Zackariya
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Saadeddine Haidar
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Bhavesh Patel
- Division of Critical Care, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott G Thomas
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Donald Zimmer
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada.,Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | | | - Daniel Hake
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Archana Kedar
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Michael Aboukhaled
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Mark M Walsh
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States.,Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| |
Collapse
|
33
|
Pretorius D, Richter RP, Anand T, Cardenas JC, Richter JR. Alterations in heparan sulfate proteoglycan synthesis and sulfation and the impact on vascular endothelial function. Matrix Biol Plus 2022; 16:100121. [PMID: 36160687 PMCID: PMC9494232 DOI: 10.1016/j.mbplus.2022.100121] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
Abstract
The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- CLP, cecal ligation and puncture
- COVID-19, Coronavirus disease 2019
- EXT, Exostosin
- EXTL, Exostosin-like glycosyltransferase
- FFP, Fresh frozen plasma
- FGF, Fibroblast growth factor
- FGFR1, Fibroblast growth factor receptor 1
- GAG, Glycosaminoglycan
- GPC, Glypican
- Gal, Galactose
- GlcA, Glucuronic acid
- GlcNAc, N-actetyl glucosamine
- Glycocalyx
- HLMVEC, Human lung microvascular endothelial cell
- HS, Heparan sulfate
- HS2ST, Heparan sulfate 2-O-sulfotransferase
- HS3ST, Heparan sulfate 3-O-sulfotransferase
- HS6ST, Heparan sulfate 6-O-sulfotransferase
- HSPG, Heparan sulfate proteoglycan
- HUVEC, Human umbilical vein endothelial cell
- Heparan sulfate proteoglycan
- LPS, lipopolysaccharide
- NDST, N-deacetylase/N-sulfotransferase
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- SDC, Syndecan
- Sulf, Endosulfatase
- Sulfation
- Synthesis
- TNFα, Tumor necrosis factor alpha
- UA, Hexuronic acid
- VEGF, Vascular endothelial growth factor
- Vascular endothelium
- XYLT, Xylosyltransferase
- Xyl, Xylose
- eGCX, Endothelial glycocalyx
- eNOS, Endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Danielle Pretorius
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tanya Anand
- Division of Trauma, Critical Care, Burn & Emergency Surgery, Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Jessica C. Cardenas
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jillian R. Richter
- Division of Trauma & Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
De Luca M, Bryan DR, Hunter GR. Serum syndecan-4 correlates with blood pressure and cardiovascular parameters but not proinflammatory markers in healthy older women. Aging Clin Exp Res 2022; 34:2541-2545. [PMID: 35932401 PMCID: PMC10122834 DOI: 10.1007/s40520-022-02210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Aging is accompanied by a low-grade proinflammatory status that plays a role in age-related vascular alterations. Syndecan-4 (SDC4) is a key component of the endothelial glycocalyx, and its extracellular domain can be shed by matrix metalloproteinase-9 (MMP-9). In vitro studies demonstrated that MMP-9-mediated shedding of SDC4 is induced by tumor necrosis factor-α (TNF- α) in human endothelial cells. However, the relationship between circulating shed SDC4, systemic inflammation, and age-related vascular alterations remains unknown. Here, we used linear regression models to examine the associations of serum SDC4 levels with cardiovascular hemodynamic phenotypes, serum MMP-9, and serum TNF-α and inteleukin-6 in healthy older women (n = 74). Serum SDC4 was not associated with proinflammatory cytokines or arterial elasticity. Nevertheless, we found significant correlations of SDC4 with MMP-9, heart rate, left ventricular ejection time, systemic vascular resistance, and blood pressure. Our preliminary evidence suggests that systemic inflammation might not induce SDC4 shedding in healthy aging.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294-3360, USA.
| | - David Ronald Bryan
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294-3360, USA
| | - Gary Richard Hunter
- Department of Nutrition Sciences, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL, 35294-3360, USA
| |
Collapse
|
35
|
Thota LNR, Chignalia AZ. The role of the glypican and syndecan families of heparan sulfate proteoglycans in cardiovascular function and disease. Am J Physiol Cell Physiol 2022; 323:C1052-C1060. [PMID: 35993518 DOI: 10.1152/ajpcell.00018.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are proteoglycans formed by a core protein to which one or multiple heparan sulfate chains are covalently bound. They are ubiquitously expressed in cellular surfaces and can be found in the extracellular matrix and secretory vesicles. The cellular effects of HSPGs comprehend multiple functionalities that include 1) the interaction with other membrane surface proteins to act as a substrate for cellular migration, 2) acting as a binding site for circulating molecules, 3) to have a receptor role for proteases, 4) to act as a coreceptor that can provide finetuning of growth factor receptor activity threshold, and 5) to activate intracellular signaling pathways (Sarrazin S, Lamanna WC, Esko JD. Cold Spring Harb Perspect Biol 3: a004952, 2011). Among the different families of HSPGs, the syndecan and glypican families of HSPGs have gained increased attention in relation to their effects on cardiovascular cells and potential role in disease progression. In this review, we will summarize the effects of syndecan and glypican homologs on the different cardiovascular cell types and discuss their contribution to common processes found in cardiovascular diseases (inflammation, hypertrophy, and vascular remodeling) as well as their potential role in the development and progression of specific diseases including hypertension, heart failure, and atherosclerosis.
Collapse
Affiliation(s)
| | - Andreia Zago Chignalia
- Department of Anesthesiology, College of Medicine-Tucson, University of Arizona, Tucson, Arizona.,Department of Physiology, College of Medicine-Tucson, University of Arizona, Tucson, Arizona.,Department of Pharmacology and Toxicology, College of Pharmacy-Tucson, University of Arizona, Tucson, Arizona.,Sarver Heart Center, College of Medicine-Tucson, University of Arizona, Tucson, Arizona
| |
Collapse
|
36
|
Mei Y, Zhao L, Jiang M, Yang F, Zhang X, Jia Y, Zhou N. Characterization of glucose metabolism in breast cancer to guide clinical therapy. Front Surg 2022; 9:973410. [PMID: 36277284 PMCID: PMC9580338 DOI: 10.3389/fsurg.2022.973410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background Breast cancer (BRCA) ranks as a leading cause of cancer death in women worldwide. Glucose metabolism is a noticeable characteristic of the occurrence of malignant tumors. In this study, we aimed to construct a novel glycometabolism-related gene (GRG) signature to predict overall survival (OS), immune infiltration and therapeutic response in BRCA patients. Materials and methods The mRNA sequencing and corresponding clinical data of BRCA patients were obtained from public cohorts. Lasso regression was applied to establish a GRG signature. The immune infiltration was evaluated with the ESTIMATE and CIBERSORT algorithms. The drug sensitivity was estimated using the value of IC50, and further forecasted the therapeutic response of each patient. The candidate target was selected in Cytoscape. A nomogram was constructed via the R package of “rms”. Results We constructed a six-GRG signature based on CACNA1H, CHPF, IRS2, NT5E, SDC1 and ATP6AP1, and the high-risk patients were correlated with poorer OS (P = 2.515 × 10−7). M2 macrophage infiltration was considerably superior in high-risk patients, and CD8+ T cell infiltration was significantly higher in low-risk patients. Additionally, the high-risk group was more sensitive to Lapatinib. Fortunately, SDC1 was recognized as candidate target and patients had a better OS in the low-SDC1 group. A nomogram integrating the GRG signature was developed, and calibration curves were consistent between the actual and predicted OS. Conclusions We identified a novel GRG signature complementing the present understanding of the targeted therapy and immune biomarker in breast cancer. The GRGs may provide fresh insights for individualized management of BRCA patients.
Collapse
Affiliation(s)
- Yingying Mei
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lantao Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yizhen Jia
- Core Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Correspondence: Na Zhou Yizhen Jia
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Correspondence: Na Zhou Yizhen Jia
| |
Collapse
|
37
|
Suzuki A, Tomita H, Okada H. Form follows function: The endothelial glycocalyx. Transl Res 2022; 247:158-167. [PMID: 35421613 DOI: 10.1016/j.trsl.2022.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Three types of capillaries, namely continuous, fenestrated, and sinusoidal, form the microvascular system; each type has a specialized structure and function to respond to the demands of the organs they supply. The endothelial glycocalyx, a gel-like layer of glycoproteins that covers the luminal surface of the capillary endothelium, is also thought to maintain organ and vascular homeostasis by exhibiting different morphologies based on the functions of the organs and capillaries in which it is found. Recent advances in analytical technology have enabled more detailed observations of the endothelial glycocalyx, revealing that it indeed differs in structure across various organs. Furthermore, differences in the lectin staining patterns suggest the presence of different endothelial glycocalyx components across various organs. Interestingly, injury to the endothelial glycocalyx due to various pathologic and physiological stimuli causes the release of these components into the blood. Thus, circulating glycocalyx components may be useful biomarkers of organ dysfunction and disease severity. Moreover, a recent study suggested that chronic injury to the glycocalyx reduces the production of these glycocalyx components and changes their structure, leading it to become more vulnerable to external stimuli. In this review, we have summarized the various endothelial glycocalyx structures and their functions.
Collapse
Affiliation(s)
- Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
38
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
39
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
40
|
Hudák A, Morgan G, Bacovsky J, Patai R, Polgár TF, Letoha A, Pettko-Szandtner A, Vizler C, Szilák L, Letoha T. Biodistribution and Cellular Internalization of Inactivated SARS-CoV-2 in Wild-Type Mice. Int J Mol Sci 2022; 23:ijms23147609. [PMID: 35886958 PMCID: PMC9316427 DOI: 10.3390/ijms23147609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2’s spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | | | | | - Roland Patai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (R.P.); (T.F.P.)
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (R.P.); (T.F.P.)
- Theoretical Medicine Doctoral School, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Annamária Letoha
- Department of Medicine, Albert Szent-Györgyi Clinical Center, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | | | - Csaba Vizler
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., H-6726 Szeged, Hungary; (A.H.); (L.S.)
- Correspondence: ; Tel.: +36-30-2577393
| |
Collapse
|
41
|
Reszegi A, Tátrai P, Regős E, Kovalszky I, Baghy K. Syndecan-1 in liver pathophysiology. Am J Physiol Cell Physiol 2022; 323:C289-C294. [PMID: 35704700 DOI: 10.1152/ajpcell.00039.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Syndecan-1 is a heparan sulfate/chondroitin sulfate proteoglycan (PG) of the cell surface and the extracellular matrix, which regulates a broad spectrum of physiological and pathological processes such as cell proliferation, migration, inflammation, matrix remodeling, wound healing, or tumorigenesis. Syndecan-1 represents the major PG of the liver, expressed by hepatocytes and cholangiocytes, and its elevated expression is a characteristic feature of liver diseases. The highest syndecan-1 expression is found in liver cirrhosis and in hepatocellular carcinoma (HCC) developed in cirrhotic livers. In addition, as being a hepatitis C receptor, hepatitis C virus (HCV) infected livers produce extremely large amounts of syndecan-1. The serum levels of the cleaved (shedded) extracellular domain has clinical significance, as its increased concentration reflects on poor prognosis in cirrhosis as well as in cancer. In vivo experiments confirmed that syndecan-1 protects against early stages of fibrogenesis mainly by enhanced clearance of transforming growth factor beta (TGFβ1) and thrombospondin-1 via circulation, and against hepatocarcinogenesis by interfering with several signaling pathways and enhancing cell cycle blockade. In addition, syndecan-1 is capable to hinder lipid metabolism and ribosomal biogenesis in induced cancer models.. These observations together with its participation in the uptake of viruses (e.g. HCV, SARS-CoV-2) indicate that syndecan-1 is a central player in liver pathologies.
Collapse
Affiliation(s)
- Andrea Reszegi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | | | - Eszter Regős
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Kornelia Baghy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
42
|
George K, Poudel P, Chalasani R, Goonathilake MR, Waqar S, George S, Jean-Baptiste W, Yusuf Ali A, Inyang B, Koshy FS, Mohammed L. A Systematic Review of Maternal Serum Syndecan-1 and Preeclampsia. Cureus 2022; 14:e25794. [PMID: 35836437 PMCID: PMC9273188 DOI: 10.7759/cureus.25794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Exploration of novel biomarkers has been gaining popularity in preeclampsia, which is currently being diagnosed based on clinical criteria alone. Soluble syndecan-1, released from one of the proteoglycans associated with the syncytiotrophoblastic layer of the placenta, is affected in patients with abnormal placentation. This article is the first systematic literature review that evaluates the relationship between the antepartum serum levels of the syndecan-1 and preeclampsia. Eight studies were selected after screening and quality appraisal, and data were analyzed. The serum concentration of syndecan-1 was found to correlate positively with the gestational age in all pregnancies and negatively with the systolic blood pressure in patients with preeclampsia. Extremely low levels of soluble syndecan-1 may be helpful as a predictor for the development of preeclampsia during gestation.
Collapse
Affiliation(s)
- Kitty George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prakar Poudel
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Roopa Chalasani
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Sara Waqar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sheeba George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wilford Jean-Baptiste
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amina Yusuf Ali
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bithaiah Inyang
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Feeba Sam Koshy
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
43
|
Hwang J, Park E, Choi YW, Min S, Oh ES. Emerging role of syndecans in maintaining homeostasis of colon epithelium during inflammation. Am J Physiol Cell Physiol 2022; 322:C960-C966. [PMID: 35385327 DOI: 10.1152/ajpcell.00048.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The syndecans are a family of transmembrane proteoglycans that are widespread in mammalian tissues. Located at the cell surface membrane, they contribute to modulating the composition of the extracellular matrix via glycosaminoglycan chains (GAGs) attached to their extracellular domains. Syndecans can interact with a variety of extracellular ligands through their core proteins and GAGs, and may also transmit signals through their transmembrane domain to regulate intracellular functions. These properties enable syndecan to modulate glycocalyx formation, epithelial cell-to-cell connections for cell barrier formation, and epithelial cell-lamina propria interactions in the colon epithelium, all of which are crucial for the homeostasis of this tissue. Inflammation induces structural alterations of the colon epithelium, and accumulating evidence suggests that syndecan expression might play important regulatory functions during inflammation. This review summarizes the possible roles of syndecans in maintaining tissue homeostasis in the colon epithelium, especially under inflammation.
Collapse
Affiliation(s)
- Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul, Korea (South), Republic of
| | - Eunhye Park
- Department of Life Sciences, Ewha Womans University, Seoul, Korea (South), Republic of
| | - Yeong-Woo Choi
- Department of Life Sciences, Ewha Womans University, Seoul, Korea (South), Republic of
| | - Shinhye Min
- Department of Life Sciences, Ewha Womans University, Seoul, Korea (South), Republic of
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea (South), Republic of
| |
Collapse
|
44
|
Hudák A, Letoha A, Vizler C, Letoha T. Syndecan-3 as a Novel Biomarker in Alzheimer's Disease. Int J Mol Sci 2022; 23:3407. [PMID: 35328830 PMCID: PMC8955174 DOI: 10.3390/ijms23063407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
Early diagnosis of Alzheimer's disease (AD) is of paramount importance in preserving the patient's mental and physical health in a fairly manageable condition for a longer period. Reliable AD detection requires novel biomarkers indicating central nervous system (CNS) degeneration in the periphery. Members of the syndecan family of transmembrane proteoglycans are emerging new targets in inflammatory and neurodegenerative disorders. Reviewing the growing scientific evidence on the involvement of syndecans in the pathomechanism of AD, we analyzed the expression of the neuronal syndecan, syndecan-3 (SDC3), in experimental models of neurodegeneration. Initial in vitro studies showed that prolonged treatment of tumor necrosis factor-alpha (TNF-α) increases SDC3 expression in model neuronal and brain microvascular endothelial cell lines. In vivo studies revealed elevated concentrations of TNF-α in the blood and brain of APPSWE-Tau transgenic mice, along with increased SDC3 concentration in the brain and the liver. Primary brain endothelial cells and peripheral blood monocytes isolated from APPSWE-Tau mice exhibited increased SDC3 expression than wild-type controls. SDC3 expression of blood-derived monocytes showed a positive correlation with amyloid plaque load in the brain, demonstrating that SDC3 on monocytes is a good indicator of amyloid pathology in the brain. Given the well-established role of blood tests, the SDC3 expression of monocytes could serve as a novel biomarker for early AD detection.
Collapse
Affiliation(s)
| | - Annamária Letoha
- Albert Szent-Györgyi Clinical Center, Department of Medicine, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary;
| | - Csaba Vizler
- Biological Research Centre, Institute of Biochemistry, H-6726 Szeged, Hungary;
| | | |
Collapse
|
45
|
Szabo K, Varga D, Vegh AG, Liu N, Xiao X, Xu L, Dux L, Erdelyi M, Rovo L, Keller-Pinter A. Syndecan-4 affects myogenesis via Rac1-mediated actin remodeling and exhibits copy-number amplification and increased expression in human rhabdomyosarcoma tumors. Cell Mol Life Sci 2022; 79:122. [PMID: 35128576 PMCID: PMC8818642 DOI: 10.1007/s00018-021-04121-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Skeletal muscle demonstrates a high degree of regenerative capacity repeating the embryonic myogenic program under strict control. Rhabdomyosarcoma is the most common sarcoma in childhood and is characterized by impaired muscle differentiation. In this study, we observed that silencing the expression of syndecan-4, the ubiquitously expressed transmembrane heparan sulfate proteoglycan, significantly enhanced myoblast differentiation, and fusion. During muscle differentiation, the gradually decreasing expression of syndecan-4 allows the activation of Rac1, thereby mediating myoblast fusion. Single-molecule localized superresolution direct stochastic optical reconstruction microscopy (dSTORM) imaging revealed nanoscale changes in actin cytoskeletal architecture, and atomic force microscopy showed reduced elasticity of syndecan-4-knockdown cells during fusion. Syndecan-4 copy-number amplification was observed in 28% of human fusion-negative rhabdomyosarcoma tumors and was accompanied by increased syndecan-4 expression based on RNA sequencing data. Our study suggests that syndecan-4 can serve as a tumor driver gene in promoting rabdomyosarcoma tumor development. Our results contribute to the understanding of the role of syndecan-4 in skeletal muscle development, regeneration, and tumorigenesis.
Collapse
|
46
|
Pham SH, Pratt K, Okolicsanyi RK, Oikari LE, Yu C, Peall IW, Arif KMT, Chalmers TA, Gyimesi M, Griffiths LR, Haupt LM. Syndecan-1 and -4 influence Wnt signaling and cell migration in human breast cancers. Biochimie 2022; 198:60-75. [DOI: 10.1016/j.biochi.2022.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/30/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
|
47
|
Jang B, Song HK, Hwang J, Lee S, Park E, Oh A, Hwang ES, Sung JY, Kim YN, Park K, Lee YM, Oh ES. Shed syndecan-2 enhances colon cancer progression by increasing cooperative angiogenesis in the tumor microenvironment. Matrix Biol 2022; 107:40-58. [DOI: 10.1016/j.matbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
|
48
|
Guo S, Wu X, Lei T, Zhong R, Wang Y, Zhang L, Zhao Q, Huang Y, Shi Y, Wu L. The Role and Therapeutic Value of Syndecan-1 in Cancer Metastasis and Drug Resistance. Front Cell Dev Biol 2022; 9:784983. [PMID: 35118073 PMCID: PMC8804279 DOI: 10.3389/fcell.2021.784983] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metastasis and relapse are major causes of cancer-related fatalities. The elucidation of relevant pathomechanisms and adoption of appropriate countermeasures are thus crucial for the development of clinical strategies that inhibit malignancy progression as well as metastasis. An integral component of the extracellular matrix, the type 1 transmembrane glycoprotein syndecan-1 (SDC-1) binds cytokines and growth factors involved in tumor microenvironment modulation. Alterations in its localization have been implicated in both cancer metastasis and drug resistance. In this review, available data regarding the structural characteristics, shedding process, and nuclear translocation of SDC-1 are detailed with the aim of highlighting strategies directly targeting SDC-1 as well as SDC-1-mediated carcinogenesis.
Collapse
Affiliation(s)
- Sen Guo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - XinYi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Lei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiRan Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QingYi Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yin Shi
- Department of Acupuncture and Moxibustion, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Outpatient Department, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| | - Luyi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- *Correspondence: Yin Shi, ; Luyi Wu,
| |
Collapse
|
49
|
Lehmann RJ, Jolly LA, Johnson BV, Lord MS, Kim HN, Saville JT, Fuller M, Byers S, Derrick-Roberts AL. Impaired neural differentiation of MPS IIIA patient induced pluripotent stem cell-derived neural progenitor cells. Mol Genet Metab Rep 2021; 29:100811. [PMID: 34712574 PMCID: PMC8531667 DOI: 10.1016/j.ymgmr.2021.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is characterised by a progressive neurological decline leading to early death. It is caused by bi-allelic loss-of-function mutations in SGSH encoding sulphamidase, a lysosomal enzyme required for heparan sulphate glycosaminoglycan (HS GAG) degradation, that results in the progressive build-up of HS GAGs in multiple tissues most notably the central nervous system (CNS). Skin fibroblasts from two MPS IIIA patients who presented with an intermediate and a severe clinical phenotype, respectively, were reprogrammed into induced pluripotent stem cells (iPSCs). The intermediate MPS IIIA iPSCs were then differentiated into neural progenitor cells (NPCs) and subsequently neurons. The patient derived fibroblasts, iPSCs, NPCs and neurons all displayed hallmark biochemical characteristics of MPS IIIA including reduced sulphamidase activity and increased accumulation of an MPS IIIA HS GAG biomarker. Proliferation of MPS IIIA iPSC-derived NPCs was reduced compared to control, but could be partially rescued by reintroducing functional sulphamidase enzyme, or by doubling the concentration of the mitogen fibroblast growth factor 2 (FGF2). Whilst both control heparin, and MPS IIIA HS GAGs had a similar binding affinity for FGF2, only the latter inhibited FGF signalling, suggesting accumulated MPS IIIA HS GAGs disrupt the FGF2:FGF2 receptor:HS signalling complex. Neuronal differentiation of MPS IIIA iPSC-derived NPCs was associated with a reduction in the expression of neuronal cell marker genes βIII-TUBULIN, NF-H and NSE, revealing reduced neurogenesis compared to control. A similar result was achieved by adding MPS IIIA HS GAGs to the culture medium during neuronal differentiation of control iPSC-derived NPCs. This study demonstrates the generation of MPS IIIA iPSCs, and NPCs, the latter of which display reduced proliferation and neurogenic capacity. Reduced NPC proliferation can be explained by a model in which soluble MPS IIIA HS GAGs compete with cell surface HS for FGF2 binding. The mechanism driving reduced neurogenesis remains to be determined but appears downstream of MPS IIIA HS GAG accumulation.
Collapse
Affiliation(s)
- Rebecca J. Lehmann
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lachlan A. Jolly
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Brett V. Johnson
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Ha Na Kim
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jennifer T. Saville
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sharon Byers
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
- Department of Molecular and Cellular Biology, University of Adelaide, Adelaide, SA 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ainslie L.K. Derrick-Roberts
- Genetics and Molecular Pathology, SA Pathology (at the Women's and Children's Hospital), 72 King William Rd, North Adelaide, SA 5006, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
50
|
Kaur G, Rogers J, Rashdan NA, Cruz-Topete D, Pattillo CB, Hartson SD, Harris NR. Hyperglycemia-induced effects on glycocalyx components in the retina. Exp Eye Res 2021; 213:108846. [PMID: 34801534 PMCID: PMC8665121 DOI: 10.1016/j.exer.2021.108846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE Diabetic retinopathy is a vision-threatening complication of diabetes characterized by endothelial injury and vascular dysfunction. The loss of the endothelial glycocalyx, a dynamic layer lining all endothelial cells, contributes to several microvascular pathologies, including an increase in vascular permeability, leukocyte plugging, and capillary occlusion, and may drive the progression of retinopathy. Previously, a significant decrease in glycocalyx thickness has been observed in diabetic retinas. However, the effects of diabetes on specific components of the retinal glycocalyx have not yet been studied. Therefore, the aim of our study was to investigate changes in synthesis, expression, and shedding of retinal glycocalyx components induced by hyperglycemia, which could provide a novel therapeutic target for diabetic retinopathy. METHODS Primary rat retinal microvascular endothelial cells (RRMECs) were grown under normal glucose (5 mM) or high-glucose (25 mM) conditions for 6 days. The mRNA and protein levels of the glycocalyx components were examined using qRT-PCR and Western blot analysis, respectively. Further, mass spectrometry was used to analyze protein intensities of core proteins. In addition, the streptozotocin-induced Type 1 diabetic rat model was used to study changes in the expression of the retinal glycocalyx in vivo. The shedding of the glycocalyx was studied in both culture medium and in plasma using Western blot analysis. RESULTS A significant increase in the shedding of syndecan-1 and CD44 was observed both in vitro and in vivo under high-glucose conditions. The mRNA levels of syndecan-3 were significantly lower in the RRMECs grown under high glucose conditions, whereas those of syndecan-1, syndecan-2, syndecan-4, glypican-1, glypican-3, and CD44 were significantly higher. The protein expression of syndecan-3 and glypican-1 in RRMECs was reduced considerably following exposure to high glucose, whereas that of syndecan-1 and CD44 increased significantly. In addition, mass spectrometry data also suggests a significant increase in syndecan-4 and a significant decrease in glypican-3 protein levels with high glucose stimulation. In vivo, our data also suggest a significant decrease in the mRNA transcripts of syndecan-3 and an increase in mRNA levels of glypican-1 and CD44 in the retinas of diabetic rats. The diabetic rats exhibited a significant reduction in the retinal expression of syndecan-3 and CD44. However, the expression of syndecan-1 and glypican-1 increased significantly in the diabetic retina. CONCLUSIONS One of the main findings of our study was the considerable diversity of glucose-induced changes in expression and shedding of various components of endothelial glycocalyx, for example, increased endothelial and retinal syndecan-1, but decreased endothelial and retinal syndecan-3. This indicates that the reported decrease in the retinal glycocalyx in diabetes in not a result of a non-specific shedding mechanism. Moreover, mRNA measurements indicated a similar diversity, with increases in endothelial and/or retinal levels of syndecan-1, glypican-1, and CD44, but a decrease for syndecan-3, with these increases in mRNA potentially a compensatory reaction to the overall loss of glycocalyx.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Janet Rogers
- Oklahoma State University, OK, Department of Biochemistry and Molecular Biology, USA
| | - Nabil A Rashdan
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Diana Cruz-Topete
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Christopher B Pattillo
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA
| | - Steven D Hartson
- Oklahoma State University, OK, Department of Biochemistry and Molecular Biology, USA
| | - Norman R Harris
- Louisiana State University Health Science Center-Shreveport, LA, Department of Molecular and Cellular Physiology, USA.
| |
Collapse
|