1
|
Wang Y, Chatterjee E, Li G, Xu J, Xiao J. Force-sensing protein expression in response to cardiovascular mechanotransduction. EBioMedicine 2024; 110:105412. [PMID: 39481337 DOI: 10.1016/j.ebiom.2024.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Force-sensing biophysical cues in microenvironment, including extracellular matrix performances, stretch-mediated mechanics, shear stress and flow-induced hemodynamics, have a significant influence in regulating vascular morphogenesis and cardiac remodeling by mechanotransduction. Once cells perceive these extracellular mechanical stimuli, Piezo activation promotes calcium influx by forming integrin-adhesion-coupling receptors. This induces robust contractility of cytoskeleton structures to further transmit biomechanical alternations into nuclei by regulating Hippo-Yes associated protein (YAP) signaling pathway between cytoplasmic and nuclear translocation. Although biomechanical stimuli are widely studied in cardiovascular diseases, the expression of force-sensing proteins in response to cardiovascular mechanotransduction has not been systematically concluded. Therefore, this review will summarize the force-sensing Piezo, cytoskeleton and YAP proteins to mediate extracellular mechanics, and also give the prominent emphasis on intrinsic connection of these mechanical proteins and cardiovascular mechanotransduction. Extensive insights into cardiovascular mechanics may provide some new strategies for cardiovascular clinical therapy.
Collapse
Affiliation(s)
- Yongtao Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China
| | - Emeli Chatterjee
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jiahong Xu
- Department of Cardiology, Shanghai Gongli Hospital, Shanghai 200135, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
3
|
Mf NM, Arunachalam S, Sheikh A, Saraswathiamma D, Albawardi A, Al Marzooqi S, Jha NK, Subramanya S, Beiram R, Ojha S. α-Bisabolol: A Dietary Sesquiterpene that Attenuates Apoptotic and Nonapoptotic Cell Death Pathways by Regulating the Mitochondrial Biogenesis and Endoplasmic Reticulum Stress-Hippo Signaling Axis in Doxorubicin-Induced Acute Cardiotoxicity in Rats. ACS Pharmacol Transl Sci 2024; 7:2694-2705. [PMID: 39296269 PMCID: PMC11406691 DOI: 10.1021/acsptsci.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 09/21/2024]
Abstract
The potential for multiorgan toxicities is a significant barrier to the therapeutic use of doxorubicin (DOX) in cancer treatment. With regard to DOX-induced acute cardiotoxicity in rats, the current investigation sought to assess the cardioprotective function of α-bisabolol (BSB) as well as the underlying pharmacological and molecular processes. Acute cardiotoxicity was induced in the rats by the intraperitoneal injection of DOX (12.5 mg/kg, single dosage). Over the course of 5 days, the rats were administered 25 mg/kg of BSB orally twice a day. The DOX administration induced cardiac damage, as evidenced by altered cardiospecific diagnostic markers and macroscopic enzyme mapping assay. The occurrence of mitochondrial oxidative stress was observed by a significant decline in antioxidant defense along with an increase in lipid peroxidation. DOX also perturbed DNA damage, mitochondrial biogenesis, mitochondrial fission and dysfunction, ER stress, Hippo signaling, and caspase-dependent and independent apoptosis including necroptosis and ferroptosis in the myocardium of rats. Conversely, it has been noted that the administration of BSB preserves the myocardium and reverses all cellular, molecular, and structural disruptions in the cardiac tissues of rats exposed to DOX-induced toxicity. The results that are currently available unequivocally show the cardioprotective role of BSB in DOX-induced cardiotoxicity. This effect is attributed to BSB's strong antioxidant, antilipid peroxidative, and antiapoptotic properties, which are mediated by advantageous changes in multiple signaling pathways.
Collapse
Affiliation(s)
- Nagoor Meeran Mf
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Azimullah Sheikh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Dhanya Saraswathiamma
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Alia Albawardi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Saeeda Al Marzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Sandeep Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box -17666, Al Ain, UAE
| |
Collapse
|
4
|
Guo ZF, Tongmuang N, Li C, Zhang C, Hu L, Capreri D, Zuo MX, Summer R, Sun J. Inhibiting endothelial cell Mst1 attenuates acute lung injury in mice. JCI Insight 2024; 9:e178208. [PMID: 39253972 PMCID: PMC11385092 DOI: 10.1172/jci.insight.178208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Lung endothelium plays a pivotal role in the orchestration of inflammatory responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1) is a serine/threonine kinase that has been shown to play an important role in the regulation of apoptosis, stress responses, and organ growth. This study investigated the role of Mst1 in lung endothelial activation and acute lung injury (ALI). We found that Mst1 was significantly activated in inflamed lung endothelial cells (ECs) and mouse lung tissues. Overexpression of Mst1 promoted nuclear factor κ-B (NF-κB) activation through promoting JNK and p38 activation in lung ECs. Inhibition of Mst1 by either its dominant negative form (DN-Mst1) or its pharmacological inhibitor markedly attenuated cytokine-induced expression of cytokines, chemokines, and adhesion molecules in lung ECs. Importantly, in a mouse model of lipopolysaccharide-induced (LPS-induced) ALI, both deletion of Mst1 in lung endothelium and treatment of WT mice with a pharmacological Mst1 inhibitor significantly protected mice from LPS-induced ALI. Together, our findings identified Mst1 kinase as a key regulator in controlling lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Zhi-Fu Guo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai
| | - Nopprarat Tongmuang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chao Li
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Chen Zhang
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Louis Hu
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniel Capreri
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mei-Xing Zuo
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ross Summer
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Maejima Y, Nah J, Aryan Z, Zhai P, Sung EA, Liu T, Takayama K, Moghadami S, Sasano T, Li H, Sadoshima J. Mst1-mediated phosphorylation of FoxO1 and C/EBP-β stimulates cell-protective mechanisms in cardiomyocytes. Nat Commun 2024; 15:6279. [PMID: 39060225 PMCID: PMC11282193 DOI: 10.1038/s41467-024-50393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The molecular mechanisms by which FoxO transcription factors mediate diametrically opposite cellular responses, namely death and survival, remain unknown. Here we show that Mst1 phosphorylates FoxO1 Ser209/Ser215/Ser218/Thr228/Ser232/Ser243, thereby inhibiting FoxO1-mediated transcription of proapoptotic genes. On the other hand, Mst1 increases FoxO1-C/EBP-β interaction and activates C/EBP-β by phosphorylating it at Thr299, thereby promoting transcription of prosurvival genes. Myocardial ischemia/reperfusion injury is larger in cardiac-specific FoxO1 knockout mice than in control mice. However, the concurrent presence of a C/EBP-β T299E phospho-mimetic mutation reduces infarct size in cardiac-specific FoxO1 knockout mice. The C/EBP-β phospho-mimetic mutant exhibits greater binding to the promoter of prosurvival genes than wild type C/EBP-β. In conclusion, phosphorylation of FoxO1 by Mst1 inhibits binding of FoxO1 to pro-apoptotic gene promoters but enhances its binding to C/EBP-β, phosphorylation of C/EBP-β, and transcription of prosurvival genes, which stimulate protective mechanisms in the heart.
Collapse
Grants
- 67724 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 102738 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 138720 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 144626 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 150881 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 15CVD04 Fondation Leducq
- 35120374 American Hospital Association (AHA)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jihoon Nah
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Biochemistry, Chungbuk National University, Cheongju, Korea
| | - Zahra Aryan
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tong Liu
- Center for Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Koichiro Takayama
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Siavash Moghadami
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong Li
- Center for Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
6
|
Han X, Hong Q, Peng F, Zhang Y, Wu L, Wang X, Zheng Y, Chen X. Hippo pathway activated by circulating reactive oxygen species mediates cardiac diastolic dysfunction after acute kidney injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167184. [PMID: 38648903 DOI: 10.1016/j.bbadis.2024.167184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Acute kidney injury (AKI) can cause distal cardiac dysfunction; however, the underlying mechanism is unknown. Oxidative stress is proved prominent in AKI-induced cardiac dysfunction, and a possible bridge role of oxidative-stress products in cardio-renal interaction has been reported. Therefore, this study aimed to investigate the critical role of circulating reactive oxygen species (ROS) in mediating cardiac dysfunction after bilateral renal ischemia-reperfusion injury (IRI). We observed the diastolic dysfunction in the mice following renal IRI, accompanied by reduced ATP levels, oxidative stress, and branched-chain amino acids (BCAA) accumulation in the heart. Notably, ROS levels showed a sequential increase in the kidneys, circulation, and heart. Treatment with tempol, an ROS scavenger, significantly restored cardiac diastolic function in the renal IRI mice, corroborating the bridge role of circulating ROS. Accumulating evidence has identified oxidative stress as upstream of Mst1/Hippo in cardiac injury, which could regulate the expression of downstream genes related to mitochondrial quality control, leading to lower ATP, higher ROS and metabolic disorder. To verify this, we examined the activation of the Mst1/Hippo pathway in the heart of renal IRI mice, which was alleviated by tempol treatment as well. In vitro, analysis revealed that Mst1-knockdown cardiomyocytes could be activated by hydrogen peroxide (H2O2). Analysis of Mst1-overexpression cardiomyocytes confirmed the critical role of the Mst1/Hippo pathway in oxidative stress and BCAA dysmetabolism. Therefore, our results indicated that circulating ROS following renal IRI activates the Mst1/Hippo pathway of myocardium, leading to cardiac oxidative stress and diastolic dysfunction. This finding provides new insights for the clinical exploration of improved treatment options for cardiorenal syndrome.
Collapse
Affiliation(s)
- Xiao Han
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Chronic Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Chronic Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Fei Peng
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Chronic Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Yan Zhang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Chronic Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Chronic Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Chronic Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ying Zheng
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Chronic Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Chronic Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China.
| |
Collapse
|
7
|
Eshraghi R, Shafie D, Raisi A, Goleij P, Mirzaei H. Circular RNAs: a small piece in the heart failure puzzle. Funct Integr Genomics 2024; 24:102. [PMID: 38760573 DOI: 10.1007/s10142-024-01386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Cardiovascular disease, specifically heart failure (HF), remains a significant concern in the realm of healthcare, necessitating the development of new treatments and biomarkers. The RNA family consists of various subgroups, including microRNAs, PIWI-interacting RNAs (piRAN) and long non-coding RNAs, which have shown potential in advancing personalized healthcare for HF patients. Recent research suggests that circular RNAs, a lesser-known subgroup of RNAs, may offer a novel set of targets and biomarkers for HF. This review will discuss the biogenesis of circular RNAs, their unique characteristics relevant to HF, their role in heart function, and their potential use as biomarkers in the bloodstream. Furthermore, future research directions in this field will be outlined. The stability of exosomal circRNAs makes them suitable as biomarkers, pathogenic regulators, and potential treatments for cardiovascular diseases such as atherosclerosis, acute coronary syndrome, ischemia/reperfusion injury, HF, and peripheral artery disease. Herein, we summarized the role of circular RNAs and their exosomal forms in HF diseases.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Kashihara T, Sadoshima J. Regulation of myocardial glucose metabolism by YAP/TAZ signaling. J Cardiol 2024; 83:323-329. [PMID: 38266816 DOI: 10.1016/j.jjcc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The heart utilizes glucose and its metabolites as both energy sources and building blocks for cardiac growth and survival under both physiological and pathophysiological conditions. YAP/TAZ, transcriptional co-activators of the Hippo pathway, are key regulators of cell proliferation, survival, and metabolism in many cell types. Increasing lines of evidence suggest that the Hippo-YAP/TAZ signaling pathway is involved in the regulation of both physiological and pathophysiological processes in the heart. In particular, YAP/TAZ play a critical role in mediating aerobic glycolysis, the Warburg effect, in cardiomyocytes. Here, we summarize what is currently known about YAP/TAZ signaling in the heart by focusing on the regulation of glucose metabolism and its functional significance.
Collapse
Affiliation(s)
- Toshihide Kashihara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
9
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024:CJ-24-0171. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
10
|
Zhong Z, Jiao Z, Yu FX. The Hippo signaling pathway in development and regeneration. Cell Rep 2024; 43:113926. [PMID: 38457338 DOI: 10.1016/j.celrep.2024.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.
Collapse
Affiliation(s)
- Zhenxing Zhong
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
12
|
Watkins R, Gamo A, Choi SH, Kumar M, Buckarma E, McCabe C, Tomlinson J, Pereya D, Lupse B, Geravandi S, Werneburg NW, Wang C, Starlinger P, Zhu S, Li S, Yu S, Surakattula M, Baguley T, Ardestani A, Maedler K, Roland J, Nguyen-Tran V, Joseph S, Petrassi M, Rogers N, Gores G, Chatterjee A, Tremblay M, Shen W, Smoot R. A small molecule MST1/2 inhibitor accelerates murine liver regeneration with improved survival in models of steatohepatitis. PNAS NEXUS 2024; 3:pgae096. [PMID: 38528952 PMCID: PMC10962727 DOI: 10.1093/pnasnexus/pgae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Dysfunctional liver regeneration following surgical resection remains a major cause of postoperative mortality and has no therapeutic options. Without targeted therapies, the current treatment paradigm relies on supportive therapy until homeostasis can be achieved. Pharmacologic acceleration of regeneration represents an alternative therapeutic avenue. Therefore, we aimed to generate a small molecule inhibitor that could accelerate liver regeneration with an emphasis on diseased models, which represent a significant portion of patients who require surgical resection and are often not studied. Utilizing a clinically approved small molecule inhibitor as a parent compound, standard medicinal chemistry approaches were utilized to generate a small molecule inhibitor targeting serine/threonine kinase 4/3 (MST1/2) with reduced off-target effects. This compound, mCLC846, was then applied to preclinical models of murine partial hepatectomy, which included models of diet-induced metabolic dysfunction-associated steatohepatitis (MASH). mCLC846 demonstrated on target inhibition of MST1/2 and reduced epidermal growth factor receptor inhibition. The inhibitory effects resulted in restored pancreatic beta-cell function and survival under diabetogenic conditions. Liver-specific cell-line exposure resulted in Yes-associated protein activation. Oral delivery of mCLC846 perioperatively resulted in accelerated murine liver regeneration and improved survival in diet-induced MASH models. Bulk transcriptional analysis of regenerating liver remnants suggested that mCLC846 enhanced the normal regenerative pathways and induced them following liver resection. Overall, pharmacological acceleration of liver regeneration with mCLC846 was feasible, had an acceptable therapeutic index, and provided a survival benefit in models of diet-induced MASH.
Collapse
Affiliation(s)
- Ryan Watkins
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ana Gamo
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Seung Hyuk Choi
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Manoj Kumar
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - EeeLN Buckarma
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Chantal McCabe
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | | | - David Pereya
- Department of Surgery, Medical University of Vienna, General Hospital, Vienna 1090, Austria
| | - Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Patrick Starlinger
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna 1090, Austria
| | - Siying Zhu
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sijia Li
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shan Yu
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Murali Surakattula
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tyler Baguley
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
- Biomedical Institute for Multimorbidity (BIM), Centre for Biomedicine, Hull York Medical School, University of Hull, Hull YO10 5DD, UK
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, 28359 Bremen, Germany
| | - Jason Roland
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Van Nguyen-Tran
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Joseph
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mike Petrassi
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikki Rogers
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gregory Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Arnab Chatterjee
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew Tremblay
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Weijun Shen
- Calibr at Scripps Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rory Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Tuo H, Li W, Zhao W, Zhao J, Li D, Jin L. Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice. Sci Rep 2024; 14:924. [PMID: 38195835 PMCID: PMC10776756 DOI: 10.1038/s41598-024-51675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
Doxorubicin (DOX) is a popular and potent anticancer drug, but its cardiotoxicity limits its clinical application. Shikonin has a wide range of biological functions, including antioxidant and anti-inflammatory effects. The aim of this study was to investigate the effects of shikonin on DOX-induced cardiac injury and to identify the underlying mechanisms. Mice receiving shikonin showed reduced cardiac injury response and enhanced cardiac function after DOX administration. Shikonin significantly attenuated DOX-induced oxidative damage, inflammation accumulation and cardiomyocyte apoptosis. Shikonin protects against DOX-induced cardiac injury by inhibiting Mammalian sterile 20-like kinase 1 (Mst1) and oxidative stress and activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In conclusion, shikonin alleviates DOX-induced cardiotoxicity by inhibiting Mst1 and activating Nrf2. Shikonin may be used to treat DOX-induced cardiac injury.
Collapse
Affiliation(s)
- Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjing Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Zhao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danni Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
14
|
Yang F, Xu F, Zhang H, Gill D, Larsson SC, Li X, Cui H, Yuan S. Proteomic insights into the associations between obesity, lifestyle factors, and coronary artery disease. BMC Med 2023; 21:485. [PMID: 38049831 PMCID: PMC10696760 DOI: 10.1186/s12916-023-03197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND We aimed to investigate the protein pathways linking obesity and lifestyle factors to coronary artery disease (CAD). METHODS Summary-level genome-wide association statistics of CAD were obtained from the CARDIoGRAMplusC4D consortium (60,801 cases and 123,504 controls) and the FinnGen study (R8, 39,036 cases and 303,463 controls). Proteome-wide Mendelian randomization (MR) analysis was conducted to identify CAD-associated blood proteins, supplemented by colocalization analysis to minimize potential bias caused by linkage disequilibrium. Two-sample MR analyses were performed to assess the associations of genetically predicted four obesity measures and 13 lifestyle factors with CAD risk and CAD-associated proteins' levels. A two-step network MR analysis was conducted to explore the mediating effects of proteins in the associations between these modifiable factors and CAD. RESULTS Genetically predicted levels of 41 circulating proteins were associated with CAD, and 17 of them were supported by medium to high colocalization evidence. PTK7 (protein tyrosine kinase-7), RGMB (repulsive guidance molecule BMP co-receptor B), TAGLN2 (transgelin-2), TIMP3 (tissue inhibitor of metalloproteinases 3), and VIM (vimentin) were identified as promising therapeutic targets. Several proteins were found to mediate the associations between some modifiable factors and CAD, with PCSK9, C1S, AGER (advanced glycosylation end product-specific receptor), and MST1 (mammalian Ste20-like kinase 1) exhibiting highest frequency among the mediating networks. CONCLUSIONS This study suggests pathways explaining the associations of obesity and lifestyle factors with CAD from alterations in blood protein levels. These insights may be used to prioritize therapeutic intervention for further study.
Collapse
Affiliation(s)
- Fangkun Yang
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, 59 Liuting Road, Ningbo, 315010, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, Zhejiang, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Han Zhang
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hanbin Cui
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, 59 Liuting Road, Ningbo, 315010, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China.
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, Zhejiang, China.
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Qiu Y, Meng Y, Jia Y, Lang X, Zhao H, Ding L, Wang T, Sun H, Gao S. Hyperglycemia-Induced Overexpression of PH Domain Leucine-Rich Repeat Protein Phosphatase 1 (PHLPP1) Compromises the Cardioprotective Effect of Ischemic Postconditioning Via Modulation of the Akt/Mst1 Pathway Signaling. Cardiovasc Drugs Ther 2023; 37:1087-1101. [PMID: 35715527 DOI: 10.1007/s10557-022-07349-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Ischemic postconditioning (IPostC) alleviates myocardial ischemia/reperfusion (IR) injury, but the protective effect is lost during diabetes. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is able to inactivate Akt. Our previous study found that PHLPP1 expression was upregulated in diabetic hearts. We presumed that the attenuation of myocardial injury by IPostC might be hindered by PHLPP1 overexpression in diabetic animals. METHODS AND RESULTS Nondiabetic and diabetic mice were subjected to 45 min of ischemia followed by 2 h of reperfusion with or without IPostC. H9c2 cells were exposed to normal or high glucose and were subjected to 4 h of hypoxia followed by 4 h of reoxygenation with or without hypoxic postconditioning (HPostC). IPostC attenuated postischemic infarction, apoptosis, creatine kinase-MB, and oxidative stress, which were accompanied by increased p-Akt and decreased PHLPP1 expression and p-Mst1 in nondiabetic but not in diabetic mice. PHLPP1 knockdown or an Mst1 inhibitor reduced hypoxia/reoxygenation (HR)-induced cardiomyocyte damage in H9c2 cells exposed to normal glucose, but the effect was abolished by a PI3K/Akt inhibitor. HPostC attenuated HR-induced cardiomyocyte injury and oxidative stress accompanied by increased p-Akt as well as decreased PHLPP1 expression and p-Mst1 in H9c2 cells exposed to normal glucose but not high glucose. In addition, HPostC in combination with PHLPP1 knockdown or PHLPP1 knockdown alone reduced cell death and oxidative stress in H9c2 cells exposed to high glucose, which was hindered by PI3K/Akt inhibitor. CONCLUSION IPostC prevented myocardial IR injury partly through PHLPP1/Akt/Mst1 signaling, and abnormalities in this pathway may be responsible for the loss of IPostC cardioprotection in diabetes.
Collapse
Affiliation(s)
- Yun Qiu
- Department of Emergency Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Yuming Meng
- Department of Emergency Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Yajuan Jia
- Department of Emergency Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Xuemei Lang
- Department of Emergency Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Hongmei Zhao
- Department of Emergency Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Tingting Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hong Sun
- Department of Emergency Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| | - Sumin Gao
- Department of Emergency Medicine, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
16
|
Chen C, Wang J, Liu C, Hu J, Liu L. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies. Biomed Pharmacother 2023; 166:115306. [PMID: 37572633 DOI: 10.1016/j.biopha.2023.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Acute myocardial infarction (MI), despite significant progress in its treatment, remains a leading cause of chronic heart failure and cardiovascular events such as cardiac arrest. Promoting angiogenesis in the myocardial tissue after MI to restore blood flow in the ischemic and hypoxic tissue is considered an effective treatment strategy. The repair of the myocardial tissue post-MI involves a robust angiogenic response, with mechanisms involved including endothelial cell proliferation and migration, capillary growth, changes in the extracellular matrix, and stabilization of pericytes for neovascularization. In this review, we provide a detailed overview of six key pathways in angiogenesis post-MI: the PI3K/Akt/mTOR signaling pathway, the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, the Sonic Hedgehog signaling pathway, and the JAK/STAT signaling pathway. We also discuss novel therapeutic approaches targeting these pathways, including drug therapy, gene therapy, protein therapy, cell therapy, and extracellular vesicle therapy. A comprehensive understanding of these key pathways and their targeted therapies will aid in our understanding of the pathological and physiological mechanisms of angiogenesis after MI and the development and application of new treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
17
|
Guo ZF, Tongmuang N, Li C, Zhang C, Hu L, Capreri D, Zuo MX, Summer R, Sun J. Inhibiting endothelial cell Mst1 attenuates acute lung injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559864. [PMID: 37808846 PMCID: PMC10557750 DOI: 10.1101/2023.09.27.559864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background Lung endothelium plays a pivotal role in the orchestration of inflammatory and injury responses to acute pulmonary insults. Mammalian sterile 20-like kinase 1 (Mst1), a mammalian homolog of Hippo, is a serine/threonine kinase that is ubiquitously expressed in many tissues and has been shown to play an important role in the regulation of apoptosis, inflammation, stress responses, and organ growth. While Mst1 exhibits high expression in the lung, its involvement in the endothelial response to pulmonary insults remains largely unexplored. Methods Mst1 activity was assessed in lung endothelium by western blot. Mst1 endothelial specific knockout mice and a pharmacological inhibitor were employed to assess the effects of Mst1 on homeostatic and lipopolysaccharide (LPS)-induced endothelial responses. Readouts for these studies included various assays, including NF-κB activation and levels of various inflammatory cytokines and adhesion molecules. The role of Mst1 in lung injury was evaluated in a LPS-induced murine model of acute lung injury (ALI). Results Mst1 phosphorylation was significantly increased in lung endothelial cells after exposure to tumor necrosis factor (TNF)-alpha (TNF-α) and mouse lung tissues after LPS exposure. Overexpression of full length Mst1 or its kinase domain promoted nuclear factor kappaB (NF-κB) activation through promoting JNK and p38 activation, whereas dominant negative forms of Mst1 (DN-Mst1) attenuated endothelial responses to TNF-α and interleukin-1β. Consistent with this, targeted deletion of Mst1 in lung endothelium reduced lung injury to LPS in mice. Similarly, wild-type mice were protected from LPS-induced lung injury following treatment with a pharmacological inhibitor of Mst1/2. Conclusions Our findings identified Mst1 kinase as a key regulator in the control of lung EC activation and suggest that therapeutic strategies aimed at inhibiting Mst1 activation might be effective in the prevention and treatment of lung injury to inflammatory insults.
Collapse
|
18
|
Schirone L, Vecchio D, Valenti V, Forte M, Relucenti M, Angelini A, Zaglia T, Schiavon S, D'Ambrosio L, Sarto G, Stanzione R, Mangione E, Miglietta S, Di Bona A, Fedrigo M, Ghigo A, Versaci F, Petrozza V, Marchitti S, Rubattu S, Volpe M, Sadoshima J, Frati L, Frati G, Sciarretta S. MST1 mediates doxorubicin-induced cardiomyopathy by SIRT3 downregulation. Cell Mol Life Sci 2023; 80:245. [PMID: 37566283 PMCID: PMC10421787 DOI: 10.1007/s00018-023-04877-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
Heart failure is a major side effect of doxorubicin (DOX) treatment in patients with cancer. However, the mechanisms underlying the development of DOX-induced heart failure need to be addressed. This study aims to test whether the serine/threonine kinase MST1, a major Hippo pathway component, contributes to the development of DOX-induced myocardial injury. C57BL/6J WT mice and mice with cardiomyocyte-specific dominant-negative MST1 (kinase-dead) overexpression received three weekly injections of DOX, reaching a final cumulative dose of 18 mg/kg. Echocardiographic, histological and biochemical analyses were performed six weeks after the first DOX administration. The effects of MST1 inhibition on DOX-induced cardiomyocyte injury were also tested in vitro. MST1 signaling was significantly activated in cardiomyocytes in response to DOX treatment in vitro and in vivo. Wild-type (WT) mice treated with DOX developed cardiac dysfunction and mitochondrial abnormalities. However, these detrimental effects were abolished in mice with cardiomyocyte-specific overexpression of dominant-negative MST1 (DN-MST1) or treated with XMU-MP-1, a specific MST1 inhibitor, indicating that MST1 inhibition attenuates DOX-induced cardiac dysfunction. DOX treatment led to a significant downregulation of cardiac levels of SIRT3, a deacetylase involved in mitochondrial protection, in WT mice, which was rescued by MST1 inhibition. Pharmacological inhibition of SIRT3 blunted the protective effects of MST1 inhibition, indicating that SIRT3 downregulation mediates the cytotoxic effects of MST1 activation in response to DOX treatment. Finally, we found a significant upregulation of MST1 and downregulation of SIRT3 levels in human myocardial tissue of cancer patients treated with DOX. In summary, MST1 contributes to DOX-induced cardiomyopathy through SIRT3 downregulation.
Collapse
Affiliation(s)
- Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Daniele Vecchio
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, Latina, Italy
| | | | - Michela Relucenti
- Department of Anatomical, Sapienza University of Rome, Histological, Forensic Medicine and Orthopaedic Sciences, Rome, Italy
| | - Annalisa Angelini
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova Medical School, Padua, Italy
| | - Tania Zaglia
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova Medical School, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Sonia Schiavon
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Luca D'Ambrosio
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Gianmarco Sarto
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | | | - Selenia Miglietta
- Department of Anatomical, Sapienza University of Rome, Histological, Forensic Medicine and Orthopaedic Sciences, Rome, Italy
| | - Anna Di Bona
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova Medical School, Padua, Italy
| | - Marny Fedrigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova Medical School, Padua, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Francesco Versaci
- Department of Cardiology, Santa Maria Goretti Hospital, Latina, Italy
| | - Vincenzo Petrozza
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, (Sapienza University of Rome, S. Andrea Hospital), Rome, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, (Sapienza University of Rome, S. Andrea Hospital), Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Cardiovascular Research Institute, Newark, NJ, USA
| | - Luigi Frati
- IRCCS Neuromed, Pozzilli, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | - Giacomo Frati
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
- IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
19
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
20
|
Maejima Y, Zablocki D, Nah J, Sadoshima J. The role of the Hippo pathway in autophagy in the heart. Cardiovasc Res 2023; 118:3320-3330. [PMID: 35150237 DOI: 10.1093/cvr/cvac014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
The Hippo pathway, an evolutionarily conserved signalling mechanism, controls organ size and tumourigenesis. Increasing lines of evidence suggest that autophagy, an important mechanism of lysosome-mediated cellular degradation, is regulated by the Hippo pathway, which thereby profoundly affects cell growth and death responses in various cell types. In the heart, Mst1, an upstream component of the Hippo pathway, not only induces apoptosis but also inhibits autophagy through phosphorylation of Beclin 1. YAP/TAZ, transcription factor co-factors and the terminal effectors of the Hippo pathway, affect autophagy through transcriptional activation of TFEB, a master regulator of autophagy and lysosomal biogenesis. The cellular abundance of YAP is negatively regulated by autophagy and suppression of autophagy induces accumulation of YAP, which, in turn, acts as a feedback mechanism to induce autophagosome formation. Thus, the Hippo pathway and autophagy regulate each other, thereby profoundly affecting cardiomyocyte survival and death. This review discusses the interaction between the Hippo pathway and autophagy and its functional significance during stress conditions in the heart and the cardiomyocytes therein.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA.,Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| | - Jihoon Nah
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, 185 South Orange Ave., MSB G-609, Newark, NJ 07103, USA
| |
Collapse
|
21
|
Zhang C, Dan Q, Lai S, Zhang Y, Gao E, Luo H, Yang L, Gao X, Lu C. Rab10 protects against DOX-induced cardiotoxicity by alleviating the oxidative stress and apoptosis of cardiomyocytes. Toxicol Lett 2023; 373:84-93. [PMID: 36309171 DOI: 10.1016/j.toxlet.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Doxorubicin (DOX) is a widely used anticancer drug, but its clinical application is limited by cardiotoxicity. As a member of the Rab family, Rab10 has multiple subcellular localizations and carries out a wide variety of functions. Here, we explored the role of Rab10 on DOX-induced cardiotoxicity. Cardiac-specific Rab10 transgenic mice were constructed and treated with DOX or saline. We found that cardiac-specific overexpression of Rab10 alleviated cardiac dysfunction and attenuated cytoplasmic vacuolization and mitochondrial damage in DOX-treated mouse heart tissues. Immunofluorescence staining and Western blot analysis showed that Rab10 alleviated DOX-induced apoptosis and oxidative stress in cardiomyocytes in mouse heart tissues. We demonstrated that DOX mediated apoptosis, oxidative stress and depolarization of the mitochondrial membrane potential in H9c2 cells, while overexpression and knockdown of Rab10 attenuated and aggravated these effects, respectively. Furthermore, we found that Mst1, a serine-threonine kinase, was cleaved and translocated into the nucleus in H9c2 cells after DOX treatment, and knockdown of Mst1 alleviated DOX-induced cardiomyocyte apoptosis. Overexpression of Rab10 inhibited the cleavage of Mst1 mediated by DOX treatment in vivo and in vitro. Together, our findings demonstrated that cardiac-specific overexpression of Rab10 alleviated DOX-induced cardiac dysfunction and injury via inhibiting oxidative stress and apoptosis of cardiomyocytes, which may be partially ascribed to the inhibition of Mst1 activity.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Song Lai
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yutong Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Erer Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Liping Yang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, China
| | - Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
22
|
Langa P, Wolska BM, Solaro RJ. The Hippo Signaling Pathway as a Drug Target in Familial Dilated Cardiomyopathy. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2022; 1:4. [PMID: 38818406 PMCID: PMC11139043 DOI: 10.53941/ijddp.v1i1.189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We focus here on the Hippo pathway in the hierarchical sensing and modulation of the mechanical state of the adult heart in health and disease. The Hippo pathway interrogates the micro-environment of cardiac myocytes providing surveillance of the mechanical state with engagement of signaling pathways critical to homeostasis of cardiac development, remodeling, and function and vulnerable to pathologies. Our discussion centers on Hippo signaling in the altered mechanical state instigated by variants of genes expressing mutant sarcomere proteins that trigger a progression to dilated cardiomyopathy (familial DCM). There is an unmet need for therapies in DCM. Recent progress in the discovery of small molecules that target Hippo signaling and are intended for use in cardiac disorders provides leads for modifying Hippo in DCM. As we emphasize, identifying useful targets in DCM requires in depth understanding of cell specific Hippo signaling in the cardiac micro-environment.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics and the Center for Cardiovascular Research,University of Illinois at Chicago, Chicago, IL,USA
| | - Beata M. Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research,University of Illinois at Chicago, Chicago, IL,USA
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research,University of Illinois at Chicago, Chicago, IL,USA
| |
Collapse
|
23
|
Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022; 13:945206. [PMID: 36120374 PMCID: PMC9471952 DOI: 10.3389/fphar.2022.945206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
NRG1 (Neuregulin-1) is an effective cardiomyocyte proliferator, secreted and released by endothelial vascular cells, and affects the cardiovascular system. It plays a major role in heart growth, proliferation, differentiation, apoptosis, and other cardiovascular processes. Numerous experiments have shown that NRG1 can repair the heart in the pathophysiology of atherosclerosis, myocardial infarction, ischemia reperfusion, heart failure, cardiomyopathy and other cardiovascular diseases. NRG1 can connect related signaling pathways through the NRG1/ErbB pathway, which form signal cascades to improve the myocardial microenvironment, such as regulating cardiac inflammation, oxidative stress, necrotic apoptosis. Here, we summarize recent research advances on the molecular mechanisms of NRG1, elucidate the contribution of NRG1 to cardiovascular disease, discuss therapeutic approaches targeting NRG1 associated with cardiovascular disease, and highlight areas for future research.
Collapse
Affiliation(s)
- Yan Wang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianliang Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifei Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhao
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| | - Xiangning Cui
- Department of Cardiovascular, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanan Zhao, ; Xiangning Cui,
| |
Collapse
|
24
|
Zheng A, Chen Q, Zhang L. The Hippo-YAP pathway in various cardiovascular diseases: Focusing on the inflammatory response. Front Immunol 2022; 13:971416. [PMID: 36059522 PMCID: PMC9433876 DOI: 10.3389/fimmu.2022.971416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
The Hippo pathway was initially discovered in Drosophila melanogaster and mammals as a key regulator of tissue growth both in physiological and pathological states. Numerous studies depict the vital role of the Hippo pathway in cardiovascular development, heart regeneration, organ size and vascular remodeling through the regulation of YAP (yes-associated protein) translocation. Recently, an increasing number of studies have focused on the Hippo-YAP pathway in inflammation and immunology. Although the Hippo-YAP pathway has been revealed to play controversial roles in different contexts and cell types in the cardiovascular system, the mechanisms regulating tissue inflammation and the immune response remain to be clarified. In this review, we summarize findings from the past decade on the function and mechanism of the Hippo-YAP pathway in CVDs (cardiovascular diseases) such as myocardial infarction, cardiomyopathy and atherosclerosis. In particular, we emphasize the role of the Hippo-YAP pathway in regulating inflammatory cell infiltration and inflammatory cytokine activation.
Collapse
Affiliation(s)
| | | | - Li Zhang
- *Correspondence: Li Zhang, ; Qishan Chen,
| |
Collapse
|
25
|
Hnatiuk AP, Bruyneel AA, Tailor D, Pandrala M, Dheeraj A, Li W, Serrano R, Feyen DA, Vu MM, Amatya P, Gupta S, Nakauchi Y, Morgado I, Wiebking V, Liao R, Porteus MH, Majeti R, Malhotra SV, Mercola M. Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Res 2022; 82:2777-2791. [PMID: 35763671 PMCID: PMC9620869 DOI: 10.1158/0008-5472.can-21-3652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2023]
Abstract
Small molecule tyrosine kinase inhibitors (TKI) have revolutionized cancer treatment and greatly improved patient survival. However, life-threatening cardiotoxicity of many TKIs has become a major concern. Ponatinib (ICLUSIG) was developed as an inhibitor of the BCR-ABL oncogene and is among the most cardiotoxic of TKIs. Consequently, use of ponatinib is restricted to the treatment of tumors carrying T315I-mutated BCR-ABL, which occurs in chronic myeloid leukemia (CML) and confers resistance to first- and second-generation inhibitors such as imatinib and nilotinib. Through parallel screening of cardiovascular toxicity and antitumor efficacy assays, we engineered safer analogs of ponatinib that retained potency against T315I BCR-ABL kinase activity and suppressed T315I mutant CML tumor growth. The new compounds were substantially less toxic in human cardiac vasculogenesis and cardiomyocyte contractility assays in vitro. The compounds showed a larger therapeutic window in vivo, leading to regression of human T315I mutant CML xenografts without cardiotoxicity. Comparison of the kinase inhibition profiles of ponatinib and the new compounds suggested that ponatinib cardiotoxicity is mediated by a few kinases, some of which were previously unassociated with cardiovascular disease. Overall, the study develops an approach using complex phenotypic assays to reduce the high risk of cardiovascular toxicity that is prevalent among small molecule oncology therapeutics. SIGNIFICANCE Newly developed ponatinib analogs retain antitumor efficacy but elicit significantly decreased cardiotoxicity, representing a therapeutic opportunity for safer CML treatment.
Collapse
MESH Headings
- Antineoplastic Agents/adverse effects
- Cardiotoxicity/drug therapy
- Cardiotoxicity/etiology
- Cardiotoxicity/prevention & control
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imidazoles
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/adverse effects
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
Collapse
Affiliation(s)
- Anna P. Hnatiuk
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Arne A.N. Bruyneel
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Dhanir Tailor
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Mallesh Pandrala
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Arpit Dheeraj
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Wenqi Li
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Ricardo Serrano
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Dries A.M. Feyen
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Michelle M. Vu
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Prashila Amatya
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Saloni Gupta
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Yusuke Nakauchi
- Division of Hematology Institute for Stem cell Biology and Regenerative Medicine, Stanford School of Medicine, California
| | - Isabel Morgado
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Volker Wiebking
- Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Ronglih Liao
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Division of Hematology Institute for Stem cell Biology and Regenerative Medicine, Stanford School of Medicine, California
| | - Sanjay V. Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Mark Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
26
|
Ramaccini D, Pedriali G, Perrone M, Bouhamida E, Modesti L, Wieckowski MR, Giorgi C, Pinton P, Morciano G. Some Insights into the Regulation of Cardiac Physiology and Pathology by the Hippo Pathway. Biomedicines 2022; 10:biomedicines10030726. [PMID: 35327528 PMCID: PMC8945338 DOI: 10.3390/biomedicines10030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/16/2022] Open
Abstract
The heart is one of the most fascinating organs in living beings. It beats up to 100,000 times a day throughout the lifespan, without resting. The heart undergoes profound anatomical, biochemical, and functional changes during life, from hypoxemic fetal stages to a completely differentiated four-chambered cardiac muscle. In the middle, many biological events occur after and intersect with each other to regulate development, organ size, and, in some cases, regeneration. Several studies have defined the essential roles of the Hippo pathway in heart physiology through the regulation of apoptosis, autophagy, cell proliferation, and differentiation. This molecular route is composed of multiple components, some of which were recently discovered, and is highly interconnected with multiple known prosurvival pathways. The Hippo cascade is evolutionarily conserved among species, and in addition to its regulatory roles, it is involved in disease by drastically changing the heart phenotype and its function when its components are mutated, absent, or constitutively activated. In this review, we report some insights into the regulation of cardiac physiology and pathology by the Hippo pathway.
Collapse
Affiliation(s)
- Daniela Ramaccini
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Mariasole Perrone
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
| | - Lorenzo Modesti
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| | - Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Italy; (D.R.); (G.P.); (E.B.)
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (M.P.); (L.M.); (C.G.)
- Correspondence: (P.P.); (G.M.); Tel.: +39-0532-455-802 (P.P.); +39-0532-455-804 (G.M.)
| |
Collapse
|
27
|
Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022; 7:78. [PMID: 35273164 PMCID: PMC8913803 DOI: 10.1038/s41392-022-00925-z] [Citation(s) in RCA: 258] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Although the treatment of myocardial infarction (MI) has improved considerably, it is still a worldwide disease with high morbidity and high mortality. Whilst there is still a long way to go for discovering ideal treatments, therapeutic strategies committed to cardioprotection and cardiac repair following cardiac ischemia are emerging. Evidence of pathological characteristics in MI illustrates cell signaling pathways that participate in the survival, proliferation, apoptosis, autophagy of cardiomyocytes, endothelial cells, fibroblasts, monocytes, and stem cells. These signaling pathways include the key players in inflammation response, e.g., NLRP3/caspase-1 and TLR4/MyD88/NF-κB; the crucial mediators in oxidative stress and apoptosis, for instance, Notch, Hippo/YAP, RhoA/ROCK, Nrf2/HO-1, and Sonic hedgehog; the controller of myocardial fibrosis such as TGF-β/SMADs and Wnt/β-catenin; and the main regulator of angiogenesis, PI3K/Akt, MAPK, JAK/STAT, Sonic hedgehog, etc. Since signaling pathways play an important role in administering the process of MI, aiming at targeting these aberrant signaling pathways and improving the pathological manifestations in MI is indispensable and promising. Hence, drug therapy, gene therapy, protein therapy, cell therapy, and exosome therapy have been emerging and are known as novel therapies. In this review, we summarize the therapeutic strategies for MI by regulating these associated pathways, which contribute to inhibiting cardiomyocytes death, attenuating inflammation, enhancing angiogenesis, etc. so as to repair and re-functionalize damaged hearts.
Collapse
|
28
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
29
|
Affiliation(s)
- Anthony Wong
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada (A.W., S.E.).,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, Canada (A.W., S.E.).,Department of Immunology, University of Toronto, Toronto, Canada (A.W., S.E.)
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada (A.W., S.E.).,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, Canada (A.W., S.E.).,Department of Immunology, University of Toronto, Toronto, Canada (A.W., S.E.).,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada (S.E.).,Peter Munk Cardiac Centre, University Health Network, Toronto, Canada (S.E.)
| |
Collapse
|
30
|
Liu M, Yan M, He J, Lv H, Chen Z, Peng L, Cai W, Yao F, Chen C, Shi L, Zhang K, Zhang X, Wang DW, Wang L, Zhu Y, Ai D. Macrophage MST1/2 Disruption Impairs Post-Infarction Cardiac Repair via LTB4. Circ Res 2021; 129:909-926. [PMID: 34515499 DOI: 10.1161/circresaha.121.319687] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chemokine CCL4/genetics
- Chemokine CCL4/metabolism
- Chemokine CXCL2/metabolism
- Female
- Leukotriene B4/metabolism
- Lipoxygenase/metabolism
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Myocardial Infarction/metabolism
- Myocardium/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Leukotriene B4/antagonists & inhibitors
- Receptors, Leukotriene B4/metabolism
- Serine-Threonine Kinase 3/genetics
- Serine-Threonine Kinase 3/metabolism
Collapse
Affiliation(s)
- Mingming Liu
- Tianjin Key Laboratory of Ion and Molecular Function of Cardiovascular Diseases, Tianjin Institute of Cardiology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (M.L., M.Y., H.L., D.A.), Tianjin Medical University
- Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital (M.L.)
| | - Meng Yan
- Tianjin Key Laboratory of Ion and Molecular Function of Cardiovascular Diseases, Tianjin Institute of Cardiology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (M.L., M.Y., H.L., D.A.), Tianjin Medical University
- The First Affiliated Hospital of Soochow University Department of Pathology, Soochow University, Suzhou (M.Y.)
| | - Jinlong He
- Physiology and Pathophysiology (J.H., H.L., Z.C., W.C., X.Z., Y.Z., D.A.), Tianjin Medical University
| | - Huizhen Lv
- Tianjin Key Laboratory of Ion and Molecular Function of Cardiovascular Diseases, Tianjin Institute of Cardiology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (M.L., M.Y., H.L., D.A.), Tianjin Medical University
- Physiology and Pathophysiology (J.H., H.L., Z.C., W.C., X.Z., Y.Z., D.A.), Tianjin Medical University
| | - Zhipeng Chen
- Physiology and Pathophysiology (J.H., H.L., Z.C., W.C., X.Z., Y.Z., D.A.), Tianjin Medical University
| | - Liyuan Peng
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan (L.P., C.C., D.-W.W.)
| | - Wenbin Cai
- Physiology and Pathophysiology (J.H., H.L., Z.C., W.C., X.Z., Y.Z., D.A.), Tianjin Medical University
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (F.Y., L.W.)
| | - Chen Chen
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan (L.P., C.C., D.-W.W.)
| | - Lei Shi
- Biochemistry and Molecular Biology, School of Basic Medical Sciences (L.S., K.Z.), Tianjin Medical University
| | - Kai Zhang
- Biochemistry and Molecular Biology, School of Basic Medical Sciences (L.S., K.Z.), Tianjin Medical University
| | - Xu Zhang
- Physiology and Pathophysiology (J.H., H.L., Z.C., W.C., X.Z., Y.Z., D.A.), Tianjin Medical University
| | - Dao-Wen Wang
- Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan (L.P., C.C., D.-W.W.)
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College (F.Y., L.W.)
| | - Yi Zhu
- Physiology and Pathophysiology (J.H., H.L., Z.C., W.C., X.Z., Y.Z., D.A.), Tianjin Medical University
| | - Ding Ai
- Tianjin Key Laboratory of Ion and Molecular Function of Cardiovascular Diseases, Tianjin Institute of Cardiology, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics (M.L., M.Y., H.L., D.A.), Tianjin Medical University
- Physiology and Pathophysiology (J.H., H.L., Z.C., W.C., X.Z., Y.Z., D.A.), Tianjin Medical University
| |
Collapse
|
31
|
Yuan T, Annamalai K, Naik S, Lupse B, Geravandi S, Pal A, Dobrowolski A, Ghawali J, Ruhlandt M, Gorrepati KDD, Azizi Z, Lim DS, Maedler K, Ardestani A. The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat Commun 2021; 12:4928. [PMID: 34389720 PMCID: PMC8363615 DOI: 10.1038/s41467-021-25145-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes results from a decline in functional pancreatic β-cells, but the molecular mechanisms underlying the pathological β-cell failure are poorly understood. Here we report that large-tumor suppressor 2 (LATS2), a core component of the Hippo signaling pathway, is activated under diabetic conditions and induces β-cell apoptosis and impaired function. LATS2 deficiency in β-cells and primary isolated human islets as well as β-cell specific LATS2 ablation in mice improves β-cell viability, insulin secretion and β-cell mass and ameliorates diabetes development. LATS2 activates mechanistic target of rapamycin complex 1 (mTORC1), a physiological suppressor of autophagy, in β-cells and genetic and pharmacological inhibition of mTORC1 counteracts the pro-apoptotic action of activated LATS2. We further show a direct interplay between Hippo and autophagy, in which LATS2 is an autophagy substrate. On the other hand, LATS2 regulates β-cell apoptosis triggered by impaired autophagy suggesting an existence of a stress-sensitive multicomponent cellular loop coordinating β-cell compensation and survival. Our data reveal an important role for LATS2 in pancreatic β-cell turnover and suggest LATS2 as a potential therapeutic target to improve pancreatic β-cell survival and function in diabetes.
Collapse
Affiliation(s)
- Ting Yuan
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Karthika Annamalai
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Shruti Naik
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Blaz Lupse
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Shirin Geravandi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Anasua Pal
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Jaee Ghawali
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Marina Ruhlandt
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Zahra Azizi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dae-Sik Lim
- Department of Biological Sciences, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
| | - Amin Ardestani
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Tao RH, Kobayashi M, Yang Y, Kleinerman ES. Exercise Inhibits Doxorubicin-Induced Damage to Cardiac Vessels and Activation of Hippo/YAP-Mediated Apoptosis. Cancers (Basel) 2021; 13:cancers13112740. [PMID: 34205942 PMCID: PMC8198139 DOI: 10.3390/cancers13112740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
Dose-related cardiomyopathy is a major side effect following doxorubicin (Dox). To investigate whether exercise (Ex)-induced vasculogenesis plays a role in reducing Dox-induced cardiotoxicity, GFP+ bone marrow (BM) cells from GFP transgenic mice were transplanted into wild-type mice. Transplanted mice were treated with Dox, Ex, Dox+Ex, or control. We found Dox therapy resulted in decreased systolic and diastolic blood flow, decreased ejection fraction and fractional shortening, and decreased vascular endothelial cells and pericytes. These abnormalities were not seen in Dox+Ex hearts. Heart tissues from control-, Ex-, or Dox-treated mice showed a small number of GFP+ cells. By contrast, the Dox+Ex-treated hearts had a significant increase in GFP+ cells. Further analyses demonstrated these GFP+ BM cells had differentiated into vascular endothelial cells (GFP+CD31+) and pericytes (GFP+NG2+). Decreased cardiomyocytes were also seen in Dox-treated but not Dox+Ex-treated hearts. Ex induced an increase in GFP+c-Kit+ cells. However, these c-Kit+ BM stem cells had not differentiated into cardiomyocytes. Dox therapy induced phosphorylation of MST1/2, LATS1, and YAP; a decrease in total YAP; and cleavage of caspase-3 and PARP in the heart tissues. Dox+Ex prevented these effects. Our data demonstrated Dox-induced cardiotoxicity is mediated by vascular damage resulting in decreased cardiac blood flow and through activation of Hippo-YAP signaling resulting in cardiomyocyte apoptosis. Furthermore, Ex inhibited these effects by promoting migration of BM stem cells into the heart to repair the cardiac vessels damaged by Dox and through inhibiting Dox-induced Hippo-YAP signaling-mediated apoptosis. These data support the concept of using exercise as an intervention to decrease Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Rong-Hua Tao
- Department of Pediatrics-Research, Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence: (R.-H.T.); (E.S.K.); Tel.: +1-(713)-563-7333 (R.-H.T.); +1-(713)-792-8110 (E.S.K.); Fax: +1-(713)-563-5407 (R.-H.T.); +1-(713)-563-5407 (E.S.K.)
| | - Masato Kobayashi
- School of Health Sciences, Institutes of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0942, Japan;
| | - Yuanzheng Yang
- Department of Pediatrics-Research, Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Eugenie S. Kleinerman
- Department of Pediatrics-Research, Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence: (R.-H.T.); (E.S.K.); Tel.: +1-(713)-563-7333 (R.-H.T.); +1-(713)-792-8110 (E.S.K.); Fax: +1-(713)-563-5407 (R.-H.T.); +1-(713)-563-5407 (E.S.K.)
| |
Collapse
|
33
|
Zhang Z, Si YF, Hu W, Yan P, Yu Y. Treatment with XMU-MP-1 erases hyperglycaemic memory in hearts of diabetic mice. Biochem Pharmacol 2021; 188:114574. [PMID: 33887258 DOI: 10.1016/j.bcp.2021.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Hyperglycaemic memory refers to the damages occurred under early hyperglycaemic environment in organs of diabetic patients persisting after intensive glycaemic control. Mammalian sterile 20-like kinase 1 (Mst1) contributes to the development of diabetic cardiomyopathy. Here, we investigated the role of Mst1 in hyperglycaemic memory and test the effect of XMU-MP-1, a Mst1 inhibitor, on hyperglycaemic memory in hearts. Eight weeks after induction of type 1 diabetes by injection with streptozotocin (STZ) in mice, glycaemic control was obtained by means of insulin treatment and maintained for 4 additional weeks. In the diabetic mice, insulin treatment alone did not reduce phosphorylation of Mst1 or improve cardiac function. Treatment with XMU-MP-1 alone immediately after induction of diabetes for 12 weeks did not improve myocardial function in mice. But treatment with XMU-MP-1 for the later 4 weeks relieved myocardial dysfunction when glycaemic control was obtained by insulin treatment simultaneously. Mst1 deficiency and glycaemic control synergistically improved myocardial function and reduced apoptosis in myocardium of diabetic mice. Mechanistically, when Mst1 was deficient or inhibited by XMU-MP-1, AMPK was activated and mitochondrial dysfunction was attenuated. In vitro, treatment with AMPK activator reversed the detrimental effects of Mst1 overexpression in cultured cardiomyocytes. XMU-MP-1 might thus be envisaged as a complement for insulin treatment against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhigang Zhang
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Fang Si
- Department of Ophthalmology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenying Hu
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengyong Yan
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongsheng Yu
- School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
34
|
Okuyama M, Jiang W, Yang L, Subramanian V. Mst1/2 Kinases Inhibitor, XMU-MP-1, Attenuates Angiotensin II-Induced Ascending Aortic Expansion in Hypercholesterolemic Mice. Circ Rep 2021; 3:259-266. [PMID: 34007939 PMCID: PMC8099673 DOI: 10.1253/circrep.cr-20-0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background:
Ascending and abdominal aortic aneurysms (AAs) are asymptomatic, permanent dilations of the aorta with surgical intervention as the currently available therapy. Hippo-Yap signaling cascade plays a critical role in stem cell self-renewal, tissue regeneration and organ size control. By using XMU-MP-1, a pharmacological inhibitor of the key component of Hippo-Yap signaling, MST1/2, we examined the functional contribution of Hippo-Yap in the development of AAs in Angiotensin II (AngII)-infused hypercholesterolemic mice. Methods and Results:
MST, p-MST, p-YAP, p-MOB and TAZ proteins in AngII-infused ascending and abdominal aortas were assessed by immunohistochemical and western blot analyses. To examine the effect of MST1/2 inhibition on AAs, western diet-fed low density lipoprotein (LDL) receptor −/− mice infused with AngII were administered with either vehicle or XMU-MP-1 for 5 weeks. Hippo-YAP signaling proteins were significantly elevated in AngII infused ascending and abdominal aortas. XMU-MP-1 administration resulted in the attenuation of AngII-induced ascending AAs without influencing abdominal AAs and aortic atherosclerosis. Inhibition of Hippo-YAP signaling also resulted in the suppression of AngII-induced matrix metalloproteinase 2 (MMP2) activity, macrophage accumulation, aortic medial hypertrophy and elastin breaks in the ascending aorta. Conclusions:
The present study demonstrates a pivotal role for the Hippo-YAP signaling pathway in AngII-induced ascending AA development.
Collapse
Affiliation(s)
- Michihiro Okuyama
- Saha Cardiovascular Research Center, University of Kentucky Lexington, KY USA.,Department of Physiology, University of Kentucky Lexington, KY USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky Lexington, KY USA
| | - Lihua Yang
- Saha Cardiovascular Research Center, University of Kentucky Lexington, KY USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky Lexington, KY USA.,Department of Physiology, University of Kentucky Lexington, KY USA
| |
Collapse
|
35
|
Zhang Q, Cheng X, Zhang H, Zhang T, Wang Z, Zhang W, Yu W. Dissecting molecular mechanisms underlying H 2O 2-induced apoptosis of mouse bone marrow mesenchymal stem cell: role of Mst1 inhibition. Stem Cell Res Ther 2020; 11:526. [PMID: 33298178 PMCID: PMC7724846 DOI: 10.1186/s13287-020-02041-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BM-MSC) has been shown to treat pulmonary arterial hypertension (PAH). However, excessive reactive oxygen species (ROS) increases the apoptosis of BM-MSCs, leading to poor survival and engraft efficiency. Thus, improving the ability of BM-MSCs to scavenge ROS may considerably enhance the effectiveness of transplantation therapy. Mammalian Ste20-like kinase 1 (Mst1) is a pro-apoptotic molecule which increases ROS production. The aim of this study is to uncover the underlying mechanisms the effect of Mst1 inhibition on the tolerance of BM-MSCs under H2O2 condition. METHODS Mst1 expression in BM-MSCs was inhibited via transfection with adenoviruses expressing a short hairpin (sh) RNA directed against Mst1 (Ad-sh-Mst1) and exposure to H2O2. Cell viability was detected by Cell Counting Kit 8 (CCK-8) assay, and cell apoptosis was analyzed by Annexin V-FITC/PI, Caspase 3 Activity Assay kits, and pro caspase 3 expression. ROS level was evaluated by the ROS probe DCFH-DA, mitochondrial membrane potential (ΔΨm) assay, SOD1/2, CAT, and GPx expression. Autophagy was assessed using transmission electron microscopy, stubRFP-sensGFP-LC3 lentivirus, and autophagy-related protein expression. The autophagy/Keap1/Nrf2 signal in H2O2-treated BM-MSC/sh-Mst1 was also measured. RESULTS Mst1 inhibition reduced ROS production; increased antioxidant enzyme SOD1/2, CAT, and GPx expression; maintained ΔΨm; and alleviated cell apoptosis in H2O2-treated BM-MSCs. In addition, this phenomenon was closely correlated with the autophagy/Keap1/Nrf2 signal pathway. Moreover, the antioxidant pathway Keap1/Nrf2 was also blocked when autophagy was inhibited by the autophagy inhibitor 3-MA. However, Keap1 or Nrf2 knockout via siRNA had no effect on autophagy activation or suppression. CONCLUSION Mst1 inhibition mediated the cytoprotective action of mBM-MSCs against H2O2-induced oxidative stress injury. The underlying mechanisms involve autophagy activation and the Keap1/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Xianfeng Cheng
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.,Department of Cardiovascular Surgery, Weifang People's Hospital, Weifang, 261000, Shandong, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Wancheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China.
| |
Collapse
|
36
|
Zhao HX, Zhang Z, Zhou HL, Hu F, Yu Y. Exercise training suppresses Mst1 activation and attenuates myocardial dysfunction in mice with type 1 diabetes. Can J Physiol Pharmacol 2020; 98:777-784. [PMID: 32687725 DOI: 10.1139/cjpp-2020-0205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Our study was to test the effects of aerobic exercise on myocardial function in mice with type 1 diabetes and investigate the underlying mechanism associated with mammalian sterile 20-like kinase 1 (Mst1). Wild-type mice and Mst1(-/-) mice were injected with streptozotocin to induce diabetes and given moderate-intensity exercise for 12 weeks. Phosphorylation of Mst1 was significantly enhanced in the left ventricles of diabetic mice, which was reversed by exercise training. Exercise training or Mst1 deficiency improved myocardial function and reduced myocardial fibrosis in diabetic mice. Exercise training or Mst1 deficiency reduced TUNEL-positive cells and caspase-3 activity in the myocardium of diabetic mice. Exercise training or Mst1 deficiency abated oxidative stress and reduced mitochondrial reactive oxygen species formation, attenuated mitochondrial swelling, and enhanced mitochondrial adenosine triphosphate formation and mitochondrial membrane potential in the myocardium of diabetic mice. Exercise training or Mst1 deficiency suppressed inflammation in the myocardium of diabetic mice. Furthermore, exercise training did not provide further protection in Mst1 knockout mice in diabetes. In conclusion, chronic exercise training attenuated myocardial dysfunction in mice with type 1 diabetes, at least in part, through suppressing Mst1 activation.
Collapse
Affiliation(s)
- Hao-Xi Zhao
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 610225, People's Republic of China
| | - Zhigang Zhang
- Department of Cardiology, Putuo Center Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui-Ling Zhou
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 610225, People's Republic of China
| | - Fang Hu
- Department of Physical Education, Chengdu University of Information Technology, Chengdu 610225, People's Republic of China
| | - Yongsheng Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Zheng M, Jacob J, Hung SH, Wang J. The Hippo Pathway in Cardiac Regeneration and Homeostasis: New Perspectives for Cell-Free Therapy in the Injured Heart. Biomolecules 2020; 10:biom10071024. [PMID: 32664346 PMCID: PMC7407108 DOI: 10.3390/biom10071024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Intractable cardiovascular diseases are leading causes of mortality around the world. Adult mammalian hearts have poor regenerative capacity and are not capable of self-repair after injury. Recent studies of cell-free therapeutics such as those designed to stimulate endogenous cardiac regeneration have uncovered new feasible therapeutic avenues for cardiac repair. The Hippo pathway, a fundamental pathway with pivotal roles in cell proliferation, survival and differentiation, has tremendous potential for therapeutic manipulation in cardiac regeneration. In this review, we summarize the most recent studies that have revealed the function of the Hippo pathway in heart regeneration and homeostasis. In particular, we discuss the molecular mechanisms of how the Hippo pathway maintains cardiac homeostasis by directing cardiomyocyte chromatin remodeling and regulating the cell-cell communication between cardiomyocytes and non-cardiomyocytes in the heart.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA;
| | - Joan Jacob
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; (J.J.); (S.-H.H.)
| | - Shao-Hsi Hung
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston, TX 77030, USA; (J.J.); (S.-H.H.)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-7135-005-723
| |
Collapse
|
38
|
Cassani M, Fernandes S, Vrbsky J, Ergir E, Cavalieri F, Forte G. Combining Nanomaterials and Developmental Pathways to Design New Treatments for Cardiac Regeneration: The Pulsing Heart of Advanced Therapies. Front Bioeng Biotechnol 2020; 8:323. [PMID: 32391340 PMCID: PMC7193099 DOI: 10.3389/fbioe.2020.00323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The research for heart therapies is challenged by the limited intrinsic regenerative capacity of the adult heart. Moreover, it has been hampered by the poor results obtained by tissue engineering and regenerative medicine attempts at generating functional beating constructs able to integrate with the host tissue. For this reason, organ transplantation remains the elective treatment for end-stage heart failure, while novel strategies aiming to promote cardiac regeneration or repair lag behind. The recent discovery that adult cardiomyocytes can be ectopically induced to enter the cell cycle and proliferate by a combination of microRNAs and cardioprotective drugs, like anti-oxidant, anti-inflammatory, anti-coagulants and anti-platelets agents, fueled the quest for new strategies suited to foster cardiac repair. While proposing a revolutionary approach for heart regeneration, these studies raised serious issues regarding the efficient controlled delivery of the therapeutic cargo, as well as its timely removal or metabolic inactivation from the site of action. Especially, there is need for innovative treatment because of evidence of severe side effects caused by pleiotropic drugs. Biocompatible nanoparticles possess unique physico-chemical properties that have been extensively exploited for overcoming the limitations of standard medical therapies. Researchers have put great efforts into the optimization of the nanoparticles synthesis and functionalization, to control their interactions with the biological milieu and use as a viable alternative to traditional approaches. Nanoparticles can be used for diagnosis and deliver therapies in a personalized and targeted fashion. Regarding the treatment of cardiovascular diseases, nanoparticles-based strategies have provided very promising outcomes, in preclinical studies, during the last years. Efficient encapsulation of a large variety of cargos, specific release at the desired site and improvement of cardiac function are some of the main achievements reached so far by nanoparticle-based treatments in animal models. This work offers an overview on the recent nanomedical applications for cardiac regeneration and highlights how the versatility of nanomaterials can be combined with the newest molecular biology discoveries to advance cardiac regeneration therapies.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Soraia Fernandes
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Jan Vrbsky
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| | - Ece Ergir
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, VIC, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, Via Della Ricerca Scientifica, Rome, Italy
| | - Giancarlo Forte
- International Clinical Research Center, St Anne’s University Hospital, Brno, Czechia
| |
Collapse
|
39
|
Chen X, Li Y, Luo J, Hou N. Molecular Mechanism of Hippo-YAP1/TAZ Pathway in Heart Development, Disease, and Regeneration. Front Physiol 2020; 11:389. [PMID: 32390875 PMCID: PMC7191303 DOI: 10.3389/fphys.2020.00389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/01/2020] [Indexed: 01/20/2023] Open
Abstract
The Hippo-YAP1/TAZ pathway is a highly conserved central mechanism that controls organ size through the regulation of cell proliferation and other physical attributes of cells. The transcriptional factors Yes-associated protein 1 (YAP1) and PDZ-binding motif (TAZ) act as downstream effectors of the Hippo pathway, and their subcellular location and transcriptional activities are affected by multiple post-translational modifications (PTMs). Studies have conclusively demonstrated a pivotal role of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration. Targeted therapeutics for the YAP1/TAZ could be an effective treatment option for cardiac regeneration and disease. This review article provides an overview of the Hippo-YAP1/TAZ pathway and the increasing impact of PTMs in fine-tuning YAP1/TAZ activation; in addition, we discuss the potential contributions of the Hippo-YAP1/TAZ pathway in cardiac development, disease, and regeneration.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Xiong Z, Li Y, Zhao Z, Zhang Y, Man W, Lin J, Dong Y, Liu L, Wang B, Wang H, Guo B, Li C, Li F, Wang H, Sun D. Mst1 knockdown alleviates cardiac lipotoxicity and inhibits the development of diabetic cardiomyopathy in db/db mice. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165806. [PMID: 32320827 DOI: 10.1016/j.bbadis.2020.165806] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy (DCM) accounts for increasing deaths of diabetic patients, and effective therapeutic targets are urgently needed. Myocardial lipotoxicity, which is caused by cardiac non-oxidative metabolic fatty acids and cardiotoxic fatty acid metabolites accumulation, has gained more attention to explain the increasing prevalence of DCM. However, whether mammalian Ste20-like kinase 1 (Mst1) plays a role in lipotoxicity in type 2 diabetes-induced cardiomyopathy has not yet been illustrated. Here, we found that Mst1 expression was elevated transcriptionally in the hearts of type 2 diabetes mellitus mice and palmitic acid-treated neonatal rat ventricular myocytes. Adeno-associated virus 9 (AAV9)-mediated Mst1 silencing in db/db mouse hearts significantly alleviated cardiac dysfunction and fibrosis. Notably, Mst1 knockdown in db/db mouse hearts decreased lipotoxic apoptosis and inflammatory response. Mst1 knockdown exerted protective effects through inactivation of MAPK/ERK kinase kinase 1 (MEKK1)/c-Jun N-terminal kinase (JNK) signaling pathway. Moreover, lipotoxicity induced Mst1 expression through promoting the binding of forkhead box O3 (FoxO3) and Mst1 promoter. Conclusively, we elucidated for the first time that Mst1 expression is regulated by FOXO3 under lipotoxicity stimulation and downregulation of Mst1 protects db/db mice from lipotoxic cardiac injury through MEKK1/JNK signaling inhibition, indicating that Mst1 abrogation may be a potential treatment strategy for DCM in type 2 diabetic patients.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/genetics
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/therapy
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Fatty Acids/metabolism
- Fatty Acids/toxicity
- Forkhead Box Protein O3/agonists
- Forkhead Box Protein O3/genetics
- Forkhead Box Protein O3/metabolism
- Gene Expression Regulation
- Hepatocyte Growth Factor
- Humans
- JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors
- JNK Mitogen-Activated Protein Kinases/genetics
- JNK Mitogen-Activated Protein Kinases/metabolism
- MAP Kinase Kinase Kinase 1/antagonists & inhibitors
- MAP Kinase Kinase Kinase 1/genetics
- MAP Kinase Kinase Kinase 1/metabolism
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Transgenic
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidation-Reduction
- Primary Cell Culture
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Signal Transduction
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China; Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengqing Zhao
- Department of Neurology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wanrong Man
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Dong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liyuan Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
41
|
Ikeda S, Mizushima W, Sciarretta S, Abdellatif M, Zhai P, Mukai R, Fefelova N, Oka SI, Nakamura M, Del Re DP, Farrance I, Park JY, Tian B, Xie LH, Kumar M, Hsu CP, Sadayappan S, Shimokawa H, Lim DS, Sadoshima J. Hippo Deficiency Leads to Cardiac Dysfunction Accompanied by Cardiomyocyte Dedifferentiation During Pressure Overload. Circ Res 2019; 124:292-305. [PMID: 30582455 DOI: 10.1161/circresaha.118.314048] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE The Hippo pathway plays an important role in determining organ size through regulation of cell proliferation and apoptosis. Hippo inactivation and consequent activation of YAP (Yes-associated protein), a transcription cofactor, have been proposed as a strategy to promote myocardial regeneration after myocardial infarction. However, the long-term effects of Hippo deficiency on cardiac function under stress remain unknown. OBJECTIVE We investigated the long-term effect of Hippo deficiency on cardiac function in the presence of pressure overload (PO). METHODS AND RESULTS We used mice with cardiac-specific homozygous knockout of WW45 (WW45cKO), in which activation of Mst1 (Mammalian sterile 20-like 1) and Lats2 (large tumor suppressor kinase 2), the upstream kinases of the Hippo pathway, is effectively suppressed because of the absence of the scaffolding protein. We used male mice at 3 to 4 month of age in all animal experiments. We subjected WW45cKO mice to transverse aortic constriction for up to 12 weeks. WW45cKO mice exhibited higher levels of nuclear YAP in cardiomyocytes during PO. Unexpectedly, the progression of cardiac dysfunction induced by PO was exacerbated in WW45cKO mice, despite decreased apoptosis and activated cardiomyocyte cell cycle reentry. WW45cKO mice exhibited cardiomyocyte sarcomere disarray and upregulation of TEAD1 (transcriptional enhancer factor) target genes involved in cardiomyocyte dedifferentiation during PO. Genetic and pharmacological inactivation of the YAP-TEAD1 pathway reduced the PO-induced cardiac dysfunction in WW45cKO mice and attenuated cardiomyocyte dedifferentiation. Furthermore, the YAP-TEAD1 pathway upregulated OSM (oncostatin M) and OSM receptors, which played an essential role in mediating cardiomyocyte dedifferentiation. OSM also upregulated YAP and TEAD1 and promoted cardiomyocyte dedifferentiation, indicating the existence of a positive feedback mechanism consisting of YAP, TEAD1, and OSM. CONCLUSIONS Although activation of YAP promotes cardiomyocyte regeneration after cardiac injury, it induces cardiomyocyte dedifferentiation and heart failure in the long-term in the presence of PO through activation of the YAP-TEAD1-OSM positive feedback mechanism.
Collapse
Affiliation(s)
- Shohei Ikeda
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.).,Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., H.S.)
| | - Wataru Mizushima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Sebastiano Sciarretta
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.).,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S. Sciarretta).,Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (S. Sciarretta)
| | - Maha Abdellatif
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Risa Mukai
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Nadezhda Fefelova
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Shin-Ichi Oka
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Michinari Nakamura
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Dominic P Del Re
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | | | - Ji Yeon Park
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark (J.Y.P., B.T.)
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark (J.Y.P., B.T.)
| | - Lai-Hua Xie
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Chiao-Po Hsu
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taiwan (C.-P.H.)
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, OH (M.K., S. Sadayappan)
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., H.S.)
| | - Dae-Sik Lim
- Department of Biological Science, National Creative Research Initiatives Center for Cell Division and Differentiation, Korea Advanced Institute of Science and Technology, Daejeon (D.-S.L.)
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark (S.I., W.M., S. Sciarretta, M.A., P.Z., R.M., N.F., S.-i.O., M.N., D.P.D.R., L.-H.X., J.S.)
| |
Collapse
|
42
|
Maejima Y. The critical roles of protein quality control systems in the pathogenesis of heart failure. J Cardiol 2019; 75:219-227. [PMID: 31699567 DOI: 10.1016/j.jjcc.2019.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/30/2023]
Abstract
Heart failure is a refractory disease with a prevalence that has continuously increased around the world. Over the past decade, we have made remarkable progress in the treatment of heart failure, including drug therapies, device therapies, and regeneration therapies. However, as each of these heart failure therapies does not go much beyond symptomatic therapy, there is a compelling need to establish novel therapeutic strategies for heart failure in a fundamental way. As cardiomyocytes are terminally differentiated cells, protein quality control is critical for maintaining cellular homeostasis, optimal performance, and longevity. There are five evolutionarily conserved mechanisms for ensuring protein quality control in cells: the ubiquitin-proteasome system, autophagy, the unfolded protein response, SUMOylation, and NEDDylation. Recent research has clarified the molecular mechanism underlying how these processes degrade misfolded proteins and damaged organelles in cardiomyocytes. In addition, a growing body of evidence suggests that deviation from appropriate levels of protein quality control causes cellular dysfunction and death, which in turn leads to heart failure. We herein review recent advances in understanding the role of protein quality control systems in heart disease and discuss the therapeutic potential of modulating protein quality control systems in the human heart.
Collapse
Affiliation(s)
- Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
43
|
You P, Cheng Z, He X, Deng J, Diao J, Chen H, Cheng G. Lin28a protects against diabetic cardiomyopathy through Mst1 inhibition. J Cell Physiol 2019; 235:4455-4465. [PMID: 31637712 DOI: 10.1002/jcp.29321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 11/06/2022]
Abstract
Lin28a has been found to enhance glucose uptake and insulin sensitivity. Lin28a alleviates cardiac dysfunction under various pathological conditions. However, the effects and underlying mechanisms of Lin28a on diabetic cardiomyopathy (DCM) are not well-understood. The aim of this study was to determine whether Lin28a protects against DCM and the potential mechanisms. Two to three days old mouse neonatal primary cardiomyocytes were randomized for treatment with adenoviruses harboring Lin28a and mammalian sterile 20-like kinase 1 (Mst1) short hairpin RNA, 48 hr before culturing in normal or high glucose medium. Cardiomyocyte apoptosis, autophagy, mitochondrial morphology, adenosine triphosphate content, and cytokine levels in the high glucose or normal conditions were observed between all groups. Either Lin28a overexpression or Mst1 knockdown alleviated mitochondrial ultrastructure impairment, decreased cytokine levels, inhibited apoptosis, and enhanced autophagy in primary neonatal mouse cardiomyocytes treated with high glucose. Importantly, the protective effects of Lin28a and Mst1 disappeared after treatment with 3-methyladenine, an autophagy inhibitor. Interestingly, in Mst1 knockdown cardiomyocytes, Lin28a overexpression failed to further enhance autophagy and alleviate high glucose-induced cardiomyocyte injury, which implies the protective roles of Lin28a counteracting high glucose-induced cardiomyocyte injury are dependent on Mst1 inhibition. Furthermore, co-immunoprecipitation and immunofluorescence double staining suggested that there were no direct interactions between Mst1 and Lin28a. Lin28a increased the expression of Akt, which inhibited the activation of Mst1-mediated apoptotic pathways.
Collapse
Affiliation(s)
- Penghua You
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaomin He
- Department of Internal Medicine, The Hospital of Xi'an University of Technology, Xi'an, China
| | - Jizhao Deng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jiayu Diao
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Haichao Chen
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
44
|
Triastuti E, Nugroho AB, Zi M, Prehar S, Kohar YS, Bui TA, Stafford N, Cartwright EJ, Abraham S, Oceandy D. Pharmacological inhibition of Hippo pathway, with the novel kinase inhibitor XMU-MP-1, protects the heart against adverse effects during pressure overload. Br J Pharmacol 2019; 176:3956-3971. [PMID: 31328787 PMCID: PMC6811740 DOI: 10.1111/bph.14795] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/13/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The Hippo pathway has emerged as a potential therapeutic target to control pathological cardiac remodelling. The core components of the Hippo pathway, mammalian Ste-20 like kinase 1 (Mst1) and mammalian Ste-20 like kinase 2 (Mst2), modulate cardiac hypertrophy, apoptosis, and fibrosis. Here, we study the effects of pharmacological inhibition of Mst1/2 using a novel inhibitor XMU-MP-1 in controlling the adverse effects of pressure overload-induced hypertrophy. EXPERIMENTAL APPROACH We used cultured neonatal rat cardiomyocytes (NRCM) and C57Bl/6 mice with transverse aortic constriction (TAC) as in vitro and in vivo models, respectively, to test the effects of XMU-MP-1 treatment. We used luciferase reporter assays, western blots and immunofluorescence assays in vitro, with echocardiography, qRT-PCR and immunohistochemical methods in vivo. KEY RESULTS XMU-MP-1 treatment significantly increased activity of the Hippo pathway effector yes-associated protein and inhibited phenylephrine-induced hypertrophy in NRCM. XMU-MP-1 improved cardiomyocyte survival and reduced apoptosis following oxidative stress. In vivo, mice 3 weeks after TAC, were treated with XMU-MP-1 (1 mg·kg-1 ) every alternate day for 10 further days. XMU-MP-1-treated mice showed better cardiac contractility than vehicle-treated mice. Cardiomyocyte cross-sectional size and expression of the hypertrophic marker, brain natriuretic peptide, were reduced in XMU-MP-1-treated mice. Improved heart function in XMU-MP-1-treated mice with TAC, was accompanied by fewer TUNEL positive cardiomyocytes and lower levels of fibrosis, suggesting inhibition of cardiomyocyte apoptosis and decreased fibrosis. CONCLUSIONS AND IMPLICATIONS The Hippo pathway inhibitor, XMU-MP-1, reduced cellular hypertrophy and improved survival in cultured cardiomyocytes and, in vivo, preserved cardiac function following pressure overload.
Collapse
Affiliation(s)
- Efta Triastuti
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
- Department of Pharmacy, Faculty of MedicineUniversitas BrawijayaMalangIndonesia
| | - Ardiansah Bayu Nugroho
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Min Zi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Yulia Suciati Kohar
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
- Department of Biochemistry, Faculty of MedicineYARSI UniversityJakartaIndonesia
| | - Thuy Anh Bui
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Nicholas Stafford
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Elizabeth J. Cartwright
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Sabu Abraham
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and HealthThe University of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
45
|
Mia MM, Singh MK. The Hippo Signaling Pathway in Cardiac Development and Diseases. Front Cell Dev Biol 2019; 7:211. [PMID: 31632964 PMCID: PMC6779857 DOI: 10.3389/fcell.2019.00211] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/12/2019] [Indexed: 01/07/2023] Open
Abstract
Heart disease continues to be the leading cause of morbidity and mortality worldwide. Cardiac malformation during development could lead to embryonic or postnatal death. However, matured heart tissue has a very limited regenerative capacity. Thus, loss of cardiomyocytes from injury or diseases in adults could lead to heart failure. The Hippo signaling pathway is a newly identified signaling cascade that modulates regenerative response by regulating cardiomyocyte proliferation in the embryonic heart, as well as in postnatal hearts after injury. In this review, we summarize recent findings highlighting the function and regulation of the Hippo signaling pathway in cardiac development and diseases.
Collapse
Affiliation(s)
- Masum M Mia
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore
| |
Collapse
|
46
|
Abstract
The Hippo-YAP (Yes-associated protein) pathway is an evolutionarily and functionally conserved regulator of organ size and growth with crucial roles in cell proliferation, apoptosis, and differentiation. This pathway has great potential for therapeutic manipulation in different disease states and to promote organ regeneration. In this Review, we summarize findings from the past decade revealing the function and regulation of the Hippo-YAP pathway in cardiac development, growth, homeostasis, disease, and regeneration. In particular, we highlight the roles of the Hippo-YAP pathway in endogenous heart muscle renewal, including the pivotal role of the Hippo-YAP pathway in regulating cardiomyocyte proliferation and differentiation, stress response, and mechanical signalling. The human heart lacks the capacity to self-repair; therefore, the loss of cardiomyocytes after injury such as myocardial infarction can result in heart failure and death. Despite substantial advances in the treatment of heart failure, an enormous unmet clinical need exists for alternative treatment options. Targeting the Hippo-YAP pathway has tremendous potential for developing therapeutic strategies for cardiac repair and regeneration for currently intractable cardiovascular diseases such as heart failure. The lessons learned from cardiac repair and regeneration studies will also bring new insights into the regeneration of other tissues with limited regenerative capacity.
Collapse
|
47
|
Wang M, Ma Y, Zhang T, Gao L, Zhang S, Chen Q. Proteinase‑activated receptor 2 deficiency is a protective factor against cardiomyocyte apoptosis during myocardial ischemia/reperfusion injury. Mol Med Rep 2019; 20:3764-3772. [PMID: 31485622 PMCID: PMC6755170 DOI: 10.3892/mmr.2019.10618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
Previous studies have established that proteinase‑activated receptor 2 (PAR2) activation protects against myocardial ischemia/reperfusion injury (MI/RI). However, the role of PAR2 deficiency in MI/RI remains unclear. The aim of the present study was to examine the effect of PAR2 deficiency on cardiomyocyte apoptosis and to clarify the potential molecular mechanisms for its protective effect against MI/RI. Using a mouse model of MI/RI, cardiac function was evaluated by echocardiography, infarct size was assessed by triphenyltetrazolium chloride staining, and myocardial cell apoptosis was measured by terminal deoxynucleotide transferase‑mediated dUTP nick end‑labeling staining. Annexin V/propidium iodide staining, and expression of Bcl‑2 and cleaved PARP were determined to assess apoptosis in myocardial H9c2 cells exposed to hypoxia/reoxygenation (H/R) injury‑simulating MI/RI. Phosphorylated ERK1/2, JNK, and p38 MAPK protein expression levels were analyzed by western blotting. The findings indicated that PAR2 deficiency markedly reduced cardiomyocyte apoptosis in the MI/RI mouse model, as well as in myocardial H9c2 cells exposed to H/R. Furthermore, PAR2 knockdown clearly prevented phosphorylation of ERK1/2 and JNK in myocardial H9c2 cells. The results revealed that PAR2 deficiency alleviated MI/RI‑associated apoptosis by inhibiting phosphorylation of ERK1/2 and JNK. Therefore, targeted PAR2 silencing may be a potential therapeutic approach for alleviation of MI/RI.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yiwen Ma
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Tiantian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Lin Gao
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Shan Zhang
- Department of Emergency, Tumor Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Qizhi Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
48
|
Du X, Zhao W, Nguyen M, Lu Q, Kiriazis H. β-Adrenoceptor activation affects galectin-3 as a biomarker and therapeutic target in heart disease. Br J Pharmacol 2019; 176:2449-2464. [PMID: 30756388 PMCID: PMC6592856 DOI: 10.1111/bph.14620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/11/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Myocardial fibrosis is a key histopathological component that drives the progression of heart disease leading to heart failure and constitutes a therapeutic target. Recent preclinical and clinical studies have implicated galectin-3 (Gal-3) as a pro-fibrotic molecule and a biomarker of heart disease and fibrosis. However, our knowledge is poor on the mechanism(s) that determine the blood level or regulate cardiac expression of Gal-3. Recent studies have demonstrated that enhanced β-adrenoceptor activity is a determinant of both circulating concentration and cardiac expression of Gal-3. Pharmacological or transgenic activation of β-adrenoceptors leads to increased blood levels of Gal-3 and up-regulated cardiac Gal-3 expression, effect that can be reversed with the use of β-adrenoceptor antagonists. Conversely, Gal-3 gene deletion confers protection against isoprenaline-induced cardiotoxicity and fibrogenesis. At the transcription level, β-adrenoceptor stimulation activates cardiac mammalian sterile-20-like kinase 1, a pivotal kinase of the Hippo signalling pathway, which is associated with Gal-3 up-regulation. Recent studies have suggested a role for the β-adrenoceptor-Hippo signalling pathway in the regulation of cardiac Gal-3 expression thereby contributing to the onset and progression of heart disease. This implies a therapeutic potential of the suppression of Gal-3 expression. In this review, we discuss the effects of β-adrenoceptor activity on Gal-3 as a biomarker and causative mediator in the setting of heart disease and point out pivotal knowledge gaps. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Xiao‐Jun Du
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Physiology and Pathophysiology, School of Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Wei‐Bo Zhao
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - My‐Nhan Nguyen
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Qun Lu
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
- Department of Cardiovascular Medicine, First HospitalXi'an Jiaotong University Health Science CenterXi'anChina
| | - Helen Kiriazis
- Experimental Cardiology LaboratoryBaker Heart and Diabetes InstituteMelbourneVICAustralia
| |
Collapse
|
49
|
Camberos V, Baio J, Bailey L, Hasaniya N, Lopez LV, Kearns-Jonker M. Effects of Spaceflight and Simulated Microgravity on YAP1 Expression in Cardiovascular Progenitors: Implications for Cell-Based Repair. Int J Mol Sci 2019; 20:E2742. [PMID: 31167392 PMCID: PMC6600678 DOI: 10.3390/ijms20112742] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023] Open
Abstract
Spaceflight alters many processes of the human body including cardiac function and cardiac progenitor cell behavior. The mechanism behind these changes remains largely unknown; however, simulated microgravity devices are making it easier for researchers to study the effects of microgravity. To study the changes that take place in cardiac progenitor cells in microgravity environments, adult cardiac progenitor cells were cultured aboard the International Space Station (ISS) as well as on a clinostat and examined for changes in Hippo signaling, a pathway known to regulate cardiac development. Cells cultured under microgravity conditions, spaceflight-induced or simulated, displayed upregulation of downstream genes involved in the Hippo pathway such as YAP1 and SOD2. YAP1 is known to play a role in cardiac regeneration which led us to investigate YAP1 expression in a sheep model of cardiovascular repair. Additionally, to mimic the effects of microgravity, drug treatment was used to induce Hippo related genes as well as a regulator of the Hippo pathway, miRNA-302a. These studies provide insight into the changes that occur in space and how the effects of these changes relate to cardiac regeneration studies.
Collapse
Affiliation(s)
- Victor Camberos
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Jonathan Baio
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Leonard Bailey
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Nahidh Hasaniya
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
50
|
Zhao WB, Lu Q, Nguyen MN, Su Y, Ziemann M, Wang LN, Kiriazis H, Puthalakath H, Sadoshima J, Hu HY, Du XJ. Stimulation of β-adrenoceptors up-regulates cardiac expression of galectin-3 and BIM through the Hippo signalling pathway. Br J Pharmacol 2019; 176:2465-2481. [PMID: 30932177 PMCID: PMC6592853 DOI: 10.1111/bph.14674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose Expression of the pro‐fibrotic galectin‐3 and the pro‐apoptotic BIM is elevated in diseased heart or after β‐adrenoceptor stimulation, but the underlying mechanisms are unclear. This question was addressed in the present study. Experimental Approach Wild‐type mice and mice with cardiac transgenic expression of β2‐adrenoceptors, mammalian sterile‐20 like kinase 1 (Mst1) or dominant‐negative Mst1, and non‐specific galectin‐3 knockout mice were used. Effects of the β‐adrenoceptor agonist isoprenaline or β‐adrenoceptor antagonists were studied. Rat cardiomyoblasts (H9c2) were used for mechanistic exploration. Biochemical assays were performed. Key Results Isoprenaline treatment up‐regulated expression of galectin‐3 and BIM, and this was inhibited by non‐selective or selective β‐adrenoceptor antagonists (by 60–70%). Cardiac expression of galectin‐3 and BIM was increased in β2‐adrenoceptor transgenic mice. Isoprenaline‐induced up‐regulation of galectin‐3 and BIM was attenuated by Mst1 inactivation, but isoprenaline‐induced galectin‐3 expression was exaggerated by transgenic Mst1 activation. Pharmacological or genetic activation of β‐adrenoceptors induced Mst1 expression and yes‐associated protein (YAP) phosphorylation. YAP hyper‐phosphorylation was also evident in Mst1 transgenic hearts with up‐regulated expression of galectin‐3 (40‐fold) and BIM as well as up‐regulation of many YAP‐target genes by RNA sequencing. In H9c2 cells, isoprenaline induced YAP phosphorylation and expression of galectin‐3 and BIM, effects simulated by forskolin but abolished by PKA inhibitors, and YAP knockdown induced expression of galectin‐3 and BIM. Conclusions and Implications Stimulation of cardiac β‐adrenoceptors activated the Mst1/Hippo pathway leading to YAP hyper‐phosphorylation with enhanced expression of galectin‐3 and BIM. This signalling pathway would have therapeutic potential. Linked Articles This article is part of a themed section on Adrenoceptors—New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc
Collapse
Affiliation(s)
- Wei-Bo Zhao
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Qun Lu
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Cardiovascular Medicine, First Hospital and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - My-Nhan Nguyen
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yidan Su
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Li-Na Wang
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Hou-Yuan Hu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Cardiovascular Medicine, First Hospital and Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|