1
|
Zheng Y, Shao M, Zheng Y, Sun W, Qin S, Sun Z, Zhu L, Guan Y, Wang Q, Wang Y, Li L. PPARs in atherosclerosis: The spatial and temporal features from mechanism to druggable targets. J Adv Res 2025; 69:225-244. [PMID: 38555000 PMCID: PMC11954843 DOI: 10.1016/j.jare.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic and complex disease caused by lipid disorder, inflammation, and other factors. It is closely related to cardiovascular diseases, the chief cause of death globally. Peroxisome proliferator-activated receptors (PPARs) are valuable anti-atherosclerosis targets that showcase multiple roles at different pathological stages of atherosclerosis and for cell types at different tissue sites. AIM OF REVIEW Considering the spatial and temporal characteristics of the pathological evolution of atherosclerosis, the roles and pharmacological and clinical studies of PPARs were summarized systematically and updated under different pathological stages and in different vascular cells of atherosclerosis. Moreover, selective PPAR modulators and PPAR-pan agonists can exert their synergistic effects meanwhile reducing the side effects, thereby providing novel insight into future drug development for precise spatial-temporal therapeutic strategy of anti-atherosclerosis targeting PPARs. KEY SCIENTIFIC Concepts of Review: Based on the spatial and temporal characteristics of atherosclerosis, we have proposed the importance of stage- and cell type-dependent precision therapy. Initially, PPARs improve endothelial cells' dysfunction by inhibiting inflammation and oxidative stress and then regulate macrophages' lipid metabolism and polarization to improve fatty streak. Finally, PPARs reduce fibrous cap formation by suppressing the proliferation and migration of vascular smooth muscle cells (VSMCs). Therefore, research on the cell type-specific mechanisms of PPARs can provide the foundation for space-time drug treatment. Moreover, pharmacological studies have demonstrated that several drugs or compounds can exert their effects by the activation of PPARs. Selective PPAR modulators (that specifically activate gene subsets of PPARs) can exert tissue and cell-specific effects. Furthermore, the dual- or pan-PPAR agonist could perform a better role in balancing efficacy and side effects. Therefore, research on cells/tissue-specific activation of PPARs and PPAR-pan agonists can provide the basis for precision therapy and drug development of PPARs.
Collapse
Affiliation(s)
- Yi Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ziwei Sun
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linghui Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyuan Guan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
2
|
Selvaraju V, Babu SR, Judd RL, Geetha T. Lupeol Attenuates Palmitate-Induced Hypertrophy in 3T3-L1 Adipocytes. Biomolecules 2025; 15:129. [PMID: 39858523 PMCID: PMC11763665 DOI: 10.3390/biom15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits. Lupeol, a pharmacologically active pentacyclic triterpenoid found in medicinal plants, vegetables, and fruits, has been shown to exhibit antioxidant and anti-inflammatory properties. This study investigated the role of lupeol on adipocyte hypertrophy by evaluating key adipogenic regulators in vitro. First, 3T3-L1 MBX mouse embryonic cells were differentiated into adipocytes and hypertrophy was induced using 500 µM palmitic acid. The treated adipocytes showed a significantly increased lipid droplet size, confirming adipocyte hypertrophy. Both adipocytes and hypertrophied adipocytes were then treated with or without 60 µM lupeol, following a dose-dependent study. Lipid droplet size was assessed and validated by Oil Red O staining. Western blot analysis was performed to measure the expression of adipogenic and inflammatory markers. Differentiated adipocytes showed increased fatty acid-binding protein 4 (FABP4) expression and Oil Red O staining, indicating an increased lipid content. Western blot analysis revealed that lupeol treatment reduced the expression of FABP4, peroxisome proliferator-activated receptor-γ (PPARγ), and adipokines. In conclusion, the results suggest that lupeol reverts the inflammatory and adipogenic markers that are enhanced in adipocyte hypertrophy. Through its anti-inflammatory effects, lupeol offers protective effects against adipocyte hypertrophy and contributes to reducing hypertrophic adiposity.
Collapse
Affiliation(s)
| | - Shivani R. Babu
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Robert L. Judd
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Schulz LN, Varghese A, Michenkova M, Wedemeyer M, Pindrik JA, Leonard JR, Garcia-Bonilla M, McAllister JP, Cassady K, Wilson RK, Mardis ER, Limbrick DD, Isaacs AM. Neuroinflammatory pathways and potential therapeutic targets in neonatal post-hemorrhagic hydrocephalus. Pediatr Res 2024:10.1038/s41390-024-03733-z. [PMID: 39725707 DOI: 10.1038/s41390-024-03733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Post-hemorrhagic hydrocephalus (PHH) is a severe complication in premature infants following intraventricular hemorrhage (IVH). It is characterized by abnormal cerebrospinal fluid (CSF) accumulation, disrupted CSF dynamics, and elevated intracranial pressure (ICP), leading to significant neurological impairments. OBJECTIVE This review provides an overview of recent molecular insights into the pathophysiology of PHH and evaluates emerging therapeutic approaches aimed at addressing its underlying mechanisms. METHODS Recent studies were reviewed, focusing on molecular and cellular mechanisms implicated in PHH, including neuroinflammatory pathways, immune mediators, and regulatory genes. The potential of advanced technologies such as whole genome/exome sequencing, proteomics, epigenetics, and single-cell transcriptomics to identify key molecular targets was also analyzed. RESULTS PHH has been strongly linked to neuroinflammatory processes triggered by the degradation of blood byproducts. These processes involve cytokines, chemokines, the complement system, and other immune mediators, as well as regulatory genes and epigenetic mechanisms. Current treatments, primarily surgical CSF diversion, do not address the underlying molecular pathology. Emerging therapies, such as mesenchymal stem cell-based interventions, show promise in modulating immune responses and mitigating neurological damage. However, concerns about the safety of these novel approaches in neonatal populations and their potential effects on brain development remain unresolved. CONCLUSIONS Advanced molecular tools and emerging therapies have the potential to transform the treatment of PHH by targeting its underlying pathophysiology. Further research is needed to validate these approaches, enhance their safety profiles, and improve outcomes for infants with PHH. IMPACT STATEMENT 1. This review elucidates the molecular complexities of post-hemorrhagic hydrocephalus (PHH) by examining specific immune pathways and their impact on disease pathogenesis and progression. 2. It outlines the application of genomic, epigenomic, and proteomic technologies to identify critical molecular targets in PHH, setting the stage for innovative, targeted therapeutic approaches that could improve the outcomes of neonates affected by PHH. 3. It discusses the potential of gene and stem cell therapies in treating PHH, offering non-surgical alternatives and focusing on the underlying neuroinflammatory mechanisms.
Collapse
Affiliation(s)
- Lauren N Schulz
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Aaron Varghese
- Department of Undergraduate Studies, Miami University, Oxford, OH, USA
| | - Marie Michenkova
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michelle Wedemeyer
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jonathan A Pindrik
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Garcia-Bonilla
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - James Pat McAllister
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Cassady
- Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, USA
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - David D Limbrick
- Medical Scientist Training Program, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Albert M Isaacs
- Department of Neurological Surgery, Ohio State University Medical Center, Columbus, OH, USA.
- Division of Neurological Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
4
|
Jiang R, Lou L, Shi W, Chen Y, Fu Z, Liu S, Sok T, Li Z, Zhang X, Yang J. Statins in Mitigating Anticancer Treatment-Related Cardiovascular Disease. Int J Mol Sci 2024; 25:10177. [PMID: 39337662 PMCID: PMC11432657 DOI: 10.3390/ijms251810177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Certain anticancer therapies inevitably increase the risk of cardiovascular events, now the second leading cause of death among cancer patients. This underscores the critical need for developing effective drugs or regimens for cardiovascular protection. Statins possess properties such as antioxidative stress, anti-inflammatory effects, antifibrotic activity, endothelial protection, and immune modulation. These pathological processes are central to the cardiotoxicity associated with anticancer treatment. There is prospective clinical evidence confirming the protective role of statins in chemotherapy-induced cardiotoxicity. Numerous preclinical studies have demonstrated that statins can ameliorate heart and endothelial damage caused by radiotherapy, although clinical studies are scarce. In the animal models of trastuzumab-induced cardiomyopathy, statins provide protection through anti-inflammatory, antioxidant, and antifibrotic mechanisms. In animal and cell models, statins can mitigate inflammation, endothelial damage, and cardiac injury induced by immune checkpoint inhibitors. Chimeric antigen receptor (CAR)-T cell therapy-induced cardiotoxicity and immune effector cell-associated neurotoxicity syndrome are associated with uncontrolled inflammation and immune activation. Due to their anti-inflammatory and immunomodulatory effects, statins have been used to manage CAR-T cell therapy-induced immune effector cell-associated neurotoxicity syndrome in a clinical trial. However, direct evidence proving that statins can mitigate CAR-T cell therapy-induced cardiotoxicity is still lacking. This review summarizes the possible mechanisms of anticancer therapy-induced cardiotoxicity and the potential mechanisms by which statins may reduce related cardiac damage. We also discuss the current status of research on the protective effect of statins in anticancer treatment-related cardiovascular disease and provide directions for future research. Additionally, we propose further studies on using statins for the prevention of cardiovascular disease in anticancer treatment.
Collapse
Affiliation(s)
- Rong Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lian Lou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wen Shi
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuxiao Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhaoming Fu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuo Liu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Thida Sok
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihang Li
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuan Zhang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
5
|
Pham HN, Pham L, Sato K. Navigating the liver landscape: upcoming pharmacotherapies for primary sclerosing cholangitis. Expert Opin Pharmacother 2024; 25:895-906. [PMID: 38813599 DOI: 10.1080/14656566.2024.2362263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a bile duct disorder characterized by ductular reaction, hepatic inflammation, and liver fibrosis. The pathogenesis of PSC is still undefined, and treatment options for patients are limited. Previous clinical trials evaluated drug candidates targeting various cellular functions and pathways, such as bile acid signaling and absorption, gut bacteria and permeability, and lipid metabolisms. However, most of phase III clinical trials for PSC were disappointing, except vancomycin therapy, and there are still no established medications for PSC with efficacy and safety confirmed by phase IV clinical trials. AREAS COVERED This review summarizes the currently ongoing or completed clinical studies for PSC, which are phase II or further, and discusses therapeutic targets and strategies, limitations, and future directions and possibilities of PSC treatments. A literature search was conducted in PubMed and ClinicalTrials.gov utilizing the combination of the searched term 'primary sclerosing cholangitis' with other keywords, such as 'clinical trials,' 'antibiotics,' or drug names. Clinical trials at phase II or further were included for consideration. EXPERT OPINION Only vancomycin demonstrated promising therapeutic effects in the phase III clinical trial. Other drug candidates showed futility or inconsistent results, and the search for novel PSC treatments is still ongoing.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University - Central Texas, Killeen, TX, USA
| | - Keisaku Sato
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Frederico Gava F, Jaconi De Carli R, Stork S, Gainski Danielski L, Bonfante S, Joaquim L, Lino Lobo Metzker K, Mathias K, Santos D, Darós G, Goulart M, Mariano de Bitencourt R, Somariva Prophiro J, Ludvig Gonçalves C, Generoso J, Barichello T, Petronilho F. Cannabidiol effect on long-term brain alterations in septic rats: Involvement of PPARγ activation. Brain Res 2024; 1828:148771. [PMID: 38242525 DOI: 10.1016/j.brainres.2024.148771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Sepsis is a life-threatening condition induced by a deregulated host response to infection. Post-sepsis injury includes long-term cognitive impairment, whose neurobiological mechanisms and effective treatment remain unknown. The present study was designed to determine the potential effects of cannabidiol (CBD) in a sepsis-associated encephalopathy (SAE) model and explore if peroxisome proliferator activated receptor gamma (PPARγ) is the putative mechanism underpinning the beneficial effects. SAE was induced in Wistar rats by cecal ligation and puncture (CLP) or sham (control). CLP rats received vehicle, CBD (10 mg/kg), PPARγ inhibitor (GW9662 - 1 mg/kg), or GW9662 (1 mg/kg) + CBD (10 mg/kg) intraperitoneally for ten days. During this period, the survival rate was recorded, and at the end of 10 days, a memory test was performed, and the prefrontal cortex and hippocampus were removed to verify brain-derived neurotrophic factor (BDNF), cytokines (IL-1β, IL-6 and IL-10), myeloperoxidase activity, nitrite nitrate concentration, and lipid and protein carbonylation and catalase activity. Septic rats presented cognitive decline and an increase in mortality following CLP. Only CBD alone improved the cognitive impairment, which was accompanied by restoration of BDNF, reduced neuroinflammation, and oxidative stress, mainly in the hippocampus. This study shows that CLP induces an increase in brain damage and CBD has neuroprotective effects on memory impairment and neurotrophins, as well as against neuroinflammation and oxidative stress, and is mediated by PPARγ activation.
Collapse
Affiliation(s)
- Fernanda Frederico Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Raquel Jaconi De Carli
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Solange Stork
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Lucineia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Sandra Bonfante
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Larissa Joaquim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Kiuanne Lino Lobo Metzker
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Khiany Mathias
- Research Group in Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, (UNISUL), Tubarão, Brazil
| | - David Santos
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Guilherme Darós
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Rafael Mariano de Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Research Group in Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, (UNISUL), Tubarão, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil; Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Alrosan AZ, Heilat GB, Al Subeh ZY, Alrosan K, Alrousan AF, Abu-Safieh AK, Alabdallat NS. The effects of statin therapy on brain tumors, particularly glioma: a review. Anticancer Drugs 2023; 34:985-994. [PMID: 37466094 PMCID: PMC10501357 DOI: 10.1097/cad.0000000000001533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Brain tumors account for less than 2% of all malignancies. However, they are associated with the highest morbidity and mortality rates among all solid tumors. The most common malignant primary brain tumors are glioma or glioblastoma (GBM), which have a median survival time of about 14 months, often suffer from recurrence after a few months following treatment, and pose a therapeutic challenge. Despite recent therapeutic advances, the prognosis for glioma patients is poor when treated with modern therapies, including chemotherapy, surgery, radiation, or a combination of these. Therefore, discovering a new target to treat brain tumors, particularly glioma, might be advantageous in raising progression-free survival and overall survival (OS) rates. Statins, also known as competitive HMG-CoA reductase inhibitors, are effective medications for reducing cholesterol and cardiovascular risk. The use of statins prior to and during other cancer treatments appears to enhance patient outcomes according to preclinical studies. After surgical resection followed by concurrent radiation and treatment, OS for patients with GBM is only about a year. Statins have recently emerged as potential adjuvant medications for treating GBM due to their ability to inhibit cell growth, survival, migration, metastasis, inflammation, angiogenesis, and increase apoptosis in-vitro and in-vivo studies. Whether statins enhance clinical outcomes, such as patient survival in GBM, is still debatable. This study aimed to explore the effects of statin therapy in the context of cancer treatment, with a particular focus on GBM.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology
| | - Zeinab Y. Al Subeh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, The Jordan University of Science and Technology
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa
| | - Alaa F. Alrousan
- Doctor of Pharmacy, Faculty of Pharmacy, The Jordan University of Science and Technology, Irbid
| | - Amro K. Abu-Safieh
- Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | | |
Collapse
|
8
|
Horwitz A, Birk R. Adipose Tissue Hyperplasia and Hypertrophy in Common and Syndromic Obesity-The Case of BBS Obesity. Nutrients 2023; 15:3445. [PMID: 37571382 PMCID: PMC10421039 DOI: 10.3390/nu15153445] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a metabolic state generated by the expansion of adipose tissue. Adipose tissue expansion depends on the interplay between hyperplasia and hypertrophy, and is mainly regulated by a complex interaction between genetics and excess energy intake. However, the genetic regulation of adipose tissue expansion is yet to be fully understood. Obesity can be divided into common multifactorial/polygenic obesity and monogenic obesity, non-syndromic and syndromic. Several genes related to obesity were found through studies of monogenic non-syndromic obesity models. However, syndromic obesity, characterized by additional features other than obesity, suggesting a more global role of the mutant genes related to the syndrome and, thus, an additional peripheral influence on the development of obesity, were hardly studied to date in this regard. This review summarizes present knowledge regarding the hyperplasia and hypertrophy of adipocytes in common obesity. Additionally, we highlight the scarce research on syndromic obesity as a model for studying adipocyte hyperplasia and hypertrophy, focusing on Bardet-Biedl syndrome (BBS). BBS obesity involves central and peripheral mechanisms, with molecular and mechanistic alternation in adipocyte hyperplasia and hypertrophy. Thus, we argue that using syndromic obesity models, such as BBS, can further advance our knowledge regarding peripheral adipocyte regulation in obesity.
Collapse
Affiliation(s)
| | - Ruth Birk
- Department of Nutrition, Faculty of Health Sciences, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
9
|
Kim SK, Choe JY, Kim JW, Park KY. HMG-CoA Reductase Inhibitors Suppress Monosodium Urate-Induced NLRP3 Inflammasome Activation through Peroxisome Proliferator-Activated Receptor-γ Activation in THP-1 Cells. Pharmaceuticals (Basel) 2023; 16:522. [PMID: 37111279 PMCID: PMC10145217 DOI: 10.3390/ph16040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPAR-γ) is thought to negatively regulate NLRP3 inflammasome activation. The aim of this study was to identify the inhibitory effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on monosodium urate (MSU) crystal-induced NLRP3 inflammasome activation through the regulation of PPAR-γ in THP-1 cells. The expression of PPAR-γ, NLRP3, caspase-1, and interleukin-1β (IL-1β) in human monocytic THP-1 cells transfected with PPAR-γ siRNA or not and stimulated with MSU crystals was assessed using quantitative a real time-polymerase chain reaction and Western blotting. The expression of those markers in THP-1 cells pretreated with statins (atorvastatin, simvastatin, and mevastatin) was also evaluated. Intracellular reactive oxygen species (ROS) were measured using H2DCF-DA and flow cytometry analyses. THP-1 cells treated with MSU crystals (0.3 mg/mL) inhibited PARR-γ and increased NLRP3, caspase-1, and IL-1β mRNA and protein expression, and all those changes were significantly reversed by treatment with atorvastatin, simvastatin, or mevastatin. PPAR-γ activity revealed that MSU crystals suppressed PPAR-γ activity, which was markedly augmented by atorvastatin, simvastatin, and mevastatin. Transfecting cells with PPAR-γ siRNA attenuated the inhibitory effect of statins on MSU crystal-mediated NLRP3 inflammasome activation. Statins also significantly reduced the intracellular ROS generation caused by stimulation with MSU crystals. The inhibitory effects of atorvastatin and simvastatin on intracellular ROS generation were reduced in THP-1 cells transfected with PPAR-γ siRNA. This study demonstrates that PPAR-γ is responsible for suppressing MSU-mediated NLRP3 inflammasome activation. The inhibitory effect of statins on MSU-induced NLRP3 inflammasome activation depends on PPAR-γ activity and production and the inhibition of ROS generation.
Collapse
Affiliation(s)
- Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Ki-Yeun Park
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu 42472, Republic of Korea
| |
Collapse
|
10
|
Wagner N, Wagner KD. Pharmacological Utility of PPAR Modulation for Angiogenesis in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24032345. [PMID: 36768666 PMCID: PMC9916802 DOI: 10.3390/ijms24032345] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator activated receptors, including PPARα, PPARβ/δ, and PPARγ, are ligand-activated transcription factors belonging to the nuclear receptor superfamily. They play important roles in glucose and lipid metabolism and are also supposed to reduce inflammation and atherosclerosis. All PPARs are involved in angiogenesis, a process critically involved in cardiovascular pathology. Synthetic specific agonists exist for all PPARs. PPARα agonists (fibrates) are used to treat dyslipidemia by decreasing triglyceride and increasing high-density lipoprotein (HDL) levels. PPARγ agonists (thiazolidinediones) are used to treat Type 2 diabetes mellitus by improving insulin sensitivity. PPARα/γ (dual) agonists are supposed to treat both pathological conditions at once. In contrast, PPARβ/δ agonists are not in clinical use. Although activators of PPARs were initially considered to have favorable effects on the risk factors for cardiovascular disease, their cardiovascular safety is controversial. Here, we discuss the implications of PPARs in vascular biology regarding cardiac pathology and focus on the outcomes of clinical studies evaluating their benefits in cardiovascular diseases.
Collapse
|
11
|
Dissecting the multifaceted impact of statin use on fatty liver disease: a multidimensional study. EBioMedicine 2022; 87:104392. [PMID: 36502575 PMCID: PMC9758527 DOI: 10.1016/j.ebiom.2022.104392] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Statin use could benefit patients with non-alcoholic fatty liver disease (NAFLD), but the evidence is segmented and inconclusive. This multidimensional study comprehensively investigated the potential benefits and mechanism-of-action of statins in NAFLD. METHODS A cross-sectional investigation was performed within the Rotterdam Study (general population; n = 4.576) and the PERSONS cohort (biopsy-proven NAFLD patients; n = 569). Exclusion criteria were secondary causes for steatosis and insufficient data on alcohol, dyslipidemia or statin use. Associations of statin use with NAFLD (among entire general population), fibrosis and NASH (among NAFLD individuals and patients) were quantified. These results were pooled with available literature in meta-analysis. Last, we assessed statins' anti-lipid and anti-inflammatory effects in 3D cultured human liver organoids and THP-1 macrophages, respectively. FINDINGS Statin use was inversely associated with NAFLD in the Rotterdam study compared to participants with untreated dyslipidemia. In the PERSONS cohort, statin use was inversely associated with NASH, but not with fibrosis. The meta-analysis included 7 studies and indicated a not significant inverse association for statin use with NAFLD (pooled-Odds Ratio: 0.69, 95% Confidence Interval: 0.46-1.01) and significant inverse associations with NASH (pooled-OR: 0.59, 95% CI: 0.44-0.79) and fibrosis (pooled-OR: 0.48, 95% CI: 0.33-0.70). In vitro, statins significantly reduced lipid droplet accumulation in human liver organoids and downregulated expression of pro-inflammatory cytokines in macrophages. INTERPRETATION Pooled results demonstrated that statin use was associated with a lower prevalence of NASH and fibrosis and might prevent NAFLD. This may be partially attributed to the anti-lipid and anti-inflammatory characteristics of statins. Given their under-prescription, adequate prescription of statins may limit the disease burden of NAFLD. FUNDING ZonMw, KWF, NWO, SLO, DGXII, RIDE, National and regional government, Erasmus MC and Erasmus University.
Collapse
|
12
|
Tajbakhsh A, Gheibihayat SM, Askari H, Savardashtaki A, Pirro M, Johnston TP, Sahebkar A. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238:108282. [DOI: 10.1016/j.pharmthera.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
13
|
Yarahmadi P, Kabiri A, Forouzannia SM, Yousefifard M. Statins and Mortality of Patients After Transcatheter Aortic Valve Implantation: A Systematic Review and Meta-analysis. Angiology 2022:33197221124778. [PMID: 36067358 DOI: 10.1177/00033197221124778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
While TAVI is widely used, optimal medical therapy to reduce the mortality rate after transcatheter aortic valve implantation (TAVI) is still unclear. We performed a systematic review and meta-analysis to evaluate the impact of statins on mortality following TAVI. Present systematic review of the literature was performed using Medline, Embase, Scopus, and Web of Science; all studies reported all-cause mortality in patients who underwent TAVI and received or did not receive statin therapy. Data were analyzed using random-effects models. Seventeen articles (21 380 patients) were included in the meta-analysis. Statin therapy was associated with a reduction of all-cause mortality (Hazard ratio [HR] = .78, 95% Confidence interval [CI] .68-.89, P < .001). Moderate between-study heterogeneity was observed (I2 = 45.2). High-intensity statin therapy was more effective than low or moderate intensity statin therapy in reduction of all-cause mortality (Risk ratio [RR] = .62, 95% CI 0.45-.85, P = .003, I2 = .0). Statin therapy could reduce the mid-term all-cause mortality rate following TAVI. However, all included studies were observational and, therefore, randomized controlled trials are still needed to assess the effect of statin therapy on mortality after TAVI.
Collapse
Affiliation(s)
- Pourya Yarahmadi
- School of Medicine, 48504Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Kabiri
- School of Medicine, 440827Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahmoud Yousefifard
- Physiology Research Center, 440827Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Wasim R, Ansari TM, Ahsan F, Siddiqui MH, Singh A, Shariq M, Parveen S. Pleiotropic Benefits of Statins in Cardiovascular Diseases. Drug Res (Stuttg) 2022; 72:477-486. [PMID: 35868336 DOI: 10.1055/a-1873-1978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 1976, Japanese microbiologist Akira Endo discovered the first statin as a product of the fungus Penicillium citrinum that inhibited the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Their primary mode of action is to lower the blood cholesterol by decreasing hepatic cholesterol production, which upregulates hepatic low-density lipoprotein (LDL) receptors and increases LDL-cholesterol clearance. In addition to cholesterol lowering, statins inhibit other downstream products of the mevalonate pathway, causing the so-called pleiotropic effects. As a result of their pleiotropic effects statins modulate virtually all known processes of atherosclerosis and have beneficial effects outside the cardiovascular system Statins inhibit the post-translational prenylation of small GTP-binding proteins such as Rho, Rac, as well as their downstream effectors such as Rho kinase and nicotinamide adenine dinucleotide phosphate oxidases since they suppress the synthesis of isoprenoid intermediates in the cholesterol biosynthetic pathway altering the expression of endothelial nitric oxide synthase, the stability of atherosclerotic plaques, production of proinflammatory cytokines, reactive oxygen species, platelet reactivity, development of cardiac hypertrophy and fibrosis in cell culture and animal experiments. Inhibition of Rho and Rho-associated coiled-coil containing protein kinase (ROCK), has emerged as the principle mechanisms underlying the pleiotropic effects of statins. However, the relative contributions of statin pleiotropy to clinical outcomes are debatable and difficult to measure because the amount of isoprenoid inhibition by statins corresponds to some extent with the amount of LDL-cholesterol decrease. This article examines some of the existing molecular explanations underlying statin pleiotropy and discusses if they have clinical relevance in cardiovascular diseases.
Collapse
Affiliation(s)
- Rufaida Wasim
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Farogh Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Aditya Singh
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Shariq
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Saba Parveen
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
15
|
Cortes-Altamirano JL, Yáñes-Pizaña A, Reyes-Long S, Angélica GM, Bandala C, Bonilla-Jaime H, Alfaro-Rodríguez A. Potential Neuroprotective Effect of Cannabinoids in Covid-19 Patients. Curr Top Med Chem 2022; 22:1326-1345. [PMID: 35382723 DOI: 10.2174/1568026622666220405143003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established, however, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, and indirect mechanisms of inflammatory / autoimmune origin. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potential promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review we address the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a decrease in viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Estado de Mexico, 55210, Mexico
| | - Ariadna Yáñes-Pizaña
- Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de Mexico, Mexico City, 04910, México.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Samuel Reyes-Long
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 07738, México
| | - González-Maciel Angélica
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la reproducción, Universidad Autónoma Metropolitana, Mexico City, 09340, Mexico
| | - Alfonso Alfaro-Rodríguez
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
| |
Collapse
|
16
|
Cao Y, Chen Z, Jia J, Chen A, Gao Y, Qian J, Ge J. Rosuvastatin Alleviates Coronary Microembolization-Induced Cardiac Injury by Suppressing Nox2-Induced ROS Overproduction and Myocardial Apoptosis. Cardiovasc Toxicol 2022; 22:341-351. [PMID: 34997458 DOI: 10.1007/s12012-021-09716-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
To explore the mechanism by which rosuvastatin prevents coronary microembolism (CME)-induced cardiac injury and cardiomyocyte apoptosis. Animal and cell models of CME were established and treated with different doses of rosuvastatin. Echocardiography and histological staining were applied to assess left ventricular function and cardiac injury. Masson trichrome staining was used to evaluate fibrin deposition in the myocardium. The activity of lactate dehydrogenase (LDH) in serum and cell culture supernatant was detected. TUNEL staining and flow cytometry were used to evaluate apoptosis in myocardium and cardiomyocytes, respectively. The activity of ROS was revealed by DHE staining. The expression levels of Nox2, cleaved caspase-3, cytochrome C, p53, Bax and Bcl-2 were also detected. Rosuvastatin pretreatment improved the left ventricular function of CME mice and reduced inflammatory cell infiltration and fibrin deposition in the myocardium. Rosuvastatin reduced the production of ROS by inhibiting the expression of Nox2. Rosuvastatin also downregulated pro-apoptotic proteins cleaved caspase-3, cytochrome C, p53 and Bax, and upregulated anti-apoptotic Bcl-2. Rosuvastatin mitigates CME-induced cardiac injury by inhibiting Nox2-induced ROS overproduction and alleviating p53/Bax/Bcl-2-dependent cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanhua Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
17
|
Patel KK, Sehgal VS, Kashfi K. Molecular targets of statins and their potential side effects: Not all the glitter is gold. Eur J Pharmacol 2022; 922:174906. [PMID: 35321818 PMCID: PMC9007885 DOI: 10.1016/j.ejphar.2022.174906] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
Statins are a class of drugs widely used worldwide to manage hypercholesterolemia and the prevention of secondary heart attacks. Currently, available statins vary in terms of their pharmacokinetic and pharmacodynamic profiles. Although the primary target of statins is the inhibition of HMG-CoA reductase (HMGR), the rate-limiting enzyme in cholesterol biosynthesis, statins exhibit many pleiotropic effects downstream of the mevalonate pathway. These pleiotropic effects include the ability to reduce myocardial fibrosis, pathologic cardiac disease states, hypertension, promote bone differentiation, anti-inflammatory, and antitumor effects through multiple mechanisms. Although these pleiotropic effects of statins may be a cause for enthusiasm, there are many adverse effects that, for the most part, are unappreciated and need to be highlighted. These adverse effects include myopathy, new-onset type 2 diabetes, renal and hepatic dysfunction. Although these adverse effects may be relatively uncommon, considering the number of people worldwide who use statins daily, the actual number of people affected becomes quite large. Also, co-administration of statins with several other medications, herbal agents, and foods, which interact through common enzymatic pathways, can have untoward clinical consequences. In this review, we address these concerns.
Collapse
Affiliation(s)
- Kush K Patel
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Viren S Sehgal
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, USA.
| |
Collapse
|
18
|
Vanwong N, Tipnoppanon S, Na Nakorn C, Srisawasdi P, Rodcharoen P, Medhasi S, Chariyavilaskul P, Siwamogsatham S, Vorasettakarnkij Y, Sukasem C. Association of Drug-Metabolizing Enzyme and Transporter Gene Polymorphisms and Lipid-Lowering Response to Statins in Thai Patients with Dyslipidemia. Pharmgenomics Pers Med 2022; 15:119-130. [PMID: 35210819 PMCID: PMC8860396 DOI: 10.2147/pgpm.s346093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose Statins are increasingly widely used in the primary and secondary prevention of cardiovascular disease. However, there is an inter-individual variation in statin response among patients. The study aims to determine the association between genetic variations in drug-metabolizing enzyme and transporter (DMET) genes and lipid-lowering response to a statin in Thai patients with hyperlipidemia. Patients and Methods Seventy-nine patients who received statin at steady-state concentrations were recruited. Serum lipid profile was measured at baseline and repeated after 4-month on a statin regimen. The genotype profile of 1936 DMET markers was obtained using Affymetrix DMET Plus genotyping microarrays. Results In this DMET microarray platform, five variants; SLCO1B3 (rs4149117, rs7311358, and rs2053098), QPRT (rs13331798), and SLC10A2 (rs188096) showed a suggestive association with LDL-cholesterol-lowering response. HDL-cholesterol-lowering responses were found to be related to CYP7A1 gene variant (rs12542233). Seven variants, SLCO1B3 (rs4149117, rs7311358, and rs2053098); SULT1E1 (rs3736599 and rs3822172); and ABCB11 (rs4148768 and rs3770603), were associated with the total cholesterol-lowering response. One variant of the ABCB4 gene (rs2109505) was significantly associated with triglyceride-lowering response. Conclusion This pharmacogenomic study identifies new genetic variants of DMET genes that are associated with the lipid-lowering response to statins. Genetic polymorphisms in DMET genes may impact the pharmacokinetics and lipid-lowering response to statin. The validation studies confirmations are needed in future pharmacogenomic studies.
Collapse
Affiliation(s)
- Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Sayanit Tipnoppanon
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chalitpon Na Nakorn
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Pornpen Srisawasdi
- Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Punyanuch Rodcharoen
- Division of Clinical Chemistry, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sadeep Medhasi
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Sarawut Siwamogsatham
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
- Chula Clinical Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yongkasem Vorasettakarnkij
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- Correspondence: Chonlaphat Sukasem, Division of Pharmacogenetics and Personalized Medicine, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand, Tel +66-2-200-4331, Fax +66-2-200-4332, Email
| |
Collapse
|
19
|
Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020151. [PMID: 35215263 PMCID: PMC8877351 DOI: 10.3390/ph15020151] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endothelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The preventive effect of statins on atherothrombotic stroke has been well established, but statins can influence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been well established; however, the effects of statins on cancer patients have not been fully elucidated and are still controversial. This review discusses the recent evidence on the effects of statins on cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering’.
Collapse
|
20
|
Yamamoto T, Sano M. Deranged Myocardial Fatty Acid Metabolism in Heart Failure. Int J Mol Sci 2022; 23:996. [PMID: 35055179 PMCID: PMC8779056 DOI: 10.3390/ijms23020996] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The heart requires fatty acids to maintain its activity. Various mechanisms regulate myocardial fatty acid metabolism, such as energy production using fatty acids as fuel, for which it is known that coordinated control of fatty acid uptake, β-oxidation, and mitochondrial oxidative phosphorylation steps are important for efficient adenosine triphosphate (ATP) production without unwanted side effects. The fatty acids taken up by cardiomyocytes are not only used as substrates for energy production but also for the synthesis of triglycerides and the replacement reaction of fatty acid chains in cell membrane phospholipids. Alterations in fatty acid metabolism affect the structure and function of the heart. Recently, breakthrough studies have focused on the key transcription factors that regulate fatty acid metabolism in cardiomyocytes and the signaling systems that modify their functions. In this article, we reviewed the latest research on the role of fatty acid metabolism in the pathogenesis of heart failure and provide an outlook on future challenges.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|
21
|
Harada H, Nishiyama Y, Niiyama H, Katoh A, Kai H. Angiotensin II receptor blocker and statin combination therapy associated with higher skeletal muscle index in patients with cardiovascular disease: A retrospective study. J Clin Pharm Ther 2021; 47:89-96. [PMID: 34668212 DOI: 10.1111/jcpt.13540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Reduction in skeletal muscle mass is the most important component in diagnosing sarcopenia. Ageing and chronic heart failure due to cardiovascular diseases (CVDs) accelerate the reduction of skeletal muscles. However, there are no currently available drugs that are effective for sarcopenia. The purpose of this study was to explore the association between prescribed medications and skeletal muscle mass in patients with CVD. METHODS This was a single-centre, retrospective, cross-sectional study. The subjects were 636 inpatients with CVD who took prescribed medicines for at least 4 weeks at the time of admission. Skeletal muscle volume was assessed using a bioelectrical impedance assay. RESULTS AND DISCUSSION Single regression analysis showed that 10 and 3 medications were positively and negatively associated with skeletal muscle index (SMI), respectively. Stepwise multivariate regression analysis revealed that angiotensin II receptor blocker (ARB)/statin combination, dipeptidyl peptidase-4 inhibitor, and antihyperuricemic agents were positively associated with SMI while diuretics and antiarrhythmic agents were negatively associated with SMI. After adjustment using propensity score matching, the SMI was found to be significantly higher in ARB/statin combination users than in non-users. WHAT IS NEW AND CONCLUSION Combination use of ARB/statin was associated with a higher SMI in patients with CVD. A future randomised, controlled trial is warranted to determine whether the ARB/statin combination will increase the SMI and prevent sarcopenia in patients with CVD.
Collapse
Affiliation(s)
- Haruhito Harada
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Yasuhiro Nishiyama
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Hiroshi Niiyama
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Atsushi Katoh
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| | - Hisashi Kai
- Department of Cardiology, Kurume University Medical Center, Kurume, Japan
| |
Collapse
|
22
|
Pokhrel RH, Acharya S, Ahn JH, Gu Y, Pandit M, Kim JO, Park YY, Kang B, Ko HJ, Chang JH. AMPK promotes antitumor immunity by downregulating PD-1 in regulatory T cells via the HMGCR/p38 signaling pathway. Mol Cancer 2021; 20:133. [PMID: 34649584 PMCID: PMC8515644 DOI: 10.1186/s12943-021-01420-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background AMP-activated protein kinase (AMPK) is a metabolic sensor that maintains energy homeostasis. AMPK functions as a tumor suppressor in different cancers; however, its role in regulating antitumor immunity, particularly the function of regulatory T cells (Tregs), is poorly defined. Methods AMPKα1fl/flFoxp3YFP-Cre, Foxp3YFP-Cre, Rag1−/−, and C57BL/6 J mice were used for our research. Flow cytometry and cell sorting, western blotting, immuno-precipitation, immuno-fluorescence, glycolysis assay, and qRT-PCR were used to investigate the role of AMPK in suppressing programmed cell death 1 (PD-1) expression and for mechanistic investigation. Results The deletion of the AMPKα1 subunit in Tregs accelerates tumor growth by increasing the expression of PD-1. Metabolically, loss of AMPK in Tregs promotes glycolysis and the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a key enzyme of the mevalonate pathway. Mechanistically, AMPK activates the p38 mitogen-activated protein kinase (MAPK) that phosphorylates glycogen synthase kinase-3β (GSK-3β), inhibiting the expression of PD-1 in Tregs. Conclusion Our study identified an AMPK regulatory mechanism of PD-1 expression via the HMGCR/p38 MAPK/GSK3β signaling pathway. We propose that the AMPK activator can display synergic antitumor effect in murine tumor models, supporting their potential clinical use when combined with anti-PD-1 antibody, anti-CTLA-4 antibody, or a HMGCR inhibitor. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01420-9.
Collapse
Affiliation(s)
- Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Suman Acharya
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, 24341, Republic of Korea
| | - Ye Gu
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Mahesh Pandit
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Jong-Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Kangwondaehak-gil 1, Chuncheon, 24341, Republic of Korea.
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongbuk-do, 38541, Republic of Korea.
| |
Collapse
|
23
|
Islam SMT, Won J, Khan M, Chavin KD, Singh I. Peroxisomal footprint in the pathogenesis of nonalcoholic steatohepatitis. Ann Hepatol 2021; 19:466-471. [PMID: 31870746 DOI: 10.1016/j.aohep.2019.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a form of fatty liver disease where benign hepatic steatosis leads to chronic inflammation in the steatotic liver of a patient without any history of alcohol abuse. Mechanisms underlying the progression of hepatic steatosis to NASH have long been investigated. This review outlines the potential role of peroxisomal dysfunctions in exacerbating the disease in NASH. Loss of peroxisomes as well as impaired peroxisomal functions have been demonstrated to occur in inflammatory conditions including NASH. Because peroxisomes and mitochondria co-operatively perform many metabolic functions including O2 and lipid metabolisms, a compromised peroxisomal biogenesis and function can potentially contribute to defective lipid and reactive oxygen species metabolism which in turn can lead the progression of disease in NASH. Impaired peroxisomal biogenesis and function may be due to the decreased expression of peroxisomal proliferator-activated receptor-α (PPAR-α), the major transcription factor of peroxisomal biogenesis. Recent studies indicate that the reduced expression of PPAR-α in NASH is correlated with the activation of the toll-like receptor-4 pathway (TLR-4). Further investigations are required to establish the mechanistic connection between the TLR-4 pathway and PPAR-α-dependent impaired biogenesis/function of peroxisomes in NASH.
Collapse
Affiliation(s)
- S M Touhidul Islam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Jeseong Won
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Kenneth D Chavin
- Department of Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
24
|
Suzuki-Kemuriyama N, Abe A, Nakane S, Uno K, Ogawa S, Watanabe A, Sano R, Yuki M, Miyajima K, Nakae D. Non-obese mice with nonalcoholic steatohepatitis fed on a choline-deficient, L-amino acid-defined, high-fat diet exhibit alterations in signaling pathways. FEBS Open Bio 2021; 11:2950-2965. [PMID: 34390210 PMCID: PMC8564345 DOI: 10.1002/2211-5463.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is often associated with obesity, but some patients develop NASH without obesity. The physiological processes by which non-obese patients develop NASH and cirrhosis have not yet been determined. Here, we analyzed the effects of dietary methionine content on NASH induced in mice fed on a choline-deficient, methionine-lowered, L-amino acid-defined high-fat diet (CDAHFD). CDAHFD with insufficient methionine induced insulin sensitivity and enhanced NASH pathology, but without obesity. In contrast, CDAHFD with sufficient methionine induced steatosis, and unlike CDAHFD with insufficient methionine, also induced obesity and insulin resistance. Gene profile analysis revealed that the disease severity in CDAHFD may partially be due to upregulation of the Rho family GTPases pathway, and mitochondrial and nuclear receptor signal dysfunction. The signaling factors/pathways detected in this study may assist in future study of NASH regulation, especially its "non-obese" subtype.
Collapse
Affiliation(s)
- Noriko Suzuki-Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Akari Abe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Sae Nakane
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Kiniko Uno
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Shuji Ogawa
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Atsushi Watanabe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Ryuhei Sano
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Megumi Yuki
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| |
Collapse
|
25
|
Basso PJ, Sales-Campos H, Nardini V, Duarte-Silva M, Alves VBF, Bonfá G, Rodrigues CC, Ghirotto B, Chica JEL, Nomizo A, Cardoso CRDB. Peroxisome Proliferator-Activated Receptor Alpha Mediates the Beneficial Effects of Atorvastatin in Experimental Colitis. Front Immunol 2021; 12:618365. [PMID: 34434187 PMCID: PMC8382038 DOI: 10.3389/fimmu.2021.618365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/20/2021] [Indexed: 01/20/2023] Open
Abstract
The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.
Collapse
Affiliation(s)
- Paulo José Basso
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Helioswilton Sales-Campos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Murillo Duarte-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Beatriz Freitas Alves
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Giuliano Bonfá
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cassiano Costa Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ghirotto
- Departmento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Javier Emílio Lazo Chica
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Effects of Statins on Renin-Angiotensin System. J Cardiovasc Dev Dis 2021; 8:jcdd8070080. [PMID: 34357323 PMCID: PMC8305238 DOI: 10.3390/jcdd8070080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Statins, a class of drugs for lowering serum LDL-cholesterol, have attracted attention because of their wide range of pleiotropic effects. An important but often neglected effect of statins is their role in the renin–angiotensin system (RAS) pathway. This pathway plays an integral role in the progression of several diseases including hypertension, heart failure, and renal disease. In this paper, the role of statins in the blockade of different components of this pathway and the underlying mechanisms are reviewed and new therapeutic possibilities of statins are suggested.
Collapse
|
27
|
Nailwal NP, Doshi GM. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation. Inflammopharmacology 2021; 29:617-640. [PMID: 34002330 DOI: 10.1007/s10787-021-00813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.
Collapse
Affiliation(s)
- Namrata P Nailwal
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India.
| |
Collapse
|
28
|
Liu Q, Chen X, Liu C, Pan L, Kang X, Li Y, Du C, Dong S, Xiang AP, Xu Y, Zhang Q. Mesenchymal stem cells alleviate experimental immune-mediated liver injury via chitinase 3-like protein 1-mediated T cell suppression. Cell Death Dis 2021; 12:240. [PMID: 33664231 PMCID: PMC7933182 DOI: 10.1038/s41419-021-03524-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Liver diseases with different pathogenesis share common pathways of immune-mediated injury. Chitinase-3-like protein 1 (CHI3L1) was induced in both acute and chronic liver injuries, and recent studies reported that it possesses an immunosuppressive ability. CHI3L1 was also expressed in mesenchymal stem cells (MSCs), thus we investigates the role of CHI3L1 in MSC-based therapy for immune-mediated liver injury here. We found that CHI3L1 was highly expressed in human umbilical cord MSCs (hUC-MSCs). Downregulating CHI3L1 mitigated the ability of hUC-MSCs to inhibit T cell activation, proliferation and inflammatory cytokine secretion in vitro. Using Concanavalin A (Con A)-induced liver injury mouse model, we found that silencing CHI3L1 significantly abrogated the hUC-MSCs-mediated alleviation of liver injury, accompanying by weakened suppressive effects on infiltration and activation of hepatic T cells, and secretion of pro-inflammatory cytokines. In addition, recombinant CHI3L1 (rCHI3L1) administration inhibited the proliferation and function of activated T cells, and alleviated the Con A-induced liver injury in mice. Mechanistically, gene set enrichment analysis showed that JAK/STAT signalling pathway was one of the most significantly enriched gene pathways in T cells co-cultured with hUC-MSCs with CHI3L1 knockdown, and further study revealed that CHI3L1 secreted by hUC-MSCs inhibited the STAT1/3 signalling in T cells by upregulating peroxisome proliferator-activated receptor δ (PPARδ). Collectively, our data showed that CHI3L1 was a novel MSC-secreted immunosuppressive factor and provided new insights into therapeutic treatment of immune-mediated liver injury.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China (2017YFA0106100, 2018YFA0107203, 2017YFA010550), National Natural Science Foundation of China (81971526, 81670601, 81760112, 31601184, 81870449, 81970537, 81970109), Guangdong Basic and Applied Basic Research Foundation (2020A1515010272, 2020A1515011385), Key project fund of Guangdong Natural Science Foundation (2017A030311034), Special fund for frontier and key technology innovation of Guangdong (2015B020226004) and National Keypoint Research and Invention program of the thirteenth (2018ZX10723203), the Key Scientific and Technological Projects of Guangdong Province (2019B020236004, 2019B020234001, 2019B020235002, 2017B020230004), Key Scientific and Technological Program of Guangzhou City (201803040011, 201802020023), Pearl River S&T Nova Program of Guangzhou (201906010095), Fundamental Research Funds for the Central Universities (20ykpy149).
Collapse
Affiliation(s)
- Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaoyong Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Lijie Pan
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xinmei Kang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Yanli Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Cong Du
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Andy Peng Xiang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China.
| |
Collapse
|
29
|
Tursunova NV, Klinnikova MG, Babenko OA, Lushnikova EL. [Molecular mechanisms of the cardiotoxic action of anthracycline antibiotics and statin-induced cytoprotective reactions of cardiomyocytes]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2021; 66:357-371. [PMID: 33140729 DOI: 10.18097/pbmc20206605357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The manifestation of the side cardiotoxic effect of anthracycline antibiotics limits their use in the treatment of malignant processes in some patients. The review analyzes the main causes of the susceptibility of cardiomyocytes to the damaging effect of anthracyclines, primarily associated with an increase in the processes of free radical oxidation. Currently, research is widely carried out to find ways to reduce anthracycline cardiotoxicity, in particular, the use of cardioprotective agents in the complex treatment of tumors. Hydroxymethylglutaryl coenzyme A reductase inhibitors (statins) have been shown to improve the function and metabolism of the cardiovascular system under various pathological impacts, therefore, it is proposed to use them to reduce cardiotoxic complications of chemotherapy. Statins exhibit direct (hypolipidemic) and pleiotropic effects due to the blockade of mevalonic acid synthesis and downward biochemical cascades that determine their cardioprotective properties. The main point of intersection of the pharmacological activity of anthracyclines and statins is the ability of both to regulate the functioning of small GTPase from the Rho family, and their effect in this regard is the opposite. The influence of statins on the modification and membrane dislocation of Rho proteins mediates the indirect antioxidant, anti-inflammatory, endothelioprotective, antiapoptotic effect. The mechanism of statin inhibition of doxorubicin blockade of the DNA-topoisomerase complex, which may be important in preventing cardiotoxic damage during chemotherapy, is discussed. At the same time, it should be noted that the use of statins can be accompanied by adverse side effects: a provocation of increased insulin resistance and glucose tolerance, which often causes them to be canceled in patients with impaired carbohydrate metabolism, so further studies are needed here. The review also analyzes data on the antitumor effect of statins, their ability to sensitize the tumor to treatment with cytostatic drug. It has been shown that the relationship between anthracycline antibiotics and statins is characterized not only by antagonism, but also in some cases by synergism. Despite some adverse effects, statins are one of the most promising cardio- and vasoprotectors for use in anthracycline cardiomyopathy.
Collapse
Affiliation(s)
- N V Tursunova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - M G Klinnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - O A Babenko
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E L Lushnikova
- Institute of Molecular Pathology and Pathomorphology, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| |
Collapse
|
30
|
Goncalves IL, Tal S, Barki-Harrington L, Sapir A. Conserved statin-mediated activation of the p38-MAPK pathway protects Caenorhabditis elegans from the cholesterol-independent effects of statins. Mol Metab 2020; 39:101003. [PMID: 32339771 PMCID: PMC7240216 DOI: 10.1016/j.molmet.2020.101003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Statins are a group of medications that reduce cholesterol synthesis by inhibiting the activity of HMG-CoA reductase, a key enzyme in the mevalonate pathway. The clinical use of statins to lower excess cholesterol levels has revolutionized the cardiovascular field and increased the survival of millions, but some patients have adverse side effects. A growing body of data suggests that some of the beneficial and adverse effects of statins, including their anti-inflammatory, anti-tumorigenic, and myopathic activities, are cholesterol-independent. However, the underlying mechanisms for these effects of statins are not well defined. METHODS Because Caenorhabditis elegans (C. elegans) lacks the cholesterol synthesis branch of the mevalonate pathway, this organism is a powerful system to unveil the cholesterol-independent effects of statins. We used genetic and biochemical approaches in C. elegans and cultured macrophage-derived murine cells to study the cellular response to statins. RESULTS We found that statins activate a conserved p38-MAPK (p38) cascade and that the protein geranylgeranylation branch of the mevalonate pathway links the effect of statins to the activation of this p38 pathway. We propose that the blockade of geranylgeranylation impairs the function of specific small GTPases we identified as upstream regulators of the p38 pathway. Statin-mediated p38 activation in C. elegans results in the regulation of programs of innate immunity, stress, and metabolism. In agreement with this regulation, knockout of the p38 pathway results in the hypersensitivity of C. elegans to statins. Treating cultured mammalian cells with clinical doses of statins results in the activation of the same p38 pathway, which upregulates the COX-2 protein, a major regulator of innate immunity in mammals. CONCLUSIONS Statins activate an evolutionarily conserved p38 pathway to regulate metabolism and innate immunity. Our results highlight the cytoprotective role of p38 activation under statin treatment in vivo and propose that this activation underlies many of the critical cholesterol-independent effects of statins.
Collapse
Affiliation(s)
- Irina Langier Goncalves
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, 36006 Israel
| | - Sharon Tal
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Liza Barki-Harrington
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon, 36006 Israel.
| |
Collapse
|
31
|
Oesterle A, Liao JK. The Pleiotropic Effects of Statins - From Coronary Artery Disease and Stroke to Atrial Fibrillation and Ventricular Tachyarrhythmia. Curr Vasc Pharmacol 2020; 17:222-232. [PMID: 30124154 DOI: 10.2174/1570161116666180817155058] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/06/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
Statins, 3-hydroxy-methylglutaryl coenzyme A reductase inhibitors, have been used for decades for the prevention of coronary artery disease and stroke. They act primarily by lowering serum cholesterol through the inhibition of cholesterol synthesis in the liver, which results in the upregulation of low-density lipoprotein receptors in the liver. This results in the removal of low-density lipoproteincholesterol. Studies have suggested that statins may demonstrate additional effects that are independent of their effects on low-density lipoprotein-cholesterol. These have been termed "pleiotropic" effects. Pleiotropic effects may be due to the inhibition of isoprenoid intermediates by statins. Isoprenoid inhibition has effects on the small guanosine triphosphate binding proteins Rac and Rho which in turn effects nicotinamide adenine dinucleotide phosphate oxidases. Therefore, there are changes in endothelial nitric oxide synthase expression, atherosclerotic plaque stability, pro-inflammatory cytokines and reactive oxygen species production, platelet reactivity, and cardiac fibrosis and hypetrophy development. Recently, statins have been compared to the ezetimibe and the recently published outcomes data on the proprotein convertase subtilisin kexin type 9 inhibitors has allowed for a reexamination of statin pleiotropy. As a result of these diverse effects, it has been suggested that statins also have anti-arrhythmic effects. This review focuses on the mechanisms of statin pleiotropy and discusses evidence from the statin clinical trials as well as examining the possible anti-arrhythmic effects atrial fibrillation and ventricular tachyarrhythmias.
Collapse
Affiliation(s)
- Adam Oesterle
- The Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, IL 60637, United States
| | - James K Liao
- The Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
32
|
Cortada M, Wei E, Jain N, Levano S, Bodmer D. Telmisartan Protects Auditory Hair Cells from Gentamicin-Induced Toxicity in vitro. Audiol Neurootol 2020; 25:297-308. [PMID: 32369826 DOI: 10.1159/000506796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Telmisartan is an angiotensin II receptor blocker that has pleiotropic effects and protective properties in different cell types. Moreover, telmisartan has also shown partial agonism on the peroxisome proliferator-activated receptor γ (PPAR-γ). Auditory hair cells (HCs) express PPAR-γ, and the protective role of PPAR-γ agonists on HCs has been shown. OBJECTIVES The objective of this study was to investigate the effects of telmisartan on gentamicin-induced ototoxicity in vitro. METHODS Cochlear explants were exposed to gentamicin with or without telmisartan, and/or GW9662, an irreversible PPAR-γ antagonist. RESULTS Telmisartan protected auditory HCs against gentamicin-induced ototoxicity. GW9662 completely blocked this protective effect, suggesting that it was mediated by PPAR-γ signaling. Exposure to GW9662 or telmisartan alone was not toxic to auditory HCs. CONCLUSIONS We found that telmisartan, via PPAR-γ signaling, protects auditory HCs from gentamicin-induced ototoxicity. Therefore, telmisartan could potentially be used in the future to prevent or treat sensorineural hearing loss.
Collapse
Affiliation(s)
- Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Eric Wei
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Neha Jain
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Clinic for Otolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland,
| |
Collapse
|
33
|
Mentkowski KI, Mursleen A, Snitzer JD, Euscher LM, Lang JK. CDC-derived extracellular vesicles reprogram inflammatory macrophages to an arginase 1-dependent proangiogenic phenotype. Am J Physiol Heart Circ Physiol 2020; 318:H1447-H1460. [PMID: 32330087 DOI: 10.1152/ajpheart.00155.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Macrophages play a pivotal role in tissue repair following myocardial infarction (MI). In response to injury, they exist along a spectrum of activation states tightly regulated by their microenvironment. Cardiosphere-derived cells (CDCs) have been shown to mediate cardioprotection via modulation of the macrophage response. Our study was designed to gain mechanistic insight into the role of CDC-derived extracellular vesicles (EVs) in modulating macrophage phenotypes and operant signaling pathways to better understand their potential contribution to immunomodulatory cardioprotection. We found that CDC-derived EVs alter the functional phenotype of macrophages, modifying levels of phagocytosis and efferocytosis without changing viability or proliferation. Interestingly, extracellular vesicles differentially regulate several M1/M2 genes dependent on macrophage activation before EV treatment but consistently upregulate arginase 1 regardless of macrophage origin or polarization state. CDC-derived EVs polarize M1 macrophages to a proangiogenic phenotype dependent on arginase 1 upregulation and independent of VEGF-A. In addition, EV-dependent arginase 1 upregulation downregulates nitric oxide (NO) secretion in activated macrophages. These data suggest a novel urea-cycle-dependent mechanism in macrophages that promotes angiogenesis and provides additional mechanistic insight into the potential contribution of CDC-derived extracellular vesicles in immunomodulatory cardioprotection.NEW & NOTEWORTHY We hypothesized that in the window of therapeutic extracellular vesicle (EV) administration, inflammatory M1 macrophages are likely the primary target of cardiosphere-derived cell (CDC)-derived EVs. The effect of CDC-EVs on this population, however, is currently unknown. In this study, we demonstrate that CDC-derived EVs polarize M1 macrophages to a proangiogenic phenotype dependent on arginase 1 upregulation. These results provide insight into an immunomodulatory mechanism of CDC-EVs in a more physiologically relevant model of post-myocardial infarction (post-MI) macrophage polarization.
Collapse
Affiliation(s)
- Kyle I Mentkowski
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Asma Mursleen
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Jonathan D Snitzer
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Lindsey M Euscher
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| | - Jennifer K Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York.,Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Veterans Affairs Western New York Healthcare System, Buffalo, New York
| |
Collapse
|
34
|
Chen CJ, Ding D, Ironside N, Buell TJ, Elder LJ, Warren A, Adams AP, Ratcliffe SJ, James RF, Naval NS, Worrall BB, Johnston KC, Southerland AM. Statins for neuroprotection in spontaneous intracerebral hemorrhage. Neurology 2019; 93:1056-1066. [PMID: 31712367 DOI: 10.1212/wnl.0000000000008627] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Statins, a common drug class for treatment of dyslipidemia, may be neuroprotective for spontaneous intracerebral hemorrhage (ICH) by targeting secondary brain injury pathways in the surrounding brain parenchyma. Statin-mediated neuroprotection may stem from downregulation of mevalonate and its derivatives, targeting key cell signaling pathways that control proliferation, adhesion, migration, cytokine production, and reactive oxygen species generation. Preclinical studies have consistently demonstrated the neuroprotective and recovery enhancement effects of statins, including improved neurologic function, reduced cerebral edema, increased angiogenesis and neurogenesis, accelerated hematoma clearance, and decreased inflammatory cell infiltration. Retrospective clinical studies have reported reduced perihematomal edema, lower mortality rates, and improved functional outcomes in patients who were taking statins before ICH. Several clinical studies have also observed lower mortality rates and improved functional outcomes in patients who were continued or initiated on statins after ICH. Subgroup analysis of a previous randomized trial has raised concerns of a potentially elevated risk of recurrent ICH in patients with previous hemorrhagic stroke who are administered statins. However, most statin trials failed to show an association between statin use and increased hemorrhagic stroke risk. Variable statin dosing, statin use in the pre-ICH setting, and selection biases have limited rigorous investigation of the effects of statins on post-ICH outcomes. Future prospective trials are needed to investigate the association between statin use and outcomes in ICH.
Collapse
Affiliation(s)
- Ching-Jen Chen
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA.
| | - Dale Ding
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Natasha Ironside
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Thomas J Buell
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Lori J Elder
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Amy Warren
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Amy P Adams
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Sarah J Ratcliffe
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Robert F James
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Neeraj S Naval
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Bradford B Worrall
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Karen C Johnston
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Andrew M Southerland
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
35
|
Effects of statin therapy on mean platelet volume in patients with risk of cardiovascular diseases: a systematic review and meta-analysis. Biosci Rep 2019; 39:BSR20190180. [PMID: 31285388 PMCID: PMC6658723 DOI: 10.1042/bsr20190180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/03/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Many studies have demonstrated the effects of statin therapy on platelet, but it is controversial that whether statin could reduce mean platelet volume (MPV) in patients with the risk of cardiovascular diseases. To further improve the clinical significance of MPV in those patients and explore new function of statin, we conducted this research. Relevant studies were selected by searching electronic databases (PubMed, Embase and Cochrane Library) and reference lists of related articles by hand. Two reviewers independently assessed eligibility and quality of the studies. Eventually, we included ten studies, a total of 1189 patients with the risk of cardiovascular diseases. Consolidating relevant data and comparing the changes of MPV before and after statin treatment, we found that statin could decrease MPV [standard mean difference (SMD) = −0.47 (−0.71–0.23)], which was statistically significant (P=0.0001). Subgroup analysis suggested that when ≥55 years, this decrease did not occur [SMD = −0.06 (−0.18, 0.06)]. Drug type, sample size, ethnicity, mean age and quality of included article were sources of heterogeneity. Therefore, statin therapy could reduce MPV significantly and exhibited antiplatelet activity, which is of great importance in clarifying the clinical significance of MPV in cardiovascular events and the prevention of cardiovascular events.
Collapse
|
36
|
Cao Z, Zhang T, Sun X, Liu M, Shen Z, Li B, Zhao X, Jin H, Zhang Z, Tian Y. Membrane-permeabilized sonodynamic therapy enhances drug delivery into macrophages. PLoS One 2019; 14:e0217511. [PMID: 31181129 PMCID: PMC6557485 DOI: 10.1371/journal.pone.0217511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a pivotal role in the formation and development of atherosclerosis as a predominant inflammatory cell type present within atherosclerotic plaque. Promoting anti-atherosclerotic drug delivery into macrophages may provide a therapeutic potential on atherosclerotic plaque. In this study, we investigated whether membrane-permeabilized sonodynamic therapy (MP-SDT) enhances drug delivery into THP-1 macrophages. Images of confocal microscopy confirmed that the optimal plasma distribution of the sonosensitizer protoporphyrin IX (PpIX) was at 1 hour incubation. The non-lethal parameter of MP-SDT was determined by cell viability as measured by a CCK-8 assay. Bright field microscopy demonstrated plasma membrane deformation in response to MP-SDT. Using SYTOX Green, a model drug for cellular uptake, we found that MP-SDT significantly induced membrane permeabilization dependent on ultrasound intensity and exposure time. Using Fluo-3 AM, intracellular calcium elevation during MP-SDT was confirmed as a result of membrane permeabilization. Membrane perforation of MP-SDT-treated cells was observed by scanning electron microscopy and transmission electron microscopy. Moreover, MP-SDT-induced membrane permeabilization and perforation were remarkably prevented by scavenging reactive oxygen species (ROS) during MP-SDT. Furthermore, we assessed the therapeutic effect of MP-SDT in combination with anti-atherosclerotic drug atorvastatin. Our results showed that MP-SDT increased the therapeutic effect of atorvastatin on lipid-laden THP-1-derived foam cells, including decreasing lipid droplets, increasing the cholesterol efflux and the expression of PPARγ and ABCG1. In conclusion, MP-SDT might become a promising approach to facilitating the delivery of anti-atherosclerotic drugs into macrophages via membrane permeabilization.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Tianyi Zhang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Xin Sun
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Mingyu Liu
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Zhaoqian Shen
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Bicheng Li
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Xuezhu Zhao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Hong Jin
- Karolinska Institute, Department of Medicine, Stockholm, Sweden
| | - Zhiguo Zhang
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, China
| | - Ye Tian
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
37
|
Murakami-Nishida S, Matsumura T, Senokuchi T, Ishii N, Kinoshita H, Yamada S, Morita Y, Nishida S, Motoshima H, Kondo T, Komohara Y, Araki E. Pioglitazone suppresses macrophage proliferation in apolipoprotein-E deficient mice by activating PPARγ. Atherosclerosis 2019; 286:30-39. [PMID: 31096071 DOI: 10.1016/j.atherosclerosis.2019.04.229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Local macrophage proliferation is linked to enhanced atherosclerosis progression. Our previous study found that troglitazone, a thiazolidinedione (TZD), suppressed oxidized low-density lipoprotein (Ox-LDL)-induced macrophage proliferation. However, its effects and mechanisms are unclear. Therefore, we investigated the effects of pioglitazone, another TZD, on macrophage proliferation. METHODS Normal chow (NC)- or high-fat diet (HFD)-fed apolipoprotein E-deficient (Apoe-/-) mice were treated orally with pioglitazone (10 mg/kg/day) or vehicle (water) as a control. Mouse peritoneal macrophages were used in in vitro assays. RESULTS Atherosclerosis progression was suppressed in aortic sinuses of pioglitazone-treated Apoe-/- mice, which showed fewer proliferating macrophages in plaques. Pioglitazone suppressed Ox-LDL-induced macrophage proliferation in a dose-dependent manner. However, treatment with peroxisome proliferator-activated receptor-γ (PPARγ) siRNA ameliorated pioglitazone-induced suppression of macrophage proliferation. Low concentrations (less than 100 μmol/L) of pioglitazone, which can suppress macrophage proliferation, activated PPARγ in macrophages, but did not induce macrophage apoptosis. Pioglitazone treatment did not induce TUNEL-positive cells in atherosclerotic plaques of aortic sinuses in Apoe-/- mice. CONCLUSIONS Pioglitazone suppressed macrophage proliferation through PPARγ without inducing macrophage apoptosis. These findings imply that pioglitazone could prevent macrovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saiko Murakami-Nishida
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Norio Ishii
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Kinoshita
- Department of Diabetes and Endocrinology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Sarie Yamada
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaro Morita
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuhei Nishida
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Motoshima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
38
|
Singh P, Zhang Y, Sharma P, Covassin N, Soucek F, Friedman PA, Somers VK. Statins decrease leptin expression in human white adipocytes. Physiol Rep 2019; 6. [PMID: 29372612 PMCID: PMC5789723 DOI: 10.14814/phy2.13566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 12/26/2022] Open
Abstract
Statin use is associated with increased calorie intake and consequent weight gain. It is speculated that statin‐dependent improvements in lipid profile may undermine the perceived need to follow lipid‐lowering and other dietary recommendations leading consequently to increased calorie intake. However, increases in calorie intake in statin users may also be related to statin‐dependent decreases in satiety factors such as leptin, an adipocyte‐derived adipokine. The objective of our study was to examine the direct effects of statins on leptin expression. Adipocytes are the main source of circulating leptin. Therefore, we examined the effects of atorvastatin and simvastatin on leptin expression in cultured human white adipocytes. We show that treatment of white adipocytes with simvastatin and atorvastatin decreases leptin mRNA expression (simvastatin: P = 0.008, atorvastatin: P = 0.03) and leptin secretion (simvastatin: P = 0.0001, atorvastatin: P = 0.0001). Both simvastatin and atorvastatin mediate decreases in leptin expression via extracellular‐signal‐regulated kinases 1/2 and peroxisome proliferator‐activated receptor gamma pathways (simvastatin: P = 0.01, atorvastatin: P = 0.026). Additionally, statin treatment also induced expected increases in adiponectin, while decreasing monocyte chemoattractant protein 1 (MCP1) mRNA. Furthermore, statins increased secretion of both total as well as high molecular weight adiponectin while decreasing MCP1 secretion. To conclude, statins act directly on human white adipocytes to regulate adipokine secretion and decrease leptin expression. Leptin is an important satiety factor. Hence, statin‐dependent decreases in leptin may contribute, at least in part, to increases in food intake in statin users.
Collapse
Affiliation(s)
- Prachi Singh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Yuebo Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Pragya Sharma
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Filip Soucek
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,ICRC - Department of Cardiovascular Diseases, St. Anne's University Hospital, Brno, Czech Republic
| | - Paul A Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
39
|
|
40
|
Ahmadi Y, Karimian R, Panahi Y. Effects of statins on the chemoresistance-The antagonistic drug-drug interactions versus the anti-cancer effects. Biomed Pharmacother 2018; 108:1856-1865. [PMID: 30372891 DOI: 10.1016/j.biopha.2018.09.122] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
There has been growing interest in the potential anti-cancer activity of statins based on evidence of their anti-proliferative, pro-apoptotic, and radiosensitizing properties, but no studies have focused on the effects of statins on the chemoresistance. In spite of their direct cytostatic/cytotoxic effects on the cancer cells, statins via drug interactions may affect therapeutic effects of the chemotherapy agents and so cause chemoresistance in cancer cells. Here, we aim to present the molecular mechanisms underlying cytotoxic effects of statins on the cancer cells against those mechanisms by which statins may lead to chemoresistance, in order to clarify whether the positive effects of the co-treatment of statins on the efficiency of chemotherapeutic agents is due to the natural anti-cancer effects of statins or it is due to increasing the cellular concentrations of chemotherapy drugs in cancer cells.
Collapse
Affiliation(s)
- Yasin Ahmadi
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nat Commun 2018; 9:3127. [PMID: 30087322 PMCID: PMC6081448 DOI: 10.1038/s41467-018-05491-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary alveolar proteinosis (PAP) is a syndrome of reduced GM-CSF-dependent, macrophage-mediated surfactant clearance, dysfunctional foamy alveolar macrophages, alveolar surfactant accumulation, and hypoxemic respiratory failure for which the pathogenetic mechanism is unknown. Here, we examine the lipids accumulating in alveolar macrophages and surfactant to define the pathogenesis of PAP and evaluate a novel pharmacotherapeutic approach. In PAP patients, alveolar macrophages have a marked increase in cholesterol but only a minor increase in phospholipids, and pulmonary surfactant has an increase in the ratio of cholesterol to phospholipids. Oral statin therapy is associated with clinical, physiological, and radiological improvement in autoimmune PAP patients, and ex vivo statin treatment reduces cholesterol levels in explanted alveolar macrophages. In Csf2rb−/− mice, statin therapy reduces cholesterol accumulation in alveolar macrophages and ameliorates PAP, and ex vivo statin treatment increases cholesterol efflux from macrophages. These results support the feasibility of statin as a novel pathogenesis-based pharmacotherapy of PAP. Pulmonary alveolar proteinosis (PAP) is associated with defective macrophage clearance of surfactant. Here, the authors show that patients with PAP have altered cholesterol-to-phospholipid ratio in their surfactant, and that more importantly, statin therapy and reduction of cholesterol accumulation in macrophages can ameliorate PAP in both humans and mice.
Collapse
|
42
|
Forouzanfar F, Butler AE, Banach M, Barreto GE, Sahbekar A. Modulation of heat shock proteins by statins. Pharmacol Res 2018; 134:134-144. [DOI: 10.1016/j.phrs.2018.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
|
43
|
Bradbury P, Traini D, Ammit AJ, Young PM, Ong HX. Repurposing of statins via inhalation to treat lung inflammatory conditions. Adv Drug Deliv Rev 2018; 133:93-106. [PMID: 29890243 DOI: 10.1016/j.addr.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Despite many therapeutic advancements over the past decade, the continued rise in chronic inflammatory lung diseases incidence has driven the need to identify and develop new therapeutic strategies, with superior efficacy to treat these diseases. Statins are one class of drug that could potentially be repurposed as an alternative treatment for chronic lung diseases. They are currently used to treat hypercholesterolemia by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, that catalyses the rate limiting step in the mevalonate biosynthesis pathway, a key intermediate in cholesterol metabolism. Recent research has identified statins to have other protective pleiotropic properties including anti-inflammatory, anti-oxidant, muco-inhibitory effects that may be beneficial for the treatment of chronic inflammatory lung diseases. However, clinical studies have yielded conflicting results. This review will summarise some of the current evidences for statins pleiotropic effects that could be applied for the treatment of chronic inflammatory lung diseases, their mechanisms of actions, and the potential to repurpose statins as an inhaled therapy, including a detailed discussion on their different physical-chemical properties and how these characteristics could ultimately affect treatment efficacies. The repurposing of statins from conventional anti-cholesterol oral therapy to inhaled anti-inflammatory formulation is promising, as it provides direct delivery to the airways, reduced risk of side effects, increased bioavailability and tailored physical-chemical properties for enhanced efficacy.
Collapse
|
44
|
Singh I, Samuvel DJ, Choi S, Saxena N, Singh AK, Won J. Combination therapy of lovastatin and AMP-activated protein kinase activator improves mitochondrial and peroxisomal functions and clinical disease in experimental autoimmune encephalomyelitis model. Immunology 2018; 154:434-451. [PMID: 29331024 DOI: 10.1111/imm.12893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 01/04/2023] Open
Abstract
Recent studies report that loss and dysfunction of mitochondria and peroxisomes contribute to the myelin and axonal damage in multiple sclerosis (MS). In this study, we investigated the efficacy of a combination of lovastatin and AMP-activated protein kinase (AMPK) activator (AICAR) on the loss and dysfunction of mitochondria and peroxisomes and myelin and axonal damage in spinal cords, relative to the clinical disease symptoms, using a mouse model of experimental autoimmune encephalomyelitis (EAE, a model for MS). We observed that lovastatin and AICAR treatments individually provided partial protection of mitochondria/peroxisomes and myelin/axons, and therefore partial attenuation of clinical disease in EAE mice. However, treatment of EAE mice with the lovastatin and AICAR combination provided greater protection of mitochondria/peroxisomes and myelin/axons, and greater improvement in clinical disease compared with individual drug treatments. In spinal cords of EAE mice, lovastatin-mediated inhibition of RhoA and AICAR-mediated activation of AMPK cooperatively enhanced the expression of the transcription factors and regulators (e.g. PPARα/β, SIRT-1, NRF-1, and TFAM) required for biogenesis and the functions of mitochondria (e.g. OXPHOS, MnSOD) and peroxisomes (e.g. PMP70 and catalase). In summary, these studies document that oral medication with a combination of lovastatin and AICAR, which are individually known to have immunomodulatory effects, provides potent protection and repair of inflammation-induced loss and dysfunction of mitochondria and peroxisomes as well as myelin and axonal abnormalities in EAE. As statins are known to provide protection in progressive MS (Phase II study), these studies support that supplementation statin treatment with an AMPK activator may provide greater efficacy against MS.
Collapse
Affiliation(s)
- Inderjit Singh
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Devadoss J Samuvel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Seungho Choi
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Nishant Saxena
- Charles P. Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.,Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
45
|
Elibol B, Kilic U. High Levels of SIRT1 Expression as a Protective Mechanism Against Disease-Related Conditions. Front Endocrinol (Lausanne) 2018; 9:614. [PMID: 30374331 PMCID: PMC6196295 DOI: 10.3389/fendo.2018.00614] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
SIRT1 protein, a member of Silent Information Regulator 2 (Sir2) protein family, have gained considerable attention as epigenetic regulators for a great area in the human physiology. Changes in sirtuin expression are critical in several diseases, including metabolic syndrome, cardiovascular diseases, cancer and neurodegeneration. Here, we provide an overview of the association of the increasing level of SIRT1 protein for regulating some disease related conditions such as obesity, cardiovascular diseases and neurodegeneration. This review also provides a detailed molecular understanding of the interaction of the some basic molecules with increasing SIRT1 levels rather than reduction of the SIRT1 expression. In this context, the current approaches to enhancing the expression of SIRT1 points the importance of epigenetics in several age-related diseases to provide a healthy aging by developing novel therapies which can prevent or damp the progression of some diseases.
Collapse
Affiliation(s)
- Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
- *Correspondence: Ulkan Kilic
| |
Collapse
|
46
|
Wang Y, Chen Q, Tan Q, Feng Z, He Z, Tang J, Feng H, Zhu G, Chen Z. Simvastatin accelerates hematoma resolution after intracerebral hemorrhage in a PPARγ-dependent manner. Neuropharmacology 2017; 128:244-254. [PMID: 29054366 DOI: 10.1016/j.neuropharm.2017.10.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 12/24/2022]
Abstract
To date, the neuroprotective effects of statins on intracerebral hemorrhage (ICH) are not well established. This study explored the effect and potential mechanism of simvastatin treatment on ICH. In the present study, the effects of simvastatin on hematoma absorption, neurological outcome, CD36 expression and microglia polarization were examined in rat model of ICH model. In the meantime, inhibitory effect of PPARγ inhibitor GW9662 was investigated following ICH. Additionally, the effect of simvastatin on PPARγ activation was also investigated in rat ICH model and primary microglia culture. Much more, the role of PPARγ and CD36 in simvastatin-mediated erythrocyte phagocytosis was also detected by using in vivo or in vitro phagocytosis models, respectively. After ICH, simvastatin promoted hematoma absorption and improved neurological outcome after ICH while upregulating CD36 expression and facilitating M2 phenotype polarization in perihematomal microglia. In addition, simvastatin increased PPARγ activation and reinforced microglia-induced erythrocyte phagocytosis in vivo and in vitro. All above effects of simvastatin were abolished by PPARγ inhibitor GW9662. In conclusion, our data suggested that simvastatin could enhance hematoma clearance and attenuate neurological deficits possibly by activating PPARγ.
Collapse
Affiliation(s)
- Yuelong Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhenlin He
- Department of Reproduction and Genetics, Reproductive Medical Centre, The First People's Hospital of Yunnan Province, 650200, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
47
|
Sipes NS, Wambaugh JF, Pearce R, Auerbach SS, Wetmore BA, Hsieh JH, Shapiro AJ, Svoboda D, DeVito MJ, Ferguson SS. An Intuitive Approach for Predicting Potential Human Health Risk with the Tox21 10k Library. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10786-10796. [PMID: 28809115 PMCID: PMC5657440 DOI: 10.1021/acs.est.7b00650] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In vitro-in vivo extrapolation (IVIVE) analyses translating high-throughput screening (HTS) data to human relevance have been limited. This study represents the first report applying IVIVE approaches and exposure comparisons using the entirety of the Tox21 federal collaboration chemical screening data, incorporating assay response efficacy and quality of concentration-response fits, and providing quantitative anchoring to first address the likelihood of human in vivo interactions with Tox21 compounds. This likelihood was assessed using a maximum blood concentration to in vitro response ratio approach (Cmax/AC50), analogous to decision-making methods for clinical drug-drug interactions. Fraction unbound in plasma (fup) and intrinsic hepatic clearance (CLint) parameters were estimated in silico and incorporated in a three-compartment toxicokinetic (TK) model to first predict Cmax for in vivo corroboration using therapeutic scenarios. Toward lower exposure scenarios, 36 compounds of 3925 unique chemicals with curated activity in the HTS data using high-quality dose-response model fits and ≥40% efficacy gave "possible" human in vivo interaction likelihoods lower than median human exposures predicted in the United States Environmental Protection Agency's ExpoCast program. A publicly available web application has been designed to provide all Tox21-ToxCast dose-likelihood predictions. Overall, this approach provides an intuitive framework to relate in vitro toxicology data rapidly and quantitatively to exposures using either in vitro or in silico derived TK parameters and can be thought of as an important step toward estimating plausible biological interactions in a high-throughput risk-assessment framework.
Collapse
Affiliation(s)
- Nisha S. Sipes
- National Toxicology Program/National Institute of Environmental Health Sciences, RTP, NC, USA
- Corresponding Author: Nisha S. Sipes, 111 T.W. Alexander Drive, PO Box 12233, MD: K2-17, Research Triangle Park, NC 27709, Telephone: 919-316-4603,
| | - John F. Wambaugh
- National Center for Computational Toxicology/US EPA, RTP, NC, USA
| | - Robert Pearce
- National Center for Computational Toxicology/US EPA, RTP, NC, USA
| | - Scott S. Auerbach
- National Toxicology Program/National Institute of Environmental Health Sciences, RTP, NC, USA
| | | | | | - Andrew J. Shapiro
- National Toxicology Program/National Institute of Environmental Health Sciences, RTP, NC, USA
| | | | - Michael J. DeVito
- National Toxicology Program/National Institute of Environmental Health Sciences, RTP, NC, USA
| | - Stephen S. Ferguson
- National Toxicology Program/National Institute of Environmental Health Sciences, RTP, NC, USA
| |
Collapse
|
48
|
Luciani M, Del Monte F. Insights from Second-Line Treatments for Idiopathic Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:jcdd4030012. [PMID: 29367542 PMCID: PMC5715707 DOI: 10.3390/jcdd4030012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/18/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Dilated cardiomyopathy (DCM) is an independent nosographic entity characterized by left ventricular dilatation and contractile dysfunction leading to heart failure (HF). The idiopathic form of DCM (iDCM) occurs in the absence of coronaropathy or other known causes of DCM. Despite being different from other forms of HF for demographic, clinical, and prognostic features, its current pharmacological treatment does not significantly diverge. Methods: In this study we performed a Pubmed library search for placebo-controlled clinical investigations and a post-hoc analysis recruiting iDCM from 1985 to 2016. We searched for second-line pharmacologic treatments to reconsider drugs for iDCM management and pinpoint pathological mechanisms. Results: We found 33 clinical studies recruiting a total of 3392 patients of various durations and sizes, as well as studies that tested different drug classes (statins, pentoxifylline, inotropes). A metanalysis was unfeasible, although a statistical significance for changes upon treatment for molecular results, morphofunctional parameters, and clinical endpoints was reported. Statins appeared to be beneficial in light of their pleiotropic effects; inotropes might be tolerated more for longer times in iDCM compared to ischemic patients. General anti-inflammatory therapies do not significantly improve outcomes. Metabolic and growth modulation remain appealing fields to be investigated. Conclusions: The evaluation of drug effectiveness based on direct clinical benefit is an inductive method providing evidence-based insights. This backward approach sheds light on putative and underestimated pathologic mechanisms and thus therapeutic targets for iDCM management.
Collapse
Affiliation(s)
- Marco Luciani
- Department of Cardiovascular Sciences, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
49
|
Jongstra-Bilen J, Zhang CX, Wisnicki T, Li MK, White-Alfred S, Ilaalagan R, Ferri DM, Deonarain A, Wan MH, Hyduk SJ, Cummins CL, Cybulsky MI. Oxidized Low-Density Lipoprotein Loading of Macrophages Downregulates TLR-Induced Proinflammatory Responses in a Gene-Specific and Temporal Manner through Transcriptional Control. THE JOURNAL OF IMMUNOLOGY 2017; 199:2149-2157. [PMID: 28784845 DOI: 10.4049/jimmunol.1601363] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 07/16/2017] [Indexed: 01/08/2023]
Abstract
Hypercholesterolemia is a key risk factor for atherosclerosis and leads to the uptake of native and oxidized low-density lipoprotein (oxLDL) by macrophages (Mϕs) and foam cell formation. Inflammatory processes accompany Mϕ foam cell formation in the artery wall, yet the relationship between Mϕ lipid loading and their response to inflammatory stimuli remains elusive. We investigated proinflammatory gene expression in thioglycollate-elicited peritoneal Mϕs, bone marrow-derived Mϕs and dendritic cells, and RAW264.7 cells. Loading with oxLDL did not induce peritoneal Mϕ apoptosis or modulate basal-level expression of proinflammatory genes. Upon stimulation of TLR4, the rapid induction of IFN-β was inhibited in cells loaded with oxLDL, whereas the induction of other proinflammatory genes by TLR4 (LPS), TLR3 (polyriboinosinic-polyribocytidylic acid), TLR2 (Pam3CSK4), and TLR9 (CpG) remained comparable within the first 2 h. Subsequently, the expression of a subset of proinflammatory genes (e.g., IL-1β, IL-6, CCL5) was reduced in oxLDL-loaded cells at the level of transcription. This phenomenon was partially dependent on NF erythroid 2-related factor 2 (NRF2) but not on nuclear liver X receptors α and β (LXRα,β), peroxisome proliferator-activated receptor-γ (PPARγ), and activating transcription factor 3 (ATF3). LPS-induced NF-κB reporter activity and intracellular signaling by NF-κB and MAPK pathways were comparable in oxLDL-loaded Mϕs, yet the binding of p65/RelA (the prototypic NF-κB family member) was reduced at IL-6 and CCL5 promoters. This study revealed that oxLDL loading of Mϕs negatively regulates transcription at late stages of TLR-induced proinflammatory gene expression and implicates epigenetic mechanisms such as histone deacetylase activity.
Collapse
Affiliation(s)
- Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Cindy X Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Timothy Wisnicki
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mengyi K Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Samantha White-Alfred
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ragave Ilaalagan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dario M Ferri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Ashley Deonarain
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mark H Wan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Carolyn L Cummins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
50
|
Bril F, Portillo Sanchez P, Lomonaco R, Orsak B, Hecht J, Tio F, Cusi K. Liver Safety of Statins in Prediabetes or T2DM and Nonalcoholic Steatohepatitis: Post Hoc Analysis of a Randomized Trial. J Clin Endocrinol Metab 2017; 102:2950-2961. [PMID: 28575232 PMCID: PMC5546850 DOI: 10.1210/jc.2017-00867] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/26/2017] [Indexed: 12/28/2022]
Abstract
CONTEXT Patients with nonalcoholic fatty liver disease have a high cardiovascular risk, but statins are rarely prescribed because of fear of hepatotoxicity. OBJECTIVE To prospectively assess the long-term safety of statins in patients with prediabetes/type 2 diabetes mellitus (T2DM) and nonalcoholic steatohepatitis (NASH). DESIGN Post hoc analysis of statin use during a randomized, controlled trial assessing pioglitazone vs placebo for NASH. PATIENTS A total of 101 patients (86 receiving statins) with biopsy-proven NASH and prediabetes/T2DM were followed for up to 36 months. INTERVENTIONS Oral glucose tolerance test and percutaneous liver biopsy (baseline, month 18, and month 36); liver magnetic resonance spectroscopy and euglycemic insulin clamp (baseline and month 18). MAIN OUTCOME MEASURES Histologic and biochemical safety of statin use among patients with NASH. RESULTS Only 37% of patients were receiving statins at enrollment despite their high cardiovascular risk. Statin nonusers had higher plasma alanine aminotransferase levels but similar histologic severity of liver disease at baseline. In both statin users and nonusers, the same number of patients (n = 4) had a twofold or greater increase in plasma aminotransferases during follow-up. One statin nonuser was discontinued from the study because of this elevation. Values returned to normal without any active measure in all other cases. No changes on liver histology or hepatic insulin resistance were observed in patients with NASH newly started on a statin and receiving placebo during the main study. CONCLUSIONS Statin therapy is safe in patients with prediabetes/T2DM and NASH. Given their high cardiovascular risk, statin therapy should be encouraged in this population.
Collapse
Affiliation(s)
- Fernando Bril
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida 32608
| | - Paola Portillo Sanchez
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida 32608
| | - Romina Lomonaco
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida 32608
| | - Beverly Orsak
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Joan Hecht
- Audie L. Murphy Veterans Affairs Medical Center, San Antonio, Texas 78229
| | - Fermin Tio
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida 32608
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
- Audie L. Murphy Veterans Affairs Medical Center, San Antonio, Texas 78229
| |
Collapse
|