1
|
Lushchak VI, Duszenko M, Gospodaryov DV, Garaschuk O. Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel) 2021; 10:1715. [PMID: 34829586 PMCID: PMC8614699 DOI: 10.3390/antiox10111715] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Neural tissue is one of the main oxygen consumers in the mammalian body, and a plentitude of metabolic as well as signaling processes within the brain is accompanied by the generation of reactive oxygen (ROS) and nitrogen (RNS) species. Besides the important signaling roles, both ROS and RNS can damage/modify the self-derived cellular components thus promoting neuroinflammation and oxidative stress. While previously, the latter processes were thought to progress linearly with age, newer data point to midlife as a critical turning point. Here, we describe (i) the main pathways leading to ROS/RNS generation within the brain, (ii) the main defense systems for their neutralization and (iii) summarize the recent literature about considerable changes in the energy/ROS homeostasis as well as activation state of the brain's immune system at midlife. Finally, we discuss the role of calorie restriction as a readily available and cost-efficient antiaging and antioxidant lifestyle intervention.
Collapse
Affiliation(s)
- Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46002 Ternopil, Ukraine
- Research and Development University, 13a Shota Rustaveli Str., 76018 Ivano-Frankivsk, Ukraine
| | - Michael Duszenko
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| | - Dmytro V. Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
2
|
Abstract
For living creatures with an aerobic metabolism, the univalent reduction of oxygen can lead to formation within the cell of intermediate products with marked chemical instability and strong potential toxicity. These are the free radicals (FR) superoxide and hydroxyl, hydrogen peroxide and the singlet 1O2. Their toxicity is primarily expressed through the peroxidation of membrane lipids, resulting in mitochondrial, lysosomal and parietal damage. It is enhanced by the presence of metals in trace amounts. Imbalance between the production of FR and the availability of FR scavengers (superoxide dismutase, catalase, glutathione peroxidase, etc.) may underlie different human pathologies. FR have been thought to play a part in inflammation; the aging process, carcinomatous transformations, damage due to recirculation and autoimmune diseases. As far as the kidney is concerned, the intervention of FR has been demonstrated or can be postulated in various contexts in the light of what has been observed in other pathologies: immunological nephritis, toxic nephropathies, microthrombotic and microangiopathic processes, damage caused by post-ischemic reflow, and problems in the preservation and rejection of transplants. FR have also been incriminated in lung lesions following intradialytic leukostasis and some aspects of toxicity ascribable to uremia. Subject to the precautions imposed by the need for theoretical, experimental and clinical verification, FR biochemistry offers new keys to the interpretation of a variety of kidney pathologies and opens up new prospects for treatment, both through a better understanding of the mechanism of action of drugs already known and employed, and with regard to the practical possibility of using alternative or combined forms of therapy.
Collapse
Affiliation(s)
- C. Canavese
- Department of Nephrology, University of Torino, S. Giovanni - Molinette Hospital, Torino, Italia
| | - P. Stratta
- Department of Nephrology, University of Torino, S. Giovanni - Molinette Hospital, Torino, Italia
| | - A. Vercellone
- Department of Nephrology, University of Torino, S. Giovanni - Molinette Hospital, Torino, Italia
| |
Collapse
|
3
|
Cerebral Pathophysiology in Extracorporeal Membrane Oxygenation: Pitfalls in Daily Clinical Management. Crit Care Res Pract 2018; 2018:3237810. [PMID: 29744226 PMCID: PMC5878897 DOI: 10.1155/2018/3237810] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving technique that is widely being used in centers throughout the world. However, there is a paucity of literature surrounding the mechanisms affecting cerebral physiology while on ECMO. Studies have shown alterations in cerebral blood flow characteristics and subsequently autoregulation. Furthermore, the mechanical aspects of the ECMO circuit itself may affect cerebral circulation. The nature of these physiological/pathophysiological changes can lead to profound neurological complications. This review aims at describing the changes to normal cerebral autoregulation during ECMO, illustrating the various neuromonitoring tools available to assess markers of cerebral autoregulation, and finally discussing potential neurological complications that are associated with ECMO.
Collapse
|
4
|
Diniz MC, Olivon VC, Tavares LD, Simplicio JA, Gonzaga NA, de Souza DG, Bendhack LM, Tirapelli CR, Bonaventura D. Mechanisms underlying sodium nitroprusside-induced tolerance in the mouse aorta: Role of ROS and cyclooxygenase-derived prostanoids. Life Sci 2017; 176:26-34. [DOI: 10.1016/j.lfs.2017.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 01/15/2023]
|
5
|
Sohn HM, Hwang JY, Ryu JH, Kim J, Park S, Park JW, Han SH. Simvastatin protects ischemic spinal cord injury from cell death and cytotoxicity through decreasing oxidative stress: in vitro primary cultured rat spinal cord model under oxygen and glucose deprivation-reoxygenation conditions. J Orthop Surg Res 2017; 12:36. [PMID: 28241838 PMCID: PMC5330028 DOI: 10.1186/s13018-017-0536-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/15/2017] [Indexed: 01/21/2023] Open
Abstract
Background Ischemia and the following reperfusion damage are critical mechanisms of spinal cord injury. Statins have been reported to decrease ischemia–reperfusion injury in many organs including the spinal cord. Anti-oxidative effect is one of the main protective mechanisms of statin against neuronal death and cytotoxicity. We hypothesized that statins’ anti-oxidative property would yield neuroprotective effects on spinal cord ischemia–reperfusion injury Methods Primary cultured spinal cord motor neurons were isolated from Sprague–Dawley rat fetuses. Ischemia–reperfusion injury model was induced by 60 min of oxygen and glucose deprivation (OGD) and 24 h of reoxygenation. Healthy and OGD cells were treated with simvastatin at concentrations of 0.1, 1, and 10 μM for 24 h. Cell viability was assessed using water-soluble tetrazolium salt (WST)-8, cytotoxicity with LDH, and production of free radicals with DCFDA (2′,7′-dichlorofluorescein diacetate). Results OGD reduced neuronal viability compared to normoxic control by 35.3%; however, 0.1–10 μM of simvastatin treatment following OGD improved cell survival. OGD increased LDH release up to 214%; however, simvastatin treatment attenuated its cytotoxicity at concentrations of 0.1–10 μM (p < 0.001 and p = 0.001). Simvastatin also reduced deteriorated morphological changes of motor neurons following OGD. Oxidative stress was reduced by simvastatin (0.1–10 μM) compared to untreated cells exposed to OGD (p < 0.001). Conclusions Simvastatin effectively reduced spinal cord neuronal death and cytotoxicity against ischemia–reperfusion injury, probably via modification of oxidative stress.
Collapse
Affiliation(s)
- Hye-Min Sohn
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jin-Young Hwang
- Department of Anesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Jung-Hee Ryu
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jinhee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Seongjoo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Jin-Woo Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Sung-Hee Han
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| |
Collapse
|
6
|
Solevåg AL, Schmölzer GM. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins. Front Pediatr 2017; 5:3. [PMID: 28168185 PMCID: PMC5253459 DOI: 10.3389/fped.2017.00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022] Open
Abstract
Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to ventilation (C:V) ratio, and applied force, which are influenced by the CC provider. Thus, provider performance should be taken into account. Neonatal resuscitation guidelines recommend a 3:1 C:V ratio. CCs should be delivered at a rate of 90/min synchronized with ventilations at a rate of 30/min to achieve a total of 120 events/min. Despite a lack of scientific evidence supporting this, the investigation of alternative CC interventions in human neonates is ethically challenging. Also, the infrequent occurrence of extensive CPR measures in the DR make randomized controlled trials difficult to perform. Thus, many biomechanical aspects of CC have been investigated in animal and manikin models. Despite mathematical and physiological rationales that higher rates and uninterrupted CC improve CPR hemodynamics, studies indicate that provider fatigue is more pronounced when CC are performed continuously compared to when a pause is inserted after every third CC as currently recommended. A higher rate (e.g., 120/min) is also more fatiguing, which affects CC quality. In post-transitional piglets with asphyxia-induced cardiac arrest, there was no benefit of performing continuous CC at a rate of 90/min. Not only rate but duty cycle, i.e., the duration of CC/total cycle time, is a known determinant of CC effectiveness. However, duty cycle cannot be controlled with manual CC. Mechanical/automated CC in neonatal CPR has not been explored, and feedback systems are under-investigated in this population. Evidence indicates that providers perform CC at rates both higher and lower than recommended. Video recording of DR CRP has been increasingly applied and observational studies of what is actually done in relation to outcomes could be useful. Different CC rates and ratios should also be investigated under controlled experimental conditions in animals during perinatal transition.
Collapse
Affiliation(s)
- Anne Lee Solevåg
- The Department of Pediatric and Adolescent Medicine, Akershus University Hospital , Lørenskog , Norway
| | - Georg M Schmölzer
- Centre for the Studies of Asphyxia and Resuscitation, Neonatal Research Unit, Royal Alexandra Hospital , Edmonton, AB , Canada
| |
Collapse
|
7
|
Kikuta S, Murai Y, Tanaka E. Activation of cathepsin L contributes to the irreversible depolarization induced by oxygen and glucose deprivation in rat hippocampal CA1 neurons. Neurosci Lett 2016; 636:120-126. [PMID: 27818353 DOI: 10.1016/j.neulet.2016.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
Abstract
Oxygen and glucose deprivation (OGD) elicits a rapid and irreversible depolarization with a latency of ∼5min in intracellular recordings of hippocampal CA1 neurons in rat slice preparations. In the present study, we examined the role of cathepsin L in the OGD-induced depolarization. OGD-induced depolarizations were irreversible as no recovery of membrane potential was observed. The membrane potential reached 0mV when oxygen and glucose were reintroduced immediately after the onset of the OGD-induced rapid depolarization. The OGD-induced depolarizations became reversible when the slice preparations were pre-incubated with cathepsin L inhibitors (types I and IV at 0.3-2nM and 0.3-30nM, respectively). Moreover, pre-incubation with these cathepsin inhibitors prevented the morphological changes, including swelling of the cell soma and fragmentation of dendrites, observed in control neurons after OGD. These findings suggest that the activation of cathepsin L contributes to the irreversible depolarization produced by OGD.
Collapse
Affiliation(s)
- Shogo Kikuta
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan; Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, Japan.
| | - Yoshinaka Murai
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan.
| | - Eiichiro Tanaka
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
8
|
Abstract
Elevated intracranial pressure (ICP) is a primary cause of morbidity and mortality for many neurologic disorders. The relationship between ICP and brain volume is influenced by autoregulatory processes that can become dysfunctional. As a result, neurologic damage can occur by systemic and intracranial insults such as ischemia and excitatory amino acids. Therefore, survival is dependent on optimizing ICP and cerebral perfusion pressure. Treatment of intracranial hypertension requires intensive monitoring and aggressive therapy. Intracranial pressure monitoring techniques such as intraventricular catheters are useful for determining ICP elevations before changes in vital signs and neurologic status. Therapeutic modalities, generally aimed at reducing cerebral blood volume, brain tissue, and cerebrospinal fluid (CSF) volume, include nonpharmacologic (CSF removal, controlled hyperventilation, and elevating the patient’s head) and pharmacologic management. Mannitol and sedation are first-line agents used to lower ICP. Barbiturate coma may be beneficial in patients with elevated ICP refractory to conventional treatment. The use of prophylactic antiseizure therapy and optimal nutrition prevents significant complication. Currently, investigations are directed at discovering useful neuroprotective agents that prevent secondary neurologic injury.
Collapse
Affiliation(s)
- Beth A. Vanderheyden
- Department of Pharmacy Services, University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD 21201,
| | - Brian D. Buck
- Department of Pharmacy Services, University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD 21201,
| |
Collapse
|
9
|
Solovieva EY, Farrahova KI, Karneev AN, Chipova DT. [Phospholipids metabolism disorders in acute stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:104-112. [PMID: 27045147 DOI: 10.17116/jnevro201611611104-112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The disturbances of cerebral circulation results in the violation of phospholipid metabolism. Activation of lipid peroxidation and protein kinase C and release of intracellular calcium leads to disruption of the homeostasis of phosphatidylcholine. The use of cytidine-5-diphosphocholine, which is used as an intermediate compound in the biosynthesis of phospholipids of the cell membrane, helps to stabilize cell membranes, and reduce the formation of free radicals.
Collapse
Affiliation(s)
| | - K I Farrahova
- Rossijskij natsional'nyj issledovatel'skij meditsinskij universitet im. N.I. Pirogova', Moskva
| | | | - D T Chipova
- Rossijskij natsional'nyj issledovatel'skij meditsinskij universitet im. N.I. Pirogova', Moskva
| |
Collapse
|
10
|
Weaver J, Liu KJ. Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke? A critical review of the literature. Med Gas Res 2015; 5:11. [PMID: 26306184 PMCID: PMC4547432 DOI: 10.1186/s13618-015-0032-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022] Open
Abstract
Stroke, one of the most debilitating cerebrovascular and nuerological diseases, is a serious life-threatening condition and a leading cause of long-term adult disability and brain damage, either directly or by secondary complications. Most effective treatments for stroke are time dependent such as the only FDA-approved therapy, reperfusion with tissue-type plasminogen activator; thus, improving tissue oxygenation with normobaric hyperoxia (NBO) has been considered a logical and potential important therapy. NBO is considered a good approach because of its potential clinical advantages, and many studies suggest that NBO is neuroprotective, reducing ischemic brain injury and infarct volume in addition to improving pathologic and neurobehavorial outcomes. However, increased reactive oxygen species (ROS) generation may occur when tissue oxygen level is too high or too low. Therefore, a major concern with NBO therapy in acute ischemic stroke is the potential increase of ROS, which could exacerbate brain injury. The purpose of this review is to critically review the current literature reports on the effect of NBO treatment on ROS and oxidative stress with respect to acute ischemic stroke. Considering the available data from relevant animal models, NBO does not increase ROS or oxidative stress if applied for a short duration; therefore, the potential that NBO is a viable neuroprotective strategy for acute ischemic stroke is compelling. The benefits of NBO may significantly outweigh the risks of potential increase in ROS generation for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- John Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
11
|
Sun L, Wolferts G, Veltkamp R. Oxygen therapy does not increase production and damage induced by reactive oxygen species in focal cerebral ischemia. Neurosci Lett 2014; 577:1-5. [PMID: 24909618 DOI: 10.1016/j.neulet.2014.05.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022]
Abstract
Oxygen therapy with hyperbaric oxygen (HBO) or normobaric hyperoxia (NBO) improves outcome in experimental cerebral ischemia. However, an increased formation of reactive oxygen species (ROS) may be an undesirable side effect of oxygen therapy. We investigated the effect of both oxygen therapies on ROS production and adverse effects in murine focal ischemia. 25 min after 90 min filament-induced middle cerebral artery occlusion (MCAO), mice breathed either air, 100% O2 (NBO), or 100% O2 at 3 ata (HBO) for 60 min. ROS were depicted on tissue sections after preischemic injection of hydroethidine, a marker of in vivo superoxide production. Moreover, infarct sizes were quantified in experiments using peroxybutinitrite (PBN) in mice treated with HBO. Effects of oxygen therapy were also tested in superoxide 2 knock-out mice. Both NBO and HBO significantly reduced superoxide radicals compared to air. Application of PBN had no additional protective effect when combined with HBO. Infarct volumes did not differ among SOD2 knock-out mice receiving air (34.0 ± 19.6mm(3)), NBO (35.4 ± 14.3mm(3)) or HBO (33.4 ± 12.2mm(3)). In conclusion, brief episodes of oxygen therapy do not appear to promote damage inflicted by ROS in experimental stroke.
Collapse
Affiliation(s)
- Li Sun
- Department of Neurology, Ruprecht-Karls-University Heidelberg, Germany.
| | | | - Roland Veltkamp
- Department of Neurology, Ruprecht-Karls-University Heidelberg, Germany.
| |
Collapse
|
12
|
Kim YB, Oh SH, Sok DE, Kim MR. Neuroprotective Effect of Maltol Against Oxidative Stress in Brain of Mice Challenged with Kainic Acid. Nutr Neurosci 2013; 7:33-9. [PMID: 15085556 DOI: 10.1080/10284150310001653604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The neuroprotective effect of maltol on oxidative damage in the brain of mice challenged with kainic acid was examined. Male ICR mice, 6-8 weeks of age, were administered orally with maltol (50 or 100 mg/kg) for 5 consecutive days. Thirty minutes after the final administration, the animals were challenged s.c. with kainic acid (50 mg/kg), and neurobehavioral activities were monitored. In addition, biomarkers of oxidative stress and neuronal loss in hippocampus for the biochemical and morphological evaluations were analyzed 2 days after the kainic acid challenge. During 5-day treatment with maltol, the body weight gain was not significantly different from that of vehicle-treated control animals. Administration of kainic acid alone induced severe epileptiform seizures, causing a lethality of approximately 50%, and injuries of pyramidals cells in hippocampus of mice survived the challenge. Kainic acid exposure also resulted in marked decreases in total glutathione level and glutathione peroxidase activity, and an increase in thiobarbituric acid-reactive substances (TBARS) value in brain tissues. In comparison, coadministration with maltol (100 mg/kg) remarkably attenuated the neurobehavioral signs and neuronal loss in hippocampus, leading to a decrease in mortality of animals to 12.5% (p < 0.05), although maltol at a dose of 50 mg/kg failed to show any remarkable protection. In addition, the changes in glutathione and TBARS values and glutathione peroxidase activity induced by kainic acid were restored to control levels by pretreatment with maltol (100 mg/kg). On the basis of these results, maltol is suggested to be a functional agent to prevent the oxidative damage in the brain of mice.
Collapse
Affiliation(s)
- Yun-Bae Kim
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | |
Collapse
|
13
|
Ghosh A, Sarkar S, Mandal AK, Das N. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats. PLoS One 2013; 8:e57735. [PMID: 23620721 PMCID: PMC3631169 DOI: 10.1371/journal.pone.0057735] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
Cerebral stroke is the leading cause of death and permanent disability among elderly people. In both humans and animals, cerebral ischemia damages the nerve cells in vulnerable regions of the brain, viz., hippocampus, cerebral cortex, cerebellum, and hypothalamus. The present study was conducted to evaluate the therapeutic efficacy of nanoencapsulated quercetin (QC) in combating ischemia-reperfusion-induced neuronal damage in young and aged Swiss Albino rats. Cerebral ischemia was induced by occlusion of the common carotid arteries of both young and aged rats followed by reperfusion. Nanoencapsulated quercetin (2.7 mg/kg b wt) was administered to both groups of animals via oral gavage two hours prior to ischemic insults as well as post-operation till day 3. Cerebral ischemia and 30 min consecutive reperfusion caused a substantial increase in lipid peroxidation, decreased antioxidant enzyme activities and tissue osmolality in different brain regions of both groups of animals. It also decreased mitochondrial membrane microviscosity and increased reactive oxygen species (ROS) generation in different brain regions of young and aged rats. Among the brain regions studied, the hippocampus appeared to be the worst affected region showing increased upregulation of iNOS and caspase-3 activity with decreased neuronal count in the CA1 and CA3 subfields of both young and aged rats. Furthermore, three days of continuous reperfusion after ischemia caused massive damage to neuronal cells. However, it was observed that oral treatment of nanoencapsulated quercetin (2.7 mg/kg b wt) resulted in downregulation of iNOS and caspase-3 activities and improved neuronal count in the hippocampal subfields even 3 days after reperfusion. Moreover, the nanoformulation imparted a significant level of protection in the antioxidant status in different brain regions, thus contributing to a better understanding of the given pathophysiological processes causing ischemic neuronal damage.
Collapse
Affiliation(s)
- Aparajita Ghosh
- Biomembrane Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | - Sibani Sarkar
- Biomembrane Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Ardhendu K. Mandal
- Biomembrane Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Nirmalendu Das
- Biomembrane Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Sun L, Tian X, Gou L, Ling X, Wang L, Feng Y, Yin X, Liu Y. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia-reperfusion injury in rats. Can J Physiol Pharmacol 2013; 91:562-9. [PMID: 23826680 DOI: 10.1139/cjpp-2012-0309] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Theanine and caffeine, 2 naturally occurring components in tea, have repeatedly been shown to deliver unique cognitive benefits when consumed in combination. In this study, we assessed the beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral damage in rats. Theanine and caffeine had no effect on physiological variables, including pH, partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2), mean arterial blood pressure, plasma glucose, or regional cerebral blood flow. Treatment with theanine (1 mg/kg body mass, intraperitoneal injection) alone significantly reduced cerebral infarction induced by cerebral ischemia-reperfusion, but caffeine (10 mg/kg, intravenous administration) alone only had a marginal effect. However, the combination of theanine plus caffeine resulted in a significant reduction of cerebral infarction and brain edema compared with theanine monotherapy. Meanwhile, increased malondialdehyde levels as well as decreased superoxide dismutase activity, glutathione peroxidase activity, and glutathione levels observed in the cerebral cortex after cerebral ischemia-reperfusion were significantly ameliorated by the combination therapy. Furthermore, the elevated inflammatory response levels observed in the cortex after cerebral ischemia-reperfusion were markedly attenuated by the combined treatment. Thus, it is suggested that the neuroprotective potential of a combination therapy with theanine and caffeine against cerebral ischemia-reperfusion is partly ascribed to their antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Lingyan Sun
- Xuzhou Medical College, Department of Pharmacology, School of Pharmacy, Xuzhou Medical College, 84 West Huaihai Road, Xuzhou 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab 2013; 33:583-92. [PMID: 23385198 PMCID: PMC3618396 DOI: 10.1038/jcbfm.2012.209] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stroke is one of the major causes of death and disability in the United States. After cerebral ischemia and reperfusion injury, the generation of reactive oxygen species (ROS) and reactive nitrogen species may contribute to the disease process through alterations in the structure of DNA, RNA, proteins, and lipids. We generated various nanoparticles (liposomes, polybutylcyanoacrylate (PBCA), or poly(lactide-co-glycolide) (PLGA)) that contained active superoxide dismutase (SOD) enzyme (4,000 to 20,000 U/kg) in the mouse model of cerebral ischemia and reperfusion injury to determine the impact of these molecules. In addition, the nanoparticles were untagged or tagged with nonselective antibodies or antibodies directed against the N-methyl-D-aspartate (NMDA) receptor 1. The nanoparticles containing SOD protected primary neurons in vitro from oxygen-glucose deprivation (OGD) and limited the extent of apoptosis. The nanoparticles showed protection against ischemia and reperfusion injury when applied after injury with a 50% to 60% reduction in infarct volume, reduced inflammatory markers, and improved behavior in vivo. The targeted nanoparticles not only showed enhanced protection but also showed localization to the CA regions of the hippocampus. Nanoparticles alone were not effective in reducing infarct volume. These studies show that targeted nanoparticles containing protective factors may be viable candidates for the treatment of stroke.
Collapse
|
16
|
Lee MCI. Assessment of oxidative stress and antioxidant property using electron spin resonance (ESR) spectroscopy. J Clin Biochem Nutr 2012; 52:1-8. [PMID: 23341690 PMCID: PMC3541412 DOI: 10.3164/jcbn.12-58] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/10/2012] [Indexed: 01/17/2023] Open
Abstract
The pathophysiology of hypertension or stroke is associated with an excess of ROS generation in the vascular system, and results in induction of various pathological cascades of cerebrovascular damage. We have demonstrated that electron spin resonance methods using a spin trap or spin probe will be useful for understanding redox status under conditions of oxidative stress in the spontaneously hypertensive rat or stroke-prone spontaneously hypertensive rat brain. We have used electron spin resonance imaging and noninvasive L-band electron spin resonance to characterize the higher degree of brain oxidative stress in the stroke-prone spontaneously hypertensive rat and spontaneously hypertensive rat than in the Wistar-Kyoto rat brain, and the lower extent of oxidative stress in the spontaneously hypertensive rat than in the stroke-prone spontaneously hypertensive rat brain. Indeed, we may be able to confirm propofol medium-chain triglyceride/long-chain triglyceride (MCT/LCT) as neuroprotective anesthesia and crocetin as antioxidant food factor against human stroke after screening for antioxidant properties in stroke models such as stroke-prone spontaneously hypertensive rat. Thus, our electron spin resonance biomedical application suggests that it could be used to assess antioxidant effects on oxidative stress in the brain using spontaneously hypertensive rat and stroke-prone spontaneously hypertensive rat. We hope that further advances in the instrumentation used for electron spin resonance imaging and the development of optimized nontoxic spin probes will make this technology even more promising for novel clinical prediction or noninvasive diagnosis of human stroke. After screening drugs or foods for antioxidant property using in vitro or in vivo electron spin resonance assessment, it will be possible to find and develop novel drugs or food factors with such properties for the prevention of stroke in the near future.
Collapse
Affiliation(s)
- Masaichi-Chang-Il Lee
- Department of Clinical Care Medicine, Division of Pharmacology and ESR Laboratories, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
17
|
Itoh T, Tabuchi M, Mizuguchi N, Imano M, Tsubaki M, Nishida S, Hashimoto S, Matsuo K, Nakayama T, Ito A, Munakata H, Satou T. Neuroprotective effect of (-)-epigallocatechin-3-gallate in rats when administered pre- or post-traumatic brain injury. J Neural Transm (Vienna) 2012. [PMID: 23180302 DOI: 10.1007/s00702-012-0918-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our previous study indicated that consuming (-)-epigallocatechin gallate (EGCG) before or after traumatic brain injury (TBI) eliminated free radical generation in rats, resulting in inhibition of neuronal degeneration and apoptotic death, and improvement of cognitive impairment. Here we investigated the effects of administering EGCG at various times pre- and post-TBI on cerebral function and morphology. Wistar rats were divided into five groups and were allowed access to (1) normal drinking water, (2) EGCG pre-TBI, (3) EGCG pre- and post-TBI, (4) EGCG post-TBI, and (5) sham-operated group with access to normal drinking water. TBI was induced with a pneumatic controlled injury device at 10 weeks of age. Immunohistochemistry and lipid peroxidation studies revealed that at 1, 3, and 7 days post-TBI, the number of 8-Hydroxy-2'-deoxyguanosine-, 4-Hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells, and levels of malondialdehyde around the damaged area were significantly decreased in all EGCG treatment groups compared with the water group (P < 0.05). Although there was a significant increase in the number of surviving neurons after TBI in each EGCG treatment group compared with the water group (P < 0.05), significant improvement of cognitive impairment after TBI was only observed in the groups with continuous and post-TBI access to EGCG (P < 0.05). These results indicate that EGCG inhibits free radical-induced neuronal degeneration and apoptotic death around the area damaged by TBI. Importantly, continuous and post-TBI access to EGCG improved cerebral function following TBI. In summary, consumption of green tea may be an effective therapy for TBI patients.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama, Osaka, 589-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Appearance of neural stem cells around the damaged area following traumatic brain injury in aged rats. J Neural Transm (Vienna) 2012; 120:361-74. [PMID: 22955958 DOI: 10.1007/s00702-012-0895-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/12/2012] [Indexed: 10/27/2022]
Abstract
We have previously reported free radical production after traumatic brain injury (TBI), which induces neural stem cell (NSC) degeneration and death. However, the effects of aging on NSC proliferation around the damaged area following TBI have not been investigated. Therefore, in this study, we used 10-week (young group) and 24-month-old (aged group) rat TBI models to investigate the effects of aging on NSC proliferation around damaged tissue using immunohistochemical and ex vivo techniques. Young and aged rats received TBI. At 1, 3 and 7 days after TBI, immunohistochemical and lipid peroxidation studies were performed. Immunohistochemistry revealed that the number of nestin-positive cells around the damaged area after TBI in the aged group decreased significantly when compared with those in the young group (P < 0.01). However, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells and the level of peroxidation around the damaged area after TBI significantly increased in the aged group, compared with those in the young group (P < 0.01). Furthermore, almost all ssDNA-positive cells in young and aged groups co-localized with NeuN and nestin staining. Ex vivo studies revealed that neurospheres, which differentiated into neurons and glia in culture, could only be isolated from injured brain tissue in young and aged groups at 3 days after TBI. These results indicate that, although there were fewer NSCs that have the potential to differentiate into neurons and glia, these NSCs escaped free radical-induced degeneration around the damaged area after TBI in the aged rat brain.
Collapse
|
19
|
Itoh T, Imano M, Nishida S, Tsubaki M, Mizuguchi N, Hashimoto S, Ito A, Satou T. Increased apoptotic neuronal cell death and cognitive impairment at early phase after traumatic brain injury in aged rats. Brain Struct Funct 2012; 218:209-20. [PMID: 22374222 DOI: 10.1007/s00429-012-0394-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/31/2012] [Indexed: 01/29/2023]
Abstract
Progressive age-associated increases in cerebral dysfunction have been shown to occur following traumatic brain injury (TBI). Moreover, levels of neuronal mitochondrial antioxidant enzymes in the aged brain are reduced, resulting in free radical-induced cell death. It was hypothesized that cognitive impairment after TBI in the aged progresses to a greater degree than in younger individuals, and that damage involves neuronal degeneration and death by free radicals. In this study, we investigated the effects of free radicals on neuronal degeneration, cell death, and cognitive impairment in 10-week-old (young group) and 24-month-old rats (aged group) subjected to TBI. Young and aged rats received TBI with a pneumatic controlled injury device. At 1, 3 and 7 days after TBI, immunohistochemistry, lipid peroxidation and behavioral studies were performed. At 1, 3 and 7 days post-TBI, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells, and the levels of malondialdehyde around the damaged area after TBI significantly increased in the aged group when compared with the young group (P < 0.05). In addition, the majority of ssDNA-positive cells in both groups co-localized with neuronal cells around the damaged area. There was a significant decrease in the number of surviving neurons and an increase in cognitive impairment after TBI in the aged group when compared with the young group (P < 0.05). These results indicate that following TBI, high levels of free radicals are produced in the aged rat brain, which induces neuronal degeneration and apoptotic cell death around the damaged area, resulting in cognitive impairment.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Faculty of Medicine, Kinki University, 377-2 Ohno-higashi, Osakasayama, Osaka 589-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Itoh T, Imano M, Nishida S, Tsubaki M, Mizuguchi N, Hashimoto S, Ito A, Satou T. (-)-Epigallocatechin-3-gallate increases the number of neural stem cells around the damaged area after rat traumatic brain injury. J Neural Transm (Vienna) 2012; 119:877-90. [PMID: 22212485 DOI: 10.1007/s00702-011-0764-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
Abstract
A major component of green tea is (-)-epigallocatechin gallate (EGCG), which has strong antioxidant properties. Here, we investigated the effect of EGCG on neural stem cell (NSC) proliferation around the damaged area following traumatic brain injury (TBI). In this study, male Wistar rats that had access to normal drinking water, or water containing 0.1% (w/v) EGCG, ad libitum received TBI at 10 weeks of age. Immunohistochemistry revealed that the number of nestin-positive cells around the damaged area after TBI in the EGCG treatment group increased significantly compared with the normal water group (P < 0.05). However, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal-, single-stranded DNA (ssDNA)-positive cells and the level of peroxidation around the damaged area after TBI significantly decreased in the EGCG treatment group when compared with the water group (P < 0.05). Furthermore, in contrast to the EGCG group, almost all ssDNA-positive cells in the water group co-localized with NeuN and nestin-staining. Ex vivo studies revealed that spheres could only be isolated from injured brain tissue in the water group at 3 days following TBI. However, in the EGCG group, spheres could be isolated at both 3 and 7 days following TBI. A greater number of spheres could be isolated from the EGCG group, which differentiated into neurons and glia in culture without basic fibroblast growth factor. These results indicate that consumption of water containing EGCG pre- and post-TBI inhibits free radical-induced degradation of NSCs, which have the potential to differentiate into neurons and glia around the area of damage following TBI.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osakasayama, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T. (-)-Epigallocatechin-3-gallate protects against neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neuromolecular Med 2011; 13:300-9. [PMID: 22038400 DOI: 10.1007/s12017-011-8162-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/07/2011] [Indexed: 12/17/2022]
Abstract
A major component of green tea, a widely consumed beverage, is (-)-epigallocatechin gallate (EGCG), which has strong antioxidant properties. Our previous study has indicated that free radical production following rat traumatic brain injury (TBI) induces neural degeneration. In this study, we investigated the effects of EGCG on cerebral function and morphology following TBI. Six-week-old male Wistar rats that had access to normal drinking water, or water containing 0.1% (w/v) EGCG ad libitum, received TBI with a pneumatic controlled injury device at 10 weeks of age. Immunohistochemistry and lipid peroxidation studies revealed that at 1, 3 and 7 days post-TBI, the number of 8-hydroxy-2'-deoxyguanosine-, 4-hydroxy-2-nonenal- and single-stranded DNA (ssDNA)-positive cells, and the levels of malondialdehyde (MDA) around the damaged area after TBI, significantly decreased in the EGCG treatment group compared with the water group (P < 0.05). Most ssDNA-positive cells in the water group co-localized with neuronal cells. However, in the EGCG treatment group, few ssDNA-positive cells co-localized with neurons. In addition, there was a significant increase in the number of surviving neuronal cells and an improvement in cerebral dysfunction after TBI in the EGCG treatment group compared with the water group (P < 0.05). These results indicate that consumption of water containing EGCG pre- and post-TBI inhibits free radical-induced neuronal degeneration and apoptotic cell death around the damaged area, resulting in the improvement of cerebral function following TBI. In summary, consumption of green tea may be an effective therapy for TBI patients.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Faculty of Medicine, Kinki University, 377-2, Ohno-higashi, Osakasayama-city, Osaka, 589-8511, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ethanol-induced vasoconstriction is mediated via redox-sensitive cyclo-oxygenase-dependent mechanisms. Clin Sci (Lond) 2010; 118:657-68. [PMID: 19954424 DOI: 10.1042/cs20090352] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study investigated the role of ROS (reactive oxygen species) and COX (cyclo-oxygenase) in ethanol-induced contraction and elevation of [Ca2+]i (intracellular [Ca2+]). Vascular reactivity experiments, using standard muscle bath procedures, showed that ethanol (1-800 mmol/l) induced contraction in endothelium-intact (EC50: 306+/-34 mmol/l) and endothelium -denuded (EC50: 180+/-40 mmol/l) rat aortic rings. Endothelial removal enhanced ethanol-induced contraction. Preincubation of intact rings with L-NAME [NG-nitro-L-arginine methyl ester; non-selective NOS (NO synthase) inhibitor, 100 micromol/l], 7-nitroindazole [selective nNOS (neuronal NOS) inhibitor, 100 micromol/l], oxyhaemoglobin (NO scavenger, 10 micromol/l) and ODQ (selective inhibitor of guanylate cyclase enzyme, 1 micromol/l) increased ethanol-induced contraction. Tiron [O2- (superoxide anion) scavenger, 1 mmol/l] and catalase (H2O2 scavenger, 300 units/ml) reduced ethanol-induced contraction to a similar extent in both endothelium-intact and denuded rings. Similarly, indomethacin (non-selective COX inhibitor, 10 micromol/l), SC560 (selective COX-1 inhibitor, 1 micromol/l), AH6809 [PGF2alpha (prostaglandin F2alpha)] receptor antagonist, 10 micromol/l] or SQ29584 [PGH2(prostaglandin H2)/TXA2 (thromboxane A2) receptor antagonist, 3 micromol/l] inhibited ethanol-induced contraction in aortic rings with and without intact endothelium. In cultured aortic VSMCs (vascular smooth muscle cells), ethanol stimulated generation of O2- and H2O2. Ethanol induced a transient increase in [Ca2+]i, which was significantly inhibited in VSMCs pre-exposed to tiron or indomethacin. Our data suggest that ethanol induces vasoconstriction via redox-sensitive and COX-dependent pathways, probably through direct effects on ROS production and Ca2+ signalling. These findings identify putative molecular mechanisms whereby ethanol, at high concentrations, influences vascular reactivity. Whether similar phenomena occur in vivo at lower concentrations of ethanol remains unclear.
Collapse
|
23
|
Zahedi K, Huttinger F, Morrison R, Murray-Stewart T, Casero RA, Strauss KI. Polyamine catabolism is enhanced after traumatic brain injury. J Neurotrauma 2010; 27:515-25. [PMID: 19968558 PMCID: PMC2867553 DOI: 10.1089/neu.2009.1097] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N(1)-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6-24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6-24 h), then increased by approximately 50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6-72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24-72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Francis Huttinger
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ryan Morrison
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Tracy Murray-Stewart
- Department of Oncology, The Johns Hopkins University College of Medicine, Baltimore, Maryland
| | - Robert A. Casero
- Department of Oncology, The Johns Hopkins University College of Medicine, Baltimore, Maryland
| | - Kenneth I. Strauss
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
24
|
Demir T, Turgut B, Ozercan I, Gul FC, Ilhan N, Celiker U. Trimetazidine for prevention of induced ischemia and reperfusion of guinea pig retina. Clin Ophthalmol 2010; 4:21-6. [PMID: 20169045 PMCID: PMC2819765 DOI: 10.2147/opth.s8409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Trimetazidine (TMZ) has been used to protect against ischemia/reperfusion (I/R) injury of many tissues. We aimed to evaluate the effect of TMZ during retinal I/R in a guinea pig model. STUDY DESIGN/PATIENTS AND METHODS An experimental study in retinal I/R. Three groups of five guinea pigs were studied to include a control, placebo, and drug test groups. Prior to the application of 90 minutes of high intraocular pressure (IOP) to induce retinal ischemia followed by 24 hours of reperfusion, we applied intraperitoneal saline to the placebo group and 3 mg/kg of TMZ for the drug test group and repeated the injections at intervals of six hours for four cycles. Both eyes of the animals were enucleated at the end of the reperfusion period. Biochemical assay and histopathologic evaluation was performed on one randomly selected eye of each animal. The level of retinal-free malondialdehyde (MDA) and retinal layer thicknesses were determined and comparisons were then made with the control group. RESULTS The mean free MDA level increased in the placebo group (P = 0.006) but not in the drug group (P > 0.05). We observed polymorphonucleated leukocyte infiltration, retinal edema and hydropic degeneration in the retina of the placebo group. However, significant histopathologic change was not observed in specimens of the drug group. CONCLUSIONS This study suggests TMZ has a beneficial effect on retinal lipid peroxidation and histopathologic changes due to I/R injury.
Collapse
Affiliation(s)
- T Demir
- Department of Ophthalmology, Firat University School of Medicine, Elazig, Turkey
| | | | | | | | | | | |
Collapse
|
25
|
Lao F, Chen L, Li W, Ge C, Qu Y, Sun Q, Zhao Y, Han D, Chen C. Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. ACS NANO 2009; 3:3358-3368. [PMID: 19839607 DOI: 10.1021/nn900912n] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There is a dearth in fundamental cellular-level understanding of how nanoparticles interact with the cells of the blood brain barrier (BBB), particularly under the oxidative environment. The apoptosis of cerebral microvessel endothelial cells (CMECs) induced by oxidative stress injury plays a key role in the dysfunction of BBB. By use of CMECs as an in vitro BBB model, we show for the first time that C(60)(C(COOH)(2))(2) nanoparticles can selectively enter oxidized CMECs rather than normal cells, and maintain CMECs integrity by attenuating H(2)O(2)-induced F-actin depolymerization via the observation of several state-of-the art microscopic techniques. Additionally, we have found that C(60)(C(COOH)(2))(2) nanoparticles greatly inhibit the apoptosis of CMECs induced by H(2)O(2), which is related to their modulation of the JNK pathway. C(60)(C(COOH)(2))(2) nanoparticles can regulate several downstream signaling events related to the JNK pathway, including reduction of JNK phosphorylation, activation of activator protein 1 (AP-1) and caspase-3, and inhibition of polyADP-ribose polymerase (PARP) cleavage and mitochondrial cytochrome c release. Our results indicate that C(60)(C(COOH)(2))(2) nanoparticles possess a novel ability of selectively entering oxidation-damaged cerebral endothelial cells rather than normal endothelial cells and then protecting them from apoptosis.
Collapse
Affiliation(s)
- Fang Lao
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Edaravone protects against apoptotic neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neurochem Res 2009; 35:348-55. [PMID: 19768539 DOI: 10.1007/s11064-009-0061-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
Abstract
Edaravone is a novel free radical scavenger used clinically in patients with acute cerebral infarction; however, it has not been assessed in traumatic brain injury (TBI). We investigated the effects of edaravone on cerebral function and morphology following TBI. Rats received TBI with a pneumatic controlled injury device. Edaravone (3 mg/kg) or physiological saline was administered intravenously following TBI. Numbers of 8-OHdG-, 4-HNE-, and ssDNA-positive cells around the damaged area after TBI were significantly decreased in the edaravone group compared with the saline group (P < 0.01). There was a significant increase in neuronal cell number and improvement in cerebral dysfunction after TBI in the edaravone group compared with the saline group (P < 0.01). Edaravone administration following TBI inhibited free radical-induced neuronal degeneration and apoptotic cell death around the damaged area. In summary, edaravone treatment improved cerebral dysfunction following TBI, suggesting its potential as an effective clinical therapy.
Collapse
|
27
|
Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, Ito H. The novel free radical scavenger, edaravone, increases neural stem cell number around the area of damage following rat traumatic brain injury. Neurotox Res 2009; 16:378-89. [PMID: 19590930 DOI: 10.1007/s12640-009-9081-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/31/2009] [Accepted: 06/30/2009] [Indexed: 11/30/2022]
Abstract
Edaravone is a novel free radical scavenger that is clinically employed in patients with acute cerebral infarction, but has not previously been used to treat traumatic brain injury (TBI). In this study, we investigated the effect of edaravone administration on rat TBI. In particular, we used immunohistochemistry to monitor neural stem cell (NSC) proliferation around the area damaged by TBI. Two separate groups of rats were administered saline or edaravone (3 mg/kg) after TBI and then killed chronologically. We also used ex vivo techniques to isolate NSCs from the damaged region and observed nestin-positive cells at 1, 3, and 7 days following TBI in both saline- and edaravone-treated groups. At 3 days following TBI in both groups, there were many large cells that morphologically resembled astrocytes. At 1 and 7 days following TBI in the saline group, there were a few small nestin-positive cells. However, in the edaravone group, there were many large nestin-positive cells at 7 days following TBI. At 3 and 7 days following TBI, the number of nestin-positive cells in the edaravone group increased significantly compared with the saline group. There were many single-stranded DNA-, 8-hydroxy-2'-deoxyguanosine-, and 4-hydroxy-2-nonenal-positive cells in the saline group following TBI, but only a few such cells in the edaravone group following TBI. Furthermore, almost all ssDNA-positive cells in the saline group co-localized with Hu, nestin, and glial fibrillary acidic protein (GFAP) staining, but not in the edaravone group. In the ex vivo study, spheres could only be isolated from injured brain tissue in the saline group at 3 days following TBI. However, in the edaravone group, spheres could be isolated from injured brain tissue at both 3 and 7 days following TBI. The number of spheres isolated from injured brain tissue in the edaravone group showed a significant increase compared with the saline group. The spheres isolated from both saline and edaravone groups were immunopositive for nestin, but not Tuj1 or vimentin. Moreover, the spheres differentiated into Tuj1-, GFAP-, and O4-positive cells after 4 days in culture without bFGF. This result indicated that the spheres were neurospheres composed of NSCs that could differentiate into neurons and glia. Edaravone administration inhibited production of free radicals known to induce neuronal degeneration and cell death after brain injury, and protected nestin-positive cells, including NSCs, with the potential to differentiate into neurons and glia around the area damaged by TBI.
Collapse
Affiliation(s)
- Tatsuki Itoh
- Department of Pathology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 2009; 111:483-95. [PMID: 19446389 DOI: 10.1016/j.clineuro.2009.04.001] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/04/2009] [Accepted: 04/06/2009] [Indexed: 01/24/2023]
Abstract
There is an urgent need for improved diagnostics and therapeutics for acute ischemic stroke. This is the focus of numerous research projects involving in vitro studies, animal models and clinical trials, all of which are based on current knowledge of disease mechanisms underlying acute focal cerebral ischemia. Insight in the chain of events occurring during acute ischemic injury is essential for understanding current and future diagnostic and therapeutic approaches. In this review, we summarize the actual knowledge on the pathophysiology of acute ischemic stroke. We focus on the ischemic cascade, which is a complex series of neurochemical processes that are unleashed by transient or permanent focal cerebral ischemia and involves cellular bioenergetic failure, excitotoxicity, oxidative stress, blood-brain barrier dysfunction, microvascular injury, hemostatic activation, post-ischemic inflammation and finally cell death of neurons, glial and endothelial cells.
Collapse
Affiliation(s)
- R Brouns
- Department of Neurology and Memory Clinic, Middelheim General Hospital, Antwerp, Belgium
| | | |
Collapse
|
29
|
Abstract
This article summarizes perspectives on how reactive oxygen species (ROS) and redox signaling mechanisms participate in regulating vascular smooth muscle function that have resulted from our studies over the past 25 years in areas including oxygen sensing and the regulation of cGMP production by soluble guanylate cyclase (sGC) that were presented in the Robert M. Berne Distinguished Lectureship at the 2008 Experimental Biology Meeting. It considers mechanisms controlling the activity of sources of ROS including Nox oxidases and mitochondria by physiological stimuli, vascular diseases processes, and metabolic mechanisms linked to NAD(P)H redox and hypoxia. Metabolic interactions of individual ROS such as hydrogen peroxide with cellular peroxide metabolizing enzymes are viewed as some of the most sensitive ways of influencing cellular signaling systems. The control of cytosolic NADPH redox also seems to be a major contributor to bovine coronary arterial relaxation to hypoxia, where its oxidation functions to coordinate the lowering of intracellular calcium, whereas increased cytosolic NADPH generation in pulmonary arteries appears to maintain elevated Nox oxidase activity, and relaxation to hydrogen peroxide, which is attenuated by hypoxia. The sensitivity of sGC to nitric oxide seems to be regulated by thiol and heme redox systems controlled by cytosolic NADPH. Heme biosynthesis and metabolism are also important factors regulating the sGC system. The signaling pathways controlling oxidases and their colocalization with redox-regulated systems enables selective activation of numerous regulatory mechanisms influencing vascular function in physiological processes and the progression of aging-associated vascular diseases.
Collapse
Affiliation(s)
- Michael S Wolin
- Dept. of Physiology, Basic Science Bldg., Rm 604, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
30
|
Ortiz GG, Benítez-King GA, Rosales-Corral SA, Pacheco-Moisés FP, Velázquez-Brizuela IE. Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders. Curr Neuropharmacol 2008; 6:203-14. [PMID: 19506721 PMCID: PMC2687933 DOI: 10.2174/157015908785777201] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 01/01/2008] [Accepted: 02/19/2008] [Indexed: 01/21/2023] Open
Abstract
Molecular oxygen is toxic for anaerobic organisms but it is also obvious that oxygen is poisonous to aerobic organisms as well, since oxygen plays an essential role for inducing molecular damage. Molecular oxygen is a triplet radical in its ground-stage (.O-O.) and has two unpaired electrons that can undergoes consecutive reductions of one electron and generates other more reactive forms of oxygen known as free radicals and reactive oxygen species. These reactants (including superoxide radicals, hydroxyl radicals) possess variable degrees of toxicity. Nitric oxide (NO*) contains one unpaired electron and is, therefore, a radical. NO* is generated in biological tissues by specific nitric oxide synthases and acts as an important biological signal. Excessive nitric oxide production, under pathological conditions, leads to detrimental effects of this molecule on tissues, which can be attributed to its diffusion-limited reaction with superoxide to form the powerful and toxic oxidant, peroxynitrite.Reactive oxygen and nitrogen species are molecular "renegades"; these highly unstable products tend to react rapidly with adjacent molecules, donating, abstracting, or even sharing their outer orbital electron(s). This reaction not only changes the target molecule, but often passes the unpaired electron along to the target, generating a second free radical, which can then go on to react with a new target amplifying their effects.This review describes the mechanisms of oxidative damage and its relationship with the most highly studied neurodegenerative diseases and the roles of melatonin as free radical scavenger and neurocytoskeletal protector.
Collapse
Affiliation(s)
- Genaro G Ortiz
- Laboratorio de Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social, IMSS, Sierra Mojada 800 C.P. 44340 Guadalajara, Jalisco, México.
| | | | | | | | | |
Collapse
|
31
|
Arrick DM, Sharpe GM, Sun H, Mayhan WG. Losartan improves impaired nitric oxide synthase-dependent dilatation of cerebral arterioles in type 1 diabetic rats. Brain Res 2008; 1209:128-35. [PMID: 18400212 DOI: 10.1016/j.brainres.2008.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/16/2022]
Abstract
We examined whether activation of angiotensin-1 receptors (AT1R) could account for impaired responses of cerebral arterioles during type 1 diabetes (T1D). First, we measured responses of cerebral arterioles in nondiabetic rats to eNOS-dependent (acetylcholine and adenosine diphosphate (ADP)) and -independent (nitroglycerin) agonists before and during application of angiotensin II. Next, we examined whether losartan could improve impaired responses of cerebral arterioles during T1D. In addition, we harvested cerebral microvessels for Western blot analysis of AT1R protein and measured production of superoxide anion by brain tissue under basal conditions and in response to angiotensin II in the absence or presence of losartan. We found that angiotensin II specifically impaired eNOS-dependent reactivity of cerebral arterioles. In addition, while losartan did not alter responses in nondiabetics, losartan restored impaired eNOS-dependent vasodilatation in diabetics. Further, AT1R protein was higher in diabetics compared to nondiabetics. Finally, superoxide production was higher in brain tissue from diabetics compared to nondiabetics under basal conditions, angiotensin II increased superoxide production in nondiabetics and diabetics, and losartan decreased basal (diabetics) and angiotensin II-induced production of superoxide (nondiabetics and diabetics). We suggest that activation of AT1R during T1D plays a critical role in impaired eNOS-dependent dilatation of cerebral arterioles.
Collapse
Affiliation(s)
- Denise M Arrick
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
32
|
Navarro D, Zwingmann C, Chatauret N, Butterworth RF. Glucose loading precipitates focal lactic acidosis in the vulnerable medial thalamus of thiamine-deficient rats. Metab Brain Dis 2008; 23:115-22. [PMID: 18034292 DOI: 10.1007/s11011-007-9076-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 09/23/2007] [Indexed: 11/30/2022]
Abstract
Glucose loading in thiamine-deficient patients is known to precipitate Wernicke's Encephalopathy; however, the mechanisms responsible have not been fully elucidated. Lactate accumulation occurs in brains of thiamine-deficient rats. In order to determine whether glucose loading in thiamine-deficient rats causes selective lactic acidosis in vulnerable brain structures, cerebral pH was measured autoradiographically using 14-labeled 5,5-dimethyloxazolidine-2, 4-dione ([(14)C]DMO) in the medial thalamus, a vulnerable brain region, versus cerebral cortex, a brain region that is spared in thiamine deficiency. Following administration of a glucose load, regional lactate levels and de novo lactate synthesis measured by (1)H-(13)C-NMR spectroscopy, increased significantly to 21.86 +/- 3.04 mumol/g (wet weight) in the medial thalamus (p < 0.001) and pH in this brain region was decreased significantly from 7.08 +/- 0.04 to 6.87 +/- 0.05 (p < 0.001). No such changes were observed in cerebral cortex following a glucose load. These results demonstrate that the increased production and accumulation of brain lactate result in acidosis following glucose loading in thiamine deficiency. Alterations of brain pH could contribute to the pathogenesis of thalamic neuronal damage and consequent cerebral dysfunction in Wernicke's Encephalopathy.
Collapse
Affiliation(s)
- Darren Navarro
- Neuroscience Research Unit, CHUM (Campus Saint-Luc), University of Montreal, 1058 Saint-Denis Street, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Platholi J, Heerdt PM, Lim Tung HY, Hemmings HC. Activation of brain protein phosphatase-1(I) following cardiac arrest and resuscitation involving an interaction with 14-3-3 gamma. J Neurochem 2008; 105:2029-38. [PMID: 18284617 DOI: 10.1111/j.1471-4159.2008.05300.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The intracellular signaling mechanisms that couple transient cerebral ischemia to cell death and neuroprotective mechanisms provide potential therapeutic targets for cardiac arrest. Protein phosphatase (PP)-1 is a major serine/threonine phosphatase that interacts with and dephosphorylates critical regulators of energy metabolism, ionic balance, and apoptosis. We report here that PP-1(I), a major regulated form of PP-1, is activated in brain by approximately twofold in vivo following cardiac arrest and resuscitation in a clinically relevant pig model of transient global cerebral ischemia and reperfusion. PP-1(I) purified to near homogeneity from either control or ischemic pig brain consisted of the PP-1 catalytic subunit, the inhibitor-2 regulatory subunit, as well as the novel constituents 14-3-3gamma, Rab GDP dissociation protein beta, PFTAIRE kinase, and C-TAK1 kinase. PP-1(I) purified from ischemic brain contained significantly less 14-3-3gamma than PP-1(I) purified from control brain, and purified 14-3-3gamma directly inhibited the catalytic subunit of PP-1 and reconstituted PP-1(I). These findings suggest that activation of brain PP-1(I) following global cerebral ischemia in vivo involves dissociation of 14-3-3gamma, a novel inhibitory modulator of PP-1(I). This identifies modulation of PP-1(I) by 14-3-3 in global cerebral ischemia as a potential signaling mechanism-based approach to neuroprotection.
Collapse
Affiliation(s)
- Jimcy Platholi
- Institute for Neuronal Cell Signaling, Weill Cornell Medical College, Department of Anesthesiology, New York, New York, USA
| | | | | | | |
Collapse
|
34
|
Arrick DM, Sharpe GM, Sun H, Mayhan WG. nNOS-dependent reactivity of cerebral arterioles in Type 1 diabetes. Brain Res 2007; 1184:365-71. [PMID: 17991456 DOI: 10.1016/j.brainres.2007.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 12/20/2022]
Abstract
Our goals were to determine whether Type 1 diabetes (T1D) alters neuronal nitric oxide synthase (nNOS)-dependent reactivity of cerebral arterioles and to identify a potential role for oxidative stress in T1D-induced impairment in nNOS-dependent responses of cerebral arterioles. Rats were injected with vehicle (sodium citrate buffer) or streptozotocin (50 mg/kg IP) to induce T1D. Two to three months later, we measured functional responses of cerebral arterioles to nNOS-dependent (NMDA and kainate) and -independent (nitroglycerin) agonists in nondiabetic and diabetic rats before and during inhibition of oxidative stress using tempol (100 microM). In addition, we measured superoxide anion production under basal conditions, during stimulation with NMDA and kainate, and during treatment with tempol. We found that nNOS-dependent, but -independent, vasodilatation was impaired in diabetic compared to nondiabetic rats. In addition, treatment of the cerebral microcirculation with tempol restored impaired nNOS-dependent vasodilatation in diabetic rats toward that observed in nondiabetic rats. Furthermore, the production of superoxide anion (lucigenin chemiluminescence) was increased in parietal cortical tissue of diabetic rats under basal conditions. Application of NMDA and kainate did not increase superoxide anion production in nondiabetic or diabetic rats. However, tempol decreased basal production of superoxide anion in diabetic rats. Our findings suggest that T1D impairs nNOS-dependent dilatation of cerebral arterioles by a mechanism that appears to be related to the formation of superoxide anion.
Collapse
Affiliation(s)
- Denise M Arrick
- Department of Cellular and Integrative Physiology, University of Nebraska, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
35
|
Widmer R, Engels M, Voss P, Grune T. Postanoxic damage of microglial cells is mediated by xanthine oxidase and cyclooxygenase. Free Radic Res 2007; 41:145-52. [PMID: 17364940 DOI: 10.1080/10715760600978807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Brain ischemia and the following reperfusion are important causes for brain damage and leading causes of brain morbidity and human mortality. Numerous observations exist describing the neuronal damage during ischemia/reperfusion, but the outcome of such conditions towards glial cells still remains to be elucidated. Microglia are resident macrophages in the brain. In this study, we investigated the anoxia/reoxygenation caused damage to a microglial cell line via determination of energy metabolism, free radical production by dichlorofluorescein fluorescence and nitric oxide production by Griess reagent. Consequences of oxidant production were determined by measurements of protein oxidation and lipid peroxidation, as well. By using site-specific antioxidants and inhibitors of various oxidant-producing pathways, we identified major sources of free radical production in the postanoxic microglial cells. The protective influences of these compounds were tested by measurements of cell viability and apoptosis. Although, numerous free radical generating systems may contribute to the postanoxic microglial cell damage, the xanthine oxidase- and the cyclooxygenase-mediated oxidant production seems to be of major importance.
Collapse
Affiliation(s)
- Rebecca Widmer
- Research Institute of Environmental Medicine, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
36
|
Nanetti L, Taffi R, Vignini A, Moroni C, Raffaelli F, Bacchetti T, Silvestrini M, Provinciali L, Mazzanti L. Reactive oxygen species plasmatic levels in ischemic stroke. Mol Cell Biochem 2007; 303:19-25. [PMID: 17396231 DOI: 10.1007/s11010-007-9451-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 03/09/2007] [Indexed: 01/21/2023]
Abstract
Oxidative stress is probably one of the mechanisms involved in neuronal damage induced by ischemia-reperfusion, and the antioxidant activity of plasma may be an important factor providing protection from neurological damage caused by stroke-associated oxidative stress. The aim of this study was to investigate the status of oxidative stress, NO and ONOO(-) levels in patients with atherothrombotic and lacunar acute ischemic stroke and iNOS, eNOS and nitrotyrosine expression in the same patients. Plasma ONOO(-) levels were significantly higher in patients than in controls while NO decreases in patients in respect to controls. Densitometric analysis of bands indicated that iNOS and N-Tyr protein levels were significantly higher in patients in respect to controls. This study has highlighted a significant NO decrease in our patients compared with controls and this is most probably due to the increased expression of inducible NO synthase by the effect of thrombotic attack. In fact, the constitutive NO isoforms, which produce small amounts of NO, are beneficial, while activation of the inducible isoform of NO, which produces much more NO, causes injury, being its toxicity greatly enhanced by generation of peroxynitrite. The significant ONOO(-) increase observed in our patients, compared to controls, is most probably due to reaction of NO with O(2)(*-) . These findings suggest that free radical production and oxidative stress in ischemic stroke might have a major role in the pathogenesis of ischemic brain injury. Peroxynitrite might be the main marker of brain damage and neurological impairment in acute ischemic stroke.
Collapse
Affiliation(s)
- Laura Nanetti
- Institute of Biochemistry, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hewett SJ, Bell SC, Hewett JA. Contributions of cyclooxygenase-2 to neuroplasticity and neuropathology of the central nervous system. Pharmacol Ther 2006; 112:335-57. [PMID: 16750270 DOI: 10.1016/j.pharmthera.2005.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/19/2005] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase (COX) enzymes, or prostaglandin-endoperoxide synthases (PTGS), are heme-containing bis-oxygenases that catalyze the first committed reaction in metabolism of arachidonic acid (AA) to the potent lipid mediators, prostanoids and thromboxanes. Two isozymes of COX enzymes (COX-1 and COX-2) have been identified to date. This review will focus specifically on the neurobiological and neuropathological consequences of AA metabolism via the COX-2 pathway and discuss the potential therapeutic benefit of COX-2 inhibition in the setting of neurological disease. However, given the controversy surrounding the use of COX-2 selective inhibitors with respect to cardiovascular health, it will be important to move beyond COX to identify which down-stream effectors are responsible for the deleterious and/or potentially protective effects of COX-2 activation in the setting of neurological disease. Important advances toward this goal are highlighted herein. Identification of unique effectors in AA metabolism could direct the development of new therapeutics holding significant promise for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience MC3401, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
38
|
Hewett SJ, Silakova JM, Hewett JA. Oral treatment with rofecoxib reduces hippocampal excitotoxic neurodegeneration. J Pharmacol Exp Ther 2006; 319:1219-24. [PMID: 16963621 DOI: 10.1124/jpet.106.109876] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether the selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib [4-[4-(methylsulfonyl)phenyl]-3-phenyl-2(5H)-furanone] could effectively prevent hippocampal neuronal injury in an animal model of excitotoxic neurodegeneration. COX-2 protein levels increased between 3 and 6 h, peaked at 12 h, and declined to near baseline levels 24 h after injection of N-methyl-d-aspartate (NMDA; 18 nmol) into the CA1 region of the left hippocampus. Mice that were fed ad libitum a control rodent diet for 4 days before and 3 days after injection of NMDA demonstrated marked neuronal loss in the primary cell layers of the ipsilateral CA1, CA3, and dentate gyrus (50, 30, and 20% cell loss, respectively). This injury was potently and dose-dependently reduced by feeding animals a diet standardized to deliver 15 or 30 mg/kg rofecoxib per day. Neurodegeneration in the CA1 region was reduced by 30.1 +/- 5.6 and 51.5 +/- 9.0%, respectively; in the CA3 by 64.6 +/- 12.4 and 69.0 +/- 14.1%, respectively; and in the dentate gyrus by 47.8 +/- 15.2 and 58.0 +/- 18.2%, respectively. Moreover, rofecoxib chow slightly but significantly reduced injury-induced brain edema. These findings demonstrate that rofecoxib can ameliorate excitotoxic neuronal injury in vivo and, as such, may be a particularly promising pharmaceutical for the treatment of neurological diseases associated with overactivation of NMDA receptors.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Neuroscience, Program in Cellular and Molecular Pharmacology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| | | | | |
Collapse
|
39
|
Prough DS, Kramer GC, Uchida T, Stephenson RT, Hellmich HL, Dewitt DS. EFFECTS OF HYPERTONIC ARGININE ON CEREBRAL BLOOD FLOW AND INTRACRANIAL PRESSURE AFTER TRAUMATIC BRAIN INJURY COMBINED WITH HEMORRHAGIC HYPOTENSION. Shock 2006; 26:290-5. [PMID: 16912655 DOI: 10.1097/01.shk.0000225405.66693.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypertonic saline solutions improve cerebral blood flow (CBF) when used for acute resuscitation from hemorrhagic hypotension accompanying some models of traumatic brain injury (TBI); however, the duration of increased CBF is brief. Because the nitric oxide synthase substrate l-arginine provides prolonged improvement in CBF after TBI, we investigated whether a hypertonic resuscitation fluid containing l-arginine would improve CBF in comparison to hypertonic saline without l-arginine in a model of moderate, paramedian, fluid-percussion TBI followed immediately by hemorrhagic hypotension (mean arterial pressure [MAP] = 60 mm Hg for 45 min). Sprague-Dawley rats were anesthetized with 4.0% isoflurane, intubated and ventilated with 1.5%-2.0% isoflurane in oxygen/air (50:50). After preparation for TBI and measurement of CBF using laser Doppler flowmetry and measurement of intracranial pressure (ICP) using an implanted transducer, rats were subjected to moderate (2.0 atm) TBI, hemorrhaged for 45 min, and randomly assigned to receive an infusion of hypertonic saline (7.5%, 2,400 mOsm total; 6 mL/kg; n = 6) or hypertonic saline with 50, 100, or 300 mg/kg L-arginine (2,400 mOsm; 6 mL/kg; n = 6 in each of the three dose groups) and then monitored for 120 min after the end of infusion. CBF was measured continuously and calculated as a percent of the pre-TBI baseline during the hemorrhage period, after reinfusion of one of the hypertonic arginine solutions, and 30, 60, and 120 min after reinfusion. All four hypertonic solutions initially improved MAP, which, by 120 min after infusion, had decreased nearly to the levels observed during hemorrhage. ICP remained below baseline levels during resuscitation in all groups, although ICP was slightly greater (P = NS) than baseline in the hypertonic saline group. CBF increased similarly in all groups during infusion and then decreased similarly in all groups. At 120 min after infusion, CBF was highest in the group infused with hypertonic saline, but the difference was not significant. We conclude that the improvement of MAP, ICP, and CBF produced by hypertonic saline alone after TBI and hemorrhagic hypotension is not significantly enhanced by the addition of L-arginine at these doses.
Collapse
Affiliation(s)
- Donald S Prough
- Departments of Anesthesiology, the University of Texas Medical Branch, Galveston, Texas 77555-0591, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Gutiérrez M, Díez Tejedor E, Alonso de Leciñana M, Fuentes B, Carceller F, Roda JM. Thrombolysis and neuroprotection in cerebral ischemia. Cerebrovasc Dis 2006; 21 Suppl 2:118-26. [PMID: 16651822 DOI: 10.1159/000091711] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Stroke is a major cause of death and disability worldwide. The resulting burden on society grows with the increase in the incidence of stroke. The term brain attack was introduced to describe the acute presentation of stroke and emphasize the need for urgent action to remedy the situation. Though a large number of therapeutic agents, like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or are being evaluated, there is still a large gap between the benefits of these agents and the properties of an ideal drug for stroke. So far, only thrombolysis with rtPA within a 3-hour time window has been shown to improve the outcome of patients with ischemic stroke. Understanding the mechanisms of injury and neuroprotection in these diseases is important to target news sites for treating ischemia. Better evaluation of the drugs and increased similarity between the results of animal experimentation and in the clinical setting requires critical assessment of the selection of animal models and the parameters to be evaluated. Our laboratory has employed a rat embolic stroke model to investigate the combination of rtPA with citicoline as compared to monotherapy alone and investigated whether neuroprotection should be provided before or after thrombolysis in order to achieve a greater reduction of ischemic brain damage.
Collapse
Affiliation(s)
- M Gutiérrez
- Cerebrovascular Research Group, Hospital Universitario La Paz, Universidad Autónoma Madrid, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Cho S, Park EM, Febbraio M, Anrather J, Park L, Racchumi G, Silverstein RL, Iadecola C. The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J Neurosci 2006; 25:2504-12. [PMID: 15758158 PMCID: PMC6725161 DOI: 10.1523/jneurosci.0035-05.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The class B scavenger receptor CD36 is involved in the cytotoxicity associated with inflammation, but its role in the inflammatory reaction that accompanies cerebral ischemia has not been examined. In this study, we investigated whether CD36 contributes to the brain damage produced by cerebral ischemia. The middle cerebral artery was transiently occluded in wild-type mice and in mice deficient in CD36. In wild-type mice, CD36 protein expression was increased in the ischemic brain, such that it was located predominantly in cells expressing the microglia/macrophage marker CD11b. The infarct produced by middle cerebral artery occlusion was 49% smaller in CD36-null mice than in wild-type controls, an effect associated with improved neurological function. The attenuation in brain injury in CD36 nulls could not be attributed to differences in cerebral blood flow during ischemia-reperfusion. However, the increase in reactive oxygen species (ROS) produced by cerebral ischemia was markedly attenuated in CD36-null mice in the early stage after reperfusion. The data unveil a previously unrecognized role of CD36 in ischemia-induced ROS production and brain injury. Modulation of CD36 signaling may provide a new strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Sunghee Cho
- Division of Neurobiology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Saito A, Maier CM, Narasimhan P, Nishi T, Song YS, Yu F, Liu J, Lee YS, Nito C, Kamada H, Dodd RL, Hsieh LB, Hassid B, Kim EE, González M, Chan PH. Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 2006; 31:105-16. [PMID: 15953815 DOI: 10.1385/mn:31:1-3:105] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 11/11/2022]
Abstract
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yoshida H, Yanai H, Namiki Y, Fukatsu-Sasaki K, Furutani N, Tada N. Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury. CNS DRUG REVIEWS 2006; 12:9-20. [PMID: 16834755 PMCID: PMC6741743 DOI: 10.1111/j.1527-3458.2006.00009.x] [Citation(s) in RCA: 282] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recanalization and neuroprotection have been mainly targeted for the specific treatment of acute ischemic stroke. Free radicals play a crucial role in brain ischemic injury by exacerbating membrane damage through peroxidation of unsaturated fatty acids of cell membrane, leading to neuronal death and brain edema. Free radicals have been implicated in stroke pathophysiology as pivotal contributors to cell injury. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a novel potent free radical scavenger that has been clinically used to reduce the neuronal damage following ischemic stroke. Edaravone exerts neuroprotective effects by inhibiting endothelial injury and by ameliorating neuronal damage in brain ischemia. Edaravone provides the desirable features of NOS: it increases eNOS (beneficial NOS for rescuing ischemic stroke) and decreases nNOS and iNOS (detrimental NOS). Post- reperfusion brain edema and hemorrhagic events induced by thrombolytic therapy may be reduced by edaravone pretreatment. Increased productions of superoxide and NO in the brain after reperfusion and a concomitant surge in oxygen free radicals with increased NO during recirculation lead to formation of peroxynitrite, a superpotent radical. Edaravone, which inhibits oxidation and enhances NO production derived from increased eNOS expression, may improve and conserve cerebral blood flow without peroxynitrite generation during reperfusion. Clinical experience with edaravone suggests that this drug has a wide therapeutic time window. The combination therapy (a thrombolytic plus edaravone) is likely to target brain edema, reduce stroke death and improve the recovery from neurological deficits in stoke patients.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Department of Internal Medicine, Division of General Medicine, Kashiwa Hospital, Jikei University School of Medicine, Kashiwa, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Fischer S, Wiesnet M, Renz D, Schaper W. H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol 2005; 84:687-97. [PMID: 16106912 DOI: 10.1016/j.ejcb.2005.03.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In vivo, pathological conditions such as ischemia and ischemia/reperfusion are known to damage the blood-brain barrier (BBB) leading to the development of vasogenic brain edema. Using an in vitro model of the BBB, consisting of brain-derived microvascular endothelial cells (BMEC), it was demonstrated that hypoxia-induced paracellular permeability was strongly aggravated by reoxygenation (H/R), which was prevented by catalase suggesting that H2O2 is the main mediator of the reoxygenation effect. Therefore, mechanisms leading to H2O2-induced hyperpermeability were investigated. N-acetylcysteine and suramin and furthermore usage of a G protein antagonist inhibited H202 effects suggesting that activation of cell surface receptors coupled to G proteins may mediate signal initiation by H2O2. Further, H2O2 activated phospholipase C (PLC) and increased the intracellular Ca2+ release because U73122, TMB-8, and the calmodulin antagonist W7 inhibited H2O2-induced hyperpermeability. H2O2 did not activate protein kinase C (PKC), nitric-oxide synthase (NOS), and phosphatidyl-inositol-3 kinase (PI3-K/Akt). Inhibition of the extracellular signal-regulated kinase (ERK1/ERK2 or p44/42 MAPK), but not of the p38 and of the c-jun NH2-terminal kinase (JNK), inhibited hyperpermeability by H2O2 and H/R completely. Corresponding to H2O2- and H/R-induced permeability changes the phosphorylation of the p44/42 MAP kinase was inhibited by the specific MAP kinase inhibitor PD98059 and by TMB-8 and W7. Paracellular permeability changes by H2O2 correlated to changes of the localization of the tight junction (TJ) proteins occludin, zonula occludens 1 (ZO-1), and zonula occludens 2 (ZO-2) which were prevented by blocking the p44/p42 MAP kinase activation. Results suggest that H2O2 is the main inducer of H/R-induced permeability changes. The hyperpermeability is caused by activation of PLC via receptor activation leading to the intracellular release of Ca2+ followed by activation of the p44/42 MAP kinase and paracellular permeability changes mediated by changes of the localization of TJ proteins.
Collapse
Affiliation(s)
- Silvia Fischer
- Department of Anesthesiology and Intensive Care, Max-Planck Institute for Physiological and Clinical Research, D-61231 Bad Nauheim, Germany.
| | | | | | | |
Collapse
|
45
|
Jayalakshmi K, Sairam M, Singh SB, Sharma SK, Ilavazhagan G, Banerjee PK. Neuroprotective effect of N-acetyl cysteine on hypoxia-induced oxidative stress in primary hippocampal culture. Brain Res 2005; 1046:97-104. [PMID: 15919066 DOI: 10.1016/j.brainres.2005.03.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 03/24/2005] [Accepted: 03/29/2005] [Indexed: 12/20/2022]
Abstract
Hippocampus has received a considerable attention in the recent past due to its role in a number of important functions such as learning and memory. The effect of hypoxia on neuronal cell injury especially on hippocampal cells is not well known. The aim of the present study was to characterize the biochemical changes in primary cultured hippocampal neurons during hypoxic exposure and the protective effect of N-acetyl cysteine on hypoxia-induced cytotoxicity. The hippocampal culture grown in 24-well plates was exposed to hypoxia for 3 h in a dessicator in 95% N(2), 5% CO(2) atmosphere at 37 degrees C. Later, the cells were allowed to recover for 1 h under normoxia. It was observed that there is an appreciable increase in cytotoxicity in cells exposed to hypoxia. Further, there was a significant decrease in mitochondrial membrane potential and appreciable increase in reactive oxygen species and single-strand DNA breaks in cells exposed to hypoxia compared to control. There is a significant fall in glutathione peroxidase, glutathione reductase, reduced glutathione levels, and nitric oxide in the cells exposed to hypoxia. Significant elevation in the intracellular calcium level in the cells on exposure to hypoxia was observed. Supplementation with NAC (50 microM) resulted in a significant cytoprotection, fall in ROS generation, and higher antioxidant levels similar to that of control cells. NAC also inhibited DNA strand breaks induced by hypoxia. The study indicates that NAC has significant neuroprotective activity during hypoxia in primary hippocampal culture.
Collapse
Affiliation(s)
- K Jayalakshmi
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Timarpur, Delhi, India
| | | | | | | | | | | |
Collapse
|
46
|
Hashizume K, Ueda T, Shimizu H, Mori A, Yozu R. Effect of the free radical scavenger MCI-186 on spinal cord reperfusion after transient ischemia in the rabbit. ACTA ACUST UNITED AC 2005; 53:426-33. [PMID: 16164254 DOI: 10.1007/s11748-005-0078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Paraplegia remains a serious complication of aortic operations. The production of free radicals during reperfusion after transient ischemia is believed to induce secondary spinal neuronal injury, resulting in paraplegia. The aim of the present study was to clarify the protective effect and method of administration of antioxidants on the neurological and histological outcome in the animal model for reperfusion injury after transient spinal cord ischemia. METHODS New Zealand white rabbits underwent surgical exposure of the abdominal aorta that was clamped for 15 minutes to achieve spinal cord ischemia. Group A animals received two 10 mg/kg doses of 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186) at the time of release of the aortic clamp and 30 minutes later. In group B, MCI-186, 5 mg/kg, was given three times, at the time of aorta clamp release, 30 minutes and 12 hours later. In group C (control group), one dose of vehicle was administered. Neurological status was assessed using modified Tarlov's score until 168 hours after operation. Spinal cord sections were examined microscopically to determine the extent of ischemic neuronal damage. RESULTS Groups A and B animals had better neurological function than group C (p < 0.001). In contrast, group C animals exhibited paraplegia or paraparesis with marked neuronal necrosis. The number of surviving neurons within examined sections of the spinal cord was significantly greater in group B than in group C (p < 0.001). CONCLUSION In a 15-minute ischemia-reperfusion model using rabbits, systemic repetitious administration of MCI-186, a free radical scavenger, was found to have a protective effect on the spinal cord neurons both neurologically and histologically. We postulate that the drug minimizes the delayed neuronal cell death for reperfusion injury after transient ischemia by reducing the free radical molecules. Moreover, it was thought that we could protect delayed neuronal cell death more effectively by administering MCI-186 12 hours later.
Collapse
Affiliation(s)
- Kenichi Hashizume
- Division of Cardiovascular Surgery, Saitama Municipal Hospital, Saitama, Japan
| | | | | | | | | |
Collapse
|
47
|
Tang J, Liu J, Zhou C, Ostanin D, Grisham MB, Neil Granger D, Zhang JH. Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J Neurochem 2005; 94:1342-50. [PMID: 16011743 DOI: 10.1111/j.1471-4159.2005.03292.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major risk factors for intracerebral hemorrhage (ICH) are hypertension and aging. A fundamental mechanism for hypertension- and aging-induced vascular injury is oxidative stress. We hypothesize that oxidative stress has a crucial role in ICH. To test our hypothesis, we used bacterial collagenase to produce ICH in wild-type C57BL/6 and gp91phox knockout (gp91phox KO) mice (deficient in gp91phox subunit of the superoxide-producing enzyme NADPH oxidase). All animals were studied at 20-35 weeks of age, resembling an older patient population. We found that collagenase produced less bleeding in gp91phox KO mice than wild-type mice. Total oxidative product was lower in gp91phox KO mice than in wild-type mice, both under basal conditions and after ICH. Consistent with the ICH volume, brain edema formation, neurological deficit and a high mortality rate was noted in wild-type but not in gp91phox KO mice. This ICH-induced brain injury in wild-type mice is associated with enhanced expression of the gp91phox subunit of NADPH oxidase. In conclusion, the oxidative stress resulting from activation of NADPH oxidase contributes to ICH induced by collagenase and promotes brain injury.
Collapse
Affiliation(s)
- Jiping Tang
- Department of Molecular and Cellular Physiology, Lousiana State University Health Science Center, Shrevenport, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Yamashima T. Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium 2005; 36:285-93. [PMID: 15261484 DOI: 10.1016/j.ceca.2004.03.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Indexed: 12/15/2022]
Abstract
From rodents to primates, transient global brain ischemia is a well known cause of delayed neuronal death of the vulnerable neurons including cornu Ammonis 1 (CA1) pyramidal cells of the hippocampus. Previous reports using the rodent experimental paradigm indicated that apoptosis is a main contributor to such ischemic neuronal death. In primates, however, the detailed molecular mechanism of ischemic neuronal death still remains obscure. Recent data suggest that necrosis rather than apoptosis appear to be the crucial component of the damage to the nervous system during human ischemic injuries and neurodegenerative diseases. Currently, necrotic neuronal death mediated by Ca2+-dependent cysteine proteases, is becoming accepted to underlie the pathology of neurodegenerative conditions from the nematode Caenorhabditis elegans to primates. This paper reviews the role of cysteine proteases such as caspase, calpain and cathepsin in order to clarify the mechanism of ischemic neuronal death being triggered by the unspecific digestion of lysosomal proteases.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Neurosurgery, Division of Neuroscience, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
49
|
Babu PP, Suzuki G, Ono Y, Yoshida Y. Attenuation of ischemia and/or reperfusion injury during myocardial infarction using mild hypothermia in rats: An immunohistochemical study of Bcl-2, Bax, Bak and TUNEL. Pathol Int 2004; 54:896-903. [PMID: 15598311 DOI: 10.1111/j.1440-1827.2004.01767.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of the present study was to determine the beneficial effect of mild hypothermia during ischemia and/or reperfusion injury in myocardial infarction. Sprague-Dawley rats (400 +/- 20 g) were subjected to 30 min occlusion of the left coronary artery followed by 24 h reperfusion. Rats were divided into normothermic (NT; 37 degrees C) and hypothermic (HT; 34 degrees C) groups. In the HT group hypothermia was maintained during coronary occlusion and continued for 30 min following reperfusion. Histological analysis revealed dead cardiomyocytes and polymorphonuclear neutrophil infiltration after 24 h. Myocardial infarction, measured using an image analyzer, showed that the percentage area of infarction was significantly decreased in the HT group. Immunohistochemical analysis was carried out using antibodies against Bcl-2, Bax and Bak. DNA fragments were labeled in situ using the 3'-OH end-labeling method (TUNEL). In the HT group Bcl-2 was induced in many myocytes, whereas Bax and Bak were induced in only a few myocytes. A higher number of TUNEL-positive cells were recorded in the NT group than in the HT group, but these were more thinly scattered in the HT group. The expression pattern revealed that many myocytes could survive at the border zone in the HT group; in contrast, few myocytes in the NT group were able to survive. Our results suggest that mild hypothermia selectively interferes with, and mitigates, reperfusion injury.
Collapse
|
50
|
Rawal A, Muddeshwar M, Biswas S. Effect of Rubia cordifolia, Fagonia cretica linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices. Biochem Biophys Res Commun 2004; 324:588-96. [PMID: 15474468 DOI: 10.1016/j.bbrc.2004.09.094] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2004] [Indexed: 10/26/2022]
Abstract
The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO2)]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O*2-), hydroxyl radicals (*OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO-) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of gamma-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage.
Collapse
Affiliation(s)
- Avinash Rawal
- SMV Center for Biotechnology, Sindhu Mahavidyalaya, Panchpaoli, Nagpur, MS 440017, India
| | | | | |
Collapse
|