1
|
Ma Y, Dong T, Luan F, Yang J, Miao F, Wei P. Interaction of major facilitator superfamily domain containing 2A with the blood-brain barrier. Neural Regen Res 2025; 20:2133-2152. [PMID: 39248155 PMCID: PMC11759009 DOI: 10.4103/nrr.nrr-d-24-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 09/10/2024] Open
Abstract
The functional and structural integrity of the blood-brain barrier is crucial in maintaining homeostasis in the brain microenvironment; however, the molecular mechanisms underlying the formation and function of the blood-brain barrier remain poorly understood. The major facilitator superfamily domain containing 2A has been identified as a key regulator of blood-brain barrier function. It plays a critical role in promoting and maintaining the formation and functional stability of the blood-brain barrier, in addition to the transport of lipids, such as docosahexaenoic acid, across the blood-brain barrier. Furthermore, an increasing number of studies have suggested that major facilitator superfamily domain containing 2A is involved in the molecular mechanisms of blood-brain barrier dysfunction in a variety of neurological diseases; however, little is known regarding the mechanisms by which major facilitator superfamily domain containing 2A affects the blood-brain barrier. This paper provides a comprehensive and systematic review of the close relationship between major facilitator superfamily domain containing 2A proteins and the blood-brain barrier, including their basic structures and functions, cross-linking between major facilitator superfamily domain containing 2A and the blood-brain barrier, and the in-depth studies on lipid transport and the regulation of blood-brain barrier permeability. This comprehensive systematic review contributes to an in-depth understanding of the important role of major facilitator superfamily domain containing 2A proteins in maintaining the structure and function of the blood-brain barrier and the research progress to date. This will not only help to elucidate the pathogenesis of neurological diseases, improve the accuracy of laboratory diagnosis, and optimize clinical treatment strategies, but it may also play an important role in prognostic monitoring. In addition, the effects of major facilitator superfamily domain containing 2A on blood-brain barrier leakage in various diseases and the research progress on cross-blood-brain barrier drug delivery are summarized. This review may contribute to the development of new approaches for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yilun Ma
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Taiwei Dong
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Fei Luan
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Juanjuan Yang
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi′an, Shaanxi Province, China
| | - Feng Miao
- College of Pharmacy and First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Peifeng Wei
- National Drug Clinical Trial Agency, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine/Xixian New District Central Hospital, Xi′an, Shaanxi Province, China
| |
Collapse
|
2
|
Zhao J, Sun Z, Li Z, Xu M, Tian A, An Z, Guo W, He C, Dong Y, Wen J, Yang J, Wang Q, Chen P. MicroRNA-mediated Ets1 repression in retinal endothelial cells: A novel anti-angiogenic mechanism in nonproliferative diabetic retinopathy. Diabetes Obes Metab 2025; 27:1888-1901. [PMID: 39777974 DOI: 10.1111/dom.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
AIMS This study aimed to discover the regulatory mechanisms contributing to angiogenesis in nonproliferative diabetic retinopathy (NPDR). MATERIALS AND METHODS This study employed a case-control design involving type 2 diabetes patients with and without NPDR. We utilised microRNA sequencing to analyse plasma and retina samples from T2D patients, to identify both existing and novel microRNAs relevant to retinal health. An integrative approach combining single-cell sequencing data from mouse and rat models was used to explore the molecular mechanism in retinal cells under diabetes condition. RESULTS We identified a specific set of circulating microRNAs with strong predictive potential for distinguishing NPDR patients. In addition, a novel microRNA targeting the ETS proto-oncogene 1 (Ets1), a key regulator of microvascular angiogenesis, was found to be upregulated in the plasma of NPDR patients. Analysis of single-cell sequencing data suggested that Ets1 expression was downregulated in diabetic endothelial cells and was associated with the repression of Angiopoietin-1 and phosphoinositide 3-kinase-Akt (PI3K-Akt) signalling pathways, indicating an anti-angiogenic mechanism in NPDR. CONCLUSIONS The identification of a novel microRNA involved in the anti-angiogenic mechanism in NPDR provides new insights into the molecular underpinnings of endothelial dysfunction in diabetic retinopathy. Our retina-specific circulating microRNA panel has potential utility in risk assessment and early detection of NPDR.
Collapse
Affiliation(s)
- Jianyu Zhao
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zimeng Li
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Mengyu Xu
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Aowen Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Wenbo Guo
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang He
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ying Dong
- Department of Radiotherapy, The Tumor Hospital of Jilin Province, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Zhang Y, Zhou YL, Xu N, Meng T, Wang ZZ, Pan FM, Zhu LX. Chemokines and PI3K/AKT signaling pathway mediate the spontaneously ruptured hepatocellular carcinoma through the regulation of the cell cycle. Hepatobiliary Pancreat Dis Int 2025:S1499-3872(25)00029-3. [PMID: 39952875 DOI: 10.1016/j.hbpd.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/26/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND The incidence of spontaneously ruptured hepatocellular carcinoma (srHCC) has been shown to significantly elevate mortality rates. However, the precise mechanisms underlying srHCC remain poorly understood. METHODS Analysis was conducted on the data of 198 hepatocellular carcinoma (HCC) patients to investigate the factors contributing to srHCC. The clinical data of 33 transcriptome HCC patients were served for verification. An in-depth transcriptome analysis was conducted to investigate the distinctions between 26 cases of srHCC and 35 cases of non-ruptured hepatocellular carcinoma (nrHCC). Weighted Gene Co-expression Network Analysis (WGCNA) tool was utilized to develop a gene co-expression network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways enrichment, and protein-protein interaction (PPI) network were carried out. The corresponding samples for spontaneously ruptured hepatocellular carcinoma tissue (srHCC-T) and ruptured hepatocellular carcinoma paracancerous tissue (srHCC-P) was selected for verification. Transcriptional data were validated through reverse transcription quantitative polymerase chain reaction (RT-qPCR). Immunofluorescence (IF), immunohistochemistry (IHC) and Western blot were used to detect the protein expression. RESULTS Our results showed that white blood cell (WBC) and monocyte levels were significant independent risk factors for srHCC (P < 0.05). There was a strong association between the srHCC-T and the expression of cell cycle-related genes BUB1B and macrophage function-related gene MACRO. Furthermore, chemokines and the PI3K/AKT signaling pathway play a crucial role in regulating the cell cycle process through a complex network of interactions, ultimately impacting the occurrence of srHCC. CONCLUSIONS Our study confirms that chemokines and the PI3K/AKT signaling pathway mediate the occurrence of HCC rupture by regulating the cell cycle. We provide a theoretical basis for the clinical treatment of srHCC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of General Surgery, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang-Liu Zhou
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Na Xu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Tao Meng
- Department of General Surgery, Hefei First People's Hospital, Hefei 230000, China
| | - Zhen-Zhen Wang
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Li-Xin Zhu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
4
|
Zeng Y, Fu BM. Angiogenesis and Microvascular Permeability. Cold Spring Harb Perspect Med 2025; 15:a041163. [PMID: 38692737 PMCID: PMC11694756 DOI: 10.1101/cshperspect.a041163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Angiogenesis, the formation of new blood microvessels, is a necessary physiological process for tissue generation and repair. Sufficient blood supply to the tissue is dependent on microvascular density, while the material exchange between the circulating blood and the surrounding tissue is controlled by microvascular permeability. We thus begin this article by reviewing the key signaling factors, particularly vascular endothelial growth factor (VEGF), which regulates both angiogenesis and microvascular permeability. We then review the role of angiogenesis in tissue growth (bone regeneration) and wound healing. Finally, we review angiogenesis as a pathological process in tumorigenesis, intraplaque hemorrhage, cerebral microhemorrhage, pulmonary fibrosis, and hepatic fibrosis. Since the glycocalyx is important for both angiogenesis and microvascular permeability, we highlight the role of the glycocalyx in regulating the interaction between tumor cells and endothelial cells (ECs) and VEGF-containing exosome release and uptake by tumor-associated ECs, all of which contribute to tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
5
|
McClennan A, Hoffman L. Angiopoietin 1 Attenuates Dysregulated Angiogenesis in the Gastrocnemius of DMD Mice. Int J Mol Sci 2024; 25:11824. [PMID: 39519374 PMCID: PMC11546966 DOI: 10.3390/ijms252111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a degenerative neuromuscular disease caused by a lack of functional dystrophin. Ang 1 paracrine signalling maintains the endothelial barrier of blood vessels, preventing plasma leakage. Chronic inflammation, a consequence of DMD, causes endothelial barrier dysfunction in skeletal muscle. We aim to elucidate changes in the DMD mouse's gastrocnemius microvascular niche following local administration of Ang 1. Gastrocnemii were collected from eight-week-old mdx/utrn+/- and healthy mice. Additional DMD cohort received an intramuscular injection of Ang 1 to gastrocnemius and contralateral control. Gastrocnemii were collected for analysis after two weeks. Using immunohistochemistry and real-time quantitative reverse transcription, we demonstrated an abundance of endothelial cells in DMD mouse's gastrocnemius, but morphology and gene expression were altered. Myofiber perimeters were shorter in DMD mice. Following Ang 1 treatment, fewer endothelial cells were present, and microvessels were more circular. Vegfr1, Vegfr2, and Vegfa expression in Ang 1-treated gastronemii increased, while myofiber size distribution was consistent with vehicle-only gastrocnemii. These results suggest robust angiogenesis in DMD mice, but essential genes were underexpressed-furthermore, exogenous Ang 1 attenuated angiogenesis. Consequentially, gene expression increased. The impact must be investigated further, as Ang 1 therapy may be pivotal in restoring the skeletal muscle microvascular niche.
Collapse
MESH Headings
- Animals
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/pathology
- Mice
- Angiopoietin-1/metabolism
- Angiopoietin-1/genetics
- Mice, Inbred mdx
- Male
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Disease Models, Animal
- Endothelial Cells/metabolism
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Angiogenesis
Collapse
Affiliation(s)
- Andrew McClennan
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Imaging Program, The Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Lisa Hoffman
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Imaging Program, The Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Liao YL, Fang YF, Sun JX, Dou GR. Senescent endothelial cells: a potential target for diabetic retinopathy. Angiogenesis 2024; 27:663-679. [PMID: 39215875 PMCID: PMC11564237 DOI: 10.1007/s10456-024-09943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.
Collapse
Affiliation(s)
- Ying-Lu Liao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of the Cadet Team 6 of the School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Fang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Agostini H, Abreu F, Baumal CR, Chang DS, G Csaky K, Demetriades AM, Kodjikian L, Lim JI, Margaron P, Monés JM, Peto T, Ricci F, Rüth M, Singh RP, Stoilov I, Swaminathan B, Willis JR, Westenskow PD. Faricimab for neovascular age-related macular degeneration and diabetic macular edema: from preclinical studies to phase 3 outcomes. Graefes Arch Clin Exp Ophthalmol 2024; 262:3437-3451. [PMID: 38847896 PMCID: PMC11584429 DOI: 10.1007/s00417-024-06531-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 11/24/2024] Open
Abstract
Intravitreal anti-vascular endothelial growth factor (VEGF) therapy is the standard of care for diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD); however, vision gains and anatomical improvements are not sustained over longer periods of treatment, suggesting other relevant targets may be needed to optimize treatments. Additionally, frequent intravitreal injections can prove a burden for patients and caregivers. Angiopoietin-2 (Ang-2) has been explored as an additional therapeutic target, due to the involvement of Ang-2 in DME and nAMD pathogenesis. Recent evidence supports the hypothesis that targeting both VEGF and Ang-2 may improve clinical outcomes in DME and nAMD compared with targeting VEGF alone by enhancing vascular stability, resulting in reduced macular leakage, prevention of neovascularization, and diminished inflammation. Faricimab, a novel bispecific antibody that targets VEGF-A and Ang-2, has been evaluated in clinical trials for DME (YOSEMITE/RHINE) and nAMD (TENAYA/LUCERNE). These trials evaluated faricimab against the anti-VEGFA/B and anti-placental growth factor fusion protein aflibercept, both administered by intravitreal injection. In addition to faricimab efficacy, safety, and pharmacokinetics, durability was evaluated during the trials using a treat-and-extend regimen. At 1 year, faricimab demonstrated non-inferior vision gains versus aflibercept across YOSEMITE/RHINE and TENAYA/LUCERNE. In YOSEMITE/RHINE, faricimab improved anatomic parameters versus aflibercept. Reduction of central subfield thickness (CST), and absence of both DME and intraretinal fluid were greater in faricimab- versus aflibercept-treated eyes. In TENAYA/LUCERNE, CST reductions were greater for faricimab than aflibercept at the end of the head-to-head phase (0-12 weeks), and were comparable with aflibercept at year 1, but with less frequent dosing. CST and vision gains were maintained during year 2 of both YOSEMITE/RHINE and TENAYA/LUCERNE. These findings suggest that dual Ang-2/VEGF-A pathway inhibition may result in greater disease control versus anti-VEGF alone, potentially addressing the unmet needs and reducing treatment burden, and improving real-world outcomes and compliance in retinal vascular diseases. Long-term extension studies (RHONE-X, AVONELLE-X) are ongoing. Current evidence suggests that dual inhibition with faricimab heralds the beginning of multitargeted treatment strategies inhibiting multiple, independent components of retinal pathology, with faricimab providing opportunities to reduce treatment burden and improve outcomes compared with anti-VEGF monotherapy.
Collapse
Affiliation(s)
- Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Caroline R Baumal
- Tufts Medicine New England Eye Center, Boston, MA, USA
- Apellis Pharmaceuticals, Waltham, MA, USA
| | | | - Karl G Csaky
- Retina Foundation of the Southwest, Dallas, TX, USA
| | - Anna M Demetriades
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laurent Kodjikian
- Department of Ophthalmology, Croix-Rousse University Hospital, Hospices Civils de Lyon, Lyon, France
- CNRS UMR 5510 Mateis, INSA, University of Lyon I, Villeurbanne, France
| | - Jennifer I Lim
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Jordi M Monés
- Centro Médico Teknon, Institut de La Màcula and Barcelona Macula Foundation, Barcelona, Spain
| | - Tunde Peto
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Federico Ricci
- Department of Experimental Medicine, University "Tor Vergata", Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Saini S, Tuli HS, Saini RV, Saini AK, Sak K, Kaur D, Shahwan M, Chauhan R, Chauhan A. Flavonoid-Mediated Suppression of Tumor Angiogenesis: Roles of Ang-Tie/PI3K/AKT. PATHOPHYSIOLOGY 2024; 31:596-607. [PMID: 39449525 PMCID: PMC11503374 DOI: 10.3390/pathophysiology31040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Angiogenesis is a process involved in the formation of new blood capillaries from pre-existing ones. It is regulated by several anti-angiogenic molecules involved in tumor growth and metastasis. The endothelial angiopoietin Ang-Tie/PI3K/AKT growth receptor pathway is necessary for healthy vascular development. The activation of AKT is controlled by a multistep process involving phosphoinositide 3-kinase (PI3K). This article aims to provide an overview of the role and mechanism of the Ang-Tie/PI3K/AKT signaling pathways and the potential of flavonoids as anti-angiogenic drugs. Flavonoids have shown great potential in preventing angiogenesis by targeting signaling pathways and exhibit additional anti-cancer properties. Research studies have revealed that the currently available anti-angiogenic drugs do not meet the safety and efficacy standards for treating tumor growth. Phytocompounds have long been a valuable resource for the development of novel therapeutic drugs. This article explores recent findings explaining the role and mechanism of the Ang-Tie/PI3K/AKT signaling pathways, as well as the interaction of flavonoids with angiogenic signaling pathways as a novel therapeutic approach. Several investigations have shown that synergistic studies of natural phytocompounds have great potential to target these pathways to inhibit tumor growth. Therefore, flavonoid-based medications may offer a more effective synergistic strategy to treat cancer.
Collapse
Affiliation(s)
- Shallu Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; (R.V.S.); (A.K.S.)
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; (R.V.S.); (A.K.S.)
| | - Reena V. Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; (R.V.S.); (A.K.S.)
| | - Adesh K. Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; (R.V.S.); (A.K.S.)
| | | | - Damandeep Kaur
- University Centre for Research and Development, Chandigarh University, Mohali 140413, India;
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 4184, United Arab Emirates;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun 248002, India;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Sector-125, Noida 201303, India;
| |
Collapse
|
9
|
Maldonado-Velez G, Mickler EA, Cook TG, Aldred MA. Loss of Tbx4 Affects Postnatal Lung Development and Predisposes to Pulmonary Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613783. [PMID: 39345561 PMCID: PMC11429984 DOI: 10.1101/2024.09.18.613783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the precapillary pulmonary arteries. Genomic variation within the T-box 4 (TBX4) transcription factor is the second most common genetic cause of PAH, and can also cause severe lung developmental disorders with neonatal PH. Currently, the effect of TBX4 loss-of-function on later stages of lung development and predisposition to lung disease, including PH, is not well understood. Therefore, we have generated Tbx4 conditional knockout ( Tbx4-CKO ) mice in which Cre recombinase deletes exon 5 of Tbx4 within the embryonic lung mesenchyme to create a null allele. We harvested lungs from these mice at various timepoints to examine alveologenesis, vascularization, vascular remodeling, lung cellular composition, and disruption of transcriptional activity compared with control lungs. Right ventricular systolic pressure (RVSP) was measured in six-month-old mice to evaluate for PH. Tbx4-CKO lungs show enlargement of airspaces, as confirmed by an increase in mean linear intercept at P14 (24.9%), P36 (31.5%), and P180 (49.6%). These lungs also show a 39.3% decrease in von Willebrand Factor-positive vessels and a 14.2% increase in vessel wall thickness. Consistent with these results, Tbx4-CKO mice show a statistically significant increase of 15.7% in RVSP and 16.3% in the Fulton index. Bulk-RNA sequencing analysis revealed enrichment of pathways and genes relevant to lung alveologenesis, angiogenesis, and PH. Our results show that disruption of Tbx4 expression during early lung development is sufficient to disrupt postnatal lung development and circulation.
Collapse
|
10
|
Lazovic B, Nguyen HT, Ansarizadeh M, Wigge L, Kohl F, Li S, Carracedo M, Kettunen J, Krimpenfort L, Elgendy R, Richter K, De Silva L, Bilican B, Singh P, Saxena P, Jakobsson L, Hong X, Eklund L, Hicks R. Human iPSC and CRISPR targeted gene knock-in strategy for studying the somatic TIE2 L914F mutation in endothelial cells. Angiogenesis 2024; 27:523-542. [PMID: 38771392 PMCID: PMC11303492 DOI: 10.1007/s10456-024-09925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.
Collapse
Affiliation(s)
- Bojana Lazovic
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hoang-Tuan Nguyen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Finnadvance Ltd., Oulu, Finland
| | - Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Leif Wigge
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Franziska Kohl
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Songyuan Li
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Miguel Carracedo
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Luc Krimpenfort
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ramy Elgendy
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kati Richter
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Laknee De Silva
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Bilada Bilican
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Pratik Saxena
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuechong Hong
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
| |
Collapse
|
11
|
Li Y, Zhang L, Yang W, Lin L, Pan J, Lu M, Zhang Z, Li Y, Li C. Notoginsenoside R 1 decreases intraplaque neovascularization by governing pericyte-endothelial cell communication via Ang1/Tie2 axis in atherosclerosis. Phytother Res 2024; 38:4036-4052. [PMID: 38886264 DOI: 10.1002/ptr.8257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Atherosclerosis represents the major cause of mortality worldwide and triggers higher risk of acute cardiovascular events. Pericytes-endothelial cells (ECs) communication is orchestrated by ligand-receptor interaction generating a microenvironment which results in intraplaque neovascularization, that is closely associated with atherosclerotic plaque instability. Notoginsenoside R1 (R1) exhibits anti-atherosclerotic bioactivity, but its effect on angiogenesis in atherosclerotic plaque remains elusive. The aim of our study is to explore the therapeutic effect of R1 on vulnerable plaque and investigate its potential mechanism against intraplaque neovascularization. The impacts of R1 on plaque stability and intraplaque neovascularization were assessed in ApoE-/- mice induced by high-fat diet. Pericytes-ECs direct or non-direct contact co-cultured with VEGF-A stimulation were used as the in vitro angiogenesis models. Overexpressing Ang1 in pericytes was performed to investigate the underlying mechanism. In vivo experiments, R1 treatment reversed atherosclerotic plaque vulnerability and decreased the presence of neovessels in ApoE-/- mice. Additionally, R1 reduced the expression of Ang1 in pericytes. In vitro experiments demonstrated that R1 suppressed pro-angiogenic behavior of ECs induced by pericytes cultured with VEGF-A. Mechanistic studies revealed that the anti-angiogenic effect of R1 was dependent on the inhibition of Ang1 and Tie2 expression, as the effects were partially reversed after Ang1 overexpressing in pericytes. Our study demonstrated that R1 treatment inhibited intraplaque neovascularization by governing pericyte-EC association via suppressing Ang1-Tie2/PI3K-AKT paracrine signaling pathway. R1 represents a novel therapeutic strategy for atherosclerotic vulnerable plaques in clinical application.
Collapse
Affiliation(s)
- Yuan Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunlun Li
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Harary Søndergaard R, Drozd Højgaard L, Haack-Sørensen M, Hoeeg C, Mønsted Johansen E, Follin B, Kastrup J, Ekblond A, Juhl M. Investigating the paracrine and juxtacrine abilities of adipose-derived stromal cells in angiogenesis triple cell co-cultures. Stem Cell Res 2024; 77:103417. [PMID: 38608355 DOI: 10.1016/j.scr.2024.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
The pro-angiogenic abilities of adipose-derived stromal cells (ASCs) make them attractive candidates for cellular therapy, especially for ischemic disease indications. However, details regarding the underlying mechanisms remain elusive. Therefore, this study aimed to investigate paracrine and juxtacrine abilities of ASCs in angiogenesis triple cell co-cultures by detailed image analysis of the vascular-like structures. Fibroblast-endothelial cell co-cultures were established, and ASCs were added directly or indirectly through inserts. The cultures were treated with antibodies or subjected to analyses using ELISA and RT2 PCR Arrays. The model consistently generated vascular-like structures. ASCs increased the total branch lengths equally well in paracrine and juxtacrine conditions, by increasing the number of branches and average branch lengths (ABL). In contrast, addition of VEGF to the model increased the number of branches, but not the ABL. Still, ASCs increased the VEGF levels in supernatants of paracrine and juxtacrine co-cultures, and anti-VEGF treatment decreased the sprouting. ASCs themselves up-regulated collagen type V in response to paracrine signals from the co-cultures. The results suggest that ASCs initiate sprouting through secretion of several paracrine factors, among which VEGF is identified, but VEGF alone does not recapitulate the paracrine actions of ASCs. By employing neutralizing antibodies and dismantling common model outputs using image analysis, the triple cell co-culture is an attractive tool for discovery of the paracrine factors in ASCs' secretome which act in concert with VEGF to improve angiogenesis.
Collapse
Affiliation(s)
- Rebekka Harary Søndergaard
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark.
| | - Lisbeth Drozd Højgaard
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Cecilie Hoeeg
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Bjarke Follin
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Shin J, Ahn SH, Oh DJ. Pseudomonas aeruginosa N-3-Oxododecanoyl Homoserine Lactone Disrupts Endothelial Integrity by Activating the Angiopoietin-Tie System. Cell Biochem Biophys 2024; 82:1555-1566. [PMID: 38762714 DOI: 10.1007/s12013-024-01307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell-cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea.
| |
Collapse
|
14
|
Santos LC, Oliveira VQ, Teixeira SC, Correia TML, Andrade LOSB, Polloni L, Marques LM, Clissa PB, Baldo C, Ferro EAV, Gusmão ACMDM, Silva MJB, Sanabani SS, Ávila VDMR, Lopes DS. PLA 2-MjTX-II from Bothrops moojeni snake venom exhibits antimetastatic and antiangiogenic effects on human lung cancer cells. Toxicon 2024; 243:107742. [PMID: 38705486 DOI: 10.1016/j.toxicon.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.
Collapse
Affiliation(s)
- Luísa Carregosa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Vinícius Queiroz Oliveira
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | | | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, (UFU), Uberlândia, MG, Brazil
| | - Lucas Miranda Marques
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | | | - Cristiani Baldo
- Department of Biochemistry and Biotechnology, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation in Dermatology and Immunodeficiency, São Paulo Institute of Tropical Medicine, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, (UFU), Uberlândia, MG, Brazil.
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil.
| |
Collapse
|
15
|
Oliveira VQ, Santos LC, Teixeira SC, Correia TML, Andrade LOSB, Gimenes SNC, Colombini M, Marques LM, Jiménez-Charris E, Freitas-de-Sousa LA, Silva MJB, Magalhães Gusmão ACMD, Ferro EAV, Clissa PB, Melo Rodrigues VD, Lopes DS. Antiangiogenic properties of BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom by VEGF pathway in endothelial cells. Biochem Biophys Res Commun 2024; 706:149748. [PMID: 38460450 DOI: 10.1016/j.bbrc.2024.149748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 μg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 μg/mL, respectively, and the number of tubules by 15.9 at 5 μg/mL and 21.6 at 40 μg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 μg/mL and by 66% at 40 μg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.
Collapse
Affiliation(s)
- Vinícius Queiroz Oliveira
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Luísa Carregosa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| | | | | | | | - Mônica Colombini
- Laboratory of Immunopathology, Institute of Butantan, São Paulo, SP, Brazil
| | - Lucas Miranda Marques
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | | | | | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia (UFU), Uberlândia-MG, Brazil
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil.
| |
Collapse
|
16
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
17
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
18
|
Li B, Shaikh F, Zamzam A, Syed MH, Abdin R, Qadura M. A machine learning algorithm for peripheral artery disease prognosis using biomarker data. iScience 2024; 27:109081. [PMID: 38361633 PMCID: PMC10867451 DOI: 10.1016/j.isci.2024.109081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
Peripheral artery disease (PAD) biomarkers have been studied in isolation; however, an algorithm that considers a protein panel to inform PAD prognosis may improve predictive accuracy. Biomarker-based prediction models were developed and evaluated using a model development (n = 270) and prospective validation cohort (n = 277). Plasma concentrations of 37 proteins were measured at baseline and the patients were followed for 2 years. The primary outcome was 2-year major adverse limb event (MALE; composite of vascular intervention or major amputation). Of the 37 proteins tested, 6 were differentially expressed in patients with vs. without PAD (ADAMTS13, ICAM-1, ANGPTL3, Alpha 1-microglobulin, GDF15, and endostatin). Using 10-fold cross-validation, we developed a random forest machine learning model that accurately predicts 2-year MALE in a prospective validation cohort of PAD patients using a 6-protein panel (AUROC 0.84). This algorithm can support PAD risk stratification, informing clinical decisions on further vascular evaluation and management.
Collapse
Affiliation(s)
- Ben Li
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mohammad Qadura
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Zhang Y, Lin S, Liu J, Chen Q, Kang J, Zhong J, Hu M, Basabrain MS, Liang Y, Yuan C, Zhang C. Ang1/Tie2/VE-Cadherin Signaling Regulates DPSCs in Vascular Maturation. J Dent Res 2024; 103:101-110. [PMID: 38058134 DOI: 10.1177/00220345231210227] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Adding dental pulp stem cells (DPSCs) to vascular endothelial cell-formed vessel-like structures can increase the longevity of these vessel networks. DPSCs display pericyte-like cell functions and closely assemble endothelial cells (ECs). However, the mechanisms of DPSC-derived pericyte-like cells in stabilizing the vessel networks are not fully understood. In this study, we investigated the functions of E-DPSCs, which were DPSCs isolated from the direct coculture of human umbilical vein endothelial cells (HUVECs) and DPSCs, and T-DPSCs, which were DPSCs treated by transforming growth factor beta 1 (TGF-β1), in stabilizing blood vessels in vitro and in vivo. A 3-dimensional coculture spheroid sprouting assay was conducted to compare the functions of E-DPSCs and T-DPSCs in vitro. Dental pulp angiogenesis in the severe combined immunodeficiency (SCID) mouse model was used to explore the roles of E-DPSCs and T-DPSCs in vascularization in vivo. The results demonstrated that both E-DPSCs and T-DPSCs possess smooth muscle cell-like cell properties, exhibiting higher expression of the mural cell-specific markers and the suppression of HUVEC sprouting. E-DPSCs and T-DPSCs inhibited HUVEC sprouting by activating TEK tyrosine kinase (Tie2) signaling, upregulating vascular endothelial (VE)-cadherin, and downregulating vascular endothelial growth factor receptor 2 (VEGFR2). In vivo study revealed more perfused and total blood vessels in the HUVEC + E-DPSC group, HUVEC + T-DPSC group, angiopoietin 1 (Ang1) pretreated group, and vascular endothelial protein tyrosine phosphatase (VE-PTP) inhibitor pretreated group, compared to HUVEC + DPSC group. In conclusion, these data indicated that E-DPSCs and T-DPSCs could stabilize the newly formed blood vessels and accelerate their perfusion. The critical regulating pathways are Ang1/Tie2/VE-cadherin and VEGF/VEGFR2 signaling.
Collapse
Affiliation(s)
- Y Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - S Lin
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - J Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Q Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - J Kang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - J Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - M Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - M S Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Y Liang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - C Yuan
- School of Stomatology, Xuzhou Medical University, Department of Dental Implant, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - C Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Nashine S, Kenney MC. Effects of Humanin G (HNG) on angiogenesis and neurodegeneration markers in Age-related Macular Degeneration (AMD). Mitochondrion 2024; 74:101818. [PMID: 38029849 DOI: 10.1016/j.mito.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Advanced stages of Age-related Macular Degeneration (AMD) are characterized by retinal neurodegeneration and aberrant angiogenesis, and mitochondrial dysfunction contributes to the pathogenesis of AMD. In this study, we tested the hypothesis that Humanin G (HNG), a cytoprotective mitochondrial-derived peptide, positively regulates cell proliferation, cell death, and the protein levels of angiogenesis and neurodegeneration markers, in normal (control) and AMD RPE transmitochondrial cybrid cell lines. These normal and AMD RPE transmitochondrial cybrid cell lines had identical nuclei derived from mitochondria-deficient ARPE-19 cell line, but differed in mitochondrial DNA (mtDNA) content that was derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal (control) cybrid cell lines, and the Luminex XMAP multiplex assay was used to examine the protein levels of angiogenesis and neurodegeneration markers. Humanin G reduced Caspase-3/7-mediated apoptosis, improved cell proliferation, and normalized the protein levels of angiogenesis and neurodegeneration markers in AMD RPE cybrid cell lines, thereby suggesting Humanin G's positive regulatory role in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Lee E, O’Keefe S, Leong A, Park HR, Varadarajan J, Chowdhury S, Hiner S, Kim S, Shiva A, Friedman RA, Remotti H, Fojo T, Yang HW, Thurston G, Kim M. Angiopoietin-2 blockade suppresses growth of liver metastases from pancreatic neuroendocrine tumors by promoting T cell recruitment. J Clin Invest 2023; 133:e167994. [PMID: 37843277 PMCID: PMC10575726 DOI: 10.1172/jci167994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/15/2023] [Indexed: 10/17/2023] Open
Abstract
Improving the management of metastasis in pancreatic neuroendocrine tumors (PanNETs) is critical, as nearly half of patients with PanNETs present with liver metastases, and this accounts for the majority of patient mortality. We identified angiopoietin-2 (ANGPT2) as one of the most upregulated angiogenic factors in RNA-Seq data from human PanNET liver metastases and found that higher ANGPT2 expression correlated with poor survival rates. Immunohistochemical staining revealed that ANGPT2 was localized to the endothelial cells of blood vessels in PanNET liver metastases. We observed an association between the upregulation of endothelial ANGPT2 and liver metastatic progression in both patients and transgenic mouse models of PanNETs. In human and mouse PanNET liver metastases, ANGPT2 upregulation coincided with poor T cell infiltration, indicative of an immunosuppressive tumor microenvironment. Notably, both pharmacologic inhibition and genetic deletion of ANGPT2 in PanNET mouse models slowed the growth of PanNET liver metastases. Furthermore, pharmacologic inhibition of ANGPT2 promoted T cell infiltration and activation in liver metastases, improving the survival of mice with metastatic PanNETs. These changes were accompanied by reduced plasma leakage and improved vascular integrity in metastases. Together, these findings suggest that ANGPT2 blockade may be an effective strategy for promoting T cell infiltration and immunostimulatory reprogramming to reduce the growth of liver metastases in PanNETs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Tito Fojo
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Gavin Thurston
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Minah Kim
- Department of Pathology and Cell Biology
| |
Collapse
|
22
|
Chen C, Wang J, Liu C, Hu J, Liu L. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies. Biomed Pharmacother 2023; 166:115306. [PMID: 37572633 DOI: 10.1016/j.biopha.2023.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Acute myocardial infarction (MI), despite significant progress in its treatment, remains a leading cause of chronic heart failure and cardiovascular events such as cardiac arrest. Promoting angiogenesis in the myocardial tissue after MI to restore blood flow in the ischemic and hypoxic tissue is considered an effective treatment strategy. The repair of the myocardial tissue post-MI involves a robust angiogenic response, with mechanisms involved including endothelial cell proliferation and migration, capillary growth, changes in the extracellular matrix, and stabilization of pericytes for neovascularization. In this review, we provide a detailed overview of six key pathways in angiogenesis post-MI: the PI3K/Akt/mTOR signaling pathway, the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, the Sonic Hedgehog signaling pathway, and the JAK/STAT signaling pathway. We also discuss novel therapeutic approaches targeting these pathways, including drug therapy, gene therapy, protein therapy, cell therapy, and extracellular vesicle therapy. A comprehensive understanding of these key pathways and their targeted therapies will aid in our understanding of the pathological and physiological mechanisms of angiogenesis after MI and the development and application of new treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
23
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
24
|
Sato-Nishiuchi R, Doiguchi M, Morooka N, Sekiguchi K. Polydom/SVEP1 binds to Tie1 and promotes migration of lymphatic endothelial cells. J Cell Biol 2023; 222:e202208047. [PMID: 37338522 PMCID: PMC10281526 DOI: 10.1083/jcb.202208047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Polydom is an extracellular matrix protein involved in lymphatic vessel development. Polydom-deficient mice die immediately after birth due to defects in lymphatic vessel remodeling, but the mechanism involved is poorly understood. Here, we report that Polydom directly binds to Tie1, an orphan receptor in the Angiopoietin-Tie axis, and facilitates migration of lymphatic endothelial cells (LECs) in a Tie1-dependent manner. Polydom-induced LEC migration is diminished by PI3K inhibitors but not by an ERK inhibitor, suggesting that the PI3K/Akt signaling pathway is involved in Polydom-induced LEC migration. In line with this possibility, Akt phosphorylation in LECs is enhanced by Polydom although no significant Tie1 phosphorylation is induced by Polydom. LECs also exhibited nuclear exclusion of Foxo1, a signaling event downstream of Akt activation, which was impaired in Polydom-deficient mice. These findings indicate that Polydom is a physiological ligand for Tie1 and participates in lymphatic vessel development through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| | - Masamichi Doiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| | - Nanami Morooka
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| |
Collapse
|
25
|
Zhuang C, Kang M, Lee M. Delivery systems of therapeutic nucleic acids for the treatment of acute lung injury/acute respiratory distress syndrome. J Control Release 2023; 360:1-14. [PMID: 37330013 DOI: 10.1016/j.jconrel.2023.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is a devastating inflammatory lung disease with a high mortality rate. ALI/ARDS is induced by various causes, including sepsis, infections, thoracic trauma, and inhalation of toxic reagents. Corona virus infection disease-19 (COVID-19) is also a major cause of ALI/ARDS. ALI/ARDS is characterized by inflammatory injury and increased vascular permeability, resulting in lung edema and hypoxemia. Currently available treatments for ALI/ARDS are limited, but do include mechanical ventilation for gas exchange and treatments supportive of reduction of severe symptoms. Anti-inflammatory drugs such as corticosteroids have been suggested, but their clinical effects are controversial with possible side-effects. Therefore, novel treatment modalities have been developed for ALI/ARDS, including therapeutic nucleic acids. Two classes of therapeutic nucleic acids are in use. The first constitutes knock-in genes for encoding therapeutic proteins such as heme oxygenase-1 (HO-1) and adiponectin (APN) at the site of disease. The other is oligonucleotides such as small interfering RNAs and antisense oligonucleotides for knock-down expression of target genes. Carriers have been developed for efficient delivery for therapeutic nucleic acids into the lungs based on the characteristics of the nucleic acids, administration routes, and targeting cells. In this review, ALI/ARDS gene therapy is discussed mainly in terms of delivery systems. The pathophysiology of ALI/ARDS, therapeutic genes, and their delivery strategies are presented for development of ALI/ARDS gene therapy. The current progress suggests that selected and appropriate delivery systems of therapeutic nucleic acids into the lungs may be useful for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
26
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
27
|
Hu P, Armato U, Freddi G, Chiarini A, Dal Prà I. Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors. Cells 2023; 12:1827. [PMID: 37508492 PMCID: PMC10378127 DOI: 10.3390/cells12141827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated silk fibroin (SF) from Bombyx mori to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate). Next, we assessed-via scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, mono- and co-cultures of HaCaT keratinocytes and adult human dermal fibroblasts (HDFs), dsDNA assays, exosome isolation, double-antibody arrays, and angiogenesis assays-whether the C/H-3D-SFnws/ESFNs would allow the reconstitution of a functional human skin analog in vitro. Results: Physical analyses proved that the C/H-3D-SFnws/ESFNs met the requirements for human soft-tissue-like implants. dsDNA assays revealed that co-cultures of HaCaTs (on the 2D ESFN surface) and HDFs (inside the 3D C/H-3D-SFnws) grew more intensely than did the respective monocultures. Double-antibody arrays showed that the CD9+/CD81+ exosomes isolated from the 14-day pooled growth media of HDF and/or HaCaT mono- or co-cultures conveyed 35 distinct angiogenic/growth factors (AGFs). However, versus monocultures' exosomes, HaCaT/HDF co-cultures' exosomes (i) transported larger amounts of 15 AGFs, i.e., PIGF, ANGPT-1, bFGF, Tie-2, Angiogenin, VEGF-A, VEGF-D, TIMP-1/-2, GRO-α/-β/-γ, IL-1β, IL-6, IL-8, MMP-9, and MCP-1, and (ii) significantly more strongly stimulated human dermal microvascular endothelial cells to migrate and assemble tubes/nodes in vitro. Conclusions: Our results showed that both cell-cell and cell-SF interactions boosted the exosomal release of AGFs from HaCaTs/HDFs co-cultured on C/H-3D-SFnws/ESFNs. Hence, such exosomes are an asset for prospective clinical applications as they advance cell growth and neoangiogenesis and consequently graft take and skin healing. Moreover, this new integument analog could be instrumental in preclinical and translational studies on human skin pathophysiology and regeneration.
Collapse
Affiliation(s)
- Peng Hu
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | | | - Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| |
Collapse
|
28
|
Zhou W, Li W, Wang S, Salovska B, Hu Z, Tao B, Di Y, Punyamurtula U, Turk BE, Sessa WC, Liu Y. An optogenetic-phosphoproteomic study reveals dynamic Akt1 signaling profiles in endothelial cells. Nat Commun 2023; 14:3803. [PMID: 37365174 PMCID: PMC10293293 DOI: 10.1038/s41467-023-39514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
The serine/threonine kinase AKT is a central node in cell signaling. While aberrant AKT activation underlies the development of a variety of human diseases, how different patterns of AKT-dependent phosphorylation dictate downstream signaling and phenotypic outcomes remains largely enigmatic. Herein, we perform a systems-level analysis that integrates methodological advances in optogenetics, mass spectrometry-based phosphoproteomics, and bioinformatics to elucidate how different intensity, duration, and pattern of Akt1 stimulation lead to distinct temporal phosphorylation profiles in vascular endothelial cells. Through the analysis of ~35,000 phosphorylation sites across multiple conditions precisely controlled by light stimulation, we identify a series of signaling circuits activated downstream of Akt1 and interrogate how Akt1 signaling integrates with growth factor signaling in endothelial cells. Furthermore, our results categorize kinase substrates that are preferably activated by oscillating, transient, and sustained Akt1 signals. We validate a list of phosphorylation sites that covaried with Akt1 phosphorylation across experimental conditions as potential Akt1 substrates. Our resulting dataset provides a rich resource for future studies on AKT signaling and dynamics.
Collapse
Affiliation(s)
- Wenping Zhou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wenxue Li
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Shisheng Wang
- Department of Pulmonary and Critical Care Medicine, and Proteomics-Metabolomics Analysis Platform, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Barbora Salovska
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Zhenyi Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yi Di
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Ujwal Punyamurtula
- Master of Biotechnology ScM Program, Brown University, Providence, RI, 02912, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510, USA.
- Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA.
| |
Collapse
|
29
|
Park HR, Shiva A, Cummings P, Kim S, Kim S, Lee E, Leong A, Chowdhury S, Shawber C, Carvajal R, Thurston G, An JY, Lund AW, Yang HW, Kim M. Angiopoietin-2-Dependent Spatial Vascular Destabilization Promotes T-cell Exclusion and Limits Immunotherapy in Melanoma. Cancer Res 2023; 83:1968-1983. [PMID: 37093870 PMCID: PMC10267677 DOI: 10.1158/0008-5472.can-22-2838] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
T-cell position in the tumor microenvironment determines the probability of target encounter and tumor killing. CD8+ T-cell exclusion from the tumor parenchyma is associated with poor response to immunotherapy, and yet the biology that underpins this distinct pattern remains unclear. Here we show that the vascular destabilizing factor angiopoietin-2 (ANGPT2) causes compromised vascular integrity in the tumor periphery, leading to impaired T-cell infiltration to the tumor core. The spatial regulation of ANGPT2 in whole tumor cross-sections was analyzed in conjunction with T-cell distribution, vascular integrity, and response to immunotherapy in syngeneic murine melanoma models. T-cell exclusion was associated with ANGPT2 upregulation and elevated vascular leakage at the periphery of human and murine melanomas. Both pharmacologic and genetic blockade of ANGPT2 promoted CD8+ T-cell infiltration into the tumor core, exerting antitumor effects. Importantly, the reversal of T-cell exclusion following ANGPT2 blockade not only enhanced response to anti-PD-1 immune checkpoint blockade therapy in immunogenic, therapy-responsive mouse melanomas, but it also rendered nonresponsive tumors susceptible to immunotherapy. Therapeutic response after ANGPT2 blockade, driven by improved CD8+ T-cell infiltration to the tumor core, coincided with spatial TIE2 signaling activation and increased vascular integrity at the tumor periphery where endothelial expression of adhesion molecules was reduced. These data highlight ANGPT2/TIE2 signaling as a key mediator of T-cell exclusion and a promising target to potentiate immune checkpoint blockade efficacy in melanoma. SIGNIFICANCE ANGPT2 limits the efficacy of immunotherapy by inducing vascular destabilization at the tumor periphery to promote T-cell exclusion.
Collapse
Affiliation(s)
- Ha-Ram Park
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Anahita Shiva
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Portia Cummings
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Seoyeon Kim
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Eunhyeong Lee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Alessandra Leong
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Subrata Chowdhury
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Carrie Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Richard Carvajal
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Joon-Yong An
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, NYU Langone Health, New York, New York
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
30
|
Ruan Q, Tan S, Guo L, Ma D, Wen J. Prevascularization techniques for dental pulp regeneration: potential cell sources, intercellular communication and construction strategies. Front Bioeng Biotechnol 2023; 11:1186030. [PMID: 37274160 PMCID: PMC10232868 DOI: 10.3389/fbioe.2023.1186030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
One of the difficulties of pulp regeneration is the rapid vascularization of transplanted engineered tissue, which is crucial for the initial survival of the graft and subsequent pulp regeneration. At present, prevascularization techniques, as emerging techniques in the field of pulp regeneration, has been proposed to solve this challenge and have broad application prospects. In these techniques, endothelial cells and pericytes are cocultured to induce intercellular communication, and the cell coculture is then introduced into the customized artificial vascular bed or induced to self-assembly to simulate the interaction between cells and extracellular matrix, which would result in construction of a prevascularization system, preformation of a functional capillary network, and rapid reconstruction of a sufficient blood supply in engineered tissue after transplantation. However, prevascularization techniques for pulp regeneration remain in their infancy, and there remain unresolved problems regarding cell sources, intercellular communication and the construction of prevascularization systems. This review focuses on the recent advances in the application of prevascularization techniques for pulp regeneration, considers dental stem cells as a potential cell source of endothelial cells and pericytes, discusses strategies for their directional differentiation, sketches the mechanism of intercellular communication and the potential application of communication mediators, and summarizes construction strategies for prevascularized systems. We also provide novel ideas for the extensive application and follow-up development of prevascularization techniques for dental pulp regeneration.
Collapse
Affiliation(s)
| | | | | | - Dandan Ma
- *Correspondence: Dandan Ma, ; Jun Wen,
| | - Jun Wen
- *Correspondence: Dandan Ma, ; Jun Wen,
| |
Collapse
|
31
|
Liu X, Liang H, Fang H, Xiao J, Yang C, Zhou Z, Feng J, Chen C. Angiopoietin-1 promotes triple-negative breast cancer cell proliferation by upregulating carboxypeptidase A4. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1487-1495. [PMID: 37162264 PMCID: PMC10520468 DOI: 10.3724/abbs.2023082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/02/2023] [Indexed: 05/11/2023] Open
Abstract
Angiopoietin-1 (ANG1) is a pro-angiogenic regulator that contributes to the progression of solid tumors by stimulating the proliferation, migration and tube formation of vascular endothelial cells, as well as the renewal and stability of blood vessels. However, the functions and mechanisms of ANG1 in triple-negative breast cancer (TNBC) are unclear. The clinical sample database shows that a higher level of ANG1 in TNBC is associated with poor prognosis compared to non-TNBC. In addition, knockdown of ANG1 inhibits TNBC cell proliferation and induces cell cycle G1 phase arrest and apoptosis. Overexpression of ANG1 promotes tumor growth in nude mice. Mechanistically, ANG1 promotes TNBC by upregulating carboxypeptidase A4 (CPA4) expression. Overall, the ANG1-CPA4 axis can be a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Xue Liu
- Medical CollegeAnhui University of Science and TechnologyHuainan232001China
- Department of Laboratory Medicine & Central LaboratoryFengxian District Central Hospital of ShanghaiShanghai201499China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
| | - Huichun Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
| | - Huan Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
| | - Ji Xiao
- College of Life Science and TechnologyGuangzhou Jinan Biomedicine Research and Development CenterJinan UniversityGuangzhou510632China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
| | - Zhongmei Zhou
- The School of Continuing EducationKunming Medical UniversityKunming650500China
| | - Jing Feng
- Department of Laboratory Medicine & Central LaboratoryFengxian District Central Hospital of ShanghaiShanghai201499China
- The Second Affiliated Hospital of the Chinese University of Hong KongShenzhen518172China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
- Academy of Biomedical EngineeringKunming Medical UniversityKunming650500China
- The Third Affiliated HospitalKunming Medical UniversityKunming650106China
| |
Collapse
|
32
|
Lutz ID, Wang S, Norn C, Courbet A, Borst AJ, Zhao YT, Dosey A, Cao L, Xu J, Leaf EM, Treichel C, Litvicov P, Li Z, Goodson AD, Rivera-Sánchez P, Bratovianu AM, Baek M, King NP, Ruohola-Baker H, Baker D. Top-down design of protein architectures with reinforcement learning. Science 2023; 380:266-273. [PMID: 37079676 DOI: 10.1126/science.adf6591] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/21/2023] [Indexed: 04/22/2023]
Abstract
As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit together with substantial shape complementarity to generate architectures optimal for function in a manner not achievable by current design approaches. We describe a "top-down" reinforcement learning-based design approach that solves this problem using Monte Carlo tree search to sample protein conformers in the context of an overall architecture and specified functional constraints. Cryo-electron microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very close to the computational models. The icosohedra enable very-high-density display of immunogens and signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach enables the top-down design of complex protein nanomaterials with desired system properties and demonstrates the power of reinforcement learning in protein design.
Collapse
Affiliation(s)
- Isaac D Lutz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Christoffer Norn
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- BioInnovation Institute, DK2200 Copenhagen N, Denmark
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jinwei Xu
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Patrisia Litvicov
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Zhe Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexander D Goodson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Yanev P, van Tilborg GA, Boere KWM, Stowe AM, van der Toorn A, Viergever MA, Hennink WE, Vermonden T, Dijkhuizen RM. Thermosensitive Biodegradable Hydrogels for Local and Controlled Cerebral Delivery of Proteins: MRI-Based Monitoring of In Vitro and In Vivo Protein Release. ACS Biomater Sci Eng 2023; 9:760-772. [PMID: 36681938 PMCID: PMC9930091 DOI: 10.1021/acsbiomaterials.2c01224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hydrogels have been suggested as novel drug delivery systems for sustained release of therapeutic proteins in various neurological disorders. The main advantage these systems offer is the controlled, prolonged exposure to a therapeutically effective dose of the released drug after a single intracerebral injection. Characterization of controlled release of therapeutics from a hydrogel is generally performed in vitro, as current methods do not allow for in vivo measurements of spatiotemporal distribution and release kinetics of a loaded protein. Importantly, the in vivo environment introduces many additional variables and factors that cannot be effectively simulated under in vitro conditions. To address this, in the present contribution, we developed a noninvasive in vivo magnetic resonance imaging (MRI) method to monitor local protein release from two injected hydrogels of the same chemical composition but different initial water contents. We designed a biodegradable hydrogel formulation composed of low and high concentration thermosensitive polymer and thiolated hyaluronic acid, which is liquid at room temperature and forms a gel due to a combination of physical and chemical cross-linking upon injection at 37 °C. The in vivo protein release kinetics from these gels were assessed by MRI analysis utilizing a model protein labeled with an MR contrast agent, i.e. gadolinium-labeled albumin (74 kDa). As proof of principle, the release kinetics of the hydrogels were first measured with MRI in vitro. Subsequently, the protein loaded hydrogels were administered in male Wistar rat brains and the release in vivo was monitored for 21 days. In vitro, the thermosensitive hydrogels with an initial water content of 81 and 66% released 64 ± 3% and 43 ± 3% of the protein loading, respectively, during the first 6 days at 37 °C. These differences were even more profound in vivo, where the thermosensitive hydrogels released 83 ± 16% and 57 ± 15% of the protein load, respectively, 1 week postinjection. Measurement of volume changes of the gels over time showed that the thermosensitive gel with the higher polymer concentration increased more than 4-fold in size in vivo after 3 weeks, which was substantially different from the in vitro behavior where a volume change of 35% was observed. Our study demonstrates the potential of MRI to noninvasively monitor in vivo intracerebral protein release from a locally administered in situ forming hydrogel, which could aid in the development and optimization of such drug delivery systems for brain disorders.
Collapse
Affiliation(s)
- Pavel Yanev
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands,Department
of Neurology, University of Kentucky, Lexington, Kentucky40506, United States
| | - Geralda A.F. van Tilborg
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands,E-mail:
| | - Kristel W. M. Boere
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht3584 CG, The Netherlands
| | - Ann M. Stowe
- Department
of Neurology, University of Kentucky, Lexington, Kentucky40506, United States
| | - Annette van der Toorn
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands
| | - Max A. Viergever
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht3584 CG, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht3584 CG, The Netherlands
| | - Rick M. Dijkhuizen
- Biomedical
MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht3584 CX, The Netherlands
| |
Collapse
|
34
|
Zhang MX, Huang XY, Song Y, Xu WL, Li YL, Li C. Astragalus propinquus schischkin and Salvia miltiorrhiza bunge promote angiogenesis to treat myocardial ischemia via Ang-1/Tie-2/FAK pathway. Front Pharmacol 2023; 13:1103557. [PMID: 36699092 PMCID: PMC9868545 DOI: 10.3389/fphar.2022.1103557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Astragalus propinquus Schischkin and Salvia miltiorrhiza Bunge (AS) have been clinically used as adjunctive drugs in the treatment of myocardial ischemia (MI). However, the effect and mechanism of AS on MI have yet to be fully recognized. Here, we explored the cardioprotective effect of their combined use, and the mechanism of promoting angiogenesis through pericyte recruitment. Our data revealed that AS reduced MI and protects cardiac function. AS-treated MI mice exhibited reduced ST-segment displacement and repolarization time, increased ejection fraction, and less BNP and NT-proBNP expression. Pathological studies showed that, AS reduced the area of infarcted myocardium and slowed down the progress of cardiac remodelling and fibrosis. In addition, AS increased the content of platelet-derived growth factor receptors β (PDGFR-β), platelet endothelial cell adhesion molecule-1 (CD31) and angiogenesis-related proteins including vascular endothelial cadherin (VE-cadherin), Vascular Endothelial Growth Factor (VEGF) and transforming growth factor β (TGF-β). Moreover, these botanical drugs upregulated the expression of Angiopoietin-1 (Ang-1), phosphorylated angiopoietin-1 receptor (p-Tie-2), focal adhesion kinase (FAK) and growth factor receptor bound protein 7 (GRB7), indicating that the cardioprotection-related angiogenesis effect was related to pericyte recruitment, which may be through Ang-1/Tie-2/FAK pathway. In summary, AS can treat MI by protecting cardiac function, attenuating cardiac pathological changes, and hindering the progression of heart failure, which is related to angiogenesis after pericyte recruitment. Therefore, AS at a certain dose can be a promising treatment for MI with broad application prospects.
Collapse
Affiliation(s)
- Mu-Xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue-Ying Huang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Song
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wan-Li Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Chao Li,
| |
Collapse
|
35
|
Mauersberger C, Sager HB, Wobst J, Dang TA, Lambrecht L, Koplev S, Stroth M, Bettaga N, Schlossmann J, Wunder F, Friebe A, Björkegren JLM, Dietz L, Maas SL, van der Vorst EPC, Sandner P, Soehnlein O, Schunkert H, Kessler T. Loss of soluble guanylyl cyclase in platelets contributes to atherosclerotic plaque formation and vascular inflammation. NATURE CARDIOVASCULAR RESEARCH 2022; 1:1174-1186. [PMID: 37484062 PMCID: PMC10361702 DOI: 10.1038/s44161-022-00175-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/27/2022] [Indexed: 07/25/2023]
Abstract
Variants in genes encoding the soluble guanylyl cyclase (sGC) in platelets are associated with coronary artery disease (CAD) risk. Here, by using histology, flow cytometry and intravital microscopy, we show that functional loss of sGC in platelets of atherosclerosis-prone Ldlr-/- mice contributes to atherosclerotic plaque formation, particularly via increasing in vivo leukocyte adhesion to atherosclerotic lesions. In vitro experiments revealed that supernatant from activated platelets lacking sGC promotes leukocyte adhesion to endothelial cells (ECs) by activating ECs. Profiling of platelet-released cytokines indicated that reduced platelet angiopoietin-1 release by sGC-depleted platelets, which was validated in isolated human platelets from carriers of GUCY1A1 risk alleles, enhances leukocyte adhesion to ECs. I mp or ta ntly, p ha rm ac ol ogical sGC stimulation increased platelet angiopoietin-1 release in vitro and reduced leukocyte recruitment and atherosclerotic plaque formation in atherosclerosis-prone Ldlr-/- mice. Therefore, pharmacological sGC stimulation might represent a potential therapeutic strategy to prevent and treat CAD.
Collapse
Affiliation(s)
- Carina Mauersberger
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Carina Mauersberger, Hendrik B. Sager
| | - Hendrik B. Sager
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors contributed equally: Carina Mauersberger, Hendrik B. Sager
| | - Jana Wobst
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Tan An Dang
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Laura Lambrecht
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Marlène Stroth
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Noomen Bettaga
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Jens Schlossmann
- Department of Pharmacology and Toxicology, University of Regensburg, Regensburg, Germany
| | - Frank Wunder
- Bayer AG, R&D Pharmaceuticals, Wuppertal, Germany
| | - Andreas Friebe
- Institute of Physiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Neo, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Lisa Dietz
- Bayer AG, R&D Pharmaceuticals, Wuppertal, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research and Interdisciplinary Centre for Clinical Research, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research and Interdisciplinary Centre for Clinical Research, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Oliver Soehnlein
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Munich, Germany
- Institute for Experimental Pathology, University of Münster, Münster, Germany
- Department of Physiology and Pharmacology and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors jointly supervised this work: Heribert Schunkert, Thorsten Kessler
| | - Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
- These authors jointly supervised this work: Heribert Schunkert, Thorsten Kessler
| |
Collapse
|
36
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
37
|
Chang FC, Liu CH, Luo AJ, Tao-Min Huang T, Tsai MH, Chen YJ, Lai CF, Chiang CK, Lin TH, Chiang WC, Chen YM, Chu TS, Lin SL. Angiopoietin-2 inhibition attenuates kidney fibrosis by hindering chemokine C-C motif ligand 2 expression and apoptosis of endothelial cells. Kidney Int 2022; 102:780-797. [DOI: 10.1016/j.kint.2022.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
|
38
|
Pattern of tamoxifen-induced Tie2 deletion in endothelial cells in mature blood vessels using endo SCL-Cre-ERT transgenic mice. PLoS One 2022; 17:e0268986. [PMID: 35675336 PMCID: PMC9176780 DOI: 10.1371/journal.pone.0268986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Tyrosine-protein kinase receptor Tie2, also known as Tunica interna Endothelial cell Kinase or TEK plays a prominent role in endothelial responses to angiogenic and inflammatory stimuli. Here we generated a novel inducible Tie2 knockout mouse model, which targets mature (micro)vascular endothelium, enabling the study of the organ-specific contribution of Tie2 to these responses. Mice with floxed Tie2 exon 9 alleles (Tie2floxed/floxed) were crossed with end-SCL-Cre-ERT transgenic mice, generating offspring in which Tie2 exon 9 is deleted in the endothelial compartment upon tamoxifen-induced activation of Cre-recombinase (Tie2ΔE9). Successful deletion of Tie2 exon 9 in kidney, lung, heart, aorta, and liver, was accompanied by a heterogeneous, organ-dependent reduction in Tie2 mRNA and protein expression. Microvascular compartment-specific reduction in Tie2 mRNA and protein occurred in arterioles of all studied organs, in renal glomeruli, and in lung capillaries. In kidney, lung, and heart, reduced Tie2 expression was accompanied by a reduction in Tie1 mRNA expression. The heterogeneous, organ- and microvascular compartment-dependent knockout pattern of Tie2 in the Tie2floxed/floxed;end-SCL-Cre-ERT mouse model suggests that future studies using similar knockout strategies should include a meticulous analysis of the knockout extent of the gene of interest, prior to studying its role in pathological conditions, so that proper conclusions can be drawn.
Collapse
|
39
|
Yao J, Wu XY, Yu Q, Yang SF, Yuan J, Zhang ZQ, Xue JS, Jiang Q, Chen MB, Xue GH, Cao C. The requirement of phosphoenolpyruvate carboxykinase 1 for angiogenesis in vitro and in vivo. SCIENCE ADVANCES 2022; 8:eabn6928. [PMID: 35622925 PMCID: PMC9140980 DOI: 10.1126/sciadv.abn6928] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/12/2022] [Indexed: 05/23/2023]
Abstract
We here examined the potential biological function of phosphoenolpyruvate carboxykinase 1 (PCK1) in angiogenesis. shRNA- or CRISPR-Cas9-induced PCK1 depletion potently inhibited endothelial cell proliferation, migration, sprouting, and tube formation, whereas ectopic PCK1 overexpression exerted opposite activity. In HUVECs, Gαi3 expression and Akt activation were decreased following PCK1 depletion, but were augmented by ectopic PCK1 overexpression. In vivo, retinal expression of PCK1 gradually increased from postnatal day 1 (P1) to P5. The intravitreous injection of endothelial-specific PCK1 shRNA adenovirus at P1 potently inhibited the radial extension of vascular plexus at P5. Conditional endothelial knockdown of PCK1 in adult mouse retina increased vascular leakage and the number of acellular capillaries while decreasing the number of RGCs in murine retinas. In diabetic retinopathy patients, PCK1 mRNA and protein levels were up-regulated in retinal tissues. Together, PCK1 is essential for angiogenesis possibly by mediating Gαi3 expression and Akt activation.
Collapse
Affiliation(s)
- Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Xin-yuan Wu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Yu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Shuo-fei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Yuan
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-qing Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-song Xue
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Min-bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Guan-hua Xue
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Cong Cao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
40
|
Meltzer M, Eliash N, Azoulay Z, Hadad U, Papo N. In vitro inhibition of cancer angiogenesis and migration by a nanobody that targets the orphan receptor Tie1. Cell Mol Life Sci 2022; 79:312. [PMID: 35604495 PMCID: PMC11072481 DOI: 10.1007/s00018-022-04336-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The human signaling molecules Tie1 and Tie2 receptor tyrosine kinases (RTKs) play important pathophysiological roles in many diseases, including different cancers. The activity of Tie1 is mediated mainly through the downstream angiopoietin-1 (Ang1)-dependent activation of Tie2, rendering both Tie 1 and the Tie1/Tie2/Ang1 axis attractive putative targets for therapeutic intervention. However, the development of inhibitors that target Tie1 and an understanding of their effect on Tie2 and on the Tie1/Tie2/Ang1 axis remain unfulfilled tasks, due, largely, to the facts that Tie1 is an orphan receptor and is difficult to produce and use in the quantities required for immune antibody library screens. In a search for a selective inhibitor of this orphan receptor, we sought to exploit the advantages (e.g., small size that allows binding to hidden epitopes) of non-immune nanobodies and to simultaneously overcome their limitations (i.e., low expression and stability). We thus performed expression, stability, and affinity screens of yeast-surface-displayed naïve and predesigned synthetic (non-immune) nanobody libraries against the Tie1 extracellular domain. The screens yielded a nanobody with high expression and good affinity and specificity for Tie1, thereby yielding preferential binding for Tie1 over Tie2. The stability, selectivity, potency, and therapeutic potential of this synthetic nanobody were profiled using in vitro and cell-based assays. The nanobody triggered Tie1-dependent inhibition of RTK (Tie2, Akt, and Fak) phosphorylation and angiogenesis in endothelial cells, as well as suppression of human glioblastoma cell viability and migration. This study opens the way to developing nanobodies as therapeutics for different cancers associated with Tie1 activation.
Collapse
Affiliation(s)
- May Meltzer
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Noam Eliash
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Ziv Azoulay
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
41
|
Rada M, Kapelanski-Lamoureux A, Tsamchoe M, Petrillo S, Lazaris A, Metrakos P. Angiopoietin-1 Upregulates Cancer Cell Motility in Colorectal Cancer Liver Metastases through Actin-Related Protein 2/3. Cancers (Basel) 2022; 14:2540. [PMID: 35626145 PMCID: PMC9139616 DOI: 10.3390/cancers14102540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Resistance to anti-angiogenic therapy is a major challenge in the treatment of colorectal cancer liver metastases (CRCLMs). Vessel co-option has been identified as a key contributor to anti-angiogenic therapy resistance in CRCLMs. Recently, we identified a positive correlation between the expression of Angiopoietin1 (Ang1) in the liver and the development of vessel co-opting CRCLM lesions in vivo. However, the mechanisms underlying its stimulation of vessel co-option are unclear. Herein, we demonstrated Ang1 as a positive regulator of actin-related protein 2/3 (ARP2/3) expression in cancer cells, in vitro and in vivo, which is known to be essential for the formation of vessel co-option in CRCLM. Significantly, Ang1-dependent ARP2/3 expression was impaired in the cancer cells upon Tie2 or PI3K/AKT inhibition in vitro. Taken together, our results suggest novel mechanisms by which Ang1 confers the development of vessel co-option in CRCLM, which, targeting this pathway, may serve as promising therapeutic targets to overcome the development of vessel co-option in CRCLM.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (A.K.-L.); (M.T.); (S.P.); (A.L.)
| | | | | | | | | | - Peter Metrakos
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (A.K.-L.); (M.T.); (S.P.); (A.L.)
| |
Collapse
|
42
|
Angiopoietin-1 protects against endotoxin-induced neonatal lung injury and alveolar simplification in mice. Pediatr Res 2022; 91:1405-1415. [PMID: 33980990 PMCID: PMC8586034 DOI: 10.1038/s41390-021-01544-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sepsis in premature newborns is a risk factor for bronchopulmonary dysplasia (BPD), but underlying mechanisms of lung injury remain unclear. Aberrant expression of endothelial cell (EC) angiopoietin 2 (ANGPT2) disrupts angiopoietin 1 (ANGPT1)/TIE2-mediated endothelial quiescence, and is implicated in sepsis-induced acute respiratory distress syndrome in adults. We hypothesized that recombinant ANGPT1 will mitigate sepsis-induced ANGPT2 expression, inflammation, acute lung injury (ALI), and alveolar remodeling in the saccular lung. METHODS Effects of recombinant ANGPT1 on lipopolysaccharide (LPS)-induced endothelial inflammation were evaluated in human pulmonary microvascular endothelial cells (HPMEC). ALI and long-term alveolar remodeling were assessed in newborn mice exposed to intraperitoneal LPS and recombinant ANGPT1 pretreatment. RESULTS LPS dephosphorylated EC TIE2 in association with increased ANGPT2 in vivo and in vitro. ANGPT1 suppressed LPS and ANGPT2-induced EC inflammation in HPMEC. Neonatal mice treated with LPS had increased lung cytokine expression, neutrophilic influx, and cellular apoptosis. ANGPT1 pre-treatment suppressed LPS-induced lung Toll-like receptor signaling, inflammation, and ALI. LPS-induced acute increases in metalloproteinase 9 expression and elastic fiber breaks, as well as a long-term decrease in radial alveolar counts, were mitigated by ANGPT1. CONCLUSIONS In an experimental model of sepsis-induced BPD, ANGPT1 preserved endothelial quiescence, inhibited ALI, and suppressed alveolar simplification. IMPACT Key message: Angiopoietin 1 inhibits LPS-induced neonatal lung injury and alveolar remodeling. Additions to existing literature: Demonstrates dysregulation of angiopoietin-TIE2 axis is important for sepsis- induced acute lung injury and alveolar simplification in experimental BPD. Establishes recombinant Angiopoietin 1 as an anti-inflammatory therapy in BPD. IMPACT Angiopoietin 1-based interventions may represent novel therapies for mitigating sepsis-induced lung injury and BPD in premature infants.
Collapse
|
43
|
Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, Febbraio MA, Galis ZS, Gao Y, Haus JM, Lanza IR, Lavie CJ, Lee CH, Lucia A, Moro C, Pandey A, Robbins JM, Stanford KI, Thackray AE, Villeda S, Watt MJ, Xia A, Zierath JR, Goodpaster BH, Snyder MP. Exerkines in health, resilience and disease. Nat Rev Endocrinol 2022; 18:273-289. [PMID: 35304603 PMCID: PMC9554896 DOI: 10.1038/s41574-022-00641-2] [Citation(s) in RCA: 398] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/16/2022]
Abstract
The health benefits of exercise are well-recognized and are observed across multiple organ systems. These beneficial effects enhance overall resilience, healthspan and longevity. The molecular mechanisms that underlie the beneficial effects of exercise, however, remain poorly understood. Since the discovery in 2000 that muscle contraction releases IL-6, the number of exercise-associated signalling molecules that have been identified has multiplied. Exerkines are defined as signalling moieties released in response to acute and/or chronic exercise, which exert their effects through endocrine, paracrine and/or autocrine pathways. A multitude of organs, cells and tissues release these factors, including skeletal muscle (myokines), the heart (cardiokines), liver (hepatokines), white adipose tissue (adipokines), brown adipose tissue (baptokines) and neurons (neurokines). Exerkines have potential roles in improving cardiovascular, metabolic, immune and neurological health. As such, exerkines have potential for the treatment of cardiovascular disease, type 2 diabetes mellitus and obesity, and possibly in the facilitation of healthy ageing. This Review summarizes the importance and current state of exerkine research, prevailing challenges and future directions.
Collapse
Affiliation(s)
- Lisa S Chow
- Division of Diabetes Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joan M Taylor
- Department of Pathology, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism/Centre for PA Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette van Praag
- Stiles-Nicholson Brain institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Scott Trappe
- Human Performance Laboratory, Ball State University, Muncie, IN, USA
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Zorina S Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yunling Gao
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Ian R Lanza
- Division of Endocrinology, Nutrition, and Metabolism, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Carl J Lavie
- Division of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA
| | - Chih-Hao Lee
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre ('imas12'), Madrid, Spain
- CIBER en Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, Team MetaDiab, Inserm UMR1297, Toulouse, France
- Toulouse III University-Paul Sabatier (UPS), Toulouse, France
| | - Ambarish Pandey
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Saul Villeda
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Victoria, Australia
| | - Ashley Xia
- Division of Diabetes, Endocrinology, & Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
44
|
Francis CR, Kushner EJ. Trafficking in blood vessel development. Angiogenesis 2022; 25:291-305. [PMID: 35449244 PMCID: PMC9249721 DOI: 10.1007/s10456-022-09838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/03/2022] [Indexed: 02/17/2023]
Abstract
Blood vessels demonstrate a multitude of complex signaling programs that work in concert to produce functional vasculature networks during development. A known, but less widely studied, area of endothelial cell regulation is vesicular trafficking, also termed sorting. After moving through the Golgi apparatus, proteins are shuttled to organelles, plugged into membranes, recycled, or degraded depending on the internal and extrinsic cues. A snapshot of these protein-sorting systems can be viewed as a trafficking signature that is not only unique to endothelial tissue, but critically important for blood vessel form and function. In this review, we will cover how vesicular trafficking impacts various aspects of angiogenesis, such as sprouting, lumen formation, vessel stabilization, and secretion, emphasizing the role of Rab GTPase family members and their various effectors.
Collapse
Affiliation(s)
- Caitlin R Francis
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
45
|
Gustafson D, Ngai M, Wu R, Hou H, Schoffel AC, Erice C, Mandla S, Billia F, Wilson MD, Radisic M, Fan E, Trahtemberg U, Baker A, McIntosh C, Fan CPS, Dos Santos CC, Kain KC, Hanneman K, Thavendiranathan P, Fish JE, Howe KL. Cardiovascular signatures of COVID-19 predict mortality and identify barrier stabilizing therapies. EBioMedicine 2022; 78:103982. [PMID: 35405523 PMCID: PMC8989492 DOI: 10.1016/j.ebiom.2022.103982] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Background Endothelial cell (EC) activation, endotheliitis, vascular permeability, and thrombosis have been observed in patients with severe coronavirus disease 2019 (COVID-19), indicating that the vasculature is affected during the acute stages of SARS-CoV-2 infection. It remains unknown whether circulating vascular markers are sufficient to predict clinical outcomes, are unique to COVID-19, and if vascular permeability can be therapeutically targeted. Methods Prospectively evaluating the prevalence of circulating inflammatory, cardiac, and EC activation markers as well as developing a microRNA atlas in 241 unvaccinated patients with suspected SARS-CoV-2 infection allowed for prognostic value assessment using a Random Forest model machine learning approach. Subsequent ex vivo experiments assessed EC permeability responses to patient plasma and were used to uncover modulated gene regulatory networks from which rational therapeutic design was inferred. Findings Multiple inflammatory and EC activation biomarkers were associated with mortality in COVID-19 patients and in severity-matched SARS-CoV-2-negative patients, while dysregulation of specific microRNAs at presentation was specific for poor COVID-19-related outcomes and revealed disease-relevant pathways. Integrating the datasets using a machine learning approach further enhanced clinical risk prediction for in-hospital mortality. Exposure of ECs to COVID-19 patient plasma resulted in severity-specific gene expression responses and EC barrier dysfunction, which was ameliorated using angiopoietin-1 mimetic or recombinant Slit2-N. Interpretation Integration of multi-omics data identified microRNA and vascular biomarkers prognostic of in-hospital mortality in COVID-19 patients and revealed that vascular stabilizing therapies should be explored as a treatment for endothelial dysfunction in COVID-19, and other severe diseases where endothelial dysfunction has a central role in pathogenesis. Funding Information This work was directly supported by grant funding from the Ted Rogers Center for Heart Research, Toronto, Ontario, Canada and the Peter Munk Cardiac Center, Toronto, Ontario, Canada.
Collapse
Affiliation(s)
- Dakota Gustafson
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Michelle Ngai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Ruilin Wu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Huayun Hou
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | | | - Clara Erice
- Johns Hopkins School of Medicine, Baltimore, USA
| | - Serena Mandla
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Michael D Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Eddy Fan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Interdepartmental Division of Critical Care and Institute of Medical Sciences, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Uriel Trahtemberg
- Keenan Research Center for Biomedical Research, Unity Health Toronto, Toronto, Canada; Critical Care Department, Galilee Medical Center, Nahariya, Israel
| | - Andrew Baker
- Interdepartmental Division of Critical Care and Institute of Medical Sciences, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Critical Care Department, Galilee Medical Center, Nahariya, Israel
| | - Chris McIntosh
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada; Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada; Techna Institute, University Health Network, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Vector Institute, University of Toronto, Toronto, Canada
| | - Chun-Po S Fan
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Claudia C Dos Santos
- Interdepartmental Division of Critical Care and Institute of Medical Sciences, University of Toronto, Toronto, Canada; Keenan Research Center for Biomedical Research, Unity Health Toronto, Toronto, Canada
| | - Kevin C Kain
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kate Hanneman
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada; Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada
| | - Paaladinesh Thavendiranathan
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada; Ted Rogers Program in Cardiotoxicity Prevention, Toronto General Hospital, Toronto, Canada
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Kathryn L Howe
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Division of Vascular Surgery, Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
46
|
Karabid NM, Wiedemann T, Gulde S, Mohr H, Segaran RC, Geppert J, Rohm M, Vitale G, Gaudenzi G, Dicitore A, Ankerst DP, Chen Y, Braren R, Kaissis G, Schilling F, Schillmaier M, Eisenhofer G, Herzig S, Roncaroli F, Honegger JB, Pellegata NS. Angpt2/Tie2 autostimulatory loop controls tumorigenesis. EMBO Mol Med 2022; 14:e14364. [PMID: 35266635 PMCID: PMC9081903 DOI: 10.15252/emmm.202114364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Invasive nonfunctioning (NF) pituitary neuroendocrine tumors (PitNETs) are non‐resectable neoplasms associated with frequent relapses and significant comorbidities. As the current therapies of NF‐PitNETs often fail, new therapeutic targets are needed. The observation that circulating angiopoietin‐2 (ANGPT2) is elevated in patients with NF‐PitNET and correlates with tumor aggressiveness prompted us to investigate the ANGPT2/TIE2 axis in NF‐PitNETs in the GH3 PitNET cell line, primary human NF‐PitNET cells, xenografts in zebrafish and mice, and in MENX rats, the only autochthonous NF‐PitNET model. We show that PitNET cells express a functional TIE2 receptor and secrete bioactive ANGPT2, which promotes, besides angiogenesis, tumor cell growth in an autocrine and paracrine fashion. ANGPT2 stimulation of TIE2 in tumor cells activates downstream cell proliferation signals, as previously demonstrated in endothelial cells (ECs). Tie2 gene deletion blunts PitNETs growth in xenograft models, and pharmacological inhibition of Angpt2/Tie2 signaling antagonizes PitNETs in primary cell cultures, tumor xenografts in mice, and in MENX rats. Thus, the ANGPT2/TIE2 axis provides an exploitable therapeutic target in NF‐PitNETs and possibly in other tumors expressing ANGPT2/TIE2. The ability of tumor cells to coopt angiogenic signals classically viewed as EC‐specific expands our view on the microenvironmental cues that are essential for tumor progression.
Collapse
Affiliation(s)
- Ninelia Minaskan Karabid
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Gulde
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermine Mohr
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Renu Chandra Segaran
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Geppert
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Giovanni Vitale
- Istituto Auxologico Italiano IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Istituto Auxologico Italiano IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Cusano Milanino, Milan, Italy
| | - Alessandra Dicitore
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Yiyao Chen
- Department of Mathematics, Technical University Munich, Garching, Germany
| | - Rickmer Braren
- Institute for Diagnostic and Interventional Radiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Georg Kaissis
- Institute for Diagnostic and Interventional Radiology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Mathias Schillmaier
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jürgen B Honegger
- Department of Neurosurgery, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer, Helmholtz Zentrum München, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
47
|
Hasmad HN, Bt Hj Idrus R, Sulaiman N, Lokanathan Y. Electrospun Fiber-Coated Human Amniotic Membrane: A Potential Angioinductive Scaffold for Ischemic Tissue Repair. Int J Mol Sci 2022; 23:ijms23031743. [PMID: 35163664 PMCID: PMC8836161 DOI: 10.3390/ijms23031743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Cardiac patch implantation helps maximize the paracrine function of grafted cells and serves as a reservoir of soluble proangiogenic factors required for the neovascularization of infarcted hearts. We have previously fabricated a cardiac patch, EF-HAM, composed of a human amniotic membrane (HAM) coated with aligned PLGA electrospun fibers (EF). In this study, we aimed to evaluate the biocompatibility and angiogenic effects of EF-HAM scaffolds with varying fiber thicknesses on the paracrine behavior of skeletal muscle cells (SkM). Conditioned media (CM) obtained from SkM-seeded HAM and EF-HAM scaffolds were subjected to multiplex analysis of angiogenic factors and tested on HUVECs for endothelial cell viability, migration, and tube formation analyses. All three different groups of EF-HAM scaffolds demonstrated excellent biocompatibility with SkM. CM derived from SkM-seeded EF-HAM 7 min scaffolds contained significantly elevated levels of proangiogenic factors, including angiopoietin-1, IL-8, and VEGF-C compared to plain CM, which was obtained from SkM cultured on the plain surface. CM obtained from all SkM-seeded EF-HAM scaffolds significantly increased the viability of HUVECs compared to plain CM after five days of culture. However, only EF-HAM 7 min CM induced a higher migration capacity in HUVECs and formed a longer and more elaborate capillary-like network on Matrigel compared with plain CM. Surface roughness and wettability of EF-HAM 7 min scaffolds might have influenced the proportion of skeletal myoblasts and fibroblasts growing on the scaffolds and subsequently potentiated the angiogenic paracrine function of SkM. This study demonstrated the angioinductive properties of EF-HAM composite scaffold and its potential applications in the repair and regeneration of ischemic tissues.
Collapse
|
48
|
Ma W, Zhang P, Yiming A, Amuti S, Ruze A. iTRAQ‐based identification of differentially expressed proteins in ED rat model induced by cold stress combined with environmental oestrogen. Andrologia 2022; 54:e14382. [PMID: 35092079 DOI: 10.1111/and.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Wenjing Ma
- School of Pharmacy Central Laboratory Xinjiang Medical University Urumqi 830017 P.R. China
| | - Panpan Zhang
- Department of Human Anatomy Basic Medical College Xinjiang Medical University Urumqi 830017 P.R. China
| | - Adilijiang Yiming
- Department of Human Anatomy Basic Medical College Xinjiang Medical University Urumqi 830017 P.R. China
| | - Siyiti Amuti
- Department of Human Anatomy Basic Medical College Xinjiang Medical University Urumqi 830017 P.R. China
| | - Abudureyimujiang Ruze
- Department of Human Anatomy Basic Medical College Xinjiang Medical University Urumqi 830017 P.R. China
| |
Collapse
|
49
|
Milone G, Bellofiore C, Leotta S, Milone GA, Cupri A, Duminuco A, Garibaldi B, Palumbo G. Endothelial Dysfunction after Hematopoietic Stem Cell Transplantation: A Review Based on Physiopathology. J Clin Med 2022; 11:jcm11030623. [PMID: 35160072 PMCID: PMC8837122 DOI: 10.3390/jcm11030623] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction (ED) is frequently encountered in transplant medicine. ED is an argument of high complexity, and its understanding requires a wide spectrum of knowledge based on many fields of basic sciences such as molecular biology, immunology, and pathology. After hematopoietic stem cell transplantation (HSCT), ED participates in the pathogenesis of various complications such as sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), graft-versus-host disease (GVHD), transplant-associated thrombotic microangiopathy (TA-TMA), idiopathic pneumonia syndrome (IPS), capillary leak syndrome (CLS), and engraftment syndrome (ES). In the first part of the present manuscript, we briefly review some biological aspects of factors involved in ED: adhesion molecules, cytokines, Toll-like receptors, complement, angiopoietin-1, angiopoietin-2, thrombomodulin, high-mobility group B-1 protein, nitric oxide, glycocalyx, coagulation cascade. In the second part, we review the abnormalities of these factors found in the ED complications associated with HSCT. In the third part, a review of agents used in the treatment of ED after HSCT is presented.
Collapse
|
50
|
Thakkar AB, Ma Y, Dela Cruz M, Wu Y, Arechiga V, Swaminathan S, Ganz P, Wu AHB, Scherzer R, Deeks S, Hsue PY. Effect of HIV-1 Infection on Angiopoietin 1 and 2 Levels and Measures of Microvascular and Macrovascular Endothelial Dysfunction. J Am Heart Assoc 2021; 10:e021397. [PMID: 34726064 PMCID: PMC8751943 DOI: 10.1161/jaha.121.021397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Individuals infected with HIV have an increased risk of developing cardiovascular disease; yet, the underlying mechanisms remain unknown. Recent evidence has implicated the Tie-2 tyrosine kinase receptor system and its associated ligands ANG1 (angiopoietin 1) and ANG2 (angiopoietin 2) in maintaining vascular homeostasis. In the general population, lower ANG1 levels and higher ANG2 levels are strongly correlated with the development of cardiovascular disease. In this study, we aim to investigate the associations of HIV infection with angiopoietin levels and endothelial dysfunction. Methods and Results In this cross-sectional study, we compared measures of ANG1, ANG2, and endothelial dysfunction using flow-mediated vasodilation of the brachial artery in 39 untreated subjects infected with HIV, 47 treated subjects infected with HIV, and 46 uninfected subjects from the SCOPE (Observational Study of the Consequences of the Protease Inhibitor Era) cohort. Compared with uninfected controls, treated individuals infected with HIV had 53.1% lower mean ANG1 levels (P<0.01) and similar ANG2 levels. On the other hand, untreated individuals infected with HIV had similar ANG1 levels, and 29.2% had higher ANG2 levels (P<0.01) compared with uninfected controls. When compared with individuals with untreated HIV infection, those with treated HIV infection had 56% lower ANG1 levels (P<0.01) and 22% lower ANG2 levels (P<0.01).Both treated and untreated HIV infection were associated with significant impairment in hyperemic velocity, a key measure of microvascular dysfunction (median 61 versus 72 cm/s, P<0.01), compared with uninfected controls (median 73 cm/s). This difference persisted after adjustment for ANG1 and ANG2 levels. Interestingly, when compared with untreated individuals infected with HIV, treated individuals infected with HIV had worse hyperemic velocity (-12.35 cm/s, P=0.05). In contrast, HIV status, ANG1 levels, and ANG2 levels were not associated with macrovascular dysfunction as measured by flow-mediated dilatation and brachial artery diameter, 2 other measures of vascular homeostasis. Conclusions HIV infection affects the balance between levels of ANG1 and ANG2 and may disturb endothelial homeostasis through disruption of vascular homeostasis. Individuals with treated HIV had decreased ANG1 levels and similar ANG2 levels, whereas individuals with untreated HIV had similar ANG1 levels and increased ANG2 levels, suggesting that treatment status may alter the balance between ANG1 and ANG2. HIV also promotes endothelial dysfunction via impairment of microvascular dysfunction, independent of the Tie-2 receptor system; the finding of worse microvascular dysfunction in the setting of treated HIV infection may reflect the impact of viral persistence on the microvasculature or toxicities of specific antiretroviral regimens. Further research to clarify the mechanism of HIV-mediated endothelial dysfunction is necessary to advance treatment of cardiovascular complications of HIV infection.
Collapse
Affiliation(s)
- Anjali B Thakkar
- Division of Cardiology Department of Medicine Zuckerberg San Francisco General HospitalUniversity of California San Francisco San Francisco CA
| | - Yifei Ma
- Division of Cardiology Department of Medicine Zuckerberg San Francisco General HospitalUniversity of California San Francisco San Francisco CA
| | - Mark Dela Cruz
- Section of Cardiology Department of Medicine University of Chicago Medical Center Chicago IL
| | - Yuaner Wu
- Division of Cardiology Department of Medicine Zuckerberg San Francisco General HospitalUniversity of California San Francisco San Francisco CA
| | - Victor Arechiga
- Division of Cardiology Department of Medicine Zuckerberg San Francisco General HospitalUniversity of California San Francisco San Francisco CA
| | - Shreya Swaminathan
- Division of Cardiology Department of Medicine Zuckerberg San Francisco General HospitalUniversity of California San Francisco San Francisco CA
| | - Peter Ganz
- Division of Cardiology Department of Medicine Zuckerberg San Francisco General HospitalUniversity of California San Francisco San Francisco CA
| | - Alan H B Wu
- Division of Clinical Chemistry Department of Laboratory Medicine Zuckerberg San Francisco General HospitalUniversity of California San Francisco San Francisco CA
| | - Rebecca Scherzer
- San Francisco Veteran's Affairs Medical Center San Francisco CA.,Department of Medicine University of California San Francisco CA
| | - Steven Deeks
- Positive Health Program Zuckerberg San Francisco General HospitalUniversity of California San Francisco CA
| | - Priscilla Y Hsue
- Division of Cardiology Department of Medicine Zuckerberg San Francisco General HospitalUniversity of California San Francisco San Francisco CA
| |
Collapse
|