1
|
Bai L, Sun S, Sun Y, Wang F, Nishiyama A. N-type calcium channel and renal injury. Int Urol Nephrol 2022; 54:2871-2879. [PMID: 35416563 PMCID: PMC9534814 DOI: 10.1007/s11255-022-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
Accumulating evidences indicated that voltage-gated calcium channels (VDCC), including L-, T-, N-, and P/Q-type, are present in kidney and contribute to renal injury during various chronic diseases trough different mechanisms. As a voltage-gated calcium channel, N-type calcium channel was firstly been founded predominately distributed on nerve endings which control neurotransmitter releases. Since sympathetic nerve is distributed along renal afferent and efferent arterioles, N-type calcium channel blockade on sympathetic nerve terminals would bring renal dynamic improvement by dilating both arterioles and reducing glomerular pressure. In addition, large body of scientific research indicated that neurotransmitters, such as norepinephrine, releases by activating N-type calcium channel can trigger inflammatory and fibrotic signaling pathways in kidney. Interestingly, we recently demonstrated that N-type calcium channel is also expressed on podocytes and may directly contribute to podocyte injury in denervated animal models. In this paper, we will summarize our current knowledge regarding renal N-type calcium channels, and discuss how they might contribute to the river that terminates in renal injury.
Collapse
Affiliation(s)
- Lei Bai
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China.
| | - Shichao Sun
- Department of Neurology, The Second Hospital of Hebei Medical University, No. 215 Heping Road, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yao Sun
- Department of Medical Image, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Fujun Wang
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, People's Republic of China
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, 761-0793, Japan
| |
Collapse
|
2
|
Calcium channel blocker in patients with chronic kidney disease. Clin Exp Nephrol 2021; 26:207-215. [PMID: 34748113 PMCID: PMC8847284 DOI: 10.1007/s10157-021-02153-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/24/2021] [Indexed: 10/26/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) is involved in a progressive deterioration in renal function over the years and is now a global public health problem. Currently, reducing the number of patients progressing to end-stage renal failure is urgently necessary. Hypertension and CKD interact with each other, and good control of blood pressure (BP) can improve CKD patients' prognosis. With the current global trend for more strict BP control, the importance of BP management and the need for medication to achieve this strict goal are increasing. Calcium channel blockers (CCBs), which target voltage-dependent calcium channels, are frequently used in combination with renin-angiotensin-aldosterone system inhibitors for CKD patients because of their strong BP-lowering properties and relatively few adverse side effects. Calcium channels have several subtypes, including L, N, T, P/Q, and R, and three types of CCBs, L-type CCBs, L-/T-type CCBs, and L-/N-type CCBs, that are available. Nowadays, the new functions and effects of the CCBs are being elucidated. CONCLUSION We should use different types of CCBs properly depending on their pharmacological effects, such as the strength of antihypertensive effects and the organ protection effects, taking into account the pathophysiology of the patients. In this article, the role and the use of CCBs in CKD patients are reviewed.
Collapse
|
3
|
Chan KY, Labastida-Ramírez A, Ramírez-Rosas MB, Labruijere S, Garrelds IM, Danser AH, van den Maagdenberg AM, MaassenVanDenBrink A. Trigeminovascular calcitonin gene-related peptide function in Cacna1a R192Q-mutated knock-in mice. J Cereb Blood Flow Metab 2019; 39:718-729. [PMID: 28792272 PMCID: PMC6446415 DOI: 10.1177/0271678x17725673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Familial hemiplegic migraine type 1 (FHM1) is a rare migraine subtype. Whereas transgenic knock-in mice with the human pathogenic FHM1 R192Q missense mutation in the Cacna1a gene reveal overall neuronal hyperexcitability, the effects on the trigeminovascular system and calcitonin gene-related peptide (CGRP) receptor are largely unknown. This gains relevance as blockade of CGRP and its receptor are therapeutic targets under development. Hence, we set out to test these effects in FHM1 mice. We characterized the trigeminovascular system of wild-type and FHM1 mice through: (i) in vivo capsaicin- and CGRP-induced dural vasodilation in a closed-cranial window; (ii) ex vivo KCl-induced CGRP release from isolated dura mater, trigeminal ganglion and trigeminal nucleus caudalis; and (iii) peripheral vascular function in vitro . In mutant mice, dural vasodilatory responses were significantly decreased compared to controls. The ex vivo release of CGRP was not different in the components of the trigeminovascular system between genotypes; however, sumatriptan diminished the release in the trigeminal ganglion, trigeminal nucleus caudalis and dura mater but only in wild-type mice. Peripheral vascular function was similar between genotypes. These data suggest that the R192Q mutation might be associated with trigeminovascular CGRP receptor desensitization. Novel antimigraine drugs should be able to revert this complex phenomenon.
Collapse
Affiliation(s)
- Kayi Y Chan
- 1 Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | - Alejandro Labastida-Ramírez
- 1 Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | - Martha B Ramírez-Rosas
- 1 Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | - Sieneke Labruijere
- 1 Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | - Ingrid M Garrelds
- 1 Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | - Alexander Hj Danser
- 1 Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Antoinette MaassenVanDenBrink
- 1 Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Thuesen AD, Lyngsø KS, Rasmussen L, Stubbe J, Skøtt O, Poulsen FR, Pedersen CB, Rasmussen LM, Hansen PBL. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients. Acta Physiol (Oxf) 2017; 219:640-651. [PMID: 27273014 DOI: 10.1111/apha.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 03/21/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
AIM Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain and mammary blood vessels. METHODS Internal mammary arteries from bypass surgery patients and cerebral arterioles from patients with brain tumours with and without hypertension were tested in a myograph and perfusion set-up. PCR and immunohistochemistry were performed on isolated blood vessels. RESULTS The P/Q-type antagonist ω-agatoxin IVA (10-8 mol L-1 ) and the T-type calcium blocker mibefradil (10-7 mol L-1 ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased contraction in cerebral arterioles from hypertensive patients. L-type blocker nifedipine abolished the contraction in mammary arteries. PCR analysis showed expression of P/Q-type (Cav 2.1), T-type (Cav 3.1 and Cav 3.2) and L-type (Cav 1.2) calcium channels in mammary and cerebral arteries. Immunohistochemical labelling of mammary and cerebral arteries revealed the presence of Cav 2.1 in endothelial and smooth muscle cells. Cav 3.1 was also detected in mammary arteries. CONCLUSION P/Q- and T-type Cav are present in human internal mammary arteries and in cerebral penetrating arterioles. P/Q- and T-type calcium channels are involved in the contraction of mammary arteries from hypertensive patients but not from normotensive patients. Furthermore, in cerebral arterioles P/Q-type channels importance was restricted to hypertensive patients might lead to that T- and P/Q-type channels could be a new target in hypertensive patients.
Collapse
Affiliation(s)
- A. D. Thuesen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - K. S. Lyngsø
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - L. Rasmussen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - J. Stubbe
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - O. Skøtt
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - F. R. Poulsen
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
- Clinical Institute; University of Southern Denmark; Odense Denmark
| | - C. B. Pedersen
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - L. M. Rasmussen
- Clinical Institute; University of Southern Denmark; Odense Denmark
- Department of Clinical Biochemistry and Pharmacology; Centre for Individualized Medicine in Arterial Diseases; Odense University Hospital; Odense Denmark
| | - P. B. L. Hansen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| |
Collapse
|
6
|
Identification of the first in Poland CACNA1A gene mutation in familial hemiplegic migraine. Case report. Neurol Neurochir Pol 2017; 51:184-189. [PMID: 28169007 DOI: 10.1016/j.pjnns.2017.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Migraine is a common neurological disorder characterized by a particular phenotype, complex pathophysiology and a heterogeneous genetic background. Among several heritable forms, familial hemiplegic migraine is the best described one. In the majority of cases it is caused by mutations in one of three different genes. CASE REPORT Clinical symptoms of a 47 year old proband (and independently described in his 20 year old son) as well as differential diagnosis are discussed in the presented report. The most characteristic were recurrent attacks of blurred vision, paresthesias and hemiparesis often accompanied by speech disturbances and followed by severe headache with vomiting. Advanced morphological and genetic procedures were required to exclude MELAS, CADASIL and Call-Fleming syndrome. Finally, the definite diagnosis was possible after the application of the whole exome sequencing technique. It confirmed, for the first time in the Polish population, a heterozygous T666M mutation (c.1997C>T; p.Thr666Met) in the CACNA1A gene in the proband, the proband's son and in several other family members. CONCLUSION The presented report provides clinical and genetic insight into familial hemiplegic migraine 1 resulting from a mutation in the CACNA1A gene.
Collapse
|
7
|
Jensen LJ, Nielsen MS, Salomonsson M, Sørensen CM. T-type Ca 2+ channels and autoregulation of local blood flow. Channels (Austin) 2017; 11:183-195. [PMID: 28055302 DOI: 10.1080/19336950.2016.1273997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40-80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- a Departments of Veterinary Clinical and Animal Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Morten Schak Nielsen
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Max Salomonsson
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Charlotte Mehlin Sørensen
- b Department of Biomedical Sciences, Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
8
|
Robles NR, Fici F, Grassi G. Dihydropyridine calcium channel blockers and renal disease. Hypertens Res 2017; 40:21-28. [PMID: 27412800 DOI: 10.1038/hr.2016.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 01/10/2023]
Abstract
Although blood pressure control is considered the main mechanism for preventing the progression of chronic kidney disease (CKD), angiotensin-converting enzyme inhibitors and angiotensin receptors blockers have an additional organ-protective role. The effects of calcium channel blockers (CCBs) in renal disease are not so clearly defined. CCBs have pleiotropic effects that might contribute to protection of the kidney, such as attenuating the mesangial entrapment of macromolecules, countervailing the mitogenic effect of platelet-derived growth factors and platelet-activating factors and suppressing mesangial cell proliferation. Some evidence has accumulated in recent years demonstrating that the new dihydropyridinic CCBs (such as lercanidipine or efonidipine) may affect both postglomerular and preglomerular vessels, resulting in a decreased filtration fraction and nephroprotective effect. Increasing clinical and experimental evidence supports this view and the use of CCBs in CKD hypertensive patients.
Collapse
Affiliation(s)
- Nicolás R Robles
- Cátedra de Riesgo Cardiovascular, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | | | - Guido Grassi
- Clinica Medica, Università Milano-Bicocca, Monza, Italy
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| |
Collapse
|
9
|
Zhou Y, Greka A. Calcium-permeable ion channels in the kidney. Am J Physiol Renal Physiol 2016; 310:F1157-67. [PMID: 27029425 DOI: 10.1152/ajprenal.00117.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca(2+)) are crucial for a variety of cellular functions. The extracellular and intracellular Ca(2+) concentrations are thus tightly regulated to maintain Ca(2+) homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca(2+) homeostasis by filtration and reabsorption. Approximately 60% of the Ca(2+) in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca(2+) is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca(2+)-permeable ion channel families as important regulators of Ca(2+) homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca(2+)-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Anna Greka
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
10
|
Martinsen A, Dessy C, Morel N. Regulation of calcium channels in smooth muscle: new insights into the role of myosin light chain kinase. Channels (Austin) 2015; 8:402-13. [PMID: 25483583 DOI: 10.4161/19336950.2014.950537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca(2+) flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca(2+) channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca(2+) channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca(2+) entry in VSM is described in the present review.
Collapse
Key Words
- CaM, calmodulin
- ER, endoplasmic reticulum
- MLCK, myosin light chain kinase
- Myosin light chain kinase
- ROC, receptor-operated Ca2+ (channel)
- SMC, smooth muscle cell
- SOC, store-operated Ca2+ (channel)
- SR, sarcoplasmic reticulum
- TRP
- TRP, transient receptor potential (channel)
- VOC, voltage-operated Ca2+ (channel)
- VSM, vascular smooth muscle
- VSMC, vascular smooth muscle cell
- [Ca2+]cyt, cytosolic Ca2+ concentration
- siRNA, small interfering RNA
- vascular smooth muscle
- voltage-dependent calcium channels
Collapse
Affiliation(s)
- A Martinsen
- a Cell physiology; IoNS; UCLouvain ; Brussels , Belgium
| | | | | |
Collapse
|
11
|
Eikermann-Haerter K, Arbel-Ornath M, Yalcin N, Yu ES, Kuchibhotla KV, Yuzawa I, Hudry E, Willard CR, Climov M, Keles F, Belcher AM, Sengul B, Negro A, Rosen IA, Arreguin A, Ferrari MD, van den Maagdenberg AMJM, Bacskai BJ, Ayata C. Abnormal synaptic Ca(2+) homeostasis and morphology in cortical neurons of familial hemiplegic migraine type 1 mutant mice. Ann Neurol 2015; 78:193-210. [PMID: 26032020 DOI: 10.1002/ana.24449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Migraine is among the most common and debilitating neurological conditions. Familial hemiplegic migraine type 1 (FHM1), a monogenic migraine subtype, is caused by gain-of-function of voltage-gated CaV 2.1 calcium channels. FHM1 mice carry human pathogenic mutations in the α1A subunit of CaV 2.1 channels and are highly susceptible to cortical spreading depression (CSD), the electrophysiologic event underlying migraine aura. To date, however, the mechanism underlying increased CSD/migraine susceptibility remains unclear. METHODS We employed in vivo multiphoton microscopy of the genetically encoded Ca(2+)-indicator yellow cameleon to investigate synaptic morphology and [Ca(2+)]i in FHM1 mice. To study CSD-induced cerebral oligemia, we used in vivo laser speckle flowmetry and multimodal imaging. With electrophysiologic recordings, we investigated the effect of the CaV 2.1 gating modifier tert-butyl dihydroquinone on CSD in vivo. RESULTS FHM1 mutations elevate neuronal [Ca(2+)]i and alter synaptic morphology as a mechanism for enhanced CSD susceptibility that we were able to normalize with a CaV 2.1 gating modifier in hyperexcitable FHM1 mice. At the synaptic level, axonal boutons were larger, and dendritic spines were predominantly of the mushroom type, which both provide a structural correlate for enhanced neuronal excitability. Resting neuronal [Ca(2+)]i was elevated in FHM1, with loss of compartmentalization between synapses and neuronal shafts. The percentage of calcium-overloaded neurons was increased. Neuronal [Ca(2+)]i surge during CSD was faster and larger, and post-CSD oligemia and hemoglobin desaturation were more severe in FHM1 brains. INTERPRETATION Our findings provide a mechanism for enhanced CSD susceptibility in hemiplegic migraine. Abnormal synaptic Ca(2+) homeostasis and morphology may contribute to chronic neurodegenerative changes as well as enhanced vulnerability to ischemia in migraineurs.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Michal Arbel-Ornath
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Nilufer Yalcin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Esther S Yu
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Kishore V Kuchibhotla
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Izumi Yuzawa
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Eloise Hudry
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Carli R Willard
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Mihail Climov
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Fatmagul Keles
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Arianna M Belcher
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Buse Sengul
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Andrea Negro
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Isaac A Rosen
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Andrea Arreguin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian J Bacskai
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Thamcharoen N, Susantitaphong P, Wongrakpanich S, Chongsathidkiet P, Tantrachoti P, Pitukweerakul S, Avihingsanon Y, Praditpornsilpa K, Jaber BL, Eiam-Ong S. Effect of N- and T-type calcium channel blocker on proteinuria, blood pressure and kidney function in hypertensive patients: a meta-analysis. Hypertens Res 2015; 38:847-55. [PMID: 26134125 DOI: 10.1038/hr.2015.69] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022]
Abstract
The combination of a calcium channel blocker (CCB) and a blocker of the renin-angiotensin-aldosterone system (RAAS) is recommended in clinical practice guidelines. L/N- and L/T-type CCBs might provide an additional effect on lowering proteinuria. Therefore, we conducted a meta-analysis to assess the efficacy of L/N- and L/T-type CCBs in hypertensive patients with proteinuria. We searched MEDLINE, Scopus, Cochrane Central Register of Controlled Trials and ClinicalTrials.gov for single-arm studies and randomized controlled trials (RCTs) that examined the effect of L/N- and L/T-type CCBs as add-on therapy compared with standard antihypertensive regimen for proteinuria on hemodynamic and kidney-related parameters in hypertensive patients with proteinuria. Random-effect model meta-analyses were used to compute changes in the outcomes of interest. We identified 17 RCTs, representing 1905 patients. By meta-analysis, L/N- and L/T-type CCB add-on therapy did not yield significant changes in systolic and diastolic blood pressure compared with standard treatment, but there was a significant lowering of the pulse rate. However, L/N- and L/T-type CCBs resulted in a significant standardized net decrease in albuminuria and proteinuria (-1.01; 95% confidence interval (CI), -1.78 to -0.23; P=0.01), and a standardized net improvement in the estimated glomerular filtration rate and serum creatinine (0.23; 95% CI, 0.11 to 0.35, P<0.001; and -0.25; 95% CI, -0.46 to -0.03; P=0.02, respectively). Despite no additional lowering effect on blood pressure, L/N- and L/T-type CCBs combined with a blocker of the RAAS provided a decrease in proteinuria and improvement in kidney function. Further studies are required to establish the long-term kidney benefits of this combination therapy.
Collapse
Affiliation(s)
- Natanong Thamcharoen
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Department of Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Supakanya Wongrakpanich
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pakawat Chongsathidkiet
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pakpoom Tantrachoti
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siwadon Pitukweerakul
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bertrand L Jaber
- Department of Medicine, Tufts University School of Medicine, Boston, MA, USA.,Department of Medicine, St Elizabeth's Medical Center, Boston, MA, USA
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
|
14
|
Cataldi M. The changing landscape of voltage-gated calcium channels in neurovascular disorders and in neurodegenerative diseases. Curr Neuropharmacol 2013; 11:276-97. [PMID: 24179464 PMCID: PMC3648780 DOI: 10.2174/1570159x11311030004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022] Open
Abstract
It is a common belief that voltage-gated calcium channels (VGCC) cannot carry toxic amounts of Ca2+ in neurons. Also, some of them as L-type channels are essential for Ca2+-dependent regulation of prosurvival gene-programs. However, a wealth of data show a beneficial effect of drugs acting on VGCCs in several neurodegenerative and neurovascular diseases. In the present review, we explore several mechanisms by which the “harmless” VGCCs may become “toxic” for neurons. These mechanisms could explain how, though usually required for neuronal survival, VGCCs may take part in neurodegeneration. We will present evidence showing that VGCCs can carry toxic Ca2+ when: a) their density or activity increases because of aging, chronic hypoxia or exposure to β-amyloid peptides or b) Ca2+-dependent action potentials carry high Ca2+ loads in pacemaker neurons. Besides, we will examine conditions in which VGCCs promote neuronal cell death without carrying excess Ca2+. This can happen, for instance, when they carry metal ions into the neuronal cytoplasm or when a pathological decrease in their activity weakens Ca2+-dependent prosurvival gene programs. Finally, we will explore the role of VGCCs in the control of nonneuronal cells that take part to neurodegeneration like those of the neurovascular unit or of microglia.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Italy
| |
Collapse
|
15
|
Cox RH, Fromme SJ. A naturally occurring truncated Cav1.2 α1-subunit inhibits Ca2+ current in A7r5 cells. Am J Physiol Cell Physiol 2013; 305:C896-905. [PMID: 23926129 DOI: 10.1152/ajpcell.00217.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alternative splicing of the voltage-gated Ca(2+) (CaV) α1-subunit adds to the functional diversity of Ca(2+) channels. A variant with a 73-nt deletion in exon 15 of the Cav1.2 α1-subunit (Cav1.2Δ73) produced by alternative splicing that predicts a truncated protein has been described, but its function, if any, is unknown. We sought to determine if, by analogy to other truncated CaV α1-subunits, Cav1.2Δ73 acts as an inhibitor of wild-type Cav1.2 currents. HEK-293 cells were transfected with Cav1.2Δ73 in a pIRES vector with CD8 or in pcDNA3.1 with a V5/his COOH-terminal tag plus β2 and α2δ1 accessory subunits and pEGFP. Production of Cav1.2Δ73 protein was confirmed by Western blotting and immunofluorescence. Voltage-clamp studies revealed the absence of functional channels in transfected cells. In contrast, cells transfected with full-length Cav1.2 plus accessory subunits and pEGFP exhibited robust Ca(2+) currents. A7r5 cells exhibited endogenous Cav1.2-based currents that were greatly reduced (>80%) without a change in voltage-dependent activation when transfected with Cav1.2Δ73-IRES-CD8 compared with empty vector or pIRES-CD8 controls. Transfection of A7r5 cells with an analogous Cav2.3Δ73-IRES-CD8 had no effect on Ca(2+) currents. Immunofluorescence showed intracellular, but not plasma membrane, localization of Cav1.2Δ73-V5/his, as well as colocalization with an endoplasmic reticulum marker, ER Organelle Lights. Expression of Cav1.2Δ73 α1-subunits in A7r5 cells inhibits endogenous Cav1.2 currents. The fact that this variant arises naturally by alternative splicing raises the possibility that it may represent a physiological mechanism to modulate Cav1.2 functional activity.
Collapse
Affiliation(s)
- Robert H Cox
- Program in Cardiovascular Studies, Lankenau Institute for Medical Research, Main Line Health System, Wynnewood, Pennsylvania
| | | |
Collapse
|
16
|
Kudryavtseva O, Aalkjaer C, Matchkov VV. Vascular smooth muscle cell phenotype is defined by Ca2+-dependent transcription factors. FEBS J 2013; 280:5488-99. [PMID: 23848563 DOI: 10.1111/febs.12414] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/21/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022]
Abstract
Ca(2+) is an important second messenger in vascular smooth muscle cells (VSMCs). Therefore, VSMCs exercise tight control of the intracellular Ca(2+) concentration ([Ca(2+)]i) by expressing a wide repertoire of Ca(2+) channels and transporters. The presence of several pathways for Ca(2+) influx and efflux provides many possibilities for controlling [Ca(2+)]i in a spatial and temporal manner. Intracellular Ca(2+) has a dual role in VSMCs; first, it is necessary for VSMC contraction; and, second, it can activate multiple transcription factors. These factors are cAMP response element-binding protein, nuclear factor of activated T lymphocytes, and serum response factor. Furthermore, it was recently reported that the C-terminus of voltage-dependent L-type Ca(2+) calcium channels can regulate transcription in VSMCs. Transcription regulation in VSMCs modulates the expression patterns of genes, including genes coding for contractile and cytoskeleton proteins, and those promoting proliferation and cell growth. Depending on their gene expression, VSMCs can exist in different functional states or phenotypes. The majority of healthy VSMCs show a contractile phenotype, characterized by high contractile ability and a low proliferative rate. However, VSMCs can undergo phenotypic modulation with different physiological and pathological stimuli, whereby they start to proliferate, migrate, and synthesize excessive extracellular matrix. These events are associated with injury repair and angiogenesis, but also with the development of cardiovascular pathologies, such as atherosclerosis and hypertension. This review discusses the currently known Ca(2+)-dependent transcription factors in VSMCs, their regulation by Ca(2+) signalling, and their role in the VSMC phenotype.
Collapse
|
17
|
Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals (Basel) 2013; 6:788-812. [PMID: 24276315 PMCID: PMC3816709 DOI: 10.3390/ph6070788] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC) antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i). These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.
Collapse
Affiliation(s)
- Gene Gurkoff
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
- NSF Center for Biophotonics Science and Technology, Suite 2700 Stockton Blvd, Suite 1400, Sacramento, CA, 95817, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-530-754-7501; Fax: +1-530-754-5125
| | - Kiarash Shahlaie
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Bruce Lyeth
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Robert Berman
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| |
Collapse
|
18
|
Hansen PBL. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels. Acta Physiol (Oxf) 2013; 207:690-9. [PMID: 23351056 DOI: 10.1111/apha.12070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/26/2012] [Accepted: 01/22/2013] [Indexed: 12/15/2022]
Abstract
Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers.
Collapse
Affiliation(s)
- P. B. L. Hansen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| |
Collapse
|
19
|
|
20
|
Eikermann-Haerter K, Lee JH, Yuzawa I, Liu CH, Zhou Z, Shin HK, Zheng Y, Qin T, Kurth T, Waeber C, Ferrari MD, van den Maagdenberg AMJM, Moskowitz MA, Ayata C. Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations. Circulation 2011; 125:335-45. [PMID: 22144569 DOI: 10.1161/circulationaha.111.045096] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Migraine is an independent risk factor for stroke. Mechanisms underlying this association are unclear. Familial hemiplegic migraine (FHM), a migraine subtype that also carries an increased stroke risk, is a useful model for common migraine phenotypes because of shared aura and headache features, trigger factors, and underlying glutamatergic mechanisms. METHODS AND RESULTS Here, we show that FHM type 1 (FHM1) mutations in Ca(V)2.1 voltage-gated Ca(2+) channels render the brain more vulnerable to ischemic stroke. Compared with wild-type mice, 2 FHM1 mutant mouse strains developed earlier onset of anoxic depolarization and more frequent peri-infarct depolarizations associated with rapid expansion of infarct core on diffusion-weighted magnetic resonance imaging and larger perfusion deficits on laser speckle flowmetry. Cerebral blood flow required for tissue survival was higher in the mutants, leading to infarction with milder ischemia. As a result, mutants developed larger infarcts and worse neurological outcomes after stroke, which were selectively attenuated by a glutamate receptor antagonist. CONCLUSIONS We propose that enhanced susceptibility to ischemic depolarizations akin to spreading depression predisposes migraineurs to infarction during mild ischemic events, thereby increasing the stroke risk.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Closure of multiple types of K+ channels is necessary to induce changes in renal vascular resistance in vivo in rats. Pflugers Arch 2011; 462:655-67. [DOI: 10.1007/s00424-011-1018-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 08/12/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|
22
|
Poulsen CB, Al-Mashhadi RH, Cribbs LL, Skøtt O, Hansen PB. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles. Kidney Int 2011; 79:443-51. [DOI: 10.1038/ki.2010.429] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Abstract
Voltage-dependent Ca channels are classified into several subtypes based on the isoform of their α1 subunits. Traditional Ca channels blockers (CCBs), including nifedipine and amlodipine, act predominantly on L-type Ca channels, whereas novel CCBs such as efonidipine, benidipine and azelnidipine inhibit both L-type and T-type Ca channels. Furthermore, cilnidipine blocks L-type and N-type Ca channels. These CCBs exert divergent actions on renal microvessels. L-type CCBs preferentially dilate afferent arterioles, whereas both L-/T-type and L-/N-type CCBs potently dilate afferent and efferent arterioles. The distinct actions of CCBs on the renal microcirculation are reflected by changes in glomerular capillary pressure and subsequent renal injury: L-type CCBs favor an increase in glomerular capillary pressure, whereas L-/T-type and L-/N-type CCBs alleviate glomerular hypertension. The renal protective action of L-/T-type CCBs is also mediated by non-hemodynamic mechanisms, i.e., inhibition of the inflammatory process and inhibition of Rho kinase and aldosterone secretion. Finally, a growing body of evidence indicates that T-type CCBs offer more beneficial action on proteinuria and renal survival rate than L-type CCBs in patients with chronic kidney disease (CKD). Similarly, in CKD patients treated with renin-angiotensin blockers, add-on therapy with N-type CCBs is more potent in reducing proteinuria than that with L-type CCBs, although no difference is found in the subgroup with diabetic nephropathy. Thus, the strategy for hypertension treatment with CCBs has entered a new era: treatment selection depends not only on blood pressure control but also on the subtypes of CCBs.
Collapse
|
24
|
Salomonsson M, Braunstein TH, Holstein-Rathlou NH, Jensen LJ. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline: possible role of TRPC channels. Acta Physiol (Oxf) 2010; 200:265-78. [PMID: 20426773 DOI: 10.1111/j.1748-1716.2010.02141.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM In rat afferent arterioles we investigated the role of Na(+) entry in noradrenaline (NA)-induced depolarization and voltage-dependent Ca(2+) entry together with the importance of the transient receptor potential channel (TRPC) subfamily for non-voltage-dependent Ca(2+) entry. METHODS R (340/380) Fura-2 fluorescence was used as an index for intracellular free Ca(2+) concentration ([Ca(2+)](i)). Immunofluorescence detected the expression of TRPC channels. RESULTS TRPC 1, 3 and 6 were expressed in afferent arteriolar vascular smooth muscle cells. Under extracellular Na(+)-free (0 Na) conditions, the plateau response to NA was 115% of the baseline R(340/380) (control response 123%). However, as the R(340/380) baseline increased (7%) after 0 Na the plateau reached the same level as during control conditions. Similar responses were obtained after blockade of the Na(+)/Ca(2+) exchanger. The L-type blocker nifedipine reduced the plateau response to NA both under control (from 134% to 116% of baseline) and 0 Na conditions (from 112% to 103% of baseline). In the presence of nifedipine, the putative TRPC channel blockers SKF 96365 (30 μm) and Gd(3+) (100 μm) further reduced the plateau Ca(2+) responses to NA (from 117% to 102% and from 117% to 110% respectively). CONCLUSION We found that Na(+) is not crucial for the NA-induced depolarization that mediates Ca(2+) entry via L-type channels. In addition, the results are consistent with the idea that TRPC1/3/6 Ca(2+) -permeable cation channels expressed in afferent arteriolar smooth muscle cells mediate Ca(2+) entry during NA stimulation.
Collapse
Affiliation(s)
- M Salomonsson
- Division of Renal and Vascular Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
25
|
Zhang Z, Lin H, Cao C, Khurana S, Pallone TL. Voltage-gated divalent currents in descending vasa recta pericytes. Am J Physiol Renal Physiol 2010; 299:F862-71. [PMID: 20630935 DOI: 10.1152/ajprenal.00321.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multiple voltage-gated Ca(2+) channel (Ca(V)) subtypes have been reported to participate in control of the juxtamedullary glomerular arterioles of the kidney. Using the patch-clamp technique, we examined whole cell Ca(V) currents of pericytes that contract descending vasa recta (DVR). The dihydropyridine Ca(V) agonist FPL64176 (FPL) stimulated inward Ca(2+) and Ba(2+) currents that activated with threshold depolarizations to -40 mV and maximized between -20 and -10 mV. These currents were blocked by nifedipine (1 μM) and Ni(2+) (100 and 1,000 μM), exhibited slow inactivation, and conducted Ba(2+) > Ca(2+) at a ratio of 2.3:1, consistent with "long-lasting" L-type Ca(V). In FPL, with 1 mM Ca(2+) as charge carrier, Boltzmann fits yielded half-maximal activation potential (V(1/2)) and slope factors of -57.9 mV and 11.0 for inactivation and -33.3 mV and 4.4 for activation. In the absence of FPL stimulation, higher concentrations of divalent charge carriers were needed to measure basal currents. In 10 mM Ba(2+), pericyte Ca(V) currents activated with threshold depolarizations to -30 mV, were blocked by nifedipine, exhibited voltage-dependent block by diltiazem (10 μM), and conducted Ba(2+) > Ca(2+) at a ratio of ∼2:1. In Ca(2+), Boltzmann fits to the data yielded V(1/2) and slope factors of -39.6 mV and 10.0 for inactivation and 2.8 mV and 7.7 for activation. In Ba(2+), V(1/2) and slope factors were -29.2 mV and 9.2 for inactivation and -5.6 mV and 6.1 for activation. Neither calciseptine (10 nM), mibefradil (1 μM), nor ω-agatoxin IVA (20 and 100 nM) blocked basal Ba(2+) currents. Calciseptine (10 nM) and mibefradil (1 μM) also failed to reverse ANG II-induced DVR vasoconstriction, although raising mibefradil concentration to 10 μM was partially effective. We conclude that DVR pericytes predominantly express voltage-gated divalent currents that are carried by L-type channels.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
26
|
Jensen LJ, Holstein-Rathlou NH. Is there a role for T-type Ca2+ channels in regulation of vasomotor tone in mesenteric arterioles? Can J Physiol Pharmacol 2009; 87:8-20. [PMID: 19142211 DOI: 10.1139/y08-101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The largest peripheral blood pressure drop occurs in terminal arterioles (<40 microm lumen diameter). L-type voltage-dependent Ca2+ channels (VDCCs) are considered the primary pathway for Ca2+ influx during physiologic activation of vascular smooth muscle cells (VSMC). Recent evidence suggests that T-type VDCCs are expressed in renal afferent and efferent arterioles, mesenteric arterioles, and skeletal muscle arterioles. T-type channels are small-conductance, low voltage-activated, fast-inactivating channels. Thus, their role in supplying Ca2+ for contraction of VSMC has been disputed. However, T-type channels display non-inactivating window currents, which may play a role in sustained Ca2+ entry. Here, we review the possible role of T-type channels in vasomotor tone regulation in rat mesenteric terminal arterioles. The CaV3.1 channel was immunolocalized in VSMC, whereas the CaV3.2 channel was predominantly expressed in endothelial cells. Voltage-dependent Ca2+ entry was inhibited by the new specific T-type blockers R(-)-efonidipine and NNC 55-0396. The effect of NNC 55-0396 persisted in depolarized arterioles, suggesting an unusually high activation threshold of mesenteric T-type channels. T-type channels were not necessary for conduction of vasoconstriction, but appear to be important for local electromechanical coupling in VSMC. The first direct demonstration of endothelial T-type channels warrants new investigations of their role in vascular biology.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Division of Renal and Vascular Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
27
|
Activation of A(2) adenosine receptors dilates cortical efferent arterioles in mouse. Kidney Int 2009; 75:793-9. [PMID: 19165174 DOI: 10.1038/ki.2008.684] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenosine can induce vasodilatation and vasoconstriction of the renal afferent arteriole of the mouse. We determined here its direct effect on efferent arterioles of mouse kidneys. Using isolated-perfused cortical efferent arterioles, we measured changes in luminal diameter in response to adenosine. Extraluminal application of adenosine and cyclohexyladenosine had no effect on the luminal diameter. When the vessels were constricted by the thromboxane mimetic U46619, application of adenosine and 5'-N-ethylcarboxamido-adenosine dilated the efferent arterioles in a dose-dependent manner. We also found that the adenosine-induced vasodilatation was inhibited by the A(2)-specific receptor blocker 3,7-dimethyl-1-propargylxanthine. In the presence of this inhibitor, adenosine failed to alter the basal vessel diameter of quiescent efferent arterioles. Using primer-specific polymerase chain reaction we found that the adenosine A(1), A(2a), A(2b), and A(3) receptors were expressed in microdissected mouse efferent arterioles. We conclude that adenosine dilates the efferent arteriole using the A(2) receptor subtype at concentrations compatible with activation of the A(2b) receptor.
Collapse
|
28
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Seçkin H, Yigitkanli K, Besalti O, Kosemehmetoglu K, Ozturk E, Simsek S, Belen D, Bavbek M. Lamotrigine attenuates cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. ACTA ACUST UNITED AC 2008; 70:344-51; discussion 351. [DOI: 10.1016/j.surneu.2007.07.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 07/09/2007] [Indexed: 10/22/2022]
|
30
|
Navarro-Gonzalez MF, Grayson TH, Meaney KR, Cribbs LL, Hill CE. Non-L-type voltage-dependent calcium channels control vascular tone of the rat basilar artery. Clin Exp Pharmacol Physiol 2008; 36:55-66. [PMID: 18759855 DOI: 10.1111/j.1440-1681.2008.05035.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Constriction of cerebral arteries is considered to depend on L-type voltage-dependent calcium channels (VDCCs); however, many previous studies have used antagonists with potential non-selective actions. Our aim was to determine the expression and function of VDCCs in the rat basilar artery. 2. The relative expression of VDCC subtypes was assessed using quantitative polymerase chain reaction and immunohistochemistry. Data were correlated with physiological studies of vascular function. Domains I-II of the T channel subtypes expressed in the rat basilar artery were cloned and sequenced. 3. Blockade of L-type channels with nifedipine had no effect on vascular tone. In contrast, in the presence of nifedipine, hyperpolarization of short arterial segments produced relaxation, whereas depolarization of quiescent segments evoked constriction. 4. The mRNA and protein for L- and T-type VDCCs were strongly expressed in the main basilar artery and side branches, with Ca(V)3.1 and Ca(V)1.2 the predominant subtypes. 5. T-Type VDCC blockers (i.e. 1 micromol/L mibefradil, 10 micromol/L pimozide and 100 micromol/L flunarizine) decreased intracellular calcium in smooth muscle cells, relaxed and hyperpolarized arteries, whereas nickel chloride (100 micromol/L) had no effect. In contrast with nifedipine, 10 micromol/L nimodipine produced hyperpolarization and relaxation. 6. When arteries were relaxed with 10 micromol/L U73122 (a phospholipase C inhibitor) in the presence of nifedipine, 40 mmol/L KCl evoked depolarization and constriction, which was significantly reduced by 1 micromol/L mibefradil. 7. Sequencing of domains I-II revealed splice variants of Ca(V)3.1, which may impact on channel activity. 8. We conclude that vascular tone of the rat basilar artery results from calcium influx through nifedipine-insensitive VDCCs with pharmacology consistent with Ca(V)3.1 T-type channels.
Collapse
Affiliation(s)
- Manuel F Navarro-Gonzalez
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | |
Collapse
|
31
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
32
|
Hansen PB, Friis UG, Uhrenholt TR, Briggs J, Schnermann J. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine. Acta Physiol (Oxf) 2007; 191:89-97. [PMID: 17565566 DOI: 10.1111/j.1748-1716.2007.01724.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Adenosine causes vasoconstriction of afferent arterioles of the mouse kidney through activation of adenosine A(1) receptors and Gi-mediated stimulation of phospholipase C. In the present study, we further explored the signalling pathways by which adenosine causes arteriolar vasoconstriction. METHODS AND RESULTS Adenosine (10(-7) M) significantly increased the intracellular calcium concentration in mouse isolated afferent arterioles measured by fura-2 fluorescence. Pre-treatment with thapsigargin (2 microM) blocked the vasoconstrictor action of adenosine (10(-7) M) indicating that release of calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas the protein kinase C inhibitor calphostin C had no effect. The calcium-activated chloride channel inhibitor IAA-94 (30 microM) inhibited the adenosine-mediated constriction. Patch clamp experiments showed that adenosine treatment induced a depolarizing current in preglomerular smooth muscle cells which was abolished by IAA-94. Furthermore, the vasoconstriction caused by adenosine was significantly inhibited by 5 microM nifedipine (control 8.3 +/- 0.2 microM, ado 3.6 +/- 0.6 microM, ado + nifedipine 6.8 +/- 0.2 microM) suggesting involvement of voltage-dependent calcium channels. CONCLUSION We conclude that adenosine mediates vasoconstriction of afferent arterioles through an increase in intracellular calcium concentration resulting from release of calcium from the SR followed by activation of Ca(2+)-activated chloride channels leading to depolarization and influx of calcium through voltage-dependent calcium channels.
Collapse
Affiliation(s)
- P B Hansen
- National Institute of Diabetes, and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
33
|
Uhrenholt TR, Schjerning J, Vanhoutte PM, Jensen BL, Skøtt O. Intercellular calcium signaling and nitric oxide feedback during constriction of rabbit renal afferent arterioles. Am J Physiol Renal Physiol 2007; 292:F1124-31. [PMID: 17148782 DOI: 10.1152/ajprenal.00420.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasoconstriction and increase in the intracellular calcium concentration ([Ca2+]i) of vascular smooth muscle cells may cause an increase of endothelial cell [Ca2+]i, which, in turn, augments nitric oxide (NO) production and inhibits smooth muscle cell contraction. This hypothesis was tested in microperfused rabbit renal afferent arterioles, using fluorescence imaging microscopy with the calcium-sensitive dye fura-2 and the NO-sensitive dye 4-amino-5-methylamino-2′,7′-difluorescein. Both dyes were loaded into smooth muscle and endothelium. Depolarization with 100 mmol/l KCl led to a transient vasoconstriction which was converted into a sustained response by N-nitro-l-arginine methyl ester (l-NAME). Depolarization increased smooth muscle cell [Ca2+]ifrom 162 ± 15 nmol/l to a peak of 555 ± 70 nmol/l ( n = 7), and this response was inhibited by 80% by the l-type calcium channel blocker calciseptine. After a delay of 10 s, [Ca2+]iincreased in endothelial cells immediately adjacent to reactive smooth muscle cells, and this calcium wave spread in a nonregenerative fashion laterally into the endothelial cell layer with a velocity of 1.2 μm/s. Depolarization with 100 mmol/l KCl led to a significant increase in NO production ([NO]i) which was inhibited by l-NAME ( n = 5). Acetylcholine caused a rapid increase in endothelial [Ca2+]i, which did not transfer to the smooth muscle cells. l-NAME treatment did not affect changes in smooth muscle [Ca2+]iafter depolarization, but it did increase the calcium sensitivity of the contractile apparatus. We conclude that depolarization increases smooth muscle [Ca2+]iwhich is transferred to the endothelial cells and stimulates NO production which curtails vasoconstriction by reducing the calcium sensitivity of the contractile apparatus.
Collapse
Affiliation(s)
- T R Uhrenholt
- Physiology and Pharmacology, Univ. of Southern Denmark, DK-5000 Odense, Denmark
| | | | | | | | | |
Collapse
|
34
|
Wellman GC. Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage. Neurol Res 2007; 28:690-702. [PMID: 17164032 DOI: 10.1179/016164106x151972] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Entry of Ca(2+) through voltage-dependent calcium channels (VDCCs) is critical to the regulation of intracellular free calcium concentration ([Ca(2+)](i)) in vascular smooth muscle and thus the control of cerebral artery diameter. Increased VDCC activity in cerebral artery myocytes may contribute to decreased cerebral blood flow and the accompanying neurological deficits associated with subarachnoid hemorrhage (SAH). This review will focus on the impact of SAH on VDCCs and K(+)-selective ion channels, two important classes of ion channels located in the plasma membrane of cerebral artery myocytes. SAH may act through a variety of direct and indirect mechanisms to increase the activity of VDCCs promoting cerebral artery constriction and reduced cerebral blood flow. Further, SAH may lead to suppression of K(+) channel activity to cause membrane potential depolarization to enhance VDCC activity. The ability of VDCC blockers or K(+) channel activators to alleviate SAH-induced vasospasm will also be examined.
Collapse
Affiliation(s)
- George C Wellman
- Department of Pharmacology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA.
| |
Collapse
|
35
|
Nikitina E, Zhang ZD, Kawashima A, Jahromi BS, Bouryi VA, Takahashi M, Xie A, Macdonald RL. Voltage-dependent calcium channels of dog basilar artery. J Physiol 2006; 580:523-41. [PMID: 17185332 PMCID: PMC2075556 DOI: 10.1113/jphysiol.2006.126128] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Electrophysiological and molecular characteristics of voltage-dependent calcium (Ca(2+)) channels were studied using whole-cell patch clamp, polymerase chain reaction and Western blotting in smooth muscle cells freshly isolated from dog basilar artery. Inward currents evoked by depolarizing steps from a holding potential of -50 or -90 mV in 10 mm barium consisted of low- (LVA) and high-voltage activated (HVA) components. LVA current comprised more than half of total current in 24 (12%) of 203 cells and less than 10% of total current in 52 (26%) cells. The remaining cells (127 cells, 62%) had LVA currents between one tenth and one half of total current. LVA current was rapidly inactivating, slowly deactivating, inhibited by high doses of nimodipine and mibefradil (> 0.3 microM), not affected by omega-agatoxin GVIA (gamma100 nM), omega-conotoxin IVA (1 microM) or SNX-482 (200 nM) and probably carried by T-type Ca(2+) channels based on the presence of messenger ribonucleic acid (mRNA) and protein for Ca(v3.1) and Ca(v3.3) alpha(1) subunits of these channels. LVA currents exhibited window current with a maximum of 13% of the LVA current at -37.4 mV. HVA current was slowly inactivating and rapidly deactivating. It was inhibited by nimodipine (IC(50) = 0.018 microM), mibefradil (IC(50) = 0.39 microM) and omega-conotoxin IV (1 microM). Smooth muscle cells also contained mRNA and protein for L- (Ca(v1.2) and Ca(v1.3)), N- (Ca(v2.2)) and T-type (Ca(v3.1) and Ca(v3.3)) alpha(1) Ca(2+) channel subunits. Confocal microscopy showed Ca(v1.2) and Ca(v1.3) (L-type), Ca(v2.2) (N-type) and Ca(v3.1) and Ca(v3.3) (T-type) protein in smooth muscle cells. Relaxation of intact arteries under isometric tension in vitro to nimodipine (1 microM) and mibefradil (1 microM) but not to omega-agatoxin GVIA (100 nM), omega-conotoxin IVA (1 microM) or SNX-482 (1 microM) confirmed the functional significance of L- and T-type voltage-dependent Ca(2+) channel subtypes but not N-type. These results show that dog basilar artery smooth muscle cells express functional voltage-dependent Ca(2+) channels of multiple types.
Collapse
Affiliation(s)
- Elena Nikitina
- Department of Surgery, University of Chicago Medical Center, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee-Kwon W, Goo JH, Zhang Z, Silldorff EP, Pallone TL. Vasa recta voltage-gated Na+ channel Nav1.3 is regulated by calmodulin. Am J Physiol Renal Physiol 2006; 292:F404-14. [PMID: 16912065 DOI: 10.1152/ajprenal.00070.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rat descending vasa recta (DVR) express a tetrodotoxin (TTX)-sensitive voltage-operated Na(+) (Na(V)) conductance. We examined expression of Na(V) isoforms in DVR and tested for regulation of Na(V) currents by calmodulin (CaM). RT-PCR in isolated permeabilized DVR using degenerate primers targeted to TTX-sensitive isoforms amplified a product whose sequence identified only Na(V)1.3. Immunoblot of outer medullary homogenate verified Na(V)1.3 expression, and fluorescent immunochemistry showed Na(V)1.3 expression in isolated vessels. Immunochemistry in outer medullary serial sections confirmed that Na(V)1.3 is confined to alpha-smooth muscle actin-positive vascular bundles. Na(V)1.3 possesses a COOH-terminal CaM binding motifs. Using pull-down assays and immunoprecipitation experiments, we verified that CaM binds to either full-length Na(V)1.3 or a GST-Na(V)1.3 COOH-terminal fusion protein. In patch-clamp experiments, Na(V) currents were suppressed by calmodulin inhibitory peptide (CIP; 100 nM) or the CaM inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalene-sulphonamide hydrochloride (W7). Neither CIP nor W7 altered the voltage dependence of pericyte Na(V) currents; however, raising electrode free Ca(2+) from 20 to approximately 2,000 nM produced a depolarizing shift of activation. In vitro binding of CaM to GST-Na(V)1.3C was not affected by Ca(2+) concentration. We conclude that Na(V)1.3 is expressed by DVR, binds to CaM, and is regulated by CaM and Ca(2+). Inhibition of CaM binding suppresses pericyte Na(V) currents.
Collapse
Affiliation(s)
- Whaseon Lee-Kwon
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Calcium channel antagonists have a well-established role in the management of cardiovascular diseases. L-type calcium channels in vascular cells are a key therapeutic target in hypertension and are the preferred molecular target of the initial calcium channel antagonists. However, third-generation dihydropyridine (DHP) calcium channel antagonists, including manidipine, nilvadipine, benidipine and efonidipine, appear to have effects in addition to blockade of the L-type calcium channel. Voltage-gated calcium channels are widely expressed throughout the cardiovascular system. They constitute the main route for calcium entry, essential for the maintenance of contraction. Cardiac and vascular cells predominantly express L-type calcium channels. More recently, T-type channels have been discovered, and there is emerging evidence of their significance in the regulation of arterial resistance. A lack of functional expression of L-type channels in renal efferent arterioles may be consistent with an important role of T-type channels in the regulation of efferent arteriolar tone. Although the exact role of T-type calcium channels in vascular beds remains to be determined, they could be associated with gene-activated cell replication and growth during pathology. The three major classes of calcium channel antagonists are chemically distinct, and exhibit different functional effects depending on their biophysical, conformation-dependent interactions with the L-type calcium channel. The DHPs are more potent vasodilators, and generally have less cardiodepressant activity than representatives of other classes of calcium channel antagonist such as diltiazem (a phenylalkylamine) and verapamil (a benzothiazepine). In contrast to older calcium channel antagonists, the newer DHPs, manidipine, nilvadipine, benidipine and efonidipine, dilate not only afferent but also efferent renal arterioles, a potentially beneficial effect that may improve glomerular hypertension and provide renoprotection. The underlying mechanisms for the heterogenous effects of calcium channel antagonists in the renal microvasculature are unclear. A credible hypothesis suggests a contribution of T-type calcium channels to efferent arteriolar tone, and that manidipine, nilvadipine and efonidipine inhibit both L and T-type channels. However, other mechanisms, including an effect on neuronal P/Q-type calcium channels (recently detected in arterioles), the microheterogeneity of vascular beds, and other types of calcium influx may also play a role. This article presents recent data about the expression and physiological role of calcium channels in arteries and the molecular targets of the calcium channel antagonists, particularly those exhibiting distinct renovascular effects.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Antihypertensive Agents/therapeutic use
- Arteries/drug effects
- Arteries/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channel Blockers/therapeutic use
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Calcium Channels, P-Type/drug effects
- Calcium Channels, P-Type/metabolism
- Calcium Channels, T-Type/drug effects
- Calcium Channels, T-Type/metabolism
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/metabolism
- Dihydropyridines/pharmacology
- Dihydropyridines/therapeutic use
- Humans
- Hypertension, Renal/drug therapy
- Hypertension, Renal/metabolism
- Ion Channel Gating/drug effects
- Kidney Glomerulus/blood supply
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitrobenzenes
- Piperazines
- Renal Circulation/drug effects
Collapse
Affiliation(s)
- Sylvain Richard
- INSERM U-637; Université Montpellier 1, Physiopathologie Cardiovasculaire, CHU Arnaud de Villeneuve, 34295 Montpellier Cedex 5, France.
| |
Collapse
|
38
|
Abstract
Hypertension is common in chronic renal disease and is a risk factor for the faster progression of renal damage, and reduction of blood pressure (BP) is an efficient way of preventing or slowing the progression of this damage. International guidelines recommend lowering BP to 140/90 mm Hg or less in patients with uncomplicated hypertension, and to 130/80 mm Hg or less for patients with diabetic or chronic renal disease. The attainment of these goals needs to be aggressively pursued with multidrug antihypertensive regimens, if needed. The pathogenesis of hypertensive renal damage involves mediators from various extracellular systems, including the renin-angiotensin system (RAS). Proteinuria, which occurs as a consequence of elevated intraglomerular pressure, is also directly nephrotoxic. As well as protecting the kidneys by reducing BP, antihypertensive drugs can also have direct effects on intrarenal mechanisms of damage, such as increased glomerular pressure and proteinuria. Antihypertensive drugs that have direct effects on intrarenal mechanisms may, therefore, have nephroprotective effects additional to those resulting from reductions in arterial BP. Whereas BP-lowering effects are common to all antihypertensive drugs, intrarenal effects differ between classes and between individual drugs within certain classes. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB) have beneficial effects on proteinuria and declining renal function that appear to be mediated by factors additional to their effects on BP. These RAS inhibitors are recommended as a first-line antihypertensive approach in patients with chronic kidney disease. The addition of diuretics and calcium channel antagonists to RAS inhibitor therapy is also considered to be a rational strategy to reduce BP and preserve renal function. Calcium channel antagonists are a highly heterogeneous class of compounds, and it appears that some agents are more suitable for use in patients with chronic renal disease than others. Manidipine is a third-generation dihydropyridine (DHP) calcium channel antagonist that blocks both L and T-type calcium channels. Unlike older-generation DHPs, which preferentially act on L-type channels, manidipine has been shown to have beneficial effects on intrarenal haemodynamics, proteinuria and other measures of renal functional decline in the first clinical trials involving hypertensive patients with chronic renal failure. Preliminary results from a trial in diabetic patients who had uncontrolled hypertension and microalbuminuria despite optimal therapy with an ACE inhibitor or an ARB suggest that manidipine may be an excellent antihypertensive drug in combination with RAS inhibitor treatment in order to normalise BP and albumin excretion in patients with diabetes.
Collapse
Affiliation(s)
- René R Wenzel
- Clinic of Internal Medicine, Cardiology, Nephrology and Hypertension, General Hospital Zell am See, Zell am See, Austria.
| |
Collapse
|
39
|
Thorneloe KS, Nelson MT. Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can J Physiol Pharmacol 2005; 83:215-42. [PMID: 15870837 DOI: 10.1139/y05-016] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Smooth muscle (SM) is essential to all aspects of human physiology and, therefore, key to the maintenance of life. Ion channels expressed within SM cells regulate the membrane potential, intracellular Ca2+ concentration, and contractility of SM. Excitatory ion channels function to depolarize the membrane potential. These include nonselective cation channels that allow Na+ and Ca2+ to permeate into SM cells. The nonselective cation channel family includes tonically active channels (Icat), as well as channels activated by agonists, pressure-stretch, and intracellular Ca2+ store depletion. Cl--selective channels, activated by intracellular Ca2+ or stretch, also mediate SM depolarization. Plasma membrane depolarization in SM activates voltage-dependent Ca2+ channels that demonstrate a high Ca2+ selectivity and provide influx of contractile Ca2+. Ca2+ is also released from SM intracellular Ca2+ stores of the sarcoplasmic reticulum (SR) through ryanodine and inositol trisphosphate receptor Ca2+ channels. This is part of a negative feedback mechanism limiting contraction that occurs by the Ca2+-dependent activation of large-conductance K+ channels, which hyper polarize the plasma membrane. Unlike the well-defined contractile role of SR-released Ca2+ in skeletal and cardiac muscle, the literature suggests that in SM Ca2+ released from the SR functions to limit contractility. Depolarization-activated K+ chan nels, ATP-sensitive K+ channels, and inward rectifier K+ channels also hyperpolarize SM, favouring relaxation. The expression pattern, density, and biophysical properties of ion channels vary among SM types and are key determinants of electrical activity, contractility, and SM function.
Collapse
Affiliation(s)
- Kevin S Thorneloe
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington 05405, USA.
| | | |
Collapse
|
40
|
Zhang Z, Cao C, Lee-Kwon W, Pallone TL. Descending vasa recta pericytes express voltage operated Na+ conductance in the rat. J Physiol 2005; 567:445-57. [PMID: 15975976 PMCID: PMC1474193 DOI: 10.1113/jphysiol.2005.091538] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We studied the properties of a voltage-operated Na+ conductance in descending vasa recta (DVR) pericytes isolated from the renal outer medulla. Whole-cell patch-clamp recordings revealed a depolarization-induced, rapidly activating and rapidly inactivating inward current that was abolished by removal of Na+ but not Ca+ from the extracellular buffer. The Na+ current (I(Na)) is highly sensitive to tetrodotoxin (TTX, Kd = 2.2 nM). At high concentrations, mibefradil (10 microM) and Ni+ (1 mM) blocked I(Na). I(Na) was insensitive to nifedipine (10 microM). The L-type Ca+ channel activator FPL-64176 induced a slowly activating/inactivating inward current that was abolished by nifedipine. Depolarization to membrane potentials between 0 and 30 mV induced inactivation with a time constant of approximately 1 ms. Repolarization to membrane potentials between -90 and -120 mV induced recovery from inactivation with a time constant of approximately 11 ms. Half-maximal activation and inactivation occurred at -23.9 and -66.1 mV, respectively, with slope factors of 4.8 and 9.5 mV, respectively. The Na+ channel activator, veratridine (100 microM), reduced peak inward I(Na) and prevented inactivation. We conclude that a TTX-sensitive voltage-operated Na+ conductance, with properties similar to that in other smooth muscle cells, is expressed by DVR pericytes.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201-1595, USA
| | | | | | | |
Collapse
|
41
|
Facemire CS, Arendshorst WJ. Calmodulin mediates norepinephrine-induced receptor-operated calcium entry in preglomerular resistance arteries. Am J Physiol Renal Physiol 2005; 289:F127-36. [PMID: 15701815 DOI: 10.1152/ajprenal.00397.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although L-type voltage-dependent calcium channels play a major role in mediating vascular smooth muscle cell contraction in the renal vasculature, non-L-type calcium entry mechanisms represent a significant component of vasoactive agonist-induced calcium entry in these cells as well. To investigate the role of these non-voltage-dependent calcium entry pathways in the regulation of renal microvascular reactivity, we have characterized the function of store- and receptor-operated channels (SOCs and ROCs) in renal cortical interlobular arteries (ILAs) of rats. Using fura 2-loaded, microdissected ILAs, we find that the L-type channel antagonist nifedipine blocks less than half the rise in intracellular calcium concentration ([Ca(2+)](i)) elicited by norepinephrine. SOCs were activated in these vessels using the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) inhibitors cyclopiazonic acid and thapsigargin and were dose dependently blocked by the SOC antagonists Gd(3+) and 2-aminoethoxydiphenyl borate (2-APB) and the combined SOC/ROC antagonist SKF-96365. Gd(3+) had no effect on the non-L-type Ca(2+) entry activated by 1 microM NE. A low concentration of SKF-96365 that did not affect thapsigargin-induced store-operated Ca(2+) entry blocked 60-70% of the NE-induced Ca(2+) entry. Two different calmodulin inhibitors (W-7 and trifluoperazine) also blocked the NE-induced Ca(2+) entry. These data suggest that in addition to L-type channels, NE primarily activates ROCs rather than SOCs in ILAs and that this receptor-operated Ca(2+) entry mechanism is regulated by calmodulin. Interestingly, 2-APB completely blocked the NE-induced non-L-type Ca(2+) entry, implying that SOCs and ROCs in preglomerular resistance vessels share a common molecular structure.
Collapse
Affiliation(s)
- Carie S Facemire
- Dept. of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
42
|
Fallet RW, Ikenaga H, Bast JP, Carmines PK. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin. Am J Physiol Renal Physiol 2004; 288:F545-51. [PMID: 15536171 PMCID: PMC2579747 DOI: 10.1152/ajprenal.00150.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments addressed the hypothesis that afferent and efferent arterioles differentially rely on Ca2+ influx and/or release from intracellular stores in generating contractile responses to AVP. The effect of Ca2+ store depletion or voltage-gated Ca2+ channel (VGCC) blockade on contractile responsiveness to AVP (0.01-1.0 nM) was assessed in blood-perfused juxtamedullary nephrons from rat kidney. Depletion of intracellular Ca2+ stores by 100 microM cyclopiazonic acid (CPA) or 1 microM thapsigargin treatment increased afferent arteriolar baseline diameter by 14 and 21%, respectively, but did not significantly alter efferent arteriolar diameter. CPA attenuated the contractile response to 1.0 nM AVP by 34 and 55% in afferent and efferent arterioles, respectively (P = 0.013). The impact of thapsigargin on AVP-induced afferent arteriolar contraction (52% inhibition) was also less than its effect on the efferent arteriolar response (88% inhibition; P = 0.046). In experiments probing the role of the Ca2+ influx through VGCCs, 10 microM diltiazem evoked a 34% increase in baseline afferent arteriolar diameter and attenuated the contractile response to 1.0 nM AVP by 45%, without significantly altering efferent arteriolar baseline diameter or responsiveness to AVP. Combined treatment with both diltiazem and thapsigargin prevented AVP-induced contraction of both vascular segments. We conclude that Ca2+ release from the intracellular stores contributes to the contractile response to AVP in both afferent and efferent arterioles but is more prominent in the efferent arteriole. Moreover, the VGCC contribution to AVP-induced renal arteriolar contraction resides primarily in the afferent arteriole.
Collapse
Affiliation(s)
- Rachel W Fallet
- Dept. of Cellular and Integrative Physiology, Univ. of Nebraska College of Medicine, 985850 Nebraska Medical Ctr., Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
43
|
Salomonsson M, Sorensen CM, Arendshorst WJ, Steendahl J, Holstein-Rathlou NH. Calcium handling in afferent arterioles. ACTA ACUST UNITED AC 2004; 181:421-9. [PMID: 15283754 DOI: 10.1111/j.1365-201x.2004.01314.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cytosolic intracellular calcium concentration ([Ca(2+)](i)) is a major determining factor in the vascular smooth muscle tone. In the afferent arteriole it has been shown that agonists utilizing G-protein coupled receptors recruit Ca(2+) via release from intracellular stores and entry via pathways in the plasma membrane. The relative importances of entry vs. mobilization seem to differ between different agonists, species and preparations. The entry pathway might include different types of voltage sensitive Ca(2+) channels located in the plasmalemma such as dihydropyridine sensitive L-type channels, T-type channels and P/Q channels. A role for non-voltage sensitive entry pathways has also been suggested. The importance of voltage sensitive Ca(2+) channels in the control of the tone of the afferent arteriole (and thus in the control of renal function and whole body control of extracellular fluid volume and blood pressure) sheds light on the control of the membrane potential of afferent arteriolar smooth muscle cells. Thus, K(+) and Cl(-) channels are of importance in their role as major determinants of membrane potential. Some studies suggest a role for calcium-activated chloride (Cl(Ca)) channels in the renal vasoconstriction elicited by agonists. Other investigators have found evidence for several types of K(+) channels in the regulation of the afferent arteriolar tone. The available literature in this field regarding afferent arterioles is, however, relatively sparse and not conclusive. This review is an attempt to summarize the results obtained by others and ourselves in the field of agonist induced afferent arteriolar Ca(2+) recruitment, with special emphasis on the control of voltage sensitive Ca(2+) entry. Outline of the Manuscript: This manuscript is structured as follows: it begins with an introduction where the general role for [Ca(2+)](i) as a key factor in the regulation of the tone of vascular smooth muscles (VSMC) is detailed. In this section there is an emphasis is on observations that could be attributed to afferent arteriolar function. We then investigate the literature and describe our results regarding the relative roles for Ca(2+) entry and intracellular release in afferent arterioles in response to vasoactive agents, with the focus on noradrenalin (NA) and angiotensin II (Ang II). Finally, we examine the role of ion channels (i.e. K(+) and Cl(-) channels) for the membrane potential, and thus activation of voltage sensitive Ca(2+) channels.
Collapse
Affiliation(s)
- M Salomonsson
- Department of Medical Physiology, Division of Renal and Cardiovascular Research, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
44
|
Jensen LJ, Salomonsson M, Jensen BL, Holstein-Rathlou NH. Depolarization-induced calcium influx in rat mesenteric small arterioles is mediated exclusively via mibefradil-sensitive calcium channels. Br J Pharmacol 2004; 142:709-18. [PMID: 15172957 PMCID: PMC1575051 DOI: 10.1038/sj.bjp.0705841] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In this study, intracellular Ca(2+) was measured as the Fura-2 ratio (R) of fluorescence excited at 340 and 380 nm (F(340)/F(380)) in nonpressurized rat mesenteric small arterioles ( (lumen diameter) 10-25 microm). 2. The response to depolarization using 75 mm KCl was an increase in R from a baseline of 0.96+/-0.01 ([Ca(2+)](i) approximately 74 nm) to 1.04+/-0.01 ( approximately 128 nm) (n=80). The response to 75 mm K(+) was reversibly abolished in Ca(2+)-free physiological saline solution, whereas phentolamine (10 microm) or tetrodotoxin (1 microm) had no effects. LaCl(3) (200 microm) inhibited 61+/-9% of the response. 3. A [K(+)]-response curve indicated that the Ca(2+) response was activated between 15 and 25 mm K(+). The data suggest that the Ca(2+) response was caused by the activation of voltage-dependent Ca(2+) channels. 4. Mibefradil use dependently inhibited the Ca(2+) response to 75 mm K(+) by 29+/-2% (100 nm), 73+/-7% (1 microm) or 89+/-7% (10 microm). Pimozide (500 nm) use dependently inhibited the Ca(2+) response by 85+/-1%. 5. Nifedipine (1 microm) inhibited the Ca(2+) response to 75 mm K(+) by 41+/-12%. The response was not inhibited by calciseptine (500 nm), omega-agatoxin IVA (100 nm), omega-conotoxin MVIIA (500 nm), or SNX-482 (100 nm). 6. Using reverse transcriptase-polymerase chain reaction, it was shown that neither Ca(V)2.1a (P-type) nor Ca(V)2.1b (Q-type) voltage-dependent Ca(2+) channels were expressed in mesenteric arterioles, whereas the Ca(V)3.1 (T-type) channel was expressed. Furthermore, no amplification products were detected when using specific primers for the beta(1b), beta(2), or beta(3) auxiliary subunits of high-voltage-activated Ca(2+) channels. 7. The results suggest that the voltage-dependent Ca(2+) channel activated by sustained depolarization in mesenteric arterioles does not classify as any of the high-voltage-activated channels (L-, P/Q-, N-, or R-type), but is likely to be a T-type channel. The possibility that the sustained Ca(2+) influx observed was the result of a T-type window current is discussed.
Collapse
Affiliation(s)
- Lars J Jensen
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen DK-2200, Denmark.
| | | | | | | |
Collapse
|
45
|
Jensen BL, Friis UG, Hansen PB, Andreasen D, Uhrenholt T, Schjerning J, Skøtt O. Voltage-dependent calcium channels in the renal microcirculation. Nephrol Dial Transplant 2004; 19:1368-73. [PMID: 15004253 DOI: 10.1093/ndt/gfh176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Brunette MG, Leclerc M, Couchourel D, Mailloux J, Bourgeois Y. Characterization of three types of calcium channel in the luminal membrane of the distal nephron. Can J Physiol Pharmacol 2004; 82:30-7. [PMID: 15052303 DOI: 10.1139/y03-127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously reported a dual kinetics of Ca2+transport by the distal tubule luminal membrane of the kidney, suggesting the presence of several types of channels. To better characterize these channels, we examined the effects of specific inhibitors (i.e., diltiazem, an L-type channel; ω-conotoxin MVIIC, a P/Q-type channel; and mibefradil, a T-type channel antagonist) on 0.1 and 0.5 mM Ca2+uptake by rabbit nephron luminal membranes. None of these inhibitors influenced Ca2+uptake by the proximal tubule membranes. In contrast, in the absence of sodium (Na+), the three channel antagonists decreased Ca2+transport by the distal membranes, and their action depended on the substrate concentrations: 50 µM diltiazem decreased 0.1 mM Ca2+uptake from 0.65 ± 0.07 to 0.48 ± 0.06 pmol·µg–1·10 s–1(P < 0.05) without influencing 0.5 mM Ca2+transport, whereas 100 nM ω-conotoxin MVIIC decreased 0.5 mM Ca2+uptake from 1.02 ± 0.05 to 0.90 ± 0.05 pmol·µg–1·10 s–1(P < 0.02) and 1 µM mibefradil decreased it from 1.13 ± 0.09 to 0.94 ± 0.09 pmol·µg–1·10 s–1(P < 0.05); the latter two inhibitors left 0.1 mM Ca2+transport unchanged. Diltiazem decreased the Vmaxof the high-affinity channels, whereas ω-conotoxin MVIIC and mibefradil influenced exclusively the Vmaxof the low-affinity channels. These results not only confirm that the distal luminal membrane is the site of Ca2+channels, but they suggest that these channels belong to the L, P/Q, and T types.Key words: renal calcium transport, calcium channels, diltiazem, mibefradil, ω-conotoxin.
Collapse
Affiliation(s)
- M G Brunette
- Maisonneuve-Rosemont Hospital, 5415 Boulevard l'Assomption, Montreal, Quebec H1T 2M4, Canada
| | | | | | | | | |
Collapse
|
47
|
Hayashi K, Ozawa Y, Wakino S, Kanda T, Homma K, Takamatsu I, Tatematsu S, Saruta T. Cellular Mechanism for Mibefradil-Induced Vasodilation of Renal Microcirculation. J Cardiovasc Pharmacol 2003; 42:697-702. [PMID: 14639089 DOI: 10.1097/00005344-200312000-00001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although nifedipine and other conventional calcium antagonists elicit preferential vasodilation of renal afferent arterioles, we demonstrate that mibefradil and nickel, T-type calcium channel blockers, reverse the angiotensin II-induced constriction of both afferent and efferent arterioles. Since the angiotensin II-induced vasoconstriction involves inositol trisphosphate (IP3)-induced calcium release from the sarcoplasmic reticulum in the afferent arteriole, and both IP3- and protein kinase C (PKC)-mediated pathways in the efferent arteriole, we investigated the cellular mechanism for the mibefradil-induced dilation of angiotensin II-constricted renal arterioles, using the isolated perfused hydronephrotic rat kidney. Mibefradil caused a dose-dependent dilation of angiotensin II-constricted afferent and efferent arterioles, with 88 +/- 9% and 74 +/- 10% reversal observed at 1 micromol/L, respectively. The blockade of PKC by staurosporine did not alter the mibefradil-induced vasodilator responses of either arterioles (P > 0.5). In contrast, the pretreatment with thapsigargin, which predominantly blocked the IP3-mediated intracellular calcium release, prevented the afferent arteriolar constrictor response to angiotensin II, but caused a significant constriction of efferent arterioles. The subsequent addition of mibefradil had no effect on the efferent arteriolar diameter. Furthermore, the efferent arteriolar constriction induced by direct PKC activation by phorbol myristate acetate was refractory to mibefradil, but completely reversed by LOE908, a nonselective cation channel blocker. In summary, mibefradil markedly dilates the angiotensin II-induced renal arteriolar constriction; the action of mibefradil is most likely mediated by the inhibition of the IP3-mediated pathway, but the inhibitory action on the PKC pathway appears modest.
Collapse
Affiliation(s)
- Koichi Hayashi
- Department of Internal Medicine, School of Medicine, Keio University, Shinanomachi, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Meacham CA, White LD, Barone S, Shafer TJ. Ontogeny of voltage-sensitive calcium channel alpha(1A) and alpha(1E) subunit expression and synaptic function in rat central nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:47-65. [PMID: 12694944 DOI: 10.1016/s0165-3806(03)00031-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Immunohistochemical expression in the neocortex, hippocampus and cerebellum of the alpha(1A) or alpha(1E) subunit of the voltage-sensitive Ca(2+) channel was examined in Long-Evans hooded rats on gestational day 18 and postnatal days 1, 4, 7, 10, 14, 21, 90, 360 and 720. On gestational day 18 and postnatal day 1, alpha(1A) immunoreactivity was more dense in the neocortex and hippocampus than the cerebellum. By postnatal day 7, levels of alpha(1A) immunoreactivity increased dramatically in the cerebellum, while in neocortex, alpha(1A) immunoreactivity became more sparse, which approached the more diffuse pattern of cellular staining in the mature brain. Expression of alpha(1E) in the neocortex, hippocampus and cerebellum was much less dense than alpha(1A) between gestational day 18 and postnatal day 4. There was also significant alpha(1E) immunoreactivity in the mossy fibers of the hippocampus and in dendrites of Purkinje cells of the cerebellum. Depolarization-dependent 45Ca(2+) influx was examined in rat brain synaptosomes on postnatal days 4, 7, 10, 14, 21 and >60. In neocortical and hippocampal synaptosomes, 45Ca(2+) influx increased steadily with age and reached adult levels by postnatal day 10. In cerebellar synaptosomes, 45Ca(2+) influx was constant across all ages, except for a spike in activity which was observed on postnatal day 21. In neocortical and hippocampal synaptosomes, 100 nM omega-conotoxin MVIIC significantly inhibited 45Ca(2+) influx on postnatal day 10 and 14, respectively, or after. In cerebellar synaptosomes, influx was inhibited by omega-conotoxin MVIIC only on postnatal day 10 or prior. On postnatal day 7, 45Ca(2+) influx was not inhibited in neocortical and hippocampal synaptosomes by a combination of 10 microM nifedipine, 1 microM omega-conotoxin GVIA and 1 microM omega-conotoxin MVIIC, suggesting that an 'insensitive' flux predominates at this age. Overall, the results suggest that expression of voltage-sensitive Ca(2+) channels during development is dynamic and is important in central nervous system development.
Collapse
Affiliation(s)
- Connie A Meacham
- Neurotoxicology Division, MD-BIO5-5, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | |
Collapse
|
49
|
Ihara E, Hirano K, Hirano M, Nishimura J, Nawata H, Kanaide H. Mechanism of down-regulation of L-type Ca(2+) channel in the proliferating smooth muscle cells of rat aorta. J Cell Biochem 2003; 87:242-51. [PMID: 12244576 DOI: 10.1002/jcb.10295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanism of down-regulation of L-type Ca(2+) channel (L-VOC) was investigated in rat aortic smooth muscle cells in primary culture. On culture days 3-5, the cells actively incorporated the 5-bromo-2'-deoxy-uridine (BrdU), and did not respond to K(+) depolarization nor express alpha(1C) subunit of L-VOC. At confluence on day 8, BrdU incorporation decreased, and the cells up-regulated alpha(1C) subunit mRNA, expressed alpha(1C) subunit protein at cell periphery, and responded to K(+) depolarization. Treating the proliferating cells on day 3 with serum-free media or 10 microM PD98059, a MAP kinase kinase inhibitor, for 2 days induced the expression of alpha(1C) subunit protein and the responsiveness to K(+) depolarization. However, the serum starvation, but not PD98059, decreased the BrdU incorporation and increased the alpha(1C) subunit mRNA. It is concluded that the expression of L-VOC is substantially suppressed in the proliferating cells due to two mechanisms; a MAP kinase-mediated post-transcriptional down-regulation and the transcriptional down-regulation by additional mitogenic signals.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/metabolism
- Bromodeoxyuridine/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Cell Count
- Cell Division/physiology
- Cells, Cultured
- Culture Media, Serum-Free
- Down-Regulation
- Flavonoids/pharmacology
- Fluorescent Antibody Technique
- Indoles/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Potassium/chemistry
- Potassium/pharmacology
- Protein Subunits
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Time Factors
Collapse
Affiliation(s)
- Eikichi Ihara
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | | | | | | | | | | |
Collapse
|
50
|
Dobrev D, Ravens U. Therapeutically relevant concentrations of neomycin selectively inhibit P-type Ca2+ channels in rat striatum. Eur J Pharmacol 2003; 461:105-11. [PMID: 12586205 DOI: 10.1016/s0014-2999(03)01319-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of neomycin on voltage-activated Ca(2+) channels (VACCs) were studied by Ca(2+)-dependent K(+)- and veratridine-evoked [3H]dopamine release from rat striatal slices. Neomycin (0.01-1 mM) concentration dependently reduced K(+)-evoked [3H]dopamine release (IC(50) approximately 25 microM), producing approximately 98% inhibition at 1 mM. Contribution of N-, P- and Q-type Ca(2+) channels to this neomycin-sensitive [3H]dopamine release was tested by the combined application of 100 microM neomycin and selective Ca(2+) channel blockers. The effects of neomycin combined with 1 microM of omega-conotoxin GVIA (N-type Ca(2+) channels) or with 100 nM of omega-conotoxin MVIIC (Q-type Ca(2+) channels) were additive, excluding involvement of N- and Q-type Ca(2+) channels. However, the combined effects of neomycin with 30 nM of omega-agatoxin-IVA (P-type Ca(2+) channels) were not additive, suggesting involvement of P-type Ca(2+) channels in neomycin-induced inhibition of [3H]dopamine release. On the other hand, veratridine-evoked [3H]dopamine release was shown to be mediated by Q-type Ca(2+) channels only. In addition, neither the inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase thapsigargin (500 nM) nor the blocker of sarcoplasmic reticulum ryanodine Ca(2+) channels ryanodine (30 microM) modulate veratridine-evoked [3H]dopamine release, suggesting no contribution of intracellular Ca(2+) stores. Neomycin (up to 100 microM) did not affect veratridine-evoked [3H]dopamine release, suggesting that intracellular Ca(2+) stores are not a prerequisite for the action of neomycin. Lack of inhibitory effect of neomycin is taken as additional indirect evidence for the involvement of P-type Ca(2+) channels. In conclusion, therapeutically relevant concentrations of neomycin preferentially block P-type Ca(2+) channels which regulate dopamine release in rat striatum. This block could be responsible for aminoglycoside-induced toxicity.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical School, Dresden University of Technology, Fetscher Str 74, D-01307 Dresden, Germany.
| | | |
Collapse
|