1
|
Pourrajab B, Fotros D, Asghari P, Shidfar F. Effect of the Mediterranean Diet Supplemented With Olive Oil Versus the Low-Fat Diet on Serum Inflammatory and Endothelial Indexes Among Adults: A Systematic Review and Meta-analysis of Clinical Controlled Trials. Nutr Rev 2024:nuae166. [PMID: 39530776 DOI: 10.1093/nutrit/nuae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
CONTEXT Inflammation and endothelial dysfunction are important risk factors for chronic diseases, including cardiovascular diseases and related mortality. OBJECTIVE This systematic review and meta-analysis aimed to assess the effects of 2 popular dietary patterns-a Mediterranean (MED) diet supplemented with olive oil and a low-fat diet (LFD)-on factors related to inflammation and endothelial function in adults. DATA SOURCES AND DATA EXTRACTION The following online databases were searched for related studies published until August 7, 2024: PubMed/Medline, Scopus, Clarivate Analytics Web of Science, Cochrane Central Register of Controlled Trials, and Google Scholar. Two independent researchers selected the studies based on the eligibility criteria. DATA ANALYSIS The effect sizes were expressed as Hedges' g with 95% CIs. A total of 16 eligible trials with 20 effect sizes were included in the analyses. This meta-analysis revealed that the MED diet supplemented with olive oil significantly improved all of the indicators of the study compared with the LFD, except in the case of E-selectin, in which a low and nonsignificant decrease was reported. CONCLUSION Available evidence suggests that a MED diet supplemented with olive oil compared with the LFD significantly improves inflammation and serum endothelial function in adults. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023485718.
Collapse
Affiliation(s)
- Behnaz Pourrajab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Parastoo Asghari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Farzad Shidfar
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Nutritional Sciences, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
2
|
Gastanadui MG, Margaroli C, Litovsky S, Richter RP, Wang D, Xing D, Wells JM, Gaggar A, Nanda V, Patel RP, Payne GA. Spatial Transcriptomic Approach to Understanding Coronary Atherosclerotic Plaque Stability. Arterioscler Thromb Vasc Biol 2024; 44:e264-e276. [PMID: 39234691 PMCID: PMC11499036 DOI: 10.1161/atvbaha.123.320330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Coronary atherosclerotic plaques susceptible to acute coronary syndrome have traditionally been characterized by their surrounding cellular architecture. However, with the advent of intravascular imaging, novel mechanisms of coronary thrombosis have emerged, challenging our contemporary understanding of acute coronary syndrome. These intriguing findings underscore the necessity for a precise molecular definition of plaque stability. Considering this, our study aimed to investigate the vascular microenvironment in patients with stable and unstable plaques using spatial transcriptomics. METHODS Autopsy-derived coronary arteries were preserved and categorized by plaque stability (n=5 patients per group). We utilized the GeoMx spatial profiling platform and Whole Transcriptome Atlas to link crucial histological morphology markers in coronary lesions with differential gene expression in specific regions of interest, thereby mapping the vascular transcriptome. This innovative approach allowed us to conduct cell morphological and spatially resolved transcriptional profiling of atherosclerotic plaques while preserving crucial intercellular signaling. RESULTS We observed intriguing spatial and cell-specific transcriptional patterns in stable and unstable atherosclerotic plaques, showcasing regional variations within the intima and media. These regions exhibited differential expression of proinflammatory molecules (eg, IFN-γ [interferon-γ], MHC [major histocompatibility complex] class II, proinflammatory cytokines) and prothrombotic signaling pathways. By using lineage tracing through spatial deconvolution of intimal CD68+ (cluster of differentiation 68) cells, we characterized unique, intraplaque subpopulations originating from endothelial, smooth muscle, and myeloid lineages with distinct regional locations associated with plaque instability. In addition, unique transcriptional signatures were observed in vascular smooth muscle and CD68+ cells among plaques exhibiting coronary calcification. CONCLUSIONS Our study illuminates distinct cell-specific and regional transcriptional alterations present in unstable plaques. Furthermore, we characterize spatially resolved, in situ evidence supporting cellular transdifferentiation and intraplaque plasticity as significant contributors to plaque instability in human coronary atherosclerosis. Our results provide a powerful resource for the identification of novel mediators of acute coronary syndrome, opening new avenues for preventative and therapeutic treatments.
Collapse
Affiliation(s)
- Maria G Gastanadui
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
- Cardiopulmonary Research Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease/Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Silvio Litovsky
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert P. Richter
- Program in Protease/Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, Division of Pediatric Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dezhi Wang
- Department of Pathology, Pathology Core Research Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongqi Xing
- Cardiopulmonary Research Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease/Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL
- Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J. Michael Wells
- Cardiopulmonary Research Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease/Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL
- Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, AL, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL
| | - Amit Gaggar
- Cardiopulmonary Research Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease/Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL
- Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, AL, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vivek Nanda
- Department of Pathology, Division of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rakesh P. Patel
- Cardiopulmonary Research Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology, Division of Molecular & Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease/Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A. Payne
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
- Cardiopulmonary Research Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease/Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Vascular Biology and Hypertension Program, University of Alabama at Birmingham, Birmingham, AL, USA
- Medical Service at Birmingham VA Medical Center, Birmingham, AL
| |
Collapse
|
3
|
Obare LM, Priest S, Ismail A, Mashayekhi M, Zhang X, Stolze LK, Sheng Q, Nthenge K, Vue Z, Neikirk K, Beasley HK, Gabriel C, Temu T, Gianella S, Mallal SA, Koethe JR, Hinton A, Bailin SS, Wanjalla CN. Cytokine and chemokine receptor profiles in adipose tissue vasculature unravel endothelial cell responses in HIV. J Cell Physiol 2024; 239:e31415. [PMID: 39263801 DOI: 10.1002/jcp.31415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
Chronic systemic inflammation significantly increases myocardial infarction risk in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis, contributing to cardiovascular disease. We aimed to characterize endothelial cell (EC) chemokines, cytokine, and chemokine receptors of PLWH, hypothesizing that in our cohort, glucose intolerance contributes to their differential expression implicated in endothelial dysfunction. Using single-cell transcriptomic analysis, we phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in subcutaneous adipose tissue of 59 PLWH with and without glucose intolerance. Our results show that arterial and capillary ECs express significantly higher interferon and tumor necrosis factor (TNF) receptors than venous ECs and VSMCs. Venous ECs exhibited more interleukin (IL)1R1 and ACKR1 receptors, and VSMCs showed significant IL6R expression than arterial and capillary ECs. When stratified by group, arterial ECs from PLWH with glucose intolerance expressed significantly higher IL1R1, IL6R, CXCL12, CCL14, and ICAM2 transcripts than arterial ECs from PLWH without diabetes. Of the different vascular cell types studied, arterial ECs as a proportion of all ECs in adipose tissue were positively correlated with plasma fasting blood glucose. In contrast, venous ECs and VSMCs were positively correlated with plasma IL6. To directly assess the effect of plasma from PLWH on endothelial function, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk RNA sequencing. Plasma from PLWH stimulated ECs with the upregulation of genes that enrich for the oxidative phosphorylation and the TNF-α via NFK-β pathways. In conclusion, ECs in PLWH show heterogeneous cytokine and chemokine receptor expression, and arterial ECs were the most influenced by glucose intolerance. Further research must explicate cytokine and chemokine roles in EC dysfunction and identify biomarkers for disease progression and therapeutic response.
Collapse
Affiliation(s)
- Laventa M Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anas Ismail
- Department of Radiology, National Postgraduate Medical College of Nigeria, Lagos, Nigeria
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kisyua Nthenge
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Curtis Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tecla Temu
- Division of Pathology, Harvard Medical College, Boston, Massachusetts, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - Simon A Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - John R Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Samuel S Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Lin Z, Yang M, Wu J, Pan L. Exploring the mechanism of Zhengxintai Formula for the treatment of coronary heart disease based on network pharmacology. Medicine (Baltimore) 2024; 103:e40065. [PMID: 39465849 PMCID: PMC11479439 DOI: 10.1097/md.0000000000040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/12/2024] [Indexed: 10/29/2024] Open
Abstract
Zhengxintai Formula (ZXT) has shown good effects in the clinical treatment of coronary atherosclerotic heart disease (CHD). However, its potential molecular mechanism for treating coronary heart disease is still unknown. The Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform and literature reviews were used to determine the active components and targets of the 6 herbs used in ZXT. Next, we searched disease target databases for targets associated with CHD. Secondly, Cytoscape was used to map the "active compounds-target" network, "protein-protein interaction" network, and "compound-target-disease" network. After that, gene ontology analysis and the pathway analysis by the Kyoto Encyclopedia of Genes and Genomes were performed on the targets. Finally, molecular docking between the compounds and the targets was performed to verify their binding ability. The analysis obtained 116 active compounds of ZXT, corresponding to 611 targets. Thousand three hundred forty-five coronary heart disease targets were collected. Obtained 177 potential ZXT targets for coronary artery disease. Gene ontology analysis yielded 734 biological process entries, 84 cellular component entries, and 122 molecular function entries. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed the key pathways such as "Fluid shear stress and atherosclerosis," "Lipid and atherosclerosis", and "PI3K-Akt signaling pathway." The molecular docking results showed good binding between each screened core target and the core components. ZXT fulfills its role in the treatment of CHD through the core components and core targets that have been screened out, but the exact process still needs to be further investigated.
Collapse
Affiliation(s)
- Zicheng Lin
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong, China
| | - Mingshuo Yang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong, China
| | - Jiting Wu
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong, China
| | - Liming Pan
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangdong, China
| |
Collapse
|
5
|
Wang J, Wu Q, Wang X, Liu H, Chen M, Xu L, Zhang Z, Li K, Li W, Zhong J. Targeting Macrophage Phenotypes and Metabolism as Novel Therapeutic Approaches in Atherosclerosis and Related Cardiovascular Diseases. Curr Atheroscler Rep 2024; 26:573-588. [PMID: 39133247 PMCID: PMC11392985 DOI: 10.1007/s11883-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE OF THE REVIEW Macrophage accumulation and activation function as hallmarks of atherosclerosis and have complex and intricate dynamics throughout all components and stages of atherosclerotic plaques. In this review, we focus on the regulatory roles and underlying mechanisms of macrophage phenotypes and metabolism in atherosclerosis. We highlight the diverse range of macrophage phenotypes present in atherosclerosis and their potential roles in progression and regression of atherosclerotic plaque. Furthermore, we discuss the challenges and opportunities in developing therapeutic strategies for preventing and treating atherosclerotic cardiovascular disease. RECENT FINDINGS Dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypealters the immuno-inflammatory response during atherosclerosis progression, leading to plaque initiation, growth, and ultimately rupture. Altered metabolism of macrophage is a key feature for their function and the subsequent progression of atherosclerotic cardiovascular disease. The immunometabolism of macrophage has been implicated to macrophage activation and metabolic rewiring of macrophages within atherosclerotic lesions, thereby shifting altered macrophage immune-effector and tissue-reparative function. Targeting macrophage phenotypes and metabolism are potential therapeutic strategies in the prevention and treatment of atherosclerosis and atherosclerotic cardiovascular diseases. Understanding the precise function and metabolism of specific macrophage subsets and their contributions to the composition and growth of atherosclerotic plaques could reveal novel strategies to delay or halt development of atherosclerotic cardiovascular diseases and their associated pathophysiological consequences. Identifying biological stimuli capable of modulating macrophage phenotypes and metabolism may lead to the development of innovative therapeutic approaches for treating patients with atherosclerosis and coronary artery diseases.
Collapse
Affiliation(s)
- Juan Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Qiang Wu
- Senior Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
- Journal of Geriatric Cardiology Editorial Office, Chinese PLA General Hospital, Beijing, China
| | - Xinyu Wang
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongbin Liu
- Department of Cardiology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Mulei Chen
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Li Xu
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ze Zhang
- National Institute of Biological Sciences, Beijing, China
| | - Kuibao Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weiming Li
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Jiuchang Zhong
- Beijing Key Laboratory of Hypertension, Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Kieronska-Rudek A, Kij A, Bar A, Kurpinska A, Mohaissen T, Grosicki M, Stojak M, Sternak M, Buczek E, Proniewski B, Kuś K, Suraj-Prazmowska J, Panek A, Pietrowska M, Zapotoczny S, Shanahan CM, Szabo C, Chlopicki S. Phylloquinone improves endothelial function, inhibits cellular senescence, and vascular inflammation. GeroScience 2024; 46:4909-4935. [PMID: 38980631 PMCID: PMC11336140 DOI: 10.1007/s11357-024-01225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Phylloquinon (PK) and menaquinones (MK) are both naturally occurring compounds belonging to vitamin K group. Present study aimed to comprehensively analyze the influence of PK in several models of vascular dysfunction to determine whether PK has vasoprotective properties, similar to those previously described for MK. Effects of PK and MK on endothelial dysfunction were studied in ApoE/LDLR-/- mice in vivo, in the isolated aorta incubated with TNF, and in vascular cells as regard inflammation and cell senescence (including replicative and stress-induced models of senescence). Moreover, the vascular conversion of exogenous vitamins to endogenous MK-4 was analyzed. PK, as well as MK, given for 8 weeks in diet (10 mg/kg) resulted in comparable improvement in endothelial function in the ApoE/LDLR-/- mice. Similarly, PK and MK prevented TNF-induced impairment of endothelium-dependent vasorelaxation in the isolated aorta. In in vitro studies in endothelial and vascular smooth muscle cells, we identified that both PK and MK displayed anti-senescence effects via decreasing DNA damage while in endothelial cells anti-inflammatory activity was ascribed to the modulation of NFκB activation. The activity of PK and MK was comparable in terms of their effect on senescence and inflammation. Presence of endogenous synthesis of MK-4 from PK in aorta and endothelial and smooth muscle cells suggests a possible involvement of MK in vascular effects of PK. In conclusion, PK and MK display comparable vasoprotective effects, which may be ascribed, at least in part, to the inhibition of cell senescence and inflammation. The vasoprotective effect of PK in the vessel wall can be related to the direct effects of PK, as well as to the action of MK formed from PK in the vascular wall.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elżbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Kuś
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Monika Pietrowska
- Centre for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Szczepan Zapotoczny
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Catherine M Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, London, UK
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
7
|
Chen X, Zhang Z, Qiao G, Sun Z, Lu W. Immune and inflammatory insights in atherosclerosis: development of a risk prediction model through single-cell and bulk transcriptomic analyses. Front Immunol 2024; 15:1448662. [PMID: 39364414 PMCID: PMC11446800 DOI: 10.3389/fimmu.2024.1448662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024] Open
Abstract
Background Investigation into the immune heterogeneity linked with atherosclerosis remains understudied. This knowledge gap hinders the creation of a robust theoretical framework essential for devising personalized immunotherapies aimed at combating this disease. Methods Single-cell RNA sequencing (scRNA-seq) analysis was employed to delineate the immune cell-type landscape within atherosclerotic plaques, followed by assessments of cell-cell interactions and phenotype characteristics using scRNA-seq datasets. Subsequently, pseudotime trajectory analysis was utilized to elucidate the heterogeneity in cell fate and differentiation among macrophages. Through integrated approaches, including single-cell sequencing, Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning techniques, we identified hallmark genes. A risk score model and a corresponding nomogram were developed and validated using these genes, confirmed through Receiver Operating Characteristic (ROC) curve analysis. Additionally, enrichment and immune characteristic analyses were conducted based on the risk score model. The model's applicability was further corroborated by in vitro and in vivo validation of specific genes implicated in atherosclerosis. Result This comprehensive scRNA-seq analysis has shed new light on the intricate immune landscape and the role of macrophages in atherosclerotic plaques. The presence of diverse immune cell populations, with a particularly enriched macrophage population, was highlighted by the results. Macrophage heterogeneity was intricately characterized, revealing four distinct subtypes with varying functional attributes that underscore their complex roles in atherosclerotic pathology. Intercellular communication analysis revealed robust macrophage interactions with multiple cell types and detailed pathways differing between proximal adjacent and atherosclerotic core groups. Furthermore, pseudotime trajectories charted the developmental course of macrophage subpopulations, offering insights into their differentiation fates within the plaque microenvironment. The use of machine learning identified potential diagnostic markers, culminating in the identification of RNASE1 and CD14. The risk score model based on these biomarkers exhibited high accuracy in diagnosing atherosclerosis. Immune characteristic analysis validated the risk score model's efficacy in defining patient profiles, distinguishing high-risk individuals with pronounced immune cell activities. Finally, experimental validation affirmed RNASE1's involvement in atherosclerotic progression, suggesting its potential as a therapeutic target. Conclusion Our findings have advanced our understanding of atherosclerosis immunopathology and paved the way for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaosan Chen
- Heart Center of Henan Provincial People’s Hospital, Central China Fuwai
Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | | |
Collapse
|
8
|
Yang D, Cherian L, Arfanakis K, Schneider JA, Aggarwal NT, Gutierrez J. Intracranial atherosclerotic disease and neurodegeneration: a narrative review and plausible mechanisms. J Stroke Cerebrovasc Dis 2024; 33:108015. [PMID: 39303868 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Intracranial atherosclerotic disease (ICAD) of the large cerebral arteries, a leading cause of stroke worldwide, is increasingly implicated in cognitive impairment and neurodegeneration among the general population; however, the underlying pathophysiologic mechanisms in this relationship remain unknown. METHODS In this narrative review, we aim to provide an overview of the epidemiology and pathophysiology of ICAD, the evidence that relates ICAD to neurodegeneration, putative mechanisms, and future research directions. We synthesized available evidence on PubMed up to August 2024. RESULTS AND CONCLUSIONS ICAD, a common cause of stroke, is characterized as a chronic, inflammatory, fibroproliferative disease of the cerebral large arteries. Numerous lines of evidence have related ICAD to clinical, neuroimaging, and pathology-based markers of cognitive impairment and Alzheimer's disease; however, little data exists on plausible pathophysiological links. Based on ongoing and adjacent work, we hypothesize hypoperfusion, arterial stiffness, and inflammation to play a role, but further research is needed. Conventional classification of ICAD often infers from symptomatic coronary artery disease and relies on degree of luminal stenosis, but unique anatomic features of the intracranial circulation may be relevant and a more comprehensive description that includes arterial wall features and plaque morphology may be needed to fully understand its relationship with cognitive impairment and neurodegeneration.
Collapse
Affiliation(s)
- Dixon Yang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Laurel Cherian
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA; Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Julie A Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Neelum T Aggarwal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Jose Gutierrez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Natarajan N, Florentin J, Johny E, Xiao H, O'Neil SP, Lei L, Shen J, Ohayon L, Johnson AR, Rao K, Li X, Zhao Y, Zhang Y, Tavakoli S, Shiva S, Das J, Dutta P. Aberrant mitochondrial DNA synthesis in macrophages exacerbates inflammation and atherosclerosis. Nat Commun 2024; 15:7337. [PMID: 39187565 PMCID: PMC11347661 DOI: 10.1038/s41467-024-51780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
There is a large body of evidence that cellular metabolism governs inflammation, and that inflammation contributes to the progression of atherosclerosis. However, whether mitochondrial DNA synthesis affects macrophage function and atherosclerosis pathology is not fully understood. Here we show, by transcriptomic analyzes of plaque macrophages, spatial single cell transcriptomics of atherosclerotic plaques, and functional experiments, that mitochondrial DNA (mtDNA) synthesis in atherosclerotic plaque macrophages are triggered by vascular cell adhesion molecule 1 (VCAM-1) under inflammatory conditions in both humans and mice. Mechanistically, VCAM-1 activates C/EBPα, which binds to the promoters of key mitochondrial biogenesis genes - Cmpk2 and Pgc1a. Increased CMPK2 and PGC-1α expression triggers mtDNA synthesis, which activates STING-mediated inflammation. Consistently, atherosclerosis and inflammation are less severe in Apoe-/- mice lacking Vcam1 in macrophages. Downregulation of macrophage-specific VCAM-1 in vivo leads to decreased expression of LYZ1 and FCOR, involved in STING signalling. Finally, VCAM-1 expression in human carotid plaque macrophages correlates with necrotic core area, mitochondrial volume, and oxidative damage to DNA. Collectively, our study highlights the importance of macrophage VCAM-1 in inflammation and atherogenesis pathology and proposes a self-acerbating pathway involving increased mtDNA synthesis.
Collapse
Affiliation(s)
- Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Ebin Johny
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Hanxi Xiao
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD program in Computational Biology, Pittsburgh, PA, USA
| | - Scott Patrick O'Neil
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Liqun Lei
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Jixing Shen
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Lee Ohayon
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Aaron R Johnson
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Krithika Rao
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Xiaoyun Li
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Yanwu Zhao
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Yingze Zhang
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Sina Tavakoli
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
- University of Pittsburgh School of Medicine Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Mangoni AA, Zinellu A. Circulating cell adhesion molecules in systemic sclerosis: a systematic review and meta-analysis. Front Immunol 2024; 15:1438302. [PMID: 39234240 PMCID: PMC11371573 DOI: 10.3389/fimmu.2024.1438302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Patients with systemic sclerosis (SSc) have an increased risk of endothelial dysfunction, atherosclerosis, and cardiovascular events compared to the general population. Therefore, the availability of robust circulating biomarkers of endothelial dysfunction and atherogenesis may facilitate early recognition and management of cardiovascular risk in SSc. We sought to address this issue by conducting a systematic review and meta-analysis of studies investigating various types of circulating cell adhesion molecules involved in endothelial dysfunction and atherogenesis (i.e., immunoglobulin-like vascular cell, VCAM-1, intercellular, ICAM-1, platelet endothelial cell, PECAM-1, neural cell, NCAM, Down syndrome cell, DSCAM, and endothelial cell-selective, ESAM, adhesion molecules, E-, L-, and P-selectin, integrins, and cadherins) in SSc patients and healthy controls. Methods We searched PubMed, Scopus, and Web of Science from inception to 1 May 2024. Risk of bias and certainty of evidence were assessed using validated tools. Results In 43 eligible studies, compared to controls, patients with SSc had significantly higher plasma or serum concentrations of ICAM-1 (standard mean difference, SMD=1.16, 95% CI 0.88 to 1.44, p<0.001; moderate certainty), VCAM-1 (SMD=1.09, 95% CI 0.72 to 1.46, p<0.001; moderate certainty), PECAM-1 (SMD=1.65, 95% CI 0.33 to 2.98, p=0.014; very low certainty), E-selectin (SMD=1.17, 95% CI 0.72 to 1.62, p<0.001; moderate certainty), and P-selectin (SMD=1.10, 95% CI 0.31 to 1.90, p=0.007; low certainty). There were no significant between-group differences in L-selectin concentrations (SMD=-0.35, 95% CI -1.03 to 0.32, p=0.31; very low certainty), whereas minimal/no evidence was available for cadherins, NCAM, DSCAM, ESAM, or integrins. Overall, no significant associations were observed between the effect size and various patient and study characteristics in meta-regression and subgroup analyses. Discussion The results of this systematic review and meta-analysis suggest that specific circulating cell adhesion molecules, i.e., ICAM-1, VCAM-1, PECAM-1, E-selectin, and P-selectin, can be helpful as biomarkers of endothelial dysfunction and atherogenesis in the assessment of cardiovascular risk in SSc patients. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024549710.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Adelaide, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Adelaide, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
11
|
Shi H, Song J, Gao L, Shan X, Panicker SR, Yao L, McDaniel M, Zhou M, McGee S, Zhong H, Griffin CT, Xia L, Shao B. Deletion of Talin1 in Myeloid Cells Facilitates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1799-1812. [PMID: 38899470 DOI: 10.1161/atvbaha.123.319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/23/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin β2-mediated adhesion of monocytes but did not impair integrin α4β1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4β1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4β1 but was not affected by talin1 deletion or antibodies to integrin β2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin β3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin β3. CONCLUSIONS Integrin α4β1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4β1 activation to the high-affinity state and integrin α4β1-mediated monocyte recruitment. Yet, talin1 is required for integrin β3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (H.S., L.X.)
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Sumith R Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Hui Zhong
- Lindsley F. Kimball Research Institute, New York Blood Center (H.Z., B.S.)
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (H.S., L.X.)
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Lindsley F. Kimball Research Institute, New York Blood Center (H.Z., B.S.)
| |
Collapse
|
12
|
Miranda VC, Pereira YLG, da Paz APS, de Souza KR, da Silva MCF, Muto NA, Monteiro PR, Santos AV, Hamoy M, de Medeiros MDGF, do Carmo IS, Silva MEM, de Sousa Lima Neto J, de Mello VJ. Hypoglycemic and hypolipidemic effects of Lippia origanoides Kunth in diabetic rats. Food Sci Nutr 2024; 12:5131-5146. [PMID: 39055210 PMCID: PMC11266940 DOI: 10.1002/fsn3.4162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder commonly associated with atherosclerosis. Plants with therapeutic potential, such as Lippia origanoides Kunth, emerge as effective alternatives for treating these diseases. Therefore, this work aims to analyze the antihyperglycemic and antidyslipidemic potential of the hydroalcoholic extract of Lippia origanoides Kunth (ELo) in alloxan-diabetic rats. Animals were treated orally: normal control, hyperglycemic control, positive control glibenclamide (5 mg/kg), and groups treated with ELo (75, 150, and 250 mg/kg). Preclinical evaluation of ELo showed hypoglycemic, hypolipidemic, hepatic, and renal protective effects. At all doses, ELo significantly reduced hyperglycemia, triglycerides, total cholesterol, low-density lipoprotein, atherogenic index, atherogenic coefficient, and cardiovascular risk index (p < .05). Elo at different doses promoted an increase in insulin release compared to untreated animals (p < .05) and showed α-glucosidase inhibitory activity (p < .05). Also, ELo (250 mg/kg group) showed maximum reduction of hyperglycemia, alanine transaminase, aspartate aminotransferase, malonaldehyde, and urea compared to the hyperglycemic and glibenclamide groups, and creatinine only compared to the hyperglycemic groups (p < .05). The promising action of ELo in the context of diabetes may be related to the synergistic action of flavonoid compounds identified in liquid chromatography, whose pharmacological capabilities have already been documented in previous studies. The mechanisms may be the stimulation of insulin release; the inhibitory activity of α-glucosidase; improving general clinical conditions; and the antioxidant effects of the extract. These findings pave the way for the future development of an herbal presentation of L. origanoides Kunth as a hypoglycemic and cardiovascular protector with a lipid-lowering effect.
Collapse
Affiliation(s)
- Vinicius Carvalho Miranda
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | - Yago Luis Gonçalves Pereira
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | - Allane Patricia Santos da Paz
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | - Keyla Rodrigues de Souza
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | | | - Nilton Akio Muto
- Center for the Valorization of Bioactive Compounds from the AmazonFederal University of ParáBelémBrazil
| | - Patrick Romano Monteiro
- Laboratory of Biotechnology of Enzymes and BiotransformationFederal University of ParáBelémBrazil
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and BiotransformationFederal University of ParáBelémBrazil
| | - Moises Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological SciencesFederal University of ParáBelémBrazil
| | | | | | | | - José de Sousa Lima Neto
- Department of Biology, Center for Biological and Health SciencesFederal University of MaranhãoSão LuísBrazil
| | - Vanessa Jóia de Mello
- Research, Teaching and Extension Laboratory in Clinical Analysis, Institute of Biological SciencesFederal University of ParáBelémBrazil
| |
Collapse
|
13
|
Arabzadeh E, Karimi Nazar N, Gholami M, Roshani Koosha MS, Zargani M. The effect of eight weeks combined training with omega-3 supplementation on the levels of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in older women. Clin Nutr ESPEN 2024; 61:151-157. [PMID: 38777428 DOI: 10.1016/j.clnesp.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Elevated levels of ICAM-1 and VCAM-1 are significant risk factors for cardiovascular diseases. Conversely, the regulatory roles of physical activity and omega-3 supplementation in these factors have been reported. The primary aim of the present research was to investigate the impact of an eight-week combined (resistance-endurance) accompanied by omega-3 supplementation on ICAM-1 and VCAM-1 levels in elderly women. METHODS Forty elderly women, averaging 66.7 ± 4.13 years, were randomly assigned to four groups: placebo, omega-3 supplement, training, and training + omega-3. The combined exercise training program was implemented for eight weeks, three sessions per week. Aerobic training included 20 min of running at 60-70% of the reserve heart rate, while resistance training involved exercises at 70% of 1RM with 10 repetitions per exercise for two sets. The omega-3 and training + omega-3 groups consumed 2000 mg of omega-3 daily. Blood samples were collected 48 h after the last combined exercise training or omega-3 consumption, and the measured variables were analyzed using analysis of covariance test and SPSS-24 software. RESULTS ICAM-1 and VCAM-1 levels significantly decreased in the training and training + omega-3 groups (p < 0.001). The decrease in ICAM-1 within the training + omega-3 group was also significant compared to the training group (p = 0.024). Additionally, a significant reduction in insulin resistance and body fat percentage was observed in both the training and training + omega-3 groups (p < 0.001). CONCLUSION The present study's results indicate that omega-3 supplementation can enhance the effectiveness of combined training in regulating cardiovascular risk factors.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Negin Karimi Nazar
- Department of Physical Education and Sports Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Gholami
- Department of Physical Education and Sport Sciences, Faculty of Literature, Humanities and Social Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohammad Sadra Roshani Koosha
- Department of Physical Education and Sports Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
14
|
Shah PW, Reinberger T, Hashmi S, Aherrahrou Z, Erdmann J. MRAS in coronary artery disease-Unchartered territory. IUBMB Life 2024; 76:300-312. [PMID: 38251784 DOI: 10.1002/iub.2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024]
Abstract
Genome-wide association studies (GWAS) have identified coronary artery disease (CAD) susceptibility locus on chromosome 3q22.3. This locus contains a cluster of several genes that includes muscle rat sarcoma virus (MRAS). Common MRAS variants are also associated with CAD causing risk factors such as hypertension, dyslipidemia, obesity, and type II diabetes. The MRAS gene is an oncogene that encodes a membrane-bound small GTPase. It is involved in a variety of signaling pathways, regulating cell differentiation and cell survival (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase) as well as acute phase response signaling (tumor necrosis factor [TNF] and interleukin 6 [IL6] signaling). In this review, we will summarize the role of genetic MRAS variants in the etiology of CAD and its comorbidities with the focus on tissue distribution of MRAS isoforms, cell type/tissue specificity, and mode of action of single nucleotide variants in MRAS associated complex traits. Finally, we postulate that CAD risk variants in the MRAS locus are specific to smooth muscle cells and lead to higher levels of MRAS, particularly in arterial and cardiac tissue, resulting in MAPK-dependent tissue hypertrophy or hyperplasia.
Collapse
Affiliation(s)
- Pashmina Wiqar Shah
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Luxen M, Zwiers PJ, Jongman RM, Moser J, Pultar M, Skalicky S, Diendorfer AB, Hackl M, van Meurs M, Molema G. Sepsis induces heterogeneous transcription of coagulation- and inflammation-associated genes in renal microvasculature. Thromb Res 2024; 237:112-128. [PMID: 38579513 DOI: 10.1016/j.thromres.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) in sepsis patients increases patient mortality. Endothelial cells are important players in the pathophysiology of sepsis-associated AKI (SA-AKI), yet knowledge regarding their spatiotemporal involvement in coagulation disbalance and leukocyte recruitment is lacking. This study investigated the identity and kinetics of responses of different microvascular compartments in kidney cortex in response to SA-AKI. METHODS Laser microdissected arterioles, glomeruli, peritubular capillaries, and postcapillary venules from kidneys of mice subjected to cecal ligation and puncture (CLP) were analyzed using RNA sequencing. Differential expression and pathway enrichment analyses identified genes involved in coagulation and inflammation. A selection of these genes was evaluated by RT-qPCR in microvascular compartments of renal biopsies from patients with SA-AKI. The role of two identified genes in lipopolysaccharide-induced endothelial coagulation and inflammatory activation were determined in vitro in HUVEC using siRNA-based gene silencing. RESULTS CLP-sepsis in mice induced altered expression of approximately 400 genes in the renal microvasculature, with microvascular compartments exhibiting unique spatiotemporal responses. In mice, changes in gene expression related to coagulation and inflammation were most extensive in glomeruli at early and intermediate time points, with high induction of Plat, Serpine1, Thbd, Icam1, Stat3, and Ifitm3. In human SA-AKI, PROCR and STAT3 were induced in postcapillary venules, while SERPINE1 expression was diminished. IFITM3 was increased in arterioles and glomeruli. In vitro studies revealed that STAT3 and IFITM3 partly control endothelial coagulation and inflammatory activation. CONCLUSION Renal microvascular compartments in mice and humans exhibited heterogeneous changes in coagulation- and inflammation-related gene expression in response to SA-AKI. Additional research should aim at understanding the functional consequences of the here described heterogeneous microvascular responses to establish the usefulness of identified genes as therapeutic targets in SA-AKI.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter J Zwiers
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rianne M Jongman
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jill Moser
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | | | | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
16
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Yuan L, Fan L, Zhang Z, Huang X, Liu Q, Zhang Z. Procyanidin B2 alleviates oxidized low-density lipoprotein-induced cell injury, inflammation, monocyte chemotaxis, and oxidative stress by inhibiting the nuclear factor kappa-B pathway in human umbilical vein endothelial cells. BMC Cardiovasc Disord 2024; 24:231. [PMID: 38679696 PMCID: PMC11057093 DOI: 10.1186/s12872-024-03858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined. METHODS HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP). RESULTS ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs. CONCLUSION PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.
Collapse
Affiliation(s)
- Limei Yuan
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Lihua Fan
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Zhiqiang Zhang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Xing Huang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Qingle Liu
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Zhiguo Zhang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China.
| |
Collapse
|
18
|
Pande S, Vary C, Yang X, Liaw L, Gower L, Friesel R, Prudovsky I, Ryzhov S. Endothelial IL17RD promotes Western diet-induced aortic myeloid cell infiltration. Biochem Biophys Res Commun 2024; 701:149552. [PMID: 38335918 PMCID: PMC10936543 DOI: 10.1016/j.bbrc.2024.149552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.
Collapse
Affiliation(s)
- Shivangi Pande
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Calvin Vary
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Xuehui Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA
| | - Lindsey Gower
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Robert Friesel
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| | - Igor Prudovsky
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| | - Sergey Ryzhov
- Center for Molecular Medicine, MaineHealth Institute for Research, MaineHealth, 81 Research Drive, Scarborough, ME, 04074, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04496, USA.
| |
Collapse
|
19
|
Obare LM, Priest S, Ismael A, Mashayekhi M, Zhang X, Stolze LK, Sheng Q, Vue Z, Neikirk K, Beasley H, Gabriel C, Temu T, Gianella S, Mallal S, Koethe JR, Hinton A, Bailin S, Wanjalla CN. Cytokine and Chemokine Receptor Profiles in Adipose Tissue Vasculature Unravel Endothelial Cell Responses in HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584280. [PMID: 38559150 PMCID: PMC10979923 DOI: 10.1101/2024.03.10.584280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anas Ismael
- Department of Radiology, National Postgraduate Medical College of Nigeria, Lagos, Nigeria
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lindsey K. Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Heather Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Curtis Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tecla Temu
- Division of Pathology, Harvard Medical College, Boston, MA, USA
| | - Sara Gianella
- Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Simon Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Samuel Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Liuizė (Abramavičiūtė) A, Mongirdienė A. TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. Int J Mol Sci 2024; 25:2104. [PMID: 38396781 PMCID: PMC10889676 DOI: 10.3390/ijms25042104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of oxidised lipoproteins on the endothelium, monocytes, platelets, and macrophages is a key factor in the initiation and development of atherosclerosis. Antioxidant action, lipoprotein metabolism, and chronic inflammation are the fields of research interest for better understanding the development of the disease. All the fields are related to inflammation and hence to the secretion of cytokines, which are being investigated as potential diagnostic markers for the onset of atherosclerosis. Pathways of vascular damage are crucial for the development of new laboratory readouts. The very early detection of endothelial cell damage associated with the onset of atherosclerosis, allowing the initiation of therapy, remains a major research goal. This article summarises the latest results on the relationship of tumour growth factor beta (TGF-β) isoforms and growth differentiation factor 15 (GDF-15) to the pathogenesis of atherosclerosis: which cells involved in atherosclerosis produce them, which effectors stimulate their synthesis and secretion, how they influence atherosclerosis development, and the relationship between the levels of TGF-β and GDF-15 in the blood and the development and extent of atherosclerosis.
Collapse
Affiliation(s)
| | - Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
21
|
Iyoda T, Ohishi A, Wang Y, Yokoyama MS, Kazama M, Okita N, Inouye S, Nakagawa Y, Shimano H, Fukai F. Bioactive TNIIIA2 Sequence in Tenascin-C Is Responsible for Macrophage Foam Cell Transformation; Potential of FNIII14 Peptide Derived from Fibronectin in Suppression of Atherosclerotic Plaque Formation. Int J Mol Sci 2024; 25:1825. [PMID: 38339104 PMCID: PMC10855454 DOI: 10.3390/ijms25031825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive β1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.
Collapse
Affiliation(s)
- Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Asayo Ohishi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yunong Wang
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Miyabi-Shara Yokoyama
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Mika Kazama
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| | - Naoyuki Okita
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Sachiye Inouye
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Yoshimi Nakagawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Department of Complex Biosystem Research, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Chiba, Japan
| |
Collapse
|
22
|
Zinellu A, Mangoni AA. The pathophysiological role of circulating adhesion molecules in schizophrenia: A systematic review and meta-analysis. Schizophr Res 2024; 264:157-169. [PMID: 38150848 DOI: 10.1016/j.schres.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Increasing evidence suggests an association between schizophrenia and atherosclerosis. We conducted a systematic review and meta-analysis of cell adhesion molecules, critically involved in early atherosclerosis, in schizophrenia. METHODS We searched electronic databases from inception to 11 November 2023 for case-control studies assessing vascular cell, VCAM-1, intercellular, ICAM-1, platelet endothelial cell, PECAM-1, neural cell, NCAM, and Down syndrome cell, DSCAM, adhesion molecules, selectins (E-, L-, and P-selectin), integrins, and cadherins in patients with schizophrenia and healthy controls. Risk of bias and certainty of evidence were assessed using the JBI checklist and GRADE, respectively. RESULTS In 19 eligible studies, there were non-significant between-group differences in the concentrations of cell adhesion molecules, barring higher P-selectin in patients with schizophrenia (standard mean difference, SMD = 2.05, 95 % CI 0.72 to 3.38, p = 0.003; I2 = 97.2 %, p<0.001; very low certainty of evidence). Limited or no information was available regarding PECAM-1, DSCAM, ESAM, integrins, and cadherins. In meta-regression and subgroup analysis, there were significant associations between the SMD of ICAM-1 and matrix used (plasma or serum) and pharmacological treatment of schizophrenia, and between the SMD of VCAM-1 and pharmacological treatment, but not with other study and patient characteristics. CONCLUSIONS The results of our systematic review and meta-analysis do not support a significant role of immunoglobulin-like adhesion molecules, selectins, integrins, or cadherins in mediating the associations between schizophrenia, atherosclerosis, and cardiovascular disease. Further studies are warranted to investigate these associations in patients with different cardiovascular risk and the effects of antipsychotic treatments on cell adhesion molecules and surrogate markers of atherosclerosis (PROSPERO registration number: CRD42023463916).
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
23
|
Janubová M, Žitňanová I. The effects of vitamin D on different types of cells. Steroids 2024; 202:109350. [PMID: 38096964 DOI: 10.1016/j.steroids.2023.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Vitamin D is neccessary for regulation of calcium and phosphorus metabolism in bones, affects imunity, the cardiovascular system, muscles, skin, epithelium, extracellular matrix, the central nervous system, and plays arole in prevention of aging-associated diseases. Vitamin D receptor is expressed in almost all types of cells and its activation leads to modulation of different signaling pathways. In this review, we have analysed the current knowledge of 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 effects on metabolism of cells important for the function of the cardiovascular system (endothelial cells, vascular smooth muscle cells, cardiac cells and pericytes), tissue healing (fibroblasts), epithelium (various types of epithelial cells) and the central nervous system (neurons, astrocytes and microglia). The goal of this review was to compare the effects of vitamin D on the above mentioned cells in in vitro conditions and to summarize what is known in this field of research.
Collapse
Affiliation(s)
- Mária Janubová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|
24
|
Nguyen DV, Jin Y, Nguyen TLL, Kim L, Heo KS. 3'-Sialyllactose protects against LPS-induced endothelial dysfunction by inhibiting superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis. Life Sci 2024; 338:122410. [PMID: 38191050 DOI: 10.1016/j.lfs.2023.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
AIM Endothelial hyperpermeability is an early stage of endothelial dysfunction associated with the progression and development of atherosclerosis. 3'-Sialyllactose (3'-SL) is the most abundant compound in human milk oligosaccharides, and it has the potential to regulate endothelial dysfunction. This study investigated the beneficial effects of 3'-SL on lipopolysaccharide (LPS)-induced endothelial dysfunction in vitro and in vivo. MAIN METHODS We established LPS-induced endothelial dysfunction models in both cultured bovine aortic endothelial cells (BAECs) and mouse models to determine the effects of 3'-SL. Western blotting, qRT-PCR analysis, immunofluorescence staining, and en face staining were employed to clarify underlying mechanisms. Superoxide production was measured by 2',7'-dichlorofluorescin diacetate, and dihydroethidium staining. KEY FINDINGS LPS significantly decreased cell viability, whereas 3'-SL treatment mitigated these effects via inhibiting ERK1/2 activation. Mechanistically, 3'-SL ameliorated LPS-induced ROS accumulation leading to ERK1/2 activation-mediated STAT1 phosphorylation and subsequent inhibition of downstream transcriptional target genes, including VCAM-1, TNF-α, IL-1β, and MCP-1. Interestingly, LPS-induced ERK1/2/STAT1 activation leads to the HMGB1 release from the nucleus into the extracellular space, where it binds to RAGE, while 3'-SL suppressed EC hyperpermeability by suppressing the HMGB1/RAGE axis. This interaction also led to VE-cadherin endothelial junction disassembly and endothelial cell monolayer disruption through ERK1/2/STAT1 modulation. In mouse endothelium, en face staining revealed that 3'-SL abolished LPS-stimulated ROS production and VCAM-1 overexpression. SIGNIFICANCE Our findings suggest that 3'-SL inhibits LPS-induced endothelial hyperpermeability by suppressing superoxide-mediated ERK1/2/STAT1 activation and HMGB1/RAGE axis. Therefore, 3'-SL may be a potential therapeutic agent for preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Dung Van Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Lila Kim
- GeneChem Inc. A-201, 187 Techno 2-ro, Daejeon 34025, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
25
|
Chan JMS, Park SJ, Ng M, Chen WC, Chan WY, Bhakoo K, Chong TT. Translational Molecular Imaging Tool of Vulnerable Carotid Plaque: Evaluate Effects of Statin Therapy on Plaque Inflammation and American Heart Association-Defined Risk Levels in Cuff-Implanted Apolipoprotein E-Deficient Mice. Transl Stroke Res 2024; 15:110-126. [PMID: 36481841 PMCID: PMC10796420 DOI: 10.1007/s12975-022-01114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Identification of high-risk carotid plaques in asymptomatic patients remains a challenging but crucial step in stroke prevention. The challenge is to accurately monitor the development of high-risk carotid plaques and promptly identify patients, who are unresponsive to best medical therapy, and hence targeted for carotid surgical interventions to prevent stroke. Inflammation is a key operator in destabilisation of plaques prior to clinical sequelae. Currently, there is a lack of imaging tool in routine clinical practice, which allows assessment of inflammatory activity within the atherosclerotic plaque. Herein, we have used a periarterial cuff to generate a progressive carotid atherosclerosis model in apolipoprotein E-deficient mice. This model produced clinically relevant plaques with different levels of risk, fulfilling American Heart Association (AHA) classification, at specific timepoints and locations, along the same carotid artery. Exploiting this platform, we have developed smart molecular magnetic resonance imaging (MRI) probes consisting of dual-targeted microparticles of iron oxide (DT-MPIO) against VCAM-1 and P-selectin, to evaluate the anti-inflammatory effect of statin therapy on progressive carotid atherosclerosis. We demonstrated that in vivo DT-MPIO-enhanced MRI can (i) quantitatively track plaque inflammation from early to advanced stage; (ii) identify and characterise high-risk inflamed, vulnerable plaques; and (iii) monitor the response to statin therapy longitudinally. Moreover, this molecular imaging-defined therapeutic response was validated using AHA classification of human plaques, a clinically relevant parameter, approximating the clinical translation of this tool. Further development and translation of this molecular imaging tool into the clinical arena may potentially facilitate more accurate risk stratification, permitting timely identification of the high-risk patients for prophylactic carotid intervention, affording early opportunities for stroke prevention in the future.
Collapse
Affiliation(s)
- Joyce M S Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore.
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Outram Road, Singapore, 169608, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Sung-Jin Park
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore
| | - Michael Ng
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 , Singapore, 138667, Helios, Singapore
| | - Way Cherng Chen
- Bruker Singapore Pte. Ltd, 30 Biopolis Street, #09-01, Singapore, 138671, Matrix, Singapore
| | - Wan Ying Chan
- Division of Oncologic Imaging, National Cancer Centre, Singapore, Singapore
| | - Kishore Bhakoo
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Singapore, 138667, Helios, Singapore
| | - Tze Tec Chong
- Department of Vascular Surgery, Singapore General Hospital, SingHealth, Outram Road, Singapore, 169608, Singapore
| |
Collapse
|
26
|
Otunla AA, Shanmugarajah K, Davies AH, Lucia Madariaga M, Shalhoub J. The Biological Parallels Between Atherosclerosis and Cardiac Allograft Vasculopathy: Implications for Solid Organ Chronic Rejection. Cardiol Rev 2024; 32:2-11. [PMID: 38051983 DOI: 10.1097/crd.0000000000000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atherosclerosis and solid organ chronic rejection are pervasive chronic disease states that account for significant morbidity and mortality in developed countries. Recently, a series of shared molecular pathways have emerged, revealing biological parallels from early stages of development up to the advanced forms of pathology. These shared mechanistic processes are inflammatory in nature, reflecting the importance of inflammation in both disorders. Vascular inflammation triggers endothelial dysfunction and disease initiation through aberrant vasomotor control and shared patterns of endothelial activation. Endothelial dysfunction leads to the recruitment of immune cells and the perpetuation of the inflammatory response. This drives lesion formation through the release of key cytokines such as IFN-y, TNF-alpha, and IL-2. Continued interplay between the adaptive and innate immune response (represented by T lymphocytes and macrophages, respectively) promotes lesion instability and thrombotic complications; hallmarks of advanced disease in both atherosclerosis and solid organ chronic rejection. The aim of this study is to identify areas of overlap between atherosclerosis and chronic rejection. We then discuss new approaches to improve current understanding of the pathophysiology of both disorders, and eventually design novel therapeutics.
Collapse
Affiliation(s)
- Afolarin A Otunla
- From the Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | | - Alun H Davies
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | | | - Joseph Shalhoub
- Section of Vascular Surgery, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
27
|
Dubourg V, Schwerdt G, Schreier B, Kopf M, Mildenberger S, Benndorf RA, Gekle M. EGFR activation differentially affects the inflammatory profiles of female human aortic and coronary artery endothelial cells. Sci Rep 2023; 13:22827. [PMID: 38129563 PMCID: PMC10739936 DOI: 10.1038/s41598-023-50148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Endothelial cells (EC) are key players in vascular function, homeostasis and inflammation. EC show substantial heterogeneity due to inter-individual variability (e.g. sex-differences) and intra-individual differences as they originate from different organs or vessels. This variability may lead to different responsiveness to external stimuli. Here we compared the responsiveness of female human primary EC from the aorta (HAoEC) and coronary arteries (HCAEC) to Epidermal Growth Factor Receptor (EGFR) activation. EGFR is an important signal integration hub for vascular active substances with physiological and pathophysiological relevance. Our transcriptomic analysis suggested that EGFR activation differentially affects the inflammatory profiles of HAoEC and HCAEC, particularly by inducing a HCAEC-driven leukocyte attraction but a downregulation of adhesion molecule and chemoattractant expression in HAoEC. Experimental assessments of selected inflammation markers were performed to validate these predictions and the results confirmed a dual role of EGFR in these cells: its activation initiated an anti-inflammatory response in HAoEC but a pro-inflammatory one in HCAEC. Our study highlights that, although they are both arterial EC, female HAoEC and HCAEC are distinguishable with regard to the role of EGFR and its involvement in inflammation regulation, what may be relevant for vascular maintenance but also the pathogenesis of endothelial dysfunction.
Collapse
Affiliation(s)
- Virginie Dubourg
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany.
| | - Gerald Schwerdt
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Barbara Schreier
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Michael Kopf
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Sigrid Mildenberger
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle, Germany
| |
Collapse
|
28
|
Zhou Y, Sekar NC, Thurgood P, Needham S, Peter K, Khoshmanesh K, Baratchi S. Bioengineered Vascular Model of Foam Cell Formation. ACS Biomater Sci Eng 2023; 9:6947-6955. [PMID: 38018792 DOI: 10.1021/acsbiomaterials.3c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Foam cell formation is a complex blood vessel pathology, which is characterized by a series of events, including endothelium dysfunction, inflammation, and accumulation of immune cells underneath the blood vessel walls. Novel bioengineered models capable of recapitulating these events are required to better understand the complex pathological processes underlying the development of foam cell formation and, consequently, advanced bioengineered platforms for screening drugs. Here, we generated a microfluidic blood vessel model, incorporating a three-dimensional (3D) extracellular matrix coated with an endothelial layer. This system enables us to perform experiments under a dynamic microenvironment that recapitulates the complexities of the native vascular regions. Using this model, we studied the effectors that regulate monocyte adhesion and migration, as well as foam cell formation inside vessel walls. We found that monocyte adhesion and migration are regulated by both the endothelium and monocytes themselves. Monocytes migrated into the extracellular matrix only when endothelial cells were cultured in the vessel model. In addition, the exposure of an endothelial layer to tumor necrosis factor α (TNF-α) and low shear stress both increased monocyte migration into the subendothelial space toward the matrix. Furthermore, we demonstrated the process of foam cell formation, 3 days after transmigration of peripheral blood mononuclear cells (PBMCs) into the vessel wall. We showed that pre-exposure of PBMCs to high shear rates increases their adhesion and migration through the TNF-α-treated endothelium but does not affect their capacity to form foam cells. The versatility of our model allows for mechanistic studies on foam cell formation under customized pathological conditions.
Collapse
Affiliation(s)
- Ying Zhou
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
| | - Peter Thurgood
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Scott Needham
- Leading Technology Group, Kew, Victoria 3101, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Khashayar Khoshmanesh
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3082, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
29
|
Castro RJ, Pedroza K, Hong MY. The effects of mango consumption on vascular health and immune function. Metabol Open 2023; 20:100260. [PMID: 38115868 PMCID: PMC10728568 DOI: 10.1016/j.metop.2023.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 12/21/2023] Open
Abstract
Objectives Heart disease, caused by atherosclerosis, is the leading cause of death. Maintaining vascular integrity is crucial to reducing atherosclerosis risk. Mangos are rich in fiber, vitamins, minerals, and phytochemicals that may offer cardioprotective and immune-boosting benefits. However, their effects on the vasculature and immune system in adults with overweight and obesity remain unclear. The objective of this study was to investigate the effects of mango consumption on vascular health and immune function in adults with overweight and obesity. Methods In a 12-week, crossover study, 27 overweight and obese participants consumed either 100 kcals of mangos daily or isocaloric low-fat cookies daily. Fasting blood samples were collected at baseline, week 4, and week 12 and analyzed for vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), P-selectin, E-selectin, sCD4, sCD8, sCD3E, and sCD45, tumor necrosis factor-alpha (TNF-α), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Results Mango consumption significantly decreased VCAM-1 between baseline and week 4 (P = 0.046) and week 12 (P = 0.004). CAT increased between baseline and week 12 (P = 0.035) with mango consumption. GPx increased at week 12 compared to baseline and week 4 (P < 0.05). At week 12, SOD was higher after mango consumption compared to low-fat cookie consumption (P = 0.046). There were no significant differences in ICAM-1, P-selectin, E-selectin, sCD4, sCD8, sCD3E, sCD45 or TNF-α concentrations (P > 0.05 for all non-significant results). Conclusions This study suggests that 100 kcals of mangos may benefit the integrity of the vasculature by reducing VCAM-1 and increasing SOD, CAT, and GPx levels. Mangos can be an alternative snack for improving atherosclerosis and oxidative stress risk factors.
Collapse
Affiliation(s)
- Robert J. Castro
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Kazandra Pedroza
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| |
Collapse
|
30
|
Ebrahimi F, Ghazimoradi MM, Fatima G, Bahramsoltani R. Citrus flavonoids and adhesion molecules: Potential role in the management of atherosclerosis. Heliyon 2023; 9:e21849. [PMID: 38028000 PMCID: PMC10663934 DOI: 10.1016/j.heliyon.2023.e21849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis as a chronic inflammatory disorder is accompanied with oxidative stress which causes a high morbidity and mortality. Adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), P-selectin, and E-selectin, are amongst the most important contributors in atherosclerosis. In such cases, dietary interventions with functional foods containing natural antioxidant and anti-inflammatory constituents are of a great interest. Citrus fruits are rich sources of flavonoids as natural pigments with potent antioxidant and anti-inflammatory activities. This study aims to review current evidence regarding the role of citrus flavonoids in the management of atherosclerosis with a focus on their effect on adhesion molecules. Electronic databases including PubMed, Scopus, and Web of Science were searched with the names of adhesion molecules and flavonoids from inception until January 2023. The included articles highly support the beneficial effects of citrus flavonoids in preclinical models of atherosclerosis. Quercetin, naringin and naringenin, hesperidin and hesperetin, nobiletin, rutin, luteolin, apigenin, and kaempferol are the most common flavonoids in citrus fruits which could modulate adhesion molecules including ICAM-1, VCAM-1, E-selectin, and P-selectin. Additionally, markers of chronic inflammation such as interleukins, tumor necrosis factor-α, nuclear factor-κB, and nitric oxide signaling, as well as oxidative stress markers like superoxide dismutase and glutathione were all normalized upon administration of citrus flavonoids. Conclusively, this review confirms the modulatory role of flavonoids on adhesion molecules in atherosclerosis based on the preclinical evaluations. Thus, citrus fruits can be further studied in atherosclerotic patients regarding their activity in reducing adhesion molecules.
Collapse
Affiliation(s)
- Farnaz Ebrahimi
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | | | - Ghizal Fatima
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Lee SK, Malik RA, Zhou J, Wang W, Gross PL, Weitz JI, Ramachandran R, Trigatti BL. PAR4 Inhibition Reduces Coronary Artery Atherosclerosis and Myocardial Fibrosis in SR-B1/LDLR Double Knockout Mice. Arterioscler Thromb Vasc Biol 2023; 43:2165-2178. [PMID: 37675637 PMCID: PMC10597419 DOI: 10.1161/atvbaha.123.319767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND SR-B1 (scavenger receptor class B type 1)/LDLR (low-density lipoprotein receptor) double knockout mice fed a high-fat, high-cholesterol diet containing cholate exhibit coronary artery disease characterized by occlusive coronary artery atherosclerosis, platelet accumulation in coronary arteries, and myocardial fibrosis. Platelets are involved in atherosclerosis development, and PAR (protease-activated receptor) 4 has a prominent role in platelet function in mice. However, the role of PAR4 on coronary artery disease in mice has not been tested. METHODS We tested the effects of a PAR4 inhibitory pepducin (RAG8) on diet-induced aortic sinus and coronary artery atherosclerosis, platelet accumulation in atherosclerotic coronary arteries, and myocardial fibrosis in SR-B1/LDLR double knockout mice. SR-B1/LDLR double knockout mice were fed a high-fat, high-cholesterol diet containing cholate and injected daily with 20 mg/kg of either the RAG8 pepducin or a control reverse-sequence pepducin (SRQ8) for 20 days. RESULTS Platelets from the RAG8-treated mice exhibited reduced thrombin and PAR4 agonist peptide-mediated activation compared with those from control SRQ8-treated mice when tested ex vivo. Although aortic sinus atherosclerosis levels did not differ, RAG8-treated mice exhibited reduced coronary artery atherosclerosis, reduced platelet accumulation in atherosclerotic coronary arteries, and reduced myocardial fibrosis. These protective effects were not accompanied by changes in circulating lipids, inflammatory cytokines, or immune cells. However, RAG8-treated mice exhibited reduced VCAM-1 (vascular cell adhesion molecule 1) protein levels in nonatherosclerotic coronary artery cross sections and reduced leukocyte accumulation in atherosclerotic coronary artery cross sections compared with those from SRQ8-treated mice. CONCLUSIONS The PAR4 inhibitory RAG8 pepducin reduced coronary artery atherosclerosis and myocardial fibrosis in SR-B1/LDLR double knockout mice fed a high-fat, high-cholesterol diet containing cholate. Furthermore, RAG8 reduced VCAM-1 in nonatherosclerotic coronary arteries and reduced leukocyte and platelet accumulation in atherosclerotic coronary arteries. These findings identify PAR4 as an attractive target in reducing coronary artery disease development, and the use of RAG8 may potentially be beneficial in cardiovascular disease.
Collapse
Affiliation(s)
- Samuel K. Lee
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.)
| | - Rida A. Malik
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
| | - Ji Zhou
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
| | - Wei Wang
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.)
| | - Peter L. Gross
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
| | - Jeffrey I. Weitz
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Department of Medicine (R.A.M., J.Z., P.L.G., J.I.W.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.)
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.R.)
| | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.), McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Ontario, Canada (S.K.L., R.A.M., J.Z., W.W., P.L.G., J.I.W., B.L.T.)
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, Ontario, Canada (S.K.L., W.W., J.I.W., B.L.T.)
| |
Collapse
|
32
|
Xu P, Cai X, Guan X, Xie W. Sulfoconjugation of protein peptides and glycoproteins in physiology and diseases. Pharmacol Ther 2023; 251:108540. [PMID: 37777160 PMCID: PMC10842354 DOI: 10.1016/j.pharmthera.2023.108540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Protein sulfoconjugation, or sulfation, represents a critical post-translational modification (PTM) process that involves the attachment of sulfate groups to various positions of substrates within the protein peptides or glycoproteins. This process plays a dynamic and complex role in many physiological and pathological processes. Here, we summarize the importance of sulfation in the fields of oncology, virology, drug-induced liver injury (DILI), inflammatory bowel disease (IBD), and atherosclerosis. In oncology, sulfation is involved in tumor initiation, progression, and migration. In virology, sulfation influences viral entry, replication, and host immune response. In DILI, sulfation is associated with the incidence of DILI, where altered sulfation affects drug metabolism and toxicity. In IBD, dysregulation of sulfation compromises mucosal barrier and immune response. In atherosclerosis, sulfation influences the development of atherosclerosis by modulating the accumulation of lipoprotein, and the inflammation, proliferation, and migration of smooth muscle cells. The current review underscores the importance of further research to unravel the underlying mechanisms and therapeutic potential of targeting sulfoconjugation in various diseases. A better understanding of sulfation could facilitate the emergence of innovative diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
33
|
Karnewar S, Karnewar V, Deaton R, Shankman LS, Benavente ED, Williams CM, Bradley X, Alencar GF, Bulut GB, Kirmani S, Baylis RA, Zunder ER, den Ruijter HM, Pasterkamp G, Owens GK. IL-1β inhibition partially negates the beneficial effects of diet-induced lipid lowering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562255. [PMID: 37873280 PMCID: PMC10592822 DOI: 10.1101/2023.10.13.562255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions are the leading cause of death in the world. The most common and effective means to reduce these major adverse cardiovascular events (MACE), including myocardial infarction (MI) and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, little is known regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. Methods Smooth muscle cell (SMC)-lineage tracing Apoe-/- mice were fed a Western diet (WD) for 18 weeks and then switched to a low-fat chow diet for 12 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery (BCA) lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of SMC, and other lesion cells by SMC-lineage tracing combined with scRNA-seq, CyTOF, and immunostaining plus high resolution confocal microscopic z-stack analysis. In addition, to determine if treatment with a potent inhibitor of inflammation could augment the benefits of chow diet-induced reductions in LDL-cholesterol, SMC-lineage tracing Apoe-/- mice were fed a WD for 18 weeks and then chow diet for 12 weeks prior to treating them with an IL-1β or control antibody (Ab) for 8-weeks. Results Lipid-lowering by switching Apoe-/- mice from a WD to a chow diet reduced LDL-cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1β Ab treatment resulted in multiple detrimental changes including increased plaque burden, BCA lesion size, as well as increased cholesterol crystal accumulation, intra-plaque hemorrhage, necrotic core area, and senescence as compared to IgG control Ab treated mice. Furthermore, IL-1β Ab treatment upregulated neutrophil degranulation pathways but down-regulated SMC extracellular matrix pathways likely important for the protective fibrous cap. Conclusions Taken together, IL-1β appears to be required for chow diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.
Collapse
Affiliation(s)
- Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Vaishnavi Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Rebecca Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Laura S. Shankman
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Ernest D. Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Corey M. Williams
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Xenia Bradley
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Gabriel F. Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Gamze B. Bulut
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Sara Kirmani
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Richard A. Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Eli R. Zunder
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Hester M. den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| |
Collapse
|
34
|
Khalafi M, Symonds ME, Sakhaei MH, Ghasemi F. The effects of exercise training on circulating adhesion molecules in adults: A systematic review and meta-analysis. PLoS One 2023; 18:e0292734. [PMID: 37831667 PMCID: PMC10575525 DOI: 10.1371/journal.pone.0292734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION The current meta-analysis investigated the effects of exercise training on circulating adhesion molecules i.e. soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in adults. METHOD PubMed, Web of Science, Scopus and Embase were searched to identify original articles, published in English languages journal from inception up to 31 August 2023 that compared the effects of exercise training with non-exercising control on sICAM-1 and sVCAM-1 in adults. Standardized mean differences (SMDs) and 95% CIs were calculated using random-effect models. RESULTS Twenty-three studies including 31 intervention arms and involving 1437 subjects were included in the meta-analysis. Exercise training effectively reduced sICAM-1 [SMD: -0.33 (95% CI -0.56 to -0.11), p = 0.004; I2 = 56.38%, p = 0.001; 23 intervention arms]. Subgroup analyses showed that sICAM-1 decreased in adults with age <60 years (p = 0.01) and BMI ≥ 27 kg/m2 (p = 0.002) and those with metabolic disorders (p = 0.004) and cardiovascular diseases (p = 0.005). In addition, aerobic (p = 0.02) and resistance training (p = 0.007) are effective in reducing sICAM-1. However, exercise training did not indicate a superior effect on sVCAM-1 [SMD: -0.12 (95% CI -0.29 to 0.05), p = 0.17; I2 = 36.29%, p = 0.04; 23 intervention arms]. CONCLUSION Our results show that exercise training reduces sICAM-1, but not for sVCAM-1, where both aerobic and resistance training is effective in reducing sICAM-1 in adults with metabolic disorders and cardiovascular diseases. TRIAL REGISTRATION The current meta-analysis was registered at www.crd.york.ac.uk/prospero with ID registration number: CRD42023410474.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Michael E. Symonds
- Centre for Perinatal Research, Academic Unit of Population and Lifespan Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mohammad Hossein Sakhaei
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Guilan, Iran
| | - Faeghe Ghasemi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Guilan, Iran
| |
Collapse
|
35
|
Menon SN, Zerin F, Ezewudo E, Simon NP, Menon SN, Daniel ML, Green AJ, Pandey A, Mackay CE, Hafez S, Moniri NH, Hasan R. Neflamapimod inhibits endothelial cell activation, adhesion molecule expression, leukocyte attachment and vascular inflammation by inhibiting p38 MAPKα and NF-κB signaling. Biochem Pharmacol 2023:115683. [PMID: 37429422 DOI: 10.1016/j.bcp.2023.115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Neflamapimod, a selective inhibitor of the alpha isoform of p38 mitogen-activated protein kinase (MAPKα), was investigated for its potential to inhibit lipopolysaccharide (LPS)-induced activation of endothelial cells (ECs), adhesion molecule induction, and subsequent leukocyte attachment to EC monolayers. These events are known to contribute to vascular inflammation and cardiovascular dysfunction. Our results demonstrate that LPS treatment of cultured ECs and rats leads to significant upregulation of adhesion molecules, both in vitro and in vivo, which can be effectively inhibited by Neflamapimod treatment. Western blotting data further reveals that Neflamapimod inhibits LPS-induced phosphorylation of p38 MAPKα and the activation of NF-κB signaling in ECs. Additionally, leukocyte adhesion assays demonstrate a substantial reduction in leukocyte attachment to cultured ECs and the aorta lumen of rats treated with Neflamapimod. Consistent with vascular inflammation, LPS-treated rat arteries exhibit significantly diminished vasodilation response to acetylcholine, however, arteries from rats treated with Neflamapimod maintain their vasodilation capacity, demonstrating its ability to limit LPS-induced vascular inflammation. Overall, our data demonstrate that Neflamapimod effectively inhibits endothelium activation, adhesion molecule expression, and leukocyte attachment, thereby reducing vascular inflammation.
Collapse
Affiliation(s)
- Sreelakshmi N Menon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Farzana Zerin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Emmanuella Ezewudo
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Nimi P Simon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sreeranjini N Menon
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Morgan L Daniel
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Andrea J Green
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Ajay Pandey
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | | | - Sherif Hafez
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Raquibul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; Department of Biomedical Sciences, School of Medicine, Mercer University, Macon, GA, USA.
| |
Collapse
|
36
|
Peng H, Palma-Gudiel H, Soriano-Tarraga C, Jimenez-Conde J, Zhang M, Zhang Y, Zhao J. Epigenome-wide association study identifies novel genes associated with ischemic stroke. Clin Epigenetics 2023; 15:106. [PMID: 37370144 DOI: 10.1186/s13148-023-01520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND DNA methylation has previously been associated with ischemic stroke, but the specific genes and their functional roles in ischemic stroke remain to be determined. Here we aimed to identify differentially methylated genes that play a functional role in ischemic stroke in a Chinese population. RESULTS Genome-wide DNA methylation assessed with the Illumina Methylation EPIC Array in a discovery sample including 80 Chinese adults (40 cases vs. 40 controls) found that patients with ischemic stroke were characterized by increased DNA methylation at six CpG loci (individually located at TRIM6, FLRT2, SOX1, SOX17, AGBL4, and FAM84A, respectively) and decreased DNA methylation at one additional locus (located at TLN2). Targeted bisulfite sequencing confirmed six of these differentially methylated probes in an independent Chinese population (853 cases vs. 918 controls), and one probe (located at TRIM6) was further verified in an external European cohort (207 cases vs. 83 controls). Experimental manipulation of DNA methylation in engineered human umbilical vein endothelial cells indicated that the identified differentially methylated probes located at TRIM6, TLN2, and FLRT2 genes may play a role in endothelial cell adhesion and atherosclerosis. CONCLUSIONS Altered DNA methylation of the TRIM6, TLN2, and FLRT2 genes may play a functional role in ischemic stroke in Chinese populations.
Collapse
Affiliation(s)
- Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Helena Palma-Gudiel
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Carolina Soriano-Tarraga
- Neurovascular Research Group, Department of Neurology of Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autònoma de Barcelona/DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University in St. Louis, St. Louis, USA
| | - Jordi Jimenez-Conde
- Neurovascular Research Group, Department of Neurology of Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autònoma de Barcelona/DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| |
Collapse
|
37
|
Scalia A, Doumani L, Kindt N, Journé F, Trelcat A, Carlier S. The Interplay between Atherosclerosis and Cancer: Breast Cancer Cells Increase the Expression of Endothelial Cell Adhesion Markers. BIOLOGY 2023; 12:896. [PMID: 37508329 PMCID: PMC10376633 DOI: 10.3390/biology12070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Cardiovascular diseases are the leading causes of death worldwide, closely followed by cancer. To investigate the impact of breast cancer cell lines (SKBR3, MCF-7, and MDA-MB-231) on endothelial cell adhesion, a blended medium containing 30% breast-cancer-conditioned medium was prepared. This medium was then exposed to human umbilical vein endothelial cells (HUVECs) and monocytes (THP-1) for 48 h. Homemade oxidized low-density lipoproteins (oxLDL) were optionally added to the blended medium. Immunofluorescence was performed to assess the expression of E-selectin, connexin-43, and ICAM-1 on HUVECs, as well as LOX-1, CD36, and CD162 on THP-1. Additionally, unoxidized LDL was exposed to the three breast cancer cell lines for 48 h, and the formation of oxLDL was quantified. Our results revealed an upregulation of all six adhesion markers involved in the initiation of atherosclerosis when HUVECs and THP-1 were exposed to the breast-cancer-conditioned medium. Furthermore, this expression was further increased by exposure to oxLDL. We also observed a significant elevation in oxLDL levels when LDL was exposed to breast cancer cells. In conclusion, our findings successfully demonstrate an increased LDL oxidation in the presence of breast cancer cells, accompanied by an augmented expression of receptors involved in atherosclerosis initiation. These findings shed new light on the clinically observed interplay between atherosclerosis and cancer.
Collapse
Affiliation(s)
- Alessandro Scalia
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| | - Lesly Doumani
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| | - Nadège Kindt
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
- Department of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Fabrice Journé
- Department of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Anne Trelcat
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| | - Stéphane Carlier
- Department of Cardiology, Research Institute for Health Sciences and Technology, University of Mons (UMONS), 7000 Mons, Belgium
| |
Collapse
|
38
|
Dri E, Lampas E, Lazaros G, Lazarou E, Theofilis P, Tsioufis C, Tousoulis D. Inflammatory Mediators of Endothelial Dysfunction. Life (Basel) 2023; 13:1420. [PMID: 37374202 DOI: 10.3390/life13061420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Endothelial dysfunction (ED) is characterized by imbalanced vasodilation and vasoconstriction, elevated reactive oxygen species (ROS), and inflammatory factors, as well as deficiency of nitric oxide (NO) bioavailability. It has been reported that the maintenance of endothelial cell integrity serves a significant role in human health and disease due to the involvement of the endothelium in several processes, such as regulation of vascular tone, regulation of hemostasis and thrombosis, cell adhesion, smooth muscle cell proliferation, and vascular inflammation. Inflammatory modulators/biomarkers, such as IL-1α, IL-1β, IL-6, IL-12, IL-15, IL-18, and tumor necrosis factor α, or alternative anti-inflammatory cytokine IL-10, and adhesion molecules (ICAM-1, VCAM-1), involved in atherosclerosis progression have been shown to predict cardiovascular diseases. Furthermore, several signaling pathways, such as NLRP3 inflammasome, that are associated with the inflammatory response and the disrupted H2S bioavailability are postulated to be new indicators for endothelial cell inflammation and its associated endothelial dysfunction. In this review, we summarize the knowledge of a plethora of reviews, research articles, and clinical trials concerning the key inflammatory modulators and signaling pathways in atherosclerosis due to endothelial dysfunction.
Collapse
Affiliation(s)
- Eirini Dri
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Evangelos Lampas
- Department of Cardiology, Konstantopouleio General Hospital, 14233 Athens, Greece
| | - George Lazaros
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Emilia Lazarou
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Costas Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, Kapodistrian University of Athens Medical School, Vas. Sofias 114, 11528 Athens, Greece
| |
Collapse
|
39
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
40
|
Abstract
Cardiometabolic diseases, including cardiovascular disease and diabetes, are major causes of morbidity and mortality worldwide. Despite progress in prevention and treatment, recent trends show a stalling in the reduction of cardiovascular disease morbidity and mortality, paralleled by increasing rates of cardiometabolic disease risk factors in young adults, underscoring the importance of risk assessments in this population. This review highlights the evidence for molecular biomarkers for early risk assessment in young individuals. We examine the utility of traditional biomarkers in young individuals and discuss novel, nontraditional biomarkers specific to pathways contributing to early cardiometabolic disease risk. Additionally, we explore emerging omic technologies and analytical approaches that could enhance risk assessment for cardiometabolic disease.
Collapse
Affiliation(s)
- Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School
| |
Collapse
|
41
|
Lu J, Peng W, Yi X, Fan D, Li J, Wang C, Luo H, Yu M. Inflammation and endothelial function-related gene polymorphisms are associated with carotid atherosclerosis-A study of community population in Southwest China. Brain Behav 2023:e3045. [PMID: 37137812 DOI: 10.1002/brb3.3045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
OBJECTIVES To investigate the relationships between 18 single nucleotide polymorphisms with carotid atherosclerosis and whether interactions among these genes were associated with an increased risk of carotid atherosclerosis. METHODS Face-to-face surveys were conducted with individuals aged 40 or older in eight communities. A total of 2377 individuals were included in the study. Ultrasound was used to detect carotid atherosclerosis in the included population. 18 loci of 10 genes associated with inflammation and endothelial function were detected. Gene-gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR). RESULTS Among the 2377 subjects, 445 (18.7%) subjects had increased intima-media thickness in the common carotid artery (CCA-IMT), and 398 (16.7%) subjects were detected with vulnerable plaque. In addition, NOS2A rs2297518 polymorphism was associated with increased CCA-IMT, IL1A rs1609682, and HABP2 rs7923349 polymorphisms were associated with vulnerable plaque. Besides, GMDR analysis showed significant gene-gene interactions among TNFSF4 rs1234313, IL1A rs1609682, TLR4 rs1927911, ITGA2 rs1991013, NOS2A rs2297518, IL6R rs4845625, ITGA2 rs4865756, HABP2 rs7923349, NOS2A rs8081248, HABP2 rs932650. CONCLUSION The prevalences of increased CCA-IMT and vulnerable plaque were high in Southwestern China's high-risk stroke population. Furthermore, inflammation and endothelial function-related gene polymorphisms were associated with carotid atherosclerosis.
Collapse
Affiliation(s)
- Jing Lu
- Department of Neurology, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Wei Peng
- Department of Gastrointestinal Surgery, Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, China
| | - Xingyang Yi
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Daofeng Fan
- Department of Neurology, Longyan First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Jie Li
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Chun Wang
- Department of Neurology, the People's Hospital of Deyang City, Deyang, Sichuan, China
| | - Hua Luo
- Department of Neurology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yu
- Department of Neurology, the Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
42
|
Atre R, Sharma R, Vadim G, Solanki K, Wadhonkar K, Singh N, Patidar P, Khabiya R, Samaur H, Banerjee S, Baig MS. The indispensability of macrophage adaptor proteins in chronic inflammatory diseases. Int Immunopharmacol 2023; 119:110176. [PMID: 37104916 DOI: 10.1016/j.intimp.2023.110176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Adaptor proteins represent key signalling molecules involved in regulating immune responses. The host's innate immune system recognizes pathogens via various surface and intracellular receptors. Adaptor molecules are centrally involved in different receptor-mediated signalling pathways, acting as bridges between the receptors and other molecules. The presence of adaptors in major signalling pathways involved in the pathogenesis of various chronic inflammatory diseases has drawn attention toward the role of these proteins in such diseases. In this review, we summarize the importance and roles of different adaptor molecules in macrophage-mediated signalling in various chronic disease states. We highlight the mechanistic roles of adaptors and how they are involved in protein-protein interactions (PPI) via different domains to carry out signalling. Hence, we also provide insights into how targeting these adaptor proteins can be a good therapeutic strategy against various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Gaponenko Vadim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Neha Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Pramod Patidar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India; School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
43
|
Giebe S, Brux M, Hofmann A, Lowe F, Breheny D, Morawietz H, Brunssen C. Comparative study of the effects of cigarette smoke versus next-generation tobacco and nicotine product extracts on inflammatory biomarkers of human monocytes. Pflugers Arch 2023:10.1007/s00424-023-02809-9. [PMID: 37081240 DOI: 10.1007/s00424-023-02809-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Monocytes exhibiting a pro-inflammatory phenotype play a key role in adhesion and development of atherosclerotic plaques. As an alternative to smoking, next-generation tobacco and nicotine products (NGP) are now widely used. However, little is known about their pro-inflammatory effects on monocytes. We investigated cell viability, anti-oxidant and pro-inflammatory gene and protein expression in THP-1 monocytes after exposure to aqueous smoke extracts (AqE) of a heated tobacco product (HTP), an electronic cigarette (e-cig), a conventional cigarette (3R4F) and pure nicotine (nic). Treatment with 3R4F reduced cell viability in a dose-dependent manner, whereas exposure to alternative smoking products showed no difference to control. At the highest non-lethal dose of 3R4F (20%), the following notable mRNA expression changes were observed for 3R4F, HTP, and e-cig respectively, relative to control; HMOX1 (6-fold, < 2-fold, < 2-fold), NQO1 (3.5-fold, < 2-fold, < 2-fold), CCL2 (4-fold, 3.5-fold, 2.5-fold), IL1B (4-fold, 3-fold, < 2-fold), IL8 (5-fold, 2-fold, 2-fold), TNF (2-fold, 2-fold, < 2-fold) and ICAM1 was below the 2-fold threshold for all products. With respect to protein expression, IL1B (3-fold, < 2-fold, < 2-fold) and IL8 (3.5-fold, 2-fold, 2-fold) were elevated over the 2-fold threshold, whereas CCL2, TNF, and ICAM1 were below 2-fold expression for all products. At higher doses, greater inductions were observed with all extracts; however, NGP responses were typically lower than 3R4F. In conclusion, anti-oxidative and pro-inflammatory processes were activated by all products. NGPs overall showed lower responses relative to controls than THP-1 cells exposed to 3R4F AqE.
Collapse
Affiliation(s)
- Sindy Giebe
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Melanie Brux
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - Frazer Lowe
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| | - Damien Breheny
- B.A.T. (Investments) Limited, Regents Park Road, Millbrook, Southampton, SO15 8TL, UK
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| |
Collapse
|
44
|
Chang S, Zhang G, Li L, Li H, Jin X, Wang Y, Li B. Sirt4 deficiency promotes the development of atherosclerosis by activating the NF-κB/IκB/CXCL2/3 pathway. Atherosclerosis 2023; 373:29-37. [PMID: 37121164 DOI: 10.1016/j.atherosclerosis.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS As a member of mitochondrial sirtuins, Sirt4 plays a vital role in cellular metabolism and intracellular signal transduction; however, its effect on atherosclerosis is unclear. This study aimed to explore the effect of Sirt4 on atherosclerosis and its underlying mechanism. METHODS In vivo, Apoe-/- and Apoe-/-/Sirt4-/- mice were fed a high-fat diet to induce atherosclerosis. In vitro, peritoneal macrophages from two mouse types were extracted and treated with oxidized low-density lipoprotein to establish a cell model, THP-1 cells were used to observe the effect of Sirt4 on the adhesion ability of monocytes. The growth and composition of aortic plaques in two mouse types were analyzed by H&E staining, Oil Red O staining, Dil oxidized low-density lipoprotein, immunohistochemistry, real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. Transcriptome analysis and Western blotting were performed to explore the specific mechanism. RESULTS Sirt4 deficiency aggravated atherosclerosis in mice. In vivo, aortic plaque size, lipid content, and expression of related inflammatory factors in Apoe-/-/Sirt4-/- mice were higher than those in the control group, whereas the content of collagen Ⅰ and smooth muscle actin-α was significantly lower. Sirt4-deficient macrophages exhibited stronger lipid phagocytosis in vitro, and the adhesion ability of monocytes increased when Sirt4 expression decreased. Transcriptome analysis showed that the expression of CXCL2 and CXCL3 in Sirt4-deficient peritoneal macrophages increased significantly, which may play a role by activating the NF-κB pathway. In further analysis, the results in vitro and in vivo showed that the expression of VCAM-1 and pro-inflammatory factors, such as IL-6, TNF-α and IL-1β, increased, whereas the expression of anti-inflammatory factor IL-37 decreased in Sirt4-deficient peritoneal macrophages and tissues. After blocking the effect with NK-κB inhibitor BAY11-7082, the inflammatory reaction in sirt4 deficient macrophages was also significantly decreased. CONCLUSIONS This study demonstrates that Sirt4 deficiency promotes the development of atherosclerosis by activating the NF-κB/IκB/CXCL2/3 pathway, suggesting that Sirt4 may exhibit a protective effect in atherosclerosis, which provides a new strategy for clinical prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuting Chang
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China; Weifang Medical University, No.7166, Baotong West Street, Weifang, PR China
| | - Guanzhao Zhang
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China
| | - Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Haiying Li
- Medical Department, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Xiaodong Jin
- Department of Geriatrics, Zibo Central Hospital, No. 10, South Shanghai Road, Zibo, PR China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China.
| | - Bo Li
- Department of Cardiology, Zibo Central Hospital Affiliated to Binzhou Medical College, NO.10, South Shanghai Road, Zibo, PR China.
| |
Collapse
|
45
|
Kolobarić N, Mihalj M, Kozina N, Matić A, Mihaljević Z, Jukić I, Drenjančević I. Tff3-/- Knock-Out Mice with Altered Lipid Metabolism Exhibit a Lower Level of Inflammation following the Dietary Intake of Sodium Chloride for One Week. Int J Mol Sci 2023; 24:ijms24087315. [PMID: 37108475 PMCID: PMC10138311 DOI: 10.3390/ijms24087315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
A high salt intake causes hemodynamic changes and promotes immune response through cell activation and cytokine production, leading to pro-inflammatory conditions. Transgenic Tff3-/- knock-out mice (TFF3ko) (n = 20) and wild-type mice (WT) (n = 20) were each divided into the (1) low-salt (LS) group and (2) high-salt (HS) group. Ten-week-old animals were fed with standard rodent chow (0.4% NaCl) (LS) or food containing 4% NaCl (HS) for one week (7 days). Inflammatory parameters from the sera were measured by Luminex assay. The integrin expression and rates of T cell subsets of interest from the peripheral blood leukocytes (PBLs) and mesenteric lymph nodes (MLNs) were measured using flow cytometry. There was a significant increase in high-sensitivity C reactive protein (hsCRP) only in the WT mice following the HS diet, while there were no significant changes in the serum levels of IFN-γ, TNF-α, IL-2, IL-4, or IL-6 as a response to treatment in either study groups. The rates of CD4+CD25+ T cells from MLNs decreased, while CD3+γδTCR+ from peripheral blood increased following the HS diet only in TFF3ko. γδTCR expressing T cell rates decreased in WT following the HS diet. The CD49d/VLA-4 expression decreased in the peripheral blood leukocytes in both groups following the HS diet. CD11a/LFA-1 expression significantly increased only in the peripheral blood Ly6C-CD11ahigh monocytes in WT mice following salt loading. In conclusion, salt-loading in knock-out mice caused a lower level of inflammatory response compared with their control WT mice due to gene depletion.
Collapse
Grants
- #IP-2014-09-6380/V-ELI Athero, PI I. Drenjančević Croatian Science Foundation
- VIF-2018-MEFOS-09-1509 (The influence of increased NaCl values on endothelial function in model TFF-/- mice and HAEC cell cultures) Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Croatia
- VIF-2019-MEFOS (The effect of increased NaCl values on the mechanisms of vascular reactivity in model of Tff3-/- mice and HAEC cell cultures, PI I. Drenjančević) Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Croatia
- VIF-2020-MEFOS (The effect of increased NaCl values on the mechanisms of vascular reactivity in model of Tff3-/- mice, Sprague-Dawley rats and HAEC cell cultures, PI I. Drenjančević) Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Croatia
Collapse
Affiliation(s)
- Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Department of Dermatology and Venereology, Osijek University Hospital, J. Huttlera 4, 31000 Osijek, Croatia
| | - Nataša Kozina
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, J. J. Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| |
Collapse
|
46
|
Abstract
Vascular age is determined by functional and structural changes in the arterial wall. When measured by its proxy, pulse wave velocity, it has been shown to predict cardiovascular and total mortality. Disconcordance between chronological and vascular age might represent better or worse vascular health. Cell senescence is caused by oxidative stress and sustained cell replication. Senescent cells acquire senescence-associated secretory phenotype. Oxidative stress, endothelial dysfunction, dysregulation of coagulation and leucocyte infiltration are observed in the aging endothelium. All of these mechanisms lead to increased vascular calcification and stiffness. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can involve the vascular endothelium. It enters cells using angiotensin-converting enzyme 2 (ACE-2) receptors, which are abundant in endothelial cells. The damage this virus does to the endothelium can be direct or indirect. Indirect damage is caused by hyperinflammation. Direct damage results from effects on ACE-2 receptors. The reduction of ACE-2 levels seen during coronavirus disease 2019 (COVID-19) infection might cause vasoconstriction and oxidative stress. COVID-19 and vascular aging share some pathways. Due to the novelty of the virus, there is an urgent need for studies that investigate its long-term effects on vascular health.
Collapse
Affiliation(s)
- Ignas Badaras
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania,Ignas Badaras, Faculty of Medicine, Vilnius
University, M. K. Ciurlionio g. 21/27, LT-03101, Vilnius 01513, Lithuania.
| | - Agnė Laučytė-Cibulskienė
- Department of Nephrology, Skåne University
Hospital, Malmö, Sweden,Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
47
|
Pekas EJ, Allen MF, Park SY. Prolonged sitting and peripheral vascular function: potential mechanisms and methodological considerations. J Appl Physiol (1985) 2023; 134:810-822. [PMID: 36794688 PMCID: PMC10042610 DOI: 10.1152/japplphysiol.00730.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Sitting time is associated with increased risks for subclinical atherosclerosis and cardiovascular disease development, and this is thought to be partially due to sitting-induced disturbances in macro- and microvascular function as well as molecular imbalances. Despite surmounting evidence supporting these claims, contributing mechanisms to these phenomena remain largely unknown. In this review, we discuss evidence for potential mechanisms of sitting-induced perturbations in peripheral hemodynamics and vascular function and how these potential mechanisms may be targeted using active and passive muscular contraction methods. Furthermore, we also highlight concerns regarding the experimental environment and population considerations for future studies. Optimizing prolonged sitting investigations may allow us to not only better understand the hypothesized sitting-induced transient proatherogenic environment but to also enhance methods and devise mechanistic targets to salvage sitting-induced attenuations in vascular function, which may ultimately play a role in averting atherosclerosis and cardiovascular disease development.
Collapse
Affiliation(s)
- Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Michael F Allen
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska, United States
| |
Collapse
|
48
|
Chhor M, Tulpar E, Nguyen T, Cranfield CG, Gorrie CA, Chan YL, Chen H, Oliver BG, McClements L, McGrath KC. E-Cigarette Aerosol Condensate Leads to Impaired Coronary Endothelial Cell Health and Restricted Angiogenesis. Int J Mol Sci 2023; 24:ijms24076378. [PMID: 37047355 PMCID: PMC10094580 DOI: 10.3390/ijms24076378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality worldwide, with cigarette smoking being a major preventable risk factor. Smoking cessation can be difficult due to the addictive nature of nicotine and the withdrawal symptoms following cessation. Electronic cigarettes (e-Cigs) have emerged as an alternative smoking cessation device, which has been increasingly used by non-smokers; however, the cardiovascular effects surrounding the use of e-Cigs remains unclear. This study aimed to investigate the effects of e-Cig aerosol condensate (EAC) (0 mg and 18 mg nicotine) in vitro on human coronary artery endothelial cells (HCAEC) and in vivo on the cardiovascular system using a mouse model of ‘e-vaping’. In vitro results show a decrease in cell viability of HCAEC when exposed to EAC either directly or after exposure to conditioned lung cell media (p < 0.05 vs. control). Reactive oxygen species were increased in HCAEC when exposed to EAC directly or after exposure to conditioned lung cell media (p < 0.0001 vs. control). ICAM-1 protein expression levels were increased after exposure to conditioned lung cell media (18 mg vs. control, p < 0.01). Ex vivo results show an increase in the mRNA levels of anti-angiogenic marker, FKBPL (p < 0.05 vs. sham), and endothelial cell adhesion molecule involved in barrier function, ICAM-1 (p < 0.05 vs. sham) in murine hearts following exposure to electronic cigarette aerosol treatment containing a higher amount of nicotine. Immunohistochemistry also revealed an upregulation of FKBPL and ICAM-1 protein expression levels. This study showed that despite e-Cigs being widely used for tobacco smoking cessation, these can negatively impact endothelial cell health with a potential to lead to the development of cardiovascular disease.
Collapse
Affiliation(s)
- Michael Chhor
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Esra Tulpar
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Tara Nguyen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Charles G. Cranfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Catherine A. Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Correspondence: (L.M.); (K.C.M.)
| | - Kristine C. McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.C.); (E.T.); (T.N.); (C.G.C.); (C.A.G.); (Y.L.C.); (H.C.); (B.G.O.)
- Correspondence: (L.M.); (K.C.M.)
| |
Collapse
|
49
|
Duan L, Zhao Y, Jia J, Chao T, Wang H, Liang Y, Lou Y, Zheng Q, Wang H. Myeloid-restricted CD68 deficiency attenuates atherosclerosis via inhibition of ROS-MAPK-apoptosis axis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166698. [PMID: 36965676 DOI: 10.1016/j.bbadis.2023.166698] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/24/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
In atherosclerosis, macrophages derived from blood monocytes contribute to non-resolving inflammation, which subsequently primes necrotic core formation, and ultimately triggers acute thrombotic vascular disease. Nevertheless, little is known about how inflammatory cells, especially the macrophages fuel atherosclerosis. CD68, a unique class D scavenger receptor (SRD) family member, is specifically expressed in monocytes/macrophages and remarkably up-regulated upon oxidized low-density lipoprotein (ox-LDL) stimulation. Nonetheless, whether and how myeloid-specific CD68 affects atherosclerosis remains to be defined. To determine the essential in vivo role and mechanism linking CD68 to atherosclerosis, we engineered global and myeloid-specific CD68-deficient mice on an ApoE background. On Western diet, both the mice with global and the myeloid-restricted deletion of CD68 on ApoE background attenuated atherosclerosis, accompanied by diminished immune/inflammatory cell burden and necrotic core content, but increased smooth muscle cell content in atherosclerotic plaques. In vitro experiments revealed that CD68 deficiency in macrophages resulted in attenuated ox-LDL-induced macrophage apoptosis. Additionally, CD68 deficiency suppressed ROS production, while removal of ROS can markedly reversed this effect. We further showed that CD68 deficiency affected apoptosis through inactivation of the mitogen-activated protein kinase (MAPK) pathway. Our findings establish CD68 as a macrophage lineage-specific regulator of "ROS-MAPK-apoptosis" axis, thus providing a previously unknown mechanism for the prominence of CD68 as a risk factor for coronary artery disease. Its therapeutic inhibition may provide a potent lever to alleviate the cardiovascular disease.
Collapse
Affiliation(s)
- Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yucong Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing Jia
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianzhu Chao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, China
| | - Hao Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
50
|
Gerasimova EV, Popkova TV, Gerasimova DA, Markina YV, Kirichenko TV. Subclinical Carotid Atherosclerosis in Patients with Rheumatoid Arthritis at Low Cardiovascular Risk. Biomedicines 2023; 11:biomedicines11030974. [PMID: 36979953 PMCID: PMC10046543 DOI: 10.3390/biomedicines11030974] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE To evaluate the rate of subclinical carotid atherosclerosis and clinical significance of immunoinflammatory markers in patients with rheumatoid arthritis (RA) at low cardiovascular risk. MATERIALS AND METHODS The study included 275 RA patients and a control group of 100 participants without autoimmune diseases. All study participants were at low cardiovascular risk, calculated by the QRISK3 scale (<20%), and free of cardiovascular disease. Ultrasound examination of carotid arteries was performed to measure cIMT and to detect atherosclerotic plaques (ASP) in carotid arteries. sIСАМ-1, sVСАМ, and sCD40L levels were determined by enzyme immunoassay. RESULTS Carotid ASP was observed more frequently in RA patients (27%) than in the control group (17%), p = 0.03. The frequency of ASP in RA patients did not depend on the disease's stage or activity. There was a significant correlation between cIMT and age, cardiovascular risk determined by QRISK3, level of total cholesterol, LDL, and blood pressure in RA patients, p < 0.05 in all cases. No correlation between cIMT and blood levels of sCD40L, sVCAM, and sICAM was found. In RA patients, a higher concentration of sVCAM was detected in the carotid ASP group compared to the non-atherosclerotic group. sCD40L was associated with cIMT and total cholesterol in the ASP group and with total cholesterol and blood pressure in non-atherosclerotic patients. CONCLUSIONS Subclinical atherosclerotic lesions of the carotid arteries were observed significantly more frequently in RA patients with low cardiovascular risk than in the control group. The results of the study demonstrate the association between cIMT, traditional cardiovascular risk factors, and immunoinflammatory markers in RA patients.
Collapse
Affiliation(s)
| | - Tatiana V Popkova
- V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia
| | - Daria A Gerasimova
- Department of Organization and Economy of Pharmacy, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Yuliya V Markina
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
| | - Tatiana V Kirichenko
- Petrovsky National Research Center of Surgery, 119991 Moscow, Russia
- Chazov National Medical Research Center of Cardiology, 121552 Moscow, Russia
| |
Collapse
|