1
|
Pierzchlińska A, Sławek J, Kwaśniak-Butowska M, Malinowski D, Komaniecka N, Mak M, Czerkawska A, Kukowka A, Białecka M. Genetic Polymorphisms in the HMGCR Gene and Associations with Cognitive Decline in Parkinson's Disease Patients. Int J Mol Sci 2024; 25:8964. [PMID: 39201649 PMCID: PMC11354436 DOI: 10.3390/ijms25168964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease characterized by motor and non-motor symptoms including cognitive impairment and dementia. The etiopathogenesis of PD, as well as its protective and susceptibility factors, are still elusive. 3-Hydroxy-3-methyglutaryl coenzyme A reductase (HMGCR) is an enzyme regulating cholesterol synthesis. Single-nucleotide polymorphisms (SNPs) in the gene coding HMGCR have recently been correlated with the risk of Alzheimer's disease. Alternative splicing of exon 13 of the HMGCR transcript and its strongly associated HMGCR haplotype 7 (H7: rs17244841, rs3846662, rs17238540) may downregulate protein activity and cholesterol synthesis, with lower low-density lipoprotein cholesterol (LDL) levels associated with PD that may affect cognitive abilities. We genotyped three SNPs in the H7 HMGCR gene in 306 PD patients divided into three groups-without cognitive decline, with mild cognitive impairment (MCI), and with PD dementia-and in 242 healthy participants. A correlation between the rs17238540 genotype and PD susceptibility as well as a minor association between rs3846662 and cognitive status in PD patients was observed; however, the two-sided analysis of these groups did not reveal any significance. We observed a statistically significant elevated high-density lipoprotein cholesterol (HDL) plasma level in the minor allele carriers of rs17238540 and rs17244841 among PD patients. This study should be replicated in a larger population.
Collapse
Affiliation(s)
- Anna Pierzchlińska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.P.); (A.C.); (A.K.); (M.B.)
- Department of Animal Physiology, Institute of Zoology, University of Cologne, 50923 Cologne, Germany
| | - Jarosław Sławek
- Department of Neurological-Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (J.S.); (M.K.-B.)
- Department of Neurology, St Adalbert Hospital, 61-144 Gdańsk, Poland
| | - Magdalena Kwaśniak-Butowska
- Department of Neurological-Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (J.S.); (M.K.-B.)
- Department of Neurology, St Adalbert Hospital, 61-144 Gdańsk, Poland
| | - Damian Malinowski
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.P.); (A.C.); (A.K.); (M.B.)
| | - Nina Komaniecka
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Anna Czerkawska
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.P.); (A.C.); (A.K.); (M.B.)
| | - Arnold Kukowka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.P.); (A.C.); (A.K.); (M.B.)
| | - Monika Białecka
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, 70-111 Szczecin, Poland; (A.P.); (A.C.); (A.K.); (M.B.)
| |
Collapse
|
2
|
Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Per Med 2022; 20:65-86. [DOI: 10.2217/pme-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperlipidemia is a significant risk factor for cardiovascular disease morbidity and mortality. The lipid-lowering drugs are considered the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Unfortunately, the lack of efficacy and associated adverse effects, ranging from mild-to-moderate to potentially life-threatening, lead to therapy discontinuation. Numerous reports support the role of gene polymorphisms in drugs' pharmacokinetic parameters and their associated adverse reactions. Therefore, this study aims to understand the pharmacogenomics of lipid-lowering drugs and the impact of genetic variants of key genes on the drugs' efficacy and toxicity. Indeed, genetically guided lipid-lowering therapy enhances overall safety, improves drug adherence and achieves long-term therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Room 402, Charleston, SC 29425, USA
| | - Zourayz Kamran
- Department of Pharmaceutical & Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV 25304, USA
| | - Qusai Al-Share
- Department of Clinical Pharmacy, Assistant Professor of Pharmacology & Therapeutics, Faculty of Pharmacy, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
3
|
Ji Y, Wei Q, Chen R, Wang Q, Tao R, Li B. Integration of multidimensional splicing data and GWAS summary statistics for risk gene discovery. PLoS Genet 2022; 18:e1009814. [PMID: 35771864 PMCID: PMC9278751 DOI: 10.1371/journal.pgen.1009814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 07/13/2022] [Accepted: 05/26/2022] [Indexed: 12/30/2022] Open
Abstract
A common strategy for the functional interpretation of genome-wide association study (GWAS) findings has been the integrative analysis of GWAS and expression data. Using this strategy, many association methods (e.g., PrediXcan and FUSION) have been successful in identifying trait-associated genes via mediating effects on RNA expression. However, these approaches often ignore the effects of splicing, which can carry as much disease risk as expression. Compared to expression data, one challenge to detect associations using splicing data is the large multiple testing burden due to multidimensional splicing events within genes. Here, we introduce a multidimensional splicing gene (MSG) approach, which consists of two stages: 1) we use sparse canonical correlation analysis (sCCA) to construct latent canonical vectors (CVs) by identifying sparse linear combinations of genetic variants and splicing events that are maximally correlated with each other; and 2) we test for the association between the genetically regulated splicing CVs and the trait of interest using GWAS summary statistics. Simulations show that MSG has proper type I error control and substantial power gains over existing multidimensional expression analysis methods (i.e., S-MultiXcan, UTMOST, and sCCA+ACAT) under diverse scenarios. When applied to the Genotype-Tissue Expression Project data and GWAS summary statistics of 14 complex human traits, MSG identified on average 83%, 115%, and 223% more significant genes than sCCA+ACAT, S-MultiXcan, and UTMOST, respectively. We highlight MSG's applications to Alzheimer's disease, low-density lipoprotein cholesterol, and schizophrenia, and found that the majority of MSG-identified genes would have been missed from expression-based analyses. Our results demonstrate that aggregating splicing data through MSG can improve power in identifying gene-trait associations and help better understand the genetic risk of complex traits.
Collapse
Affiliation(s)
- Ying Ji
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Qiang Wei
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rui Chen
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Quan Wang
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (RT); (BL)
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (RT); (BL)
| |
Collapse
|
4
|
Yeung MW, Wang S, van de Vegte YJ, Borisov O, van Setten J, Snieder H, Verweij N, Said MA, van der Harst P. Twenty-Five Novel Loci for Carotid Intima-Media Thickness: A Genome-Wide Association Study in >45 000 Individuals and Meta-Analysis of >100 000 Individuals. Arterioscler Thromb Vasc Biol 2022; 42:484-501. [PMID: 34852643 PMCID: PMC8939707 DOI: 10.1161/atvbaha.121.317007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Carotid artery intima-media thickness (cIMT) is a widely accepted marker of subclinical atherosclerosis. Twenty susceptibility loci for cIMT were previously identified and the identification of additional susceptibility loci furthers our knowledge on the genetic architecture underlying atherosclerosis. APPROACH AND RESULTS We performed 3 genome-wide association studies in 45 185 participants from the UK Biobank study who underwent cIMT measurements and had data on minimum, mean, and maximum thickness. We replicated 15 known loci and identified 20 novel loci associated with cIMT at P<5×10-8. Seven novel loci (ZNF385D, ADAMTS9, EDNRA, HAND2, MYOCD, ITCH/EDEM2/MMP24, and MRTFA) were identified in all 3 phenotypes. An additional new locus (LOXL1) was identified in the meta-analysis of the 3 phenotypes. Sex interaction analysis revealed sex differences in 7 loci including a novel locus (SYNE3) in males. Meta-analysis of UK Biobank data with a previous meta-analysis led to identification of three novel loci (APOB, FIP1L1, and LOXL4). Transcriptome-wide association analyses implicated additional genes ARHGAP42, NDRG4, and KANK2. Gene set analysis showed an enrichment in extracellular organization and the PDGF (platelet-derived growth factor) signaling pathway. We found positive genetic correlations of cIMT with coronary artery disease rg=0.21 (P=1.4×10-7), peripheral artery disease rg=0.45 (P=5.3×10-5), and systolic blood pressure rg=0.30 (P=4.0×10-18). A negative genetic correlation between average of maximum cIMT and high-density lipoprotein was found rg=-0.12 (P=7.0×10-4). CONCLUSIONS Genome-wide association meta-analyses in >100 000 individuals identified 25 novel loci associated with cIMT providing insights into genes and tissue-specific regulatory mechanisms of proatherosclerotic processes. We found evidence for shared biological mechanisms with cardiovascular diseases.
Collapse
Affiliation(s)
- Ming Wai Yeung
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Siqi Wang
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| | - Yordi J. van de Vegte
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Germany (O.B.)
| | - Jessica van Setten
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology (S.W., H.S.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - M. Abdullah Said
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (M.W.Y., S.W., Y.J.v.d.V., N.V., M.A.S., P.v.d.H.), University of Groningen, University Medical Center Groningen, the Netherlands
- Division of Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, the Netherlands (M.W.Y., J.v.S., P.v.d.H.)
| |
Collapse
|
5
|
Perrone B, Ruffo P, Zelasco S, Giordano C, Morelli C, Barone I, Catalano S, Andò S, Sisci D, Tripepi G, Mammì C, Bonofiglio D, Conforti FL. LPL, FNDC5 and PPARγ gene polymorphisms related to body composition parameters and lipid metabolic profile in adolescents from Southern Italy. J Transl Med 2022; 20:107. [PMID: 35241092 PMCID: PMC8895817 DOI: 10.1186/s12967-022-03314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background Plasma lipid profile and anthropometric variables are known to be under strong genetic control and the identification of genetic variants associated with bioclinical parameters is of considerable public health importance. In this study, a young cohort of healthy individuals was genotyped for genes related to health and pathological conditions, to analyze the association of single nucleotide polymorphisms (SNPs) with different bioclinical parameters, adherence to the Mediterranean Diet (MD) and physical activity, studying the role of lifestyle and body composition parameters on biochemical metabolic profile. Methods Association analysis of single variants in the genes of lipoprotein lipase (LPL), fibronectin type III domain containing protein 5 (FNDC5), and peroxisome proliferator-activated receptor-gamma (PPARγ) and haplotype analyses were performed. Results Multiple (n = 14) common variants in the three genes demonstrated a significant effect on plasma lipoprotein-lipid levels and/or on biochemical parameters in our sample. Specifically, SNPs were related to lipid metabolism (rs3866471, rs4922115, rs11570892, rs248, rs316, rs1059507, rs1801282) or glycemic profile (rs3208305) or anthropometric parameters (rs3480, rs726344, rs1570569) for a total of 26 significant associations (P < 0.01 and/or P < 0.05) and two haplotypes, for the first time, were strongly associated with lipid and body composition parameters. Interestingly, we identified twenty-four new variants not previously described in the literature and a novel significant association between rs80143795 and body composition. Conclusions In this study we confirm the association between these SNPs on lipid metabolism and body parameters also in a young cohort, indicating the important role of these genetic factors as determinants of health. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03314-w.
Collapse
Affiliation(s)
- Benedetta Perrone
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Samanta Zelasco
- Olive Growing and Olive Oil Industry Research Centre, Agricultural Research Council, 87036, Rende, CS, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy.,Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy.,Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Sebastiano Andò
- Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy.,Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Giovanni Tripepi
- Institute of Clinical Physiology of Reggio Calabria, IFC-CNR, Reggio Calabria, Italy
| | - Corrado Mammì
- Medical Genetics Unit, Great Metropolitan Hospital BMM, Reggio Calabria, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy.,Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy. .,Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy.
| |
Collapse
|
6
|
Wang T, Qiao J, Zhang S, Wei Y, Zeng P. Simultaneous test and estimation of total genetic effect in eQTL integrative analysis through mixed models. Brief Bioinform 2022; 23:6535679. [PMID: 35212359 DOI: 10.1093/bib/bbac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/22/2022] [Accepted: 02/07/2021] [Indexed: 11/14/2022] Open
Abstract
Integration of expression quantitative trait loci (eQTL) into genome-wide association studies (GWASs) is a promising manner to reveal functional roles of associated single-nucleotide polymorphisms (SNPs) in complex phenotypes and has become an active research field in post-GWAS era. However, how to efficiently incorporate eQTL mapping study into GWAS for prioritization of causal genes remains elusive. We herein proposed a novel method termed as Mixed transcriptome-wide association studies (TWAS) and mediated Variance estimation (MTV) by modeling the effects of cis-SNPs of a gene as a function of eQTL. MTV formulates the integrative method and TWAS within a unified framework via mixed models and therefore includes many prior methods/tests as special cases. We further justified MTV from another two statistical perspectives of mediation analysis and two-stage Mendelian randomization. Relative to existing methods, MTV is superior for pronounced features including the processing of direct effects of cis-SNPs on phenotypes, the powerful likelihood ratio test for assessment of joint effects of cis-SNPs and genetically regulated gene expression (GReX), two useful quantities to measure relative genetic contributions of GReX and cis-SNPs to phenotypic variance, and the computationally efferent parameter expansion expectation maximum algorithm. With extensive simulations, we identified that MTV correctly controlled the type I error in joint evaluation of the total genetic effect and proved more powerful to discover true association signals across various scenarios compared to existing methods. We finally applied MTV to 41 complex traits/diseases available from three GWASs and discovered many new associated genes that had otherwise been missed by existing methods. We also revealed that a small but substantial fraction of phenotypic variation was mediated by GReX. Overall, MTV constructs a robust and realistic modeling foundation for integrative omics analysis and has the advantage of offering more attractive biological interpretations of GWAS results.
Collapse
Affiliation(s)
- Ting Wang
- Department of Biostatistics at Xuzhou Medical University, China
| | - Jiahao Qiao
- Department of Biostatistics at Xuzhou Medical University, China
| | - Shuo Zhang
- Department of Biostatistics at Xuzhou Medical University, China
| | - Yongyue Wei
- Department of Biostatistics at Nanjing Medical University, China
| | - Ping Zeng
- Department of Biostatistics, Center for Medical Statistics and Data Analysis and Key Laboratory of Human Genetics and Environmental Medicine at Xuzhou Medical University, China
| |
Collapse
|
7
|
Schroor MM, Mokhtar FBA, Plat J, Mensink RP. Associations between SNPs in Intestinal Cholesterol Absorption and Endogenous Cholesterol Synthesis Genes with Cholesterol Metabolism. Biomedicines 2021; 9:biomedicines9101475. [PMID: 34680591 PMCID: PMC8533139 DOI: 10.3390/biomedicines9101475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) have been associated with cholesterol metabolism and may partly explain large inter-individual variability in intestinal cholesterol absorption and endogenous cholesterol synthesis rates. This cross-sectional study therefore examined whether SNPs in genes encoding for proteins involved in intestinal cholesterol absorption (ABCG5, ABCG8, and NPC1L1) and endogenous cholesterol synthesis (CYP51A1, DHCR7, DHCR24, HMGCR, HSD17B7, LBR, and MSMO1) were associated with intestinal cholesterol absorption markers (total cholesterol (TC) standardized campesterol and sitosterol levels), an endogenous cholesterol synthesis marker (TC-standardized lathosterol levels), and serum low-density lipoprotein cholesterol (LDL-C) concentrations in a European cohort. ABCG5 (rs4245786) and the tag SNP ABCG8 (rs4245791) were significantly associated with serum campesterol and/or sitosterol levels. In contrast, NPC1L1 (rs217429 and rs217416) were significantly associated with serum lathosterol levels. The tag SNP in HMGCR (rs12916) and a SNP in LBR (rs12141732) were significantly associated with serum LDL-C concentrations. SNPs in the cholesterol absorption genes were not associated with serum LDL-C concentrations. SNPs in CYP51A1, DHCR24, HSD17B7, and MSMO1 were not associated with the serum non-cholesterol sterols and LDL-C concentrations. Given the variable efficiency of cholesterol-lowering interventions, the identification of SNPs associated with cholesterol metabolism could be a step forward towards personalized approaches.
Collapse
Affiliation(s)
- Maite M. Schroor
- Correspondence: (M.M.S.); (F.B.A.M.); Tel.: +31-(0)43-3884258 (M.M.S.); +31-(0)43-3881313 (F.B.A.M.)
| | - Fatma B. A. Mokhtar
- Correspondence: (M.M.S.); (F.B.A.M.); Tel.: +31-(0)43-3884258 (M.M.S.); +31-(0)43-3881313 (F.B.A.M.)
| | | | | |
Collapse
|
8
|
A Novel Splice Site Variant in the LDLRAP1 Gene Causes Familial Hypercholesterolemia. IRANIAN BIOMEDICAL JOURNAL 2021; 25:374-9. [PMID: 34425670 PMCID: PMC8487678 DOI: 10.52547/ibj.25.5.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: FH, a hereditary disorder, is caused by pathogenic variants in the LDLR, APOB, and PCSK9 genes. This study has assessed genetic variants in a family, clinically diagnosed with FH. Methods: A family was recruited from MASHAD study in Iran with possible FH based on the Simon Broom criteria. The DNA sample of an affected individual (proband) was analyzed using WES, followed by bioinformatics and segregation analyses. Results: A novel splice site variant (c.345-2A>G) was detected in the LDLRAP1 gene, which was segregated in all affected family members. Moreover, HMGCR rs3846662 g.23092A>G was found to be homozygous (G/G) in the proband, probably leading to reduced response to simvastatin and pravastatin. Conclusion: LDLRAP1 c.345-2A>G could alter the PTB, which acts as an important part of biological pathways related to lipid metabolism.
Collapse
|
9
|
Kerimov N, Hayhurst JD, Peikova K, Manning JR, Walter P, Kolberg L, Samoviča M, Sakthivel MP, Kuzmin I, Trevanion SJ, Burdett T, Jupp S, Parkinson H, Papatheodorou I, Yates AD, Zerbino DR, Alasoo K. A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nat Genet 2021; 53:1290-1299. [PMID: 34493866 PMCID: PMC8423625 DOI: 10.1038/s41588-021-00924-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Many gene expression quantitative trait locus (eQTL) studies have published their summary statistics, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and co-localization. However, technical differences between these datasets are a barrier to their widespread use. Consequently, target genes for most genome-wide association study (GWAS) signals have still not been identified. In the present study, we present the eQTL Catalogue ( https://www.ebi.ac.uk/eqtl ), a resource of quality-controlled, uniformly re-computed gene expression and splicing QTLs from 21 studies. We find that, for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies. Although most QTLs were shared between most bulk tissues, we identified a greater diversity of cell-type-specific QTLs from purified cell types, a subset of which also manifested as new disease co-localizations. Our summary statistics are freely available to enable the systematic interpretation of human GWAS associations across many cell types and tissues.
Collapse
Affiliation(s)
- Nurlan Kerimov
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- Open Targets, Wellcome Genome Campus, Cambridge, UK
| | - James D Hayhurst
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Kateryna Peikova
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Jonathan R Manning
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Peter Walter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Liis Kolberg
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Marija Samoviča
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Manoj Pandian Sakthivel
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Ivan Kuzmin
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Stephen J Trevanion
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Tony Burdett
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Simon Jupp
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Helen Parkinson
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Irene Papatheodorou
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Andrew D Yates
- Open Targets, Wellcome Genome Campus, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Daniel R Zerbino
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
| | - Kaur Alasoo
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
- Open Targets, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
10
|
Khan AA, Sundar P, Natarajan B, Gupta V, Arige V, Reddy SS, Barthwal MK, Mahapatra NR. An evolutionarily-conserved promoter allele governs HMG-CoA reductase expression in spontaneously hypertensive rat. J Mol Cell Cardiol 2021; 158:140-152. [PMID: 34081950 DOI: 10.1016/j.yjmcc.2021.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
3-Hydroxy-3-methyl glutaryl-coenzyme A reductase (Hmgcr) encodes the rate-limiting enzyme in the cholesterol biosynthesis pathway. The regulation of Hmgcr in rat models of genetic hypertension (viz. Spontaneously Hypertensive Rat [SHR] and its normotensive control Wistar/Kyoto [WKY] strain) is unclear. Interestingly, Hmgcr transcript and protein levels are diminished in liver tissues of SHR as compared to WKY. This observation is consistent with the diminished plasma cholesterol level in SHR animals. However, the molecular basis of these apparently counter-intuitive findings remains completely unknown. Sequencing of the Hmgcr promoter in SHR and WKY strains reveals three variations: A-405G, C-62T and a 11 bp insertion (-398_-388insTGCGGTCCTCC) in SHR. Among these variations, A-405G occurs at an evolutionarily-conserved site among many mammals. Moreover, SHR-Hmgcr promoter displays lower activity than WKY-Hmgcr promoter in various cell lines. Transient transfections of Hmgcr-promoter mutants and in silico analysis suggest altered binding of Runx3 and Srebf1 across A-405G site. On the other hand, C-62T and -398_-388insTGCGGTCCTCC variations do not appear to contribute to the reduced Hmgcr promoter activity in SHR as compared to WKY. Indeed, chromatin immunoprecipitation assays confirm differential binding of Runx3 and Srebf1 to Hmgcr promoter leading to reduced expression of Hmgcr in SHR as compared to WKY under basal as well as cholesterol-modulated conditions. Taken together, this study provides, for the first time, molecular basis for diminished Hmgcr expression in SHR animals, which may account for the reduced circulating cholesterol level in this widely-studied model for cardiovascular diseases.
Collapse
Affiliation(s)
- Abrar A Khan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Poovitha Sundar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bhargavi Natarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vinayak Gupta
- Bennett University, Plot No. 8-11, Techzone II, Greater Noida 201310, India
| | - Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Manoj K Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
11
|
Kuang YL, Theusch E, M Krauss R, W Medina M. Identifying genetic modulators of statin response using subject-derived lymphoblastoid cell lines. Pharmacogenomics 2021; 22:413-421. [PMID: 33858191 DOI: 10.2217/pgs-2020-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) have proven effective in reducing plasma low-density lipoprotein levels and risk of cardiovascular disease, their lipid lowering efficacy is highly variable among individuals. Furthermore, statin treatment carries a small but significant risk of adverse effects, most notably myopathy and new onset diabetes. Hence, identification of biomarkers for predicting patients who would most likely benefit from statin treatment without incurring increased risk of adverse effects can have a significant public health impact. In this review, we discuss the rationale for the use of subject-derived lymphoblastoid cell lines in studies of statin pharmacogenomics and describe a variety of approaches we have employed to identify novel genetic markers associated with interindividual variation in statin response.
Collapse
Affiliation(s)
- Yu-Lin Kuang
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Ronald M Krauss
- Departments of Pediatrics and Medicine, University of California San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| |
Collapse
|
12
|
Ahangari N, Doosti M, Ghayour Mobarhan M, Sahebkar A, Ferns GA, Pasdar A. Personalised medicine in hypercholesterolaemia: the role of pharmacogenetics in statin therapy. Ann Med 2020; 52:462-470. [PMID: 32735150 PMCID: PMC7877934 DOI: 10.1080/07853890.2020.1800074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Statins are the first-line choice in Lipid-lowering therapy to reduce cardiovascular risk. In a continuous attempt to optimise treatment success, there is a need for additional research on genes and related molecular pathways that can determine the efficacy and toxicity of lipid-lowering drugs. Several variations within genes associated with lipid metabolism, including those involved in uptake, distribution and metabolism of statins have been reported. The purpose of this study was to evaluate the effect of genetic variations in the key genes responsible for statins' metabolism and their role in personalised medicine and pharmacogenetic testing (PGx) in patients treated with such drugs. Genetic assessment for specific known SNPs within the most known genes such as ABCG2, SLCO1B1, CYP3A4, and HMGCR, appears likely to predict the efficacy of statin therapy and prevent their side effects but does not necessarily reduce the risk of cardiovascular events. Key Messages Hypercholesterolaemia patients show different response to statin therapy. Several variations within genes associated with statin metabolism have been investigated. Genetic assessment for specific known SNPs within the most known genes may improve the efficacy of statins treatment and prevent their side effects.
Collapse
Affiliation(s)
- Najmeh Ahangari
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Doosti
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK.,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Carlson JC, Weeks DE, Hawley NL, Sun G, Cheng H, Naseri T, Reupena MS, Tuitele J, Deka R, McGarvey ST, Minster RL. Genome-wide association studies in Samoans give insight into the genetic architecture of fasting serum lipid levels. J Hum Genet 2020; 66:111-121. [PMID: 32759990 DOI: 10.1038/s10038-020-0816-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022]
Abstract
The current understanding of the genetic architecture of lipids has largely come from genome-wide association studies (GWAS). To date, few GWAS have examined the genetic architecture of lipids in Polynesians, and none have in Samoans, whose unique population history, including many population bottlenecks, may provide insight into the biological foundations of variation in lipid levels. Here we performed a GWAS of four fasting serum lipid levels: total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TG) in a sample of 2849 Samoans, with validation genotyping for associations in a replication cohort comprising 1798 Samoans and American Samoans. We identified multiple genome-wide significant associations (P < 5 × 10-8) previously seen in other populations-APOA1 with TG, CETP with HDL, and APOE with TC and LDL-and several suggestive associations (P < 1 × 10-5), including an association of variants downstream of MGAT1 and RAB21 with HDL. However, we observed different association signals for variants near APOE than what has been previously reported in non-Polynesian populations. The association with several known lipid loci combined with the newly identified associations with variants near MGAT1 and RAB21 suggest that while some of the genetic architecture of lipids is shared between Samoans and other populations, part of the genetic architecture may be Polynesian-specific.
Collapse
Affiliation(s)
- Jenna C Carlson
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicola L Hawley
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Guangyun Sun
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hong Cheng
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | | | - John Tuitele
- Department of Public Health, Government of American Samoa, Pago Pago, AS, USA
| | - Ranjan Deka
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen T McGarvey
- International Health Institute and Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.,Department of Anthropology, Brown University, Providence, RI, USA
| | - Ryan L Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Ochoa-Rosales C, Portilla-Fernandez E, Nano J, Wilson R, Lehne B, Mishra PP, Gao X, Ghanbari M, Rueda-Ochoa OL, Juvinao-Quintero D, Loh M, Zhang W, Kooner JS, Grabe HJ, Felix SB, Schöttker B, Zhang Y, Gieger C, Müller-Nurasyid M, Heier M, Peters A, Lehtimäki T, Teumer A, Brenner H, Waldenberger M, Ikram MA, van Meurs JBJ, Franco OH, Voortman T, Chambers J, Stricker BH, Muka T. Epigenetic Link Between Statin Therapy and Type 2 Diabetes. Diabetes Care 2020; 43:875-884. [PMID: 32033992 DOI: 10.2337/dc19-1828] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/14/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the role of epigenetics in statins' diabetogenic effect comparing DNA methylation (DNAm) between statin users and nonusers in an epigenome-wide association study in blood. RESEARCH DESIGN AND METHODS Five cohort studies' participants (n = 8,270) were classified as statin users when they were on statin therapy at the time of DNAm assessment with Illumina 450K or EPIC array or noncurrent users otherwise. Associations of DNAm with various outcomes like incident type 2 diabetes, plasma glucose, insulin, and insulin resistance (HOMA of insulin resistance [HOMA-IR]) as well as with gene expression were investigated. RESULTS Discovery (n = 6,820) and replication (n = 1,450) phases associated five DNAm sites with statin use: cg17901584 (1.12 × 10-25 [DHCR24]), cg10177197 (3.94 × 10-08 [DHCR24]), cg06500161 (2.67 × 10-23 [ABCG1]), cg27243685 (6.01 × 10-09 [ABCG1]), and cg05119988 (7.26 × 10-12 [SC4MOL]). Two sites were associated with at least one glycemic trait or type 2 diabetes. Higher cg06500161 methylation was associated with higher fasting glucose, insulin, HOMA-IR, and type 2 diabetes (odds ratio 1.34 [95% CI 1.22, 1.47]). Mediation analyses suggested that ABCG1 methylation partially mediates the effect of statins on high insulin and HOMA-IR. Gene expression analyses showed that statin exposure and ABCG1 methylation were associated with ABCG1 downregulation, suggesting epigenetic regulation of ABCG1 expression. Further, outcomes insulin and HOMA-IR were significantly associated with ABCG1 expression. CONCLUSIONS This study sheds light on potential mechanisms linking statins with type 2 diabetes risk, providing evidence on DNAm partially mediating statins' effects on insulin traits. Further efforts shall disentangle the molecular mechanisms through which statins may induce DNAm changes, potentially leading to ABCG1 epigenetic regulation.
Collapse
Affiliation(s)
- Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Centro de Vida Saludable de la Universidad de Concepción, Concepción, Chile
| | | | - Jana Nano
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Rory Wilson
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, Imperial College London, London, U.K
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Xu Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Oscar L Rueda-Ochoa
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Electrocardiography Research group, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, U.K
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, U.K
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, U.K
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, U.K
- National Heart and Lung Institute, Imperial College London, London, U.K
- Imperial College Healthcare NHS Trust, London, U.K
- MRC-PHE Centre for Environment and Health, Imperial College London, London, U.K
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Stephan B Felix
- Partner Site Greifswald, German Center for Cardiovascular Research (DZHK), Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Department of Internal Medicine I (Cardiology), Hospital of the Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alexander Teumer
- Partner Site Greifswald, German Center for Cardiovascular Research (DZHK), Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Oscar H Franco
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - John Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, U.K
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, U.K
- Imperial College Healthcare NHS Trust, London, U.K
- MRC-PHE Centre for Environment and Health, Imperial College London, London, U.K
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Rosticci M, Pervjakova N, Kaakinen M, Cicero AF, Feufer AP, Marullo L, Mägi R, Fischer K, Jiang L, D'Addato S, Rizzoli E, Massimo G, Giovannini M, Angelini S, Hrelia P, Scapoli C, Borghi C, Prokopenko I. A meta-analysis of Italian and Estonian individuals shows an effect of common variants in HMGCR on blood apoB levels. Biomark Med 2019; 13:931-940. [PMID: 30191727 DOI: 10.2217/bmm-2017-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of the study was to explore the effects of variants at HMGCR-KIF6loci on a range of cardio-metabolic phenotypes. Methods: We analyzed the range of variants within Genetics in Brisighella Health Study and KIF6 genes using an additive genetic model on 18 cardiometabolic phenotypes in a sample of 1645 individuals from the Genetics in Brisighella Health Study and replicated in 10,662 individuals from the Estonian Genome Center University of Tartu. Results: We defined directly the effects of rs3846662:C>A at HMGCR on apoB levels. The analysis also confirmed effects of on low-density lipoprotein-cholesterol and total cholesterol levels. Variants in KIF6 gene did not reveal any associations with cardiometabolic phenotypes. Conclusion: This study highlights effect of HMGCR locus on assay-determined apoB levels, an infrequent measure of blood lipids in large studies.
Collapse
Affiliation(s)
- Martina Rosticci
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Natalia Pervjakova
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.,Department of Biotechnology, Institute of Molecular & Cell Biology, University of Tartu, Tartu, Estonia.,Genomics of Common Disease, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Marika Kaakinen
- Genomics of Common Disease, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK.,Pharmacology & Therapeutics, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, UK
| | - Arrigo F Cicero
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Arne P Feufer
- Institute of Bioinformatics & Systems Biology, Helmholtz Zentrum München, München, Germany
| | - Letizia Marullo
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Krista Fischer
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Longda Jiang
- Genomics of Common Disease, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Sergio D'Addato
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Elisabetta Rizzoli
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianmichele Massimo
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum University of Bologna, Italy
| | - Marina Giovannini
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum University of Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum University of Bologna, Italy
| | - Chiara Scapoli
- Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudio Borghi
- Medicine & Surgery Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Inga Prokopenko
- Genomics of Common Disease, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Abstract
The reduction of plasma apolipoprotein B (apoB) containing lipoproteins has long been pursued as the main modifiable risk factor for the development of cardiovascular disease (CVD). This has led to an intense search for strategies aiming at reducing plasma apoB-lipoproteins, culminating in reduction of overall CV risk. Despite 3 decades of progress, CVD remains the leading cause of morbidity and mortality worldwide and, as such, new therapeutic targets are still warranted. Clinical and preclinical research has moved forward from the original concept, under which some lipids must be accumulated and other removed to achieve the ideal condition in disease prevention, into the concept that mechanisms that orchestrate lipid movement between lipoproteins, cells and organelles is equally involved in CVD. As such, this review scrutinizes potentially atherogenic changes in lipid trafficking and assesses the molecular mechanisms behind it. New developments in risk assessment and new targets for the mitigation of residual CVD risk are also addressed.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil.
| | | | - Joaquim Barreto
- Atherosclerosis and Vascular Biology Laboratory (Aterolab), State University of Campinas (Unicamp), São Paulo, Brazil
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Wright SM, Jensen SL, Cockriel KL, Davis B, Tschanz JT, Munger RG, Corcoran CD, Kauwe JSK. Association study of rs3846662 with Alzheimer's disease in a population-based cohort: the Cache County Study. Neurobiol Aging 2019; 84:242.e1-242.e6. [PMID: 30975575 DOI: 10.1016/j.neurobiolaging.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 11/28/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase is associated with monitoring cholesterol levels. The presence of the single-nucleotide polymorphism rs3846662 introduces alternative splicing at exon 13; the exclusion of this exon leads to a reduction in total cholesterol levels. Lower cholesterol levels are linked to a reduction in Alzheimer's disease (AD) risk. The major allele of rs3846662, which encourages the splicing of exon 13, has recently been shown to act as a preventative allele for AD, especially in women. The purpose of our research was to replicate and confirm this finding. Using logistic regressions and survival curves, we found a significant association between AD and rs3846662, with a stronger association in individuals who carry the APOE e4 allele, supporting previously published work. The effect of rs3846662 on women is insignificant in our cohort. We confirmed that rs3846662 is associated with reduced risk for AD without gender differences; however, we failed to detect association between rs3846662 and delayed mild cognitive impairment conversion to AD for either of the APOE e4 allelic groups.
Collapse
Affiliation(s)
- Sage M Wright
- Department of Biology, Brigham Young University, Provo, UT, USA
| | | | | | - Brian Davis
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - JoAnn T Tschanz
- Department of Psychology, Utah State University, Logan, UT, USA
| | - Ronald G Munger
- Department of Nutrition, Dietetics, and Food Science, Utah State University, Logan, UT, USA
| | | | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
18
|
Alasoo K, Rodrigues J, Danesh J, Freitag DF, Paul DS, Gaffney DJ. Genetic effects on promoter usage are highly context-specific and contribute to complex traits. eLife 2019; 8:e41673. [PMID: 30618377 PMCID: PMC6349408 DOI: 10.7554/elife.41673] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic variants regulating RNA splicing and transcript usage have been implicated in both common and rare diseases. Although transcript usage quantitative trait loci (tuQTLs) have been mapped across multiple cell types and contexts, it is challenging to distinguish between the main molecular mechanisms controlling transcript usage: promoter choice, splicing and 3' end choice. Here, we analysed RNA-seq data from human macrophages exposed to three inflammatory and one metabolic stimulus. In addition to conventional gene-level and transcript-level analyses, we also directly quantified promoter usage, splicing and 3' end usage. We found that promoters, splicing and 3' ends were predominantly controlled by independent genetic variants enriched in distinct genomic features. Promoter usage QTLs were also 50% more likely to be context-specific than other tuQTLs and constituted 25% of the transcript-level colocalisations with complex traits. Thus, promoter usage might be an underappreciated molecular mechanism mediating complex trait associations in a context-specific manner.
Collapse
Affiliation(s)
- Kaur Alasoo
- Institute of Computer ScienceUniversity of TartuTartuEstonia
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Julia Rodrigues
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - John Danesh
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
- National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUnited Kingdom
| | - Daniel F Freitag
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
| | - Dirk S Paul
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- British Heart Foundation Centre of Excellence, Division of Cardiovascular MedicineAddenbrooke’s HospitalCambridgeUnited Kingdom
| | - Daniel J Gaffney
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| |
Collapse
|
19
|
Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes Metab Syndr Obes 2019; 12:1543-1553. [PMID: 31686875 PMCID: PMC6709517 DOI: 10.2147/dmso.s219013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol homeostasis is critical and necessary for the body's functions. Hypercholesterolemia can lead to significant clinical problems, such as cardiovascular disease (CVD). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and low-density lipoprotein cholesterol receptor (LDLR) are major points of control in cholesterol homeostasis. We summarize the regulatory mechanisms of HMGCR and LDLR, which may provide insight for new drug design and development.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian271000, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
- Correspondence: Ling GaoScientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong Province250021, People’s Republic of ChinaTel +86 531 6877 6910Email
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan250013, People’s Republic of China
- Shudong LiuDepartment of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, Shandong Province250013, People’s Republic of ChinaTel +86 531 8238 2351Email
| |
Collapse
|
20
|
Turner AW, Wong D, Dreisbach CN, Miller CL. GWAS Reveal Targets in Vessel Wall Pathways to Treat Coronary Artery Disease. Front Cardiovasc Med 2018; 5:72. [PMID: 29988570 PMCID: PMC6026658 DOI: 10.3389/fcvm.2018.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of mortality worldwide and poses a considerable public health burden. Recent genome-wide association studies (GWAS) have revealed >100 genetic loci associated with CAD susceptibility in humans. While a number of these loci harbor gene targets of currently approved therapies, such as statins and PCSK9 inhibitors, the majority of the annotated genes at these loci encode for proteins involved in vessel wall function with no known drugs available. Importantly many of the associated genes linked to vascular (smooth muscle, endothelial, and macrophage) cell processes are now organized into distinct functional pathways, e.g., vasodilation, growth factor responses, extracellular matrix and plaque remodeling, and inflammation. In this mini-review, we highlight the most recently identified loci that have predicted roles in the vessel wall and provide genetic context for pre-existing therapies as well as new drug targets informed from GWAS. With the development of new modalities to target these pathways, (e.g., antisense oligonucleotides, CRISPR/Cas9, and RNA interference) as well as the computational frameworks to prioritize or reposition therapeutics, there is great opportunity to close the gap from initial genetic discovery to clinical translation for many patients affected by this common disease.
Collapse
Affiliation(s)
- Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Caitlin N Dreisbach
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Data Science Institute, University of Virginia, Charlottesville, VA, United States
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States.,Data Science Institute, University of Virginia, Charlottesville, VA, United States.,Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
21
|
Cano-Corres R, Candás-Estébanez B, Padró-Miquel A, Fanlo-Maresma M, Pintó X, Alía-Ramos P. Influence of 6 genetic variants on the efficacy of statins in patients with dyslipidemia. J Clin Lab Anal 2018; 32:e22566. [PMID: 29732606 DOI: 10.1002/jcla.22566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Patients with dyslipidemia are often treated with statins to reduce lipids and hence cardiovascular risk, but treatment response is variable, partly due to genetic factors. METHODS We studied the influence of 6 gene variants (APOE c.526C > T (APOE2), APOE c.388T > C (APOE4), SLCO1B1 c.521T > C, CYP3A4 c.-392G > A, HMGCR c.1564-106A > G, and LPA c.3947 + 467T > C) on statin efficacy assessing 2 indicators: the percent reduction in total cholesterol (TC) and non-HDL cholesterol (non-HDL), as well as the achievement of therapeutic goals. The study was performed in a group of patients (n = 100) without previous pharmacological treatment. Multiple regression models were used to calculate the percentage of explanation in response variability added by every variant to a basal model constructed with significant nongenetic control variables. RESULTS The most influential variant was HMGCR c.1564-106A > G (rs3846662), and carriers showed a significantly lower reduction in TC and non-HDL. This variant is related to an alternative splicing involving exon 13, which is also regulated by lipid concentrations in patients without the variant. Concerning therapeutic goals, HMGCR c.1564-106A > G hindered the achievement of TC targets on patients. CONCLUSIONS The HMGCR c.1564-106A > G variant was associated with less statin efficacy to decrease cholesterol.
Collapse
Affiliation(s)
- Ruth Cano-Corres
- Clinical Laboratory, Biochemistry Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Beatriz Candás-Estébanez
- Clinical Laboratory, Biochemistry and Molecular Genetics, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| | - Ariadna Padró-Miquel
- Clinical Laboratory, Biochemistry and Molecular Genetics, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| | - Marta Fanlo-Maresma
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, CiberObn, Idibell, Barcelona, Spain
| | - Xavier Pintó
- Unidad de Lípidos y Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario de Bellvitge, CiberObn, Idibell, Barcelona, Spain
| | - Pedro Alía-Ramos
- Clinical Laboratory, Biochemistry and Molecular Genetics, Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| |
Collapse
|
22
|
Robinson JR, Denny JC, Roden DM, Van Driest SL. Genome-wide and Phenome-wide Approaches to Understand Variable Drug Actions in Electronic Health Records. Clin Transl Sci 2018; 11:112-122. [PMID: 29148204 PMCID: PMC5866959 DOI: 10.1111/cts.12522] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/14/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jamie R. Robinson
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Joshua C. Denny
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Dan M. Roden
- Department of Biomedical InformaticsVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sara L. Van Driest
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
23
|
Seoane IV, Martínez C, García-Vicuña R, Ortiz AM, Juarranz Y, Talayero VC, González-Álvaro I, Gomariz RP, Lamana A. Vasoactive intestinal peptide gene polymorphisms, associated with its serum levels, predict treatment requirements in early rheumatoid arthritis. Sci Rep 2018; 8:2035. [PMID: 29391448 PMCID: PMC5794878 DOI: 10.1038/s41598-018-20400-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
We previously reported that early arthritis (EA) patients with low vasoactive intestinal peptide (VIP) serum levels demonstrate a worse clinical disease course. In this study, we analysed whether variants in the VIP gene correlated with its serum levels and clinical EA parameters. The VIP gene was sequenced in patients with extremely high/low VIP levels, measured by enzyme immunoassay. Sixteen single nucleotide polymorphisms (SNPs) were differentially distributed between both groups, which were subsequently genotyped in two patients’ sets. We observed that patients with rs688136 CC genotype showed higher VIP levels in both discovery (n = 91; p = 0.033) and validation populations (n = 131; p = 0.007). This effect was attenuated by the presence of minor alleles rs35643203 and rs12201140, which showed a clear trend towards low VIP level association (p = 0.118 and p = 0.049, respectively). Functional studies with miR-205-5p, which has a target site in the 3′ UTR close to rs688136, revealed a miRNA-mediated regulatory mechanism explaining the higher VIP gene expression in homozygous patients. Moreover, patients with an rs688136 CC genotype and no minor alleles of the other polymorphisms required less treatment (p = 0.009). We concluded that the identification of polymorphisms associated with VIP serum levels would complement the clinical assessment of the disease severity in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Iria V Seoane
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Rosario García-Vicuña
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Ana M Ortiz
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Vanessa C Talayero
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Amalia Lamana
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa, 28006, Madrid, Spain
| |
Collapse
|
24
|
Angelini S, Rosticci M, Massimo G, Musti M, Ravegnini G, Consolini N, Sammarini G, D'Addato S, Rizzoli E, Botbayev D, Borghi C, Cantelli-Forti G, Cicero AF, Hrelia P. Relationship between Lipid Phenotypes, Overweight, Lipid Lowering Drug Response and KIF6 and HMG-CoA Genotypes in a Subset of the Brisighella Heart Study Population. Int J Mol Sci 2017; 19:ijms19010049. [PMID: 29295555 PMCID: PMC5795999 DOI: 10.3390/ijms19010049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/14/2023] Open
Abstract
The existence of genetic traits might explain the susceptibility to develop hypercholesterolemia and the inter-individual differences in statin response. This study was performed to evaluate whether individuals' polymorphisms in HMG-CoA and KIF6 genes are independently associated with hypercholesterolemia, other lipid-associated traits, and statin response in unselected individuals enrolled in the Brisighella heart study (Survey 2012). A total of 1622 individuals, of which 183 under statin medication, were genotyped for a total of five polymorphisms (KIF6 rs20455, rs9471077, rs9462535; HMG-CoA rs3761740, rs3846662). The relationships between the five loci and clinical characteristics were analyzed. The principal basic parameters calculated on 12 h fasting blood included total cholesterol (TC), High Density Lipoprotein Cholesterol (HDL-C), Low-Density Lipoprotein Cholesterol (LDL-C), and triglycerides (TG). Hypercholesterolemia was defined as a TC >200 mg/dL or use of lipid-lowering medication. 965 individuals were characterized by hypercholesterolemia; these subjects were significantly older (p < 0.001), with body mass index (BMI) and waist circumference significantly higher (p < 0.001) compared to the others. HMG-CoA rs3846662 GG genotype was significantly over-represented in the hypercholesterolemic group (p = 0.030). HMG-CoA rs3846662 genotype was associated with the level of TC and LDL-C. Furthermore, in the same subset of untreated subjects, we observed a significant correlation between the KIF6 rs20455 and HDL-C. KIF6 variants were associated with a significantly lower (rs20455) or higher (rs9471077 and rs9462535) risk of obesity, in males only. No association between responsiveness to statins and the polymorphisms under investigation were observed. Our results showed associations between HMG-CoA rs3846662 and KIF6 rs20455 and lipid phenotypes, which may have an influence on dyslipidemia-related events. Moreover, this represents the first study implicating KIF6 variants with obesity in men, and point to the possible involvement of this genetic locus in the known gender-related differences in coronary artery disease.
Collapse
Affiliation(s)
- Sabrina Angelini
- Department of Pharmacy and Biotechnology, via Irnerio 48, University of Bologna, 40126 Bologna, Italy.
| | - Martina Rosticci
- Department of Medical and Surgical, University of Bologna, 40126 Bologna, Italy.
| | - Gianmichele Massimo
- Department of Pharmacy and Biotechnology, via Irnerio 48, University of Bologna, 40126 Bologna, Italy.
- Department of Medical and Surgical, University of Bologna, 40126 Bologna, Italy.
| | - Muriel Musti
- Department of Public Health, Epidemiological Service, Local Health Authority of Bologna, 40126 Bologna, Italy.
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, via Irnerio 48, University of Bologna, 40126 Bologna, Italy.
| | - Nicola Consolini
- Department of Pharmacy and Biotechnology, via Irnerio 48, University of Bologna, 40126 Bologna, Italy.
| | - Giulia Sammarini
- Department of Pharmacy and Biotechnology, via Irnerio 48, University of Bologna, 40126 Bologna, Italy.
| | - Sergio D'Addato
- Department of Medical and Surgical, University of Bologna, 40126 Bologna, Italy.
| | - Elisabetta Rizzoli
- Department of Medical and Surgical, University of Bologna, 40126 Bologna, Italy.
| | - Dauren Botbayev
- Department of Pharmacy and Biotechnology, via Irnerio 48, University of Bologna, 40126 Bologna, Italy.
- Department of Biotechnology, Faculty of Biology and Biotechnology, Кazakh National University Named after al-Farabi, 050040 Almaty, Kazakhstan.
| | - Claudio Borghi
- Department of Medical and Surgical, University of Bologna, 40126 Bologna, Italy.
| | - Giorgio Cantelli-Forti
- Department for Life Quality Studies, Corso d'Augusto 237, University of Bologna, 47921 Rimini, Italy.
| | - Arrigo F Cicero
- Department of Medical and Surgical, University of Bologna, 40126 Bologna, Italy.
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, via Irnerio 48, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
25
|
Cao L, Wang HF, Tan L, Sun FR, Tan MS, Tan CC, Jiang T, Yu JT, Tan L. Effect of HMGCR genetic variation on neuroimaging biomarkers in healthy, mild cognitive impairment and Alzheimer's disease cohorts. Oncotarget 2017; 7:13319-27. [PMID: 26950278 PMCID: PMC4924644 DOI: 10.18632/oncotarget.7797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/11/2016] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) has become a considerable public health issue. The mechanisms underlying AD onset and progression remain largely unclear. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is a strong functional AD candidate gene because it encodes part of the statin-binding domain of the enzyme, which serves as the rate-limiting step in cholesterol synthesis in all mammalian cells. Here, we evaluated the potential role of HMGCR (rs3846662) in AD-related pathology by assessing neuroimaging biomarkers. We enrolled in 812 subjects from the Alzheimer's disease Neuroimaging Initiative dataset. In general, it is possible that HMGCR (rs3846662) could be involved in preventing the atrophy of right entorhinal (P=0.03385) and left hippocampus (P=0.01839) in the follow-up research of two years. What's more, it lowered the drop rate of glucose metabolism in right temporal. We then further validated them in the AD, mild cognitive impairment (MCI), normal control (NC) sub-groups. All the results in the MCI groups confirmed the association. The results of our study indicated that HMGCR (rs3846662) plays a vital role in AD pathology mainly by influencing brain structure and glucose metabolism during AD progression.
Collapse
Affiliation(s)
- Lei Cao
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China
| | - Lin Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Fu-Rong Sun
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, China.,College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China.,Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | | |
Collapse
|
26
|
Chang XL, Tan L, Tan MS, Wang HF, Tan CC, Zhang W, Zheng ZJ, Kong LL, Wang ZX, Jiang T, Yu JT, Tan L. Association of HMGCR polymorphism with late-onset Alzheimer's disease in Han Chinese. Oncotarget 2017; 7:22746-51. [PMID: 27009838 PMCID: PMC5008397 DOI: 10.18632/oncotarget.8176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/21/2016] [Indexed: 02/04/2023] Open
Abstract
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) acts as a potential genetic modifier for Alzheimer's disease (AD). Previous reports identified that HMGCR rs3846662 polymorphism is associated with biosynthesis of cholesterol in AD pathology. In order to assess the involvement of the HMGCR polymorphism in the risk of late-onset AD (LOAD) in northern Han Chinese, we performed a case–control study of 2334 unrelated subjects (984 cases and 1350 age- and gender-matched controls) to evaluate the genotype and allele distributions of the HMGCR rs3846662 with LOAD. The genotype distribution (GG, AG, AA) of rs3846662 was significantly different between LOAD patients and controls (P = 0.003), but the allele distribution did not reach a significant difference (P = 0.614). After adjusting for age, gender and the APOE ε4 status, the minor A allele of rs3846662 was validated as a protective factor for LOAD in dominant model (OR = 0.796, P = 0.02, 95% CI = 0.657–0.965). Interestingly, we observed rs3846662 polymorphism was only significantly associated with LOAD in APOE ε4 non-carriers (OR = 0.735, P = 0.005, 95% CI = [0.593, 0.912]). In conclusion, our study demonstrates A allele of HMGCR rs3846662 acts as a protective factor for LOAD in northern Han Chinese.
Collapse
Affiliation(s)
- Xiao-Long Chang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, PR China
| | - Lin Tan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, PR China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, PR China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Zhan-Jie Zheng
- Department of Geriatric, Qingdao Mental Health Center, Qingdao, PR China
| | - Ling-Li Kong
- Department of Geriatric, Qingdao Mental Health Center, Qingdao, PR China
| | - Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, PR China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, PR China.,College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, PR China.,Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, PR China
| |
Collapse
|
27
|
Bush SJ, Chen L, Tovar-Corona JM, Urrutia AO. Alternative splicing and the evolution of phenotypic novelty. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0474. [PMID: 27994117 DOI: 10.1098/rstb.2015.0474] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Stephen J Bush
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Lu Chen
- West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | | | - Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK .,Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
28
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
29
|
Holic N, Frin S, Seye AK, Galy A, Fenard D. Improvement of De Novo Cholesterol Biosynthesis Efficiently Promotes the Production of Human Immunodeficiency Virus Type 1-Derived Lentiviral Vectors. Hum Gene Ther Methods 2016; 28:67-77. [PMID: 28042946 DOI: 10.1089/hgtb.2016.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of lentiviral vectors (LVs) for gene transfer in research, technological, or clinical applications requires the production of large amounts of vector. Mass production of clinical-grade LVs remains a challenge and limits certain perspectives for therapeutic use. Some improvements in LV production protocols have been possible by acting on multiple steps of the production process. The addition of animal-derived cholesterol to the culture medium of producer cells is known to increase the infectivity of LVs. To avoid the use of this animal-derived product in clinical settings, an alternative approach is to increase de novo the production of cholesterol by overexpressing a crucial cholesterogenic enzyme, namely, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). This project evaluates the impact of such an approach on the production, infectivity, and stability of LVs. We demonstrated that the overexpression of human HMGCR isoform 1 (hHMGCR1) in LV producer cells efficiently increased de novo cholesterol biosynthesis and enhanced by 2- to 3-fold the physical and infectious titers of LVs. We also observed that LVs produced in hHMGCR1-overexpressing cells were comparable in stability to LVs produced under classical conditions and were capable of transducing human CD34+ hematopoietic stem/progenitor cells efficiently. Interestingly, we also showed that LV production in the absence of fetal calf serum (FCS) but under hHMGCR1-overexpressing conditions allowed a viral production yield comparable to that achieved under classical conditions in high FCS content, leading the way to the establishment of new LV production protocols on adherent cells without serum.
Collapse
Affiliation(s)
- Nathalie Holic
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
- 3 Université Evry Val d'Essonne , UMR_S951, Evry, France
| | - Sophie Frin
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
| | - Ababacar K Seye
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
| | - Anne Galy
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
- 3 Université Evry Val d'Essonne , UMR_S951, Evry, France
| | - David Fenard
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
- 3 Université Evry Val d'Essonne , UMR_S951, Evry, France
| |
Collapse
|
30
|
The roles of RNA processing in translating genotype to phenotype. NATURE REVIEWS. MOLECULAR CELL BIOLOGY 2016. [PMID: 27847391 DOI: 10.1038/nrm.2016.139.] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A goal of human genetics studies is to determine the mechanisms by which genetic variation produces phenotypic differences that affect human health. Efforts in this respect have previously focused on genetic variants that affect mRNA levels by altering epigenetic and transcriptional regulation. Recent studies show that genetic variants that affect RNA processing are at least equally as common as, and are largely independent from, those variants that affect transcription. We highlight the impact of genetic variation on pre-mRNA splicing and polyadenylation, and on the stability, translation and structure of mRNAs as mechanisms that produce phenotypic traits. These results emphasize the importance of including RNA processing signals in analyses to identify functional variants.
Collapse
|
31
|
Manning KS, Cooper TA. The roles of RNA processing in translating genotype to phenotype. Nat Rev Mol Cell Biol 2016; 18:102-114. [PMID: 27847391 DOI: 10.1038/nrm.2016.139] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A goal of human genetics studies is to determine the mechanisms by which genetic variation produces phenotypic differences that affect human health. Efforts in this respect have previously focused on genetic variants that affect mRNA levels by altering epigenetic and transcriptional regulation. Recent studies show that genetic variants that affect RNA processing are at least equally as common as, and are largely independent from, those variants that affect transcription. We highlight the impact of genetic variation on pre-mRNA splicing and polyadenylation, and on the stability, translation and structure of mRNAs as mechanisms that produce phenotypic traits. These results emphasize the importance of including RNA processing signals in analyses to identify functional variants.
Collapse
Affiliation(s)
- Kassie S Manning
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas A Cooper
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Leduc V, Bourque L, Poirier J, Dufour R. Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia. Pharmacogenet Genomics 2016; 26:1-11. [PMID: 26466344 DOI: 10.1097/fpc.0000000000000178] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To assess the contribution of the rs3846662 polymorphism of HMGCR on serum lipid levels and statin efficacy, we measured in vivo HMGCR mRNA and lipid levels in French Canadian individuals affected by heterozygous familial hypercholesterolemia due to the deletion of more than 15 kb of the LDLR gene. RESULTS Men and women carrying the AA genotype at rs3846662, and no APOE4 allele, had higher levels of total cholesterol (5.43 vs. 4.58 mmol/l, P<0.05) and LDL-cholesterol (5.20 vs. 4.39 mmol/l, P<0.05) at baseline. However, with regard to statin efficacy, the penetrance of the AA genotype was sex dependent. Indeed, the percentage reduction in LDL-cholesterol upon statin treatment was significantly decreased in women with the AA genotype compared with women without it (38.4 vs. 46.2%, P<0.05), whereas this was not observed in men. Although both men and women bearing the AA genotype showed a higher ratio of full-length HMGCR mRNA/total HMGCR mRNA compared with individuals without it (n=37, P<0.05), overall transcription of HMGCR was decreased and increased in men and women carrying this genotype, respectively (n=37, P<0.01 and P<0.05). Finally, in our familial hypercholesterolemia cohort, HMGCR alternative splicing explained between 22 and 55% of the variance in statin response. CONCLUSION rs3846662 polymorphism and the alternative splicing of HMGCR mRNA significantly impact women's response to statin therapy.
Collapse
Affiliation(s)
- Valerie Leduc
- aCentre for Studies in Alzheimer's disease prevention bDouglas Mental Health University Institute, McGill University cDepartment of Nutrition, Clinical Research Institute of Montreal (IRCM), Montreal University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Sekula P, Del Greco M F, Pattaro C, Köttgen A. Mendelian Randomization as an Approach to Assess Causality Using Observational Data. J Am Soc Nephrol 2016; 27:3253-3265. [PMID: 27486138 DOI: 10.1681/asn.2016010098] [Citation(s) in RCA: 885] [Impact Index Per Article: 110.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mendelian randomization refers to an analytic approach to assess the causality of an observed association between a modifiable exposure or risk factor and a clinically relevant outcome. It presents a valuable tool, especially when randomized controlled trials to examine causality are not feasible and observational studies provide biased associations because of confounding or reverse causality. These issues are addressed by using genetic variants as instrumental variables for the tested exposure: the alleles of this exposure-associated genetic variant are randomly allocated and not subject to reverse causation. This, together with the wide availability of published genetic associations to screen for suitable genetic instrumental variables make Mendelian randomization a time- and cost-efficient approach and contribute to its increasing popularity for assessing and screening for potentially causal associations. An observed association between the genetic instrumental variable and the outcome supports the hypothesis that the exposure in question is causally related to the outcome. This review provides an overview of the Mendelian randomization method, addresses assumptions and implications, and includes illustrative examples. We also discuss special issues in nephrology, such as inverse risk factor associations in advanced disease, and outline opportunities to design Mendelian randomization studies around kidney function and disease.
Collapse
Affiliation(s)
- Peggy Sekula
- Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics and
| | | | - Cristian Pattaro
- Center for Biomedicine, European Academy of Bolzano, Bolzano, Italy
| | - Anna Köttgen
- Division of Genetic Epidemiology, Institute for Medical Biometry and Statistics and.,Department of Medicine IV, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; and
| |
Collapse
|
34
|
Guo S, Vollesen ALH, Hansen YBL, Frandsen E, Andersen MR, Amin FM, Fahrenkrug J, Olesen J, Ashina M. Part II: Biochemical changes after pituitary adenylate cyclase-activating polypeptide-38 infusion in migraine patients. Cephalalgia 2016; 37:136-147. [PMID: 26994298 DOI: 10.1177/0333102416639517] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Intravenous infusion of pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) provokes migraine attacks in 65-70% of migraine without aura (MO) patients. We investigated whether PACAP38 infusion causes changes in the endogenous production of PACAP38, vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP), tumour necrosis factor alpha (TNFα), S100 calcium binding protein B (S100B), neuron-specific enolase and pituitary hormones in migraine patients. Methods We allocated 32 previously genotyped MO patients to receive intravenous infusion PACAP38 (10 pmol/kg/minute) for 20 minutes and recorded migraine-like attacks. Sixteen of the patients were carriers of the risk allele rs2274316 ( MEF2D), which confers increased risk of MO and may regulate PACAP38 expression, and 16 were non-carriers. We collected blood samples at baseline and 20, 30, 40, 60 and 90 minutes after the start of the infusion. A control group of six healthy volunteers received intravenous saline. Results PACAP38 infusion caused significant changes in plasma concentrations of VIP ( p = 0.026), prolactin ( p = 0.011), S100B ( p < 0.001) and thyroid-stimulating hormone (TSH; p = 0.015), but not CGRP ( p = 0.642) and TNFα ( p = 0.535). We found no difference in measured biochemical variables after PACAP38 infusion in patients who later developed migraine-like attacks compared to those who did not ( p > 0.05). There was no difference in the changes of biochemical variables between patients with and without the MEF2D-associated gene variant ( p > 0.05). Conclusion PACAP38 infusion elevated the plasma levels of VIP, prolactin, S100B and TSH, but not CGRP and TNFα. Development of delayed migraine-like attacks or the presence of the MEF2D gene variant was not associated with pre-ictal changes in plasma levels of neuropeptides, TNFα and pituitary hormones.
Collapse
Affiliation(s)
- Song Guo
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Luise Haulund Vollesen
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Young Bae Lee Hansen
- 2 Department of Clinical Biochemistry, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Frandsen
- 3 Department of Diagnostics, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malene Rohr Andersen
- 4 Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Gentofte, Denmark
| | - Faisal Mohammad Amin
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- 5 Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jes Olesen
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- 1 Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Guo S, Vollesen ALH, Hansen RD, Esserlind AL, Amin FM, Christensen AF, Olesen J, Ashina M. Part I: Pituitary adenylate cyclase-activating polypeptide-38 induced migraine-like attacks in patients with and without familial aggregation of migraine. Cephalalgia 2016; 37:125-135. [DOI: 10.1177/0333102416639516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Intravenous infusion of adenylate cyclase-activating polypeptide-38 (PACAP38) provokes migraine-like attacks in 65–70% of migraine sufferers. Whether aggregation of migraine in first-degree relatives contributes to this discrepancy in PACAP38-induced response is unknown. We hypothesized that genetic enrichment plays a role in triggering of migraine and that migraine without aura patients with a high family load ( ≥ 2 first-degree relatives with migraine) would report more migraine-like attacks after intravenous infusion of human PACAP38. Methods In this study, we allocated 32 previously genotyped migraine without aura patients to receive intravenous infusion of 10 pmol/kg/min PACAP38 and recorded migraine-like attacks including headache characteristics and associated symptoms. Information of familial aggregation was obtained by telephone interview of first-degree relatives using a validated semi-structured questionnaire. Results PACAP38 infusion induced a migraine-like attack in 75% (nine out of 12) of patients with high family load compared to 70% (14 out of 20) with low family load ( P = 0.761). In an explorative investigation, we found that the migraine response after PACAP38 was not associated with the risk allele of rs2274316 ( MEF2D), which confers increased risk of migraine without aura and may regulate PACAP38 expression. Conclusion Migraine response to PACAP38 infusion in migraine without aura patients is not associated with high family load or the risk allele of rs2274316 ( MEF2D).
Collapse
Affiliation(s)
- Song Guo
- The Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anne Luise Haulund Vollesen
- The Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Rikke Dyhr Hansen
- The Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ann-Louise Esserlind
- The Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Faisal Mohammed Amin
- The Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anne Francke Christensen
- The Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jes Olesen
- The Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- The Danish Headache Center and Department of Neurology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
36
|
Lin J, Hu Y, Nunez S, Foulkes AS, Cieply B, Xue C, Gerelus M, Li W, Zhang H, Rader DJ, Musunuru K, Li M, Reilly MP. Transcriptome-Wide Analysis Reveals Modulation of Human Macrophage Inflammatory Phenotype Through Alternative Splicing. Arterioscler Thromb Vasc Biol 2016; 36:1434-47. [PMID: 27230130 PMCID: PMC4919157 DOI: 10.1161/atvbaha.116.307573] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Human macrophages can shift phenotype across the inflammatory M1 and reparative M2 spectrum in response to environmental challenges, but the mechanisms promoting inflammatory and cardiometabolic disease-associated M1 phenotypes remain incompletely understood. Alternative splicing (AS) is emerging as an important regulator of cellular function, yet its role in macrophage activation is largely unknown. We investigated the extent to which AS occurs in M1 activation within the cardiometabolic disease context and validated a functional genomic cell model for studying human macrophage-related AS events. APPROACH AND RESULTS From deep RNA-sequencing of resting, M1, and M2 primary human monocyte-derived macrophages, we found 3860 differentially expressed genes in M1 activation and detected 233 M1-induced AS events; the majority of AS events were cell- and M1-specific with enrichment for pathways relevant to macrophage inflammation. Using genetic variant data for 10 cardiometabolic traits, we identified 28 trait-associated variants within the genomic loci of 21 alternatively spliced genes and 15 variants within 7 differentially expressed regulatory splicing factors in M1 activation. Knockdown of 1 such splicing factor, CELF1, in primary human macrophages led to increased inflammatory response to M1 stimulation, demonstrating CELF1's potential modulation of the M1 phenotype. Finally, we demonstrated that an induced pluripotent stem cell-derived macrophage system recapitulates M1-associated AS events and provides a high-fidelity macrophage AS model. CONCLUSIONS AS plays a role in defining macrophage phenotype in a cell- and stimulus-specific fashion. Alternatively spliced genes and splicing factors with trait-associated variants may reveal novel pathways and targets in cardiometabolic diseases.
Collapse
Affiliation(s)
- Jennie Lin
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.).
| | - Yu Hu
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Sara Nunez
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Andrea S Foulkes
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Benjamin Cieply
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Chenyi Xue
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Mark Gerelus
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Wenjun Li
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Hanrui Zhang
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Daniel J Rader
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Kiran Musunuru
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Mingyao Li
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Muredach P Reilly
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.).
| |
Collapse
|
37
|
Li H, Kuwajima T, Oakley D, Nikulina E, Hou J, Yang WS, Lowry ER, Lamas NJ, Amoroso MW, Croft GF, Hosur R, Wichterle H, Sebti S, Filbin MT, Stockwell B, Henderson CE. Protein Prenylation Constitutes an Endogenous Brake on Axonal Growth. Cell Rep 2016; 16:545-558. [PMID: 27373155 DOI: 10.1016/j.celrep.2016.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/31/2016] [Accepted: 05/28/2016] [Indexed: 01/11/2023] Open
Abstract
Suboptimal axonal regeneration contributes to the consequences of nervous system trauma and neurodegenerative disease, but the intrinsic mechanisms that regulate axon growth remain unclear. We screened 50,400 small molecules for their ability to promote axon outgrowth on inhibitory substrata. The most potent hits were the statins, which stimulated growth of all mouse- and human-patient-derived neurons tested, both in vitro and in vivo, as did combined inhibition of the protein prenylation enzymes farnesyltransferase (PFT) and geranylgeranyl transferase I (PGGT-1). Compensatory sprouting of motor axons may delay clinical onset of amyotrophic lateral sclerosis (ALS). Accordingly, elevated levels of PGGT1B, which would be predicted to reduce sprouting, were found in motor neurons of early- versus late-onset ALS patients postmortem. The mevalonate-prenylation pathway therefore constitutes an endogenous brake on axonal growth, and its inhibition provides a potential therapeutic approach to accelerate neuronal regeneration in humans.
Collapse
Affiliation(s)
- Hai Li
- Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia Translational Neuroscience Initiative, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Neurology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Takaaki Kuwajima
- Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia Translational Neuroscience Initiative, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Neurology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Derek Oakley
- Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, New York, NY 10032, USA
| | - Elena Nikulina
- Department of Biological Sciences, Hunter College, City University of New York, NY 10065, USA
| | - Jianwei Hou
- Department of Biological Sciences, Hunter College, City University of New York, NY 10065, USA
| | - Wan Seok Yang
- Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia Translational Neuroscience Initiative, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute and Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Emily Rhodes Lowry
- Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, New York, NY 10032, USA
| | - Nuno Jorge Lamas
- Department of Pathology and Cell Biology, Neurology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, New York, NY 10032, USA; Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Minho, Portugal
| | | | - Gist F Croft
- Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, New York, NY 10032, USA
| | | | - Hynek Wichterle
- Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia Translational Neuroscience Initiative, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Neurology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, New York, NY 10032, USA
| | - Said Sebti
- Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | - Marie T Filbin
- Department of Biological Sciences, Hunter College, City University of New York, NY 10065, USA
| | - Brent Stockwell
- Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia Translational Neuroscience Initiative, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute and Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Christopher E Henderson
- Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia Translational Neuroscience Initiative, Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Neurology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, New York, NY 10032, USA; Target ALS Foundation, New York, NY 10032, USA.
| |
Collapse
|
38
|
Kim MJ, Yu CY, Theusch E, Naidoo D, Stevens K, Kuang YL, Schuetz E, Chaudhry AS, Medina MW. SUGP1 is a novel regulator of cholesterol metabolism. Hum Mol Genet 2016; 25:3106-3116. [PMID: 27206982 PMCID: PMC5181593 DOI: 10.1093/hmg/ddw151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022] Open
Abstract
A large haplotype on chromosome 19p13.11 tagged by rs10401969 in intron 8 of SURP and G patch domain containing 1 (SUGP1) is associated with coronary artery disease (CAD), plasma LDL cholesterol levels, and other energy metabolism phenotypes. Recent studies have suggested that TM6SF2 is the causal gene within the locus, but we postulated that this locus could harbor additional CAD risk genes, including the putative splicing factor SUGP1. Indeed, we found that rs10401969 regulates SUGP1 exon 8 skipping, causing non-sense-mediated mRNA decay. Hepatic Sugp1 overexpression in CD1 male mice increased plasma cholesterol levels 20–50%. In human hepatoma cell lines, SUGP1 knockdown stimulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) alternative splicing and decreased HMGCR transcript stability, thus reducing cholesterol synthesis and increasing LDL uptake. Our results strongly support a role for SUGP1 as a novel regulator of cholesterol metabolism and suggest that it contributes to the relationship between rs10401969 and plasma cholesterol.
Collapse
Affiliation(s)
- Mee J Kim
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Chi-Yi Yu
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Elizabeth Theusch
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Devesh Naidoo
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Kristen Stevens
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Yu-Lin Kuang
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Erin Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amarjit S Chaudhry
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marisa W Medina
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
39
|
Bentley-Hewitt KL, Hedderley DI, Monro J, Martell S, Smith H, Mishra S. Comparison of quantitative real-time polymerase chain reaction with NanoString® methodology using adipose and liver tissues from rats fed seaweed. N Biotechnol 2016; 33:380-6. [DOI: 10.1016/j.nbt.2016.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/17/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
|
40
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
41
|
Leduc V, Théroux L, Dea D, Dufour R, Poirier J. Effects of rs3846662 Variants on HMGCR mRNA and Protein Levels and on Markers of Alzheimer's Disease Pathology. J Mol Neurosci 2015; 58:109-19. [PMID: 26541602 DOI: 10.1007/s12031-015-0666-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/09/2015] [Indexed: 01/23/2023]
Abstract
3-Hydroxy-3-methyglutaryl coenzyme A reductase (HMGCR) is a cholesterol-regulating gene with statin relevance. rs3846662 being involved in regulation of HMGCR alternative splicing, we explored its impact on HMGCR messenger RNA (mRNA) and protein levels in the brain and the associations between those levels and levels of Alzheimer's disease pathological markers. We used brain samples derived from a cohort of 33 non-demented controls and 90 Alzheimer's disease autopsied-confirmed cases. HMGCR mRNA levels were determined in the frontal cortex (n = 114) and cerebellum (n = 110) using Taqman-qPCR, and HMGCR protein levels were determined in the frontal cortex (n = 117) using a commercial enzyme immunoassay. While densities of neurofibrillary tangles and senile plaques were determined in the frontal cortex (n = 74), total tau, phosphorylated Tau, and beta-amyloid 1-42 levels were determined in the frontal cortex (n = 94) and cerebellum (n = 91) using commercial enzyme immunoassays. Despite an increase in full-length HMGCR mRNA ratio in the frontal cortex of women carrying the AA genotype, there were no associations between rs3846662 and HMGCR mRNA or protein levels. An increased Δ13 HMGCR mRNA ratio was associated with increased levels of HMGCR proteins and neurofibrillary tangles in the frontal cortex but with reduced beta-amyloid 1-42 levels in the cerebellum, suggesting a brain cell type- or a disease progression-dependent association.
Collapse
Affiliation(s)
- Valerie Leduc
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada.,Institut de Recherches Cliniques de Montréal, Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
| | - Louise Théroux
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada
| | - Doris Dea
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada
| | - Robert Dufour
- Institut de Recherches Cliniques de Montréal, Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
| | - Judes Poirier
- Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD Centre), Douglas Mental Health University Institute, 6875 Lasalle, Verdun, Quebec, H4H 1R3, Canada. .,Centre for Studies in the Prevention of Alzheimer's Disease, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
42
|
Christensen AF, Esserlind AL, Werge T, Stefánsson H, Stefánsson K, Olesen J. The influence of genetic constitution on migraine drug responses. Cephalalgia 2015; 36:624-39. [DOI: 10.1177/0333102415610874] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/18/2015] [Indexed: 12/27/2022]
Abstract
Objective Specific acute treatments of migraine are 5HT1B/D receptor agonists; triptans and ergotamine, but only two-thirds of patients respond well without side effects. No migraine-prophylactic drugs are specific to migraine. Prophylactic drugs are selected by time-consuming “trial and error.” Personalized treatment is therefore much needed. The objective of this study was to test the effect of 12 single nucleotide polymorphisms (SNPs) significantly associated with migraine on migraine drug responses. Methods Semi-structured migraine interviews including questions on drug responses, blood samples and genotyping were performed on 1806 unrelated migraine cases recruited from the Danish Headache Center. Association analyses were carried out using logistic regression, assuming an additive model for the genetic effect. The effect on drug responses was tested for a combined genetic score and for each of the 12 SNPs. Significant findings were subsequently tested in an independent replication sample of 392 unrelated Danish migraine cases. Results A single risk variant, rs2651899 in PRDM16, was significantly associated with efficacy of triptans with an odds ratio (OR) of treatment success of 1.3, and a higher combined genetic score was significantly associated with efficacy of triptans with an OR of success of up to 2.6. A number of SNPs showed nominal preferential association with the efficacy of triptans and others with prophylactic drugs. Analyses of triptans and ergotamine complemented each other and gave a stronger signal when analyzed together. The associations between response to triptans and genetic load and rs2651899 were partially confirmed in the independent sample. Conclusion We show for the first time an association between genetic constitution and migraine drug response. This is a first step toward future individualized medicine.
Collapse
Affiliation(s)
- Anne Francke Christensen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Glostrup Hospital, University of Copenhagen, Denmark
| | - Ann-Louise Esserlind
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Glostrup Hospital, University of Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, University of Copenhagen, Roskilde, Denmark
| | | | | | - Jes Olesen
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Glostrup Hospital, University of Copenhagen, Denmark
| |
Collapse
|
43
|
Arbour L, Asuri S, Whittome B, Polanco F, Hegele RA. The Genetics of Cardiovascular Disease in Canadian and International Aboriginal Populations. Can J Cardiol 2015; 31:1094-115. [DOI: 10.1016/j.cjca.2015.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/16/2022] Open
|
44
|
Li L, Hua J, Jian-Ping H, Yan L. Association between the Lipid Levels and Single Nucleotide Polymorphisms of ABCA1, APOE and HMGCR Genes in Subjects with Spontaneous Preterm Delivery. PLoS One 2015; 10:e0135785. [PMID: 26301579 PMCID: PMC4547703 DOI: 10.1371/journal.pone.0135785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
Spontaneous preterm delivery (SPTD) with gestational age between 28 and 37 complete weeks was reported to have a genetic predisposition in lipids metabolism. This study aimed to investigate the association between the lipid levels and gene polymorphisms of ABCA1 (rs2422493), APOE (rs7412) and HMGCR (rs12916) in Chinese pregnant women with SPTD. A case-control study was conducted at the baseline randomization in 200 SPTD and 178 healthy full term delivery (FTD) women. Maternal blood lipids were detected close to delivery of fetus in SPTD group and in FTD group with gestational age-matched. Cord blood lipids were detected after delivery in two groups. Three genotypes both in maternal and cord blood were determined by real time PCR. The results showed that the levels of total cholesterol (TCHO), triglyceride (TG), high density lipoprotein (HDL), and low-density lipoprotein cholesterol (LDL) in the maternal blood in the SPTD group were significantly lower than those in the FTD group, while the levels of TCHO, HDL, and LDL in the cord blood in the SPTD group were significantly higher than those in the FTD group. In the SPTD subjects, the levels of TG and LDL in the maternal blood were associated with different genotypes of HMGCR gene rs12916 loci. These results indicate that abnormal lipid metabolism may exist in SPTD women and the premature fetus and the HMGCR gene may be a susceptible gene for SPTD.
Collapse
Affiliation(s)
- Lin Li
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, 95 Yong’an Road, Xuanwu District, Beijing, 100050, China
| | - Jin Hua
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, 95 Yong’an Road, Xuanwu District, Beijing, 100050, China
| | - Huang Jian-Ping
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, 95 Yong’an Road, Xuanwu District, Beijing, 100050, China
| | - Long Yan
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, 95 Yong’an Road, Xuanwu District, Beijing, 100050, China
- * E-mail:
| |
Collapse
|
45
|
Leduc V, De Beaumont L, Théroux L, Dea D, Aisen P, Petersen RC, Dufour R, Poirier J. HMGCR is a genetic modifier for risk, age of onset and MCI conversion to Alzheimer's disease in a three cohorts study. Mol Psychiatry 2015; 20:867-73. [PMID: 25023145 PMCID: PMC4318698 DOI: 10.1038/mp.2014.81] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/26/2014] [Accepted: 06/18/2014] [Indexed: 01/03/2023]
Abstract
Several retrospective epidemiological studies report that utilization of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitors called statins at mid-life can reduce the risk of developing sporadic Alzheimer's disease (AD) by as much as 70%. Conversely, the administration of these inhibitors in clinically diagnosed subjects with AD confers little or no benefits over time. Here, we investigated the association between AD and HMGCR rs3846662, a polymorphism known to be involved in the regulation of HMGCR exon 13 skipping, in a founder population and in two distinct mixed North American populations of converting mild cognitively impaired (MCI) subjects (Alzheimer's disease Cooperative study (ADCS) and Alzheimer's disease Neuroimaging Initiative (ADNI) cohorts). Targeting more specifically women, the G allele negative (G-) AD subjects exhibit delayed age of onset of AD (P=0.017) and significantly reduced risk of AD (OR: 0.521; P=0.0028), matching the effect size reported by the apolipoprotein E type 2 variant. Stratification for APOE4 in a large sample of MCI patients from the ADCS cohort revealed a significant protective effect of G negative carriers on AD conversion 3 years after MCI diagnosis (odds ratio (OR): 0.554; P=0.041). Conversion rate among APOE4 carriers with the HMGCR's G negative allele was markedly reduced (from 76% to 27%) to levels similar to APOE4 non-carriers (27.14%), which strongly indicate protection. Conversion data from the independent ADNI cohort also showed significantly reduced MCI or AD conversion among APOE4 carriers with the protective A allele (P=0.005). In conclusion, HMGCR rs3846662 acts as a potent genetic modifier for AD risk, age of onset and conversion.
Collapse
Affiliation(s)
- Valerie Leduc
- Douglas Mental Health University Institute
- Institut de recherches cliniques de Montréal, Department of Nutrition, Université de Montréal
| | | | | | - Doris Dea
- Douglas Mental Health University Institute
| | - Paul Aisen
- Department of Neurosciences, University of California San Diego
| | | | | | - Robert Dufour
- Institut de recherches cliniques de Montréal, Department of Nutrition, Université de Montréal
| | - Judes Poirier
- Douglas Mental Health University Institute
- Centre for Studies in Aging, McGill University
| |
Collapse
|
46
|
Papassotiropoulos A, de Quervain DJF. Failed drug discovery in psychiatry: time for human genome-guided solutions. Trends Cogn Sci 2015; 19:183-7. [PMID: 25727774 DOI: 10.1016/j.tics.2015.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022]
Abstract
Our knowledge about the molecular and neural mechanisms of emotional and cognitive processes has increased exponentially in the past decades. Unfortunately, there has been no translation of this knowledge into the development of novel and improved pharmacological treatments for psychiatric disorders. We comment on some of the reasons for failed drug discovery in psychiatry, particularly on the use of ill-suited disease models and on the use of diagnostic constructs unrelated to the underlying biological mechanisms. Furthermore, we argue that the use of human genetic findings together with biologically informed phenotypes and advanced data-mining methodology will catalyze the identification of promising drug targets and, finally, will lead to improved therapeutic outcomes.
Collapse
Affiliation(s)
- Andreas Papassotiropoulos
- University of Basel, Department of Psychology, Division of Molecular Neuroscience, Basel, Switzerland; University of Basel, Psychiatric University Clinics, Basel, Switzerland; University of Basel, Department Biozentrum, Life Sciences Training Facility, Basel, Switzerland; University of Basel, Transfaculty Research Platform, Basel, Switzerland.
| | - Dominique J F de Quervain
- University of Basel, Psychiatric University Clinics, Basel, Switzerland; University of Basel, Transfaculty Research Platform, Basel, Switzerland; University of Basel, Department of Psychology, Division of Cognitive Neuroscience, Basel, Switzerland.
| |
Collapse
|
47
|
Huang Q. Genetic study of complex diseases in the post-GWAS era. J Genet Genomics 2015; 42:87-98. [PMID: 25819085 DOI: 10.1016/j.jgg.2015.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/20/2022]
Abstract
Genome-wide association studies (GWASs) have identified thousands of genes and genetic variants (mainly SNPs) that contribute to complex diseases in humans. Functional characterization and mechanistic elucidation of these SNPs and genes action are the next major challenge. It has been well established that SNPs altering the amino acids of protein-coding genes can drastically impact protein function, and play an important role in molecular pathogenesis. Functions of regulatory SNPs can be complex and elusive, and involve gene expression regulation through the effect on RNA splicing, transcription factor binding, DNA methylation and miRNA recruitment. In the present review, we summarize the recent progress in our understanding of functional consequences of GWAS-associated non-coding regulatory SNPs, and discuss the application of systems genetics and network biology in the interpretation of GWAS findings.
Collapse
Affiliation(s)
- Qingyang Huang
- College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
48
|
Affiliation(s)
- Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, University of Exeter, Exeter EX2 5DW, UK.
| |
Collapse
|
49
|
Ma L, Keinan A, Clark AG. Biological knowledge-driven analysis of epistasis in human GWAS with application to lipid traits. Methods Mol Biol 2015; 1253:35-45. [PMID: 25403526 DOI: 10.1007/978-1-4939-2155-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While the importance of epistasis is well established, specific gene-gene interactions have rarely been identified in human genome-wide association studies (GWAS), mainly due to low power associated with such interaction tests. In this chapter, we integrate biological knowledge and human GWAS data to reveal epistatic interactions underlying quantitative lipid traits, which are major risk factors for coronary artery disease. To increase power to detect interactions, we only tested pairs of SNPs filtered by prior biological knowledge, including GWAS results, protein-protein interactions (PPIs), and pathway information. Using published GWAS and 9,713 European Americans (EA) from the Atherosclerosis Risk in Communities (ARIC) study, we identified an interaction between HMGCR and LIPC affecting high-density lipoprotein cholesterol (HDL-C) levels. We then validated this interaction in additional multiethnic cohorts from ARIC, the Framingham Heart Study, and the Multi-Ethnic Study of Atherosclerosis. Both HMGCR and LIPC are involved in the metabolism of lipids and lipoproteins, and LIPC itself has been marginally associated with HDL-C. Furthermore, no significant interaction was detected using PPI and pathway information, mainly due to the stringent significance level required after correcting for the large number of tests conducted. These results suggest the potential of biological knowledge-driven approaches to detect epistatic interactions in human GWAS, which may hold the key to exploring the role gene-gene interactions play in connecting genotypes and complex phenotypes in future GWAS.
Collapse
Affiliation(s)
- Li Ma
- Department of Animal and Avian Sciences, University of Maryland, Bldg 142, College Park, MD, 20742, USA,
| | | | | |
Collapse
|
50
|
Hussain Y, Ding Q, Connelly PW, Brunt JH, Ban MR, McIntyre AD, Huff MW, Gros R, Hegele RA, Feldman RD. G-protein estrogen receptor as a regulator of low-density lipoprotein cholesterol metabolism: cellular and population genetic studies. Arterioscler Thromb Vasc Biol 2014; 35:213-21. [PMID: 25395619 DOI: 10.1161/atvbaha.114.304326] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Estrogen deficiency is linked with increased low-density lipoprotein (LDL) cholesterol. The hormone receptor mediating this effect is unknown. G-protein estrogen receptor (GPER) is a recently recognized G-protein-coupled receptor that is activated by estrogens. We recently identified a common hypofunctional missense variant of GPER, namely P16L. However, the role of GPER in LDL metabolism is unknown. Therefore, we examined the association of the P16L genotype with plasma LDL cholesterol level. Furthermore, we studied the role of GPER in regulating expression of the LDL receptor and proprotein convertase subtilisin kexin type 9. APPROACH AND RESULTS Our discovery cohort was a genetically isolated population of Northern European descent, and our validation cohort consisted of normal, healthy women aged 18 to 56 years from London, Ontario. In addition, we examined the effect of GPER on the regulation of proprotein convertase subtilisin kexin type 9 and LDL receptor expression by the treatment with the GPER agonist, G1. In the discovery cohort, GPER P16L genotype was associated with a significant increase in LDL cholesterol (mean±SEM): 3.18±0.05, 3.25±0.08, and 4.25±0.33 mmol/L, respectively, in subjects with CC (homozygous for P16), CT (heterozygotes), and TT (homozygous for L16) genotypes (P<0.05). In the validation cohort (n=339), the GPER P16L genotype was associated with a similar increase in LDL cholesterol: 2.17±0.05, 2.34±0.06, and 2.42±0.16 mmol/L, respectively, in subjects with CC, CT, and TT genotypes (P<0.05). In the human hepatic carcinoma cell line, the GPER agonist, G1, mediated a concentration-dependent increase in LDL receptor expression, blocked by either pretreatment with the GPER antagonist G15 or by shRNA-mediated GPER downregulation. G1 also mediated a GPER- and concentration-dependent decrease in proprotein convertase subtilisin kexin type 9 expression. CONCLUSIONS GPER activation upregulates LDL receptor expression, probably at least, in part, via proprotein convertase subtilisin kexin type 9 downregulation. Furthermore, humans carrying the hypofunctional P16L genetic variant of GPER have increased plasma LDL cholesterol. In aggregate, these data suggest an important role of GPER in the regulation of LDL receptor expression and consequently LDL metabolism.
Collapse
Affiliation(s)
- Yasin Hussain
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Qingming Ding
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Philip W Connelly
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - J Howard Brunt
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Matthew R Ban
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Adam D McIntyre
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Murray W Huff
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Robert Gros
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Robert A Hegele
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.)
| | - Ross D Feldman
- From the Robarts Research Institute (Y.H., Q.D., M.R.B., A.D.M., M.W.H., R.G., R.A.H., R.D.F.) and Departments of Medicine (M.W.H., R.G., R.A.H., R.D.F.), Physiology and Pharmacology (R.G., R.A.H., R.D.F.), and Biochemistry (M.W.H.), Western University, London, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada (P.W.C.); and Department of Public Health and Social Policy, University of Victoria, Victoria, British Columbia, Canada (J.H.B.).
| |
Collapse
|