1
|
Luo J, Shao H, Song Y, Chao Y. Lymphocyte to C-reactive protein ratio is associated with in-hospital cardiac death in elderly patients with non-ST-segment elevation myocardial infarction. Front Cardiovasc Med 2024; 11:1431137. [PMID: 39193497 PMCID: PMC11347352 DOI: 10.3389/fcvm.2024.1431137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Background Although percutaneous coronary intervention (PCI) is recommended by guidelines, data from the real world suggest that elderly non-ST-segment elevation myocardial infarction (NSTEMI) patients have a low rate of PCI and a high death rate. Lymphocyte to C-reactive protein ratio (LCR), a novel inflammatory marker, has been shown to be associated with prognosis in a variety of diseases. However, the relationship between LCR and in-hospital cardiac death in elderly NSTEMI patients is unclear. The aim of this study was to investigate the effect of LCR on in-hospital cardiac death in elderly NSTEMI patients without PCI therapy. Methods This was a single-center retrospective observational study, consecutively enrolled elderly (≥75 years) patients diagnosed with NSTEMI and without PCI from February 2019 to February 2024. LCR was defined as lymphocyte count to C-reactive protein ratio. The endpoint of observation was in-hospital cardiac death. The predictive efficacy of the old and new models was evaluated by the net reclassification index (NRI) and the integrated discriminant improvement index (IDI). Results A total of 506 patients were enrolled in this study, and in-hospital cardiac death occurred in 54 patients (10.7%). Univariate logistic regression analysis showed that left ventricular ejection fraction, LCR, Killip ≥2, and N-terminal B-type natriuretic peptide proteins (NT-proBNP) were associated with the occurrence of in-hospital cardiac death. After adjusting for potential confounders, the results showed that NT-proBNP (OR = 1.695, 95% CI: 1.238-2.322) and LCR (OR = 0.262, 95% CI: 0.072-0.959) were independent risk factors for in-hospital cardiac death. After the addition of LCR to NT-proBNP, the predictive ability of the new model for in-hospital cardiac death was significantly improved (NRI = 0.278, P = 0.030; IDI = 0.017, P < 0.001). Conclusion Lower LCR is an independent risk factor for in-hospital cardiac death in elderly NSTEMI patients without PCI, and integrating LCR improves the prediction of in-hospital cardiac death occurrence.
Collapse
Affiliation(s)
- Jun Luo
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Han Shao
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Song
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yali Chao
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Yaşan M, Özel R, Yildiz A, Savaş G, Korkmaz A. The predictive value of systemic immune-inflammation index for long-term cardiovascular mortality in non-ST segment elevation myocardial infarction. Coron Artery Dis 2024; 35:179-185. [PMID: 38451553 DOI: 10.1097/mca.0000000000001355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Increased levels of inflammatory markers have been found in association with the severity of coronary atherosclerosis. Systemic immuneinflammation index (SII), which is calculated by multiplying neutrophil and platelet counts and then dividing the result by the lymphocyte count, can also be used as a prognostic indicator in different cardiovascular diseases. In this study, we investigated SII levels and long-term mortality of patients with non-ST segment elevation myocardial infarction (NSTEMI). METHODS This is an observational, single-center study. Two hundred-eight patients who underwent coronary angiography for NSTEMI were included in the study. Patients were divided into 3 tertiles based on SII levels. We researched the relationship between level level and 1, 3 and 5 years mortality (NSTEMI). RESULTS One-year mortality of the patients was significantly higher among patients in the upper SII tertile when compared with the lower and middle SII tertile groups [11 (15.9%) vs. 2 (2.9%) and 6 (8.7%); P = 0.008, P = 0.195, respectively). Three-year mortality of the patients was significantly higher among patients in the upper SII tertile when compared with the lower and middle SII tertile groups [21 (30.4%) vs. 5 (7.1%) and 12 (17.4%); P < 0.001, P = 0.072, respectively). Five-year mortality of the patients was significantly higher among patients in the upper SII tertile when compared with the lower and middle SII tertile groups [26 (37.7%) vs. 8 (11.4%) and 15 (21.7%); P < 0.001, P = 0.040, respectively). CONCLUSION Our study showed that NSTEMI patients with higher SII had worse long-term mortality.
Collapse
Affiliation(s)
- Mustafa Yaşan
- Department of Cardiology, Kastamonu Training and Research Hospital, Kastamonu
| | - Ramime Özel
- Department of Cardiology, Kastamonu Training and Research Hospital, Kastamonu
| | - Abdulkadir Yildiz
- Department of Cardiology, Kastamonu Training and Research Hospital, Kastamonu
| | - Göktuğ Savaş
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Education and Research Hospital, Istanbul
| | - Ahmet Korkmaz
- Department of Cardiology, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Urbanowicz T, Hanć A, Tomczak J, Michalak M, Olasińska-Wiśniewska A, Rzesoś P, Szot M, Filipiak KJ, Krasińska B, Krasiński Z, Tykarski A, Jemielity M. The Protective Effect of the Crosstalk between Zinc Hair Concentration and Lymphocyte Count-Preliminary Report. Life (Basel) 2024; 14:571. [PMID: 38792593 PMCID: PMC11122497 DOI: 10.3390/life14050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND An imbalance between pro- and anti-inflammatory mechanisms is indicated in the pathophysiology of atherosclerotic plaque. The coronary artery and carotid disease, despite sharing similar risk factors, are developed separately. The aim of this study was to analyze possible mechanisms between trace element hair-scalp concentrations and whole blood counts that favor atherosclerotic plaque progression in certain locations. METHODS There were 65 (36 (55%) males and 29 (45%) females) patients with a median age of 68 (61-73) years enrolled in a prospective, preliminary, multicenter analysis. The study group was composed of 13 patients with stable coronary artery disease (CAD group) referred for surgical revascularization due to multivessel coronary disease, 34 patients with carotid artery disease (carotid group) admitted for vascular procedure, and 18 patients in a control group (control group). RESULTS There was a significant difference between the CAD and carotid groups regarding lymphocyte (p = 0.004) counts. The biochemical comparison between the coronary and carotid groups revealed significant differences regarding chromium (Cr) (p = 0.002), copper (Cu) (p < 0.001), and zinc (Zn) (p < 0.001) concentrations. Spearman Rank Order Correlations between lymphocyte counts and trace elements in the analyzed groups were performed, revealing a strong correlation with zinc (R = 0.733, p < 0.001) in the control group (non-CAD, non-carotid). CONCLUSION Significant differences in hair-scalp concentrations related to atherosclerosis location were observed in our analysis. The interplay between zinc concentration and lymphocyte count may play a pivotal role in cardiovascular disease development.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Jolanta Tomczak
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Science, Dluga 1/2, 61-848 Poznan, Poland; (J.T.)
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Rokietnicka 7, 60-806 Poznan, Poland;
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| | - Patrycja Rzesoś
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.R.); (M.S.)
| | - Mateusz Szot
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.R.); (M.S.)
| | - Krzysztof J. Filipiak
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland;
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Beata Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Science, Dluga 1/2, 61-848 Poznan, Poland; (J.T.)
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| |
Collapse
|
4
|
Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan X, Wang Y, He S, Li C, Tao Z, Liu J, Jia E. Exploration and bioinformatic prediction for profile of mRNA bound to circular RNA BTBD7_hsa_circ_0000563 in coronary artery disease. BMC Cardiovasc Disord 2024; 24:71. [PMID: 38267845 PMCID: PMC10809658 DOI: 10.1186/s12872-024-03711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND As a novel circRNA, BTBD7_hsa_circ_0000563 has not been fully investigated in coronary artery disease (CAD). Our aim is to reveal the possible functional role and regulatory pathway of BTBD7_hsa_circ_0000563 in CAD via exploring genes combined with BTBD7_hsa_circ_0000563. METHODS A total of 45 peripheral blood mononuclear cell (PBMC) samples of CAD patients were enrolled. The ChIRP-RNAseq assay was performed to directly explore genes bound to BTBD7_hsa_circ_0000563. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to reveal possible functions of these genes. The interaction network was constructed by the STRING database and the Cytoscape software. The Cytoscape software were used again to identify clusters and hub genes of genes bound to BTBD7_hsa_circ_0000563. The target miRNAs of hub genes were predicted via online databases. RESULTS In this study, a total of 221 mRNAs directly bound to BTBD7_hsa_circ_0000563 were identified in PBMCs of CAD patients via ChIRP-RNAseq. The functional enrichment analysis revealed that these mRNAs may participate in translation and necroptosis. Moreover, the interaction network showed that there may be a close relationship between these mRNAs. Eight clusters can be further subdivided from the interaction network. RPS3 and RPSA were identified as hub genes and hsa-miR-493-5p was predicted to be the target miRNA of RPS3. CONCLUSIONS BTBD7_hsa_circ_0000563 and mRNAs directly bound to it may influence the initiation and progression of CAD, among which RPS3 and RPSA may be hub genes. These findings may provide innovative ideas for further research on CAD.
Collapse
Affiliation(s)
- Ning Guo
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu Province, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Zhengxian Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China
| | - Jun Liu
- Department of Cardiology, Jurong City People's Hospital, Ersheng Road 66, Jurong, 212400, Jiangsu Province, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
5
|
Dai S, Cao T, Shen H, Zong X, Gu W, Li H, Wei L, Huang H, Yu Y, Chen Y, Ye W, Hua F, Fan H, Shen Z. Landscape of molecular crosstalk between SARS-CoV-2 infection and cardiovascular diseases: emphasis on mitochondrial dysfunction and immune-inflammation. J Transl Med 2023; 21:915. [PMID: 38104081 PMCID: PMC10725609 DOI: 10.1186/s12967-023-04787-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the pathogen of COVID-19, is a worldwide threat to human health and causes a long-term burden on the cardiovascular system. Individuals with pre-existing cardiovascular diseases are at higher risk for SARS-CoV-2 infection and tend to have a worse prognosis. However, the relevance and pathogenic mechanisms between COVID-19 and cardiovascular diseases are not yet completely comprehended. METHODS Common differentially expressed genes (DEGs) were obtained in datasets of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2 and myocardial tissues from heart failure patients. Further GO and KEGG pathway analysis, protein-protein interaction (PPI) network construction, hub genes identification, immune microenvironment analysis, and drug candidate predication were performed. Then, an isoproterenol-stimulated myocardial hypertrophy cell model and a transverse aortic constriction-induced mouse heart failure model were employed to validate the expression of hub genes. RESULTS A total of 315 up-regulated and 78 down-regulated common DEGs were identified. Functional enrichment analysis revealed mitochondrial metabolic disorders and extensive immune inflammation as the most prominent shared features of COVID-19 and cardiovascular diseases. Then, hub DEGs, as well as hub immune-related and mitochondria-related DEGs, were screened. Additionally, nine potential therapeutic agents for COVID-19-related cardiovascular diseases were proposed. Furthermore, the expression patterns of most of the hub genes related to cardiovascular diseases in the validation dataset along with cellular and mouse myocardial damage models, were consistent with the findings of bioinformatics analysis. CONCLUSIONS The study unveiled the molecular networks and signaling pathways connecting COVID-19 and cardiovascular diseases, which may provide novel targets for intervention of COVID-19-related cardiovascular diseases.
Collapse
Affiliation(s)
- Shiyu Dai
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Ting Cao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Xuejing Zong
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenyu Gu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hanghang Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Lei Wei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Haoyue Huang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenxue Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
6
|
Müller FS, Aherrahrou Z, Grasshoff H, Heidorn MW, Humrich JY, Johanson L, Aherrahrou R, Reinberger T, Schulz A, ten Cate V, Robles AP, Koeck T, Rapp S, Lange T, Brachaczek L, Luebber F, Erdmann J, Heidecke H, Schulze-Forster K, Dechend R, Lackner KJ, Pfeiffer N, Ghaemi Kerahrodi J, Tüscher O, Schwarting A, Strauch K, Münzel T, Prochaska JH, Riemekasten G, Wild PS. Autoantibodies against the chemokine receptor 3 predict cardiovascular risk. Eur Heart J 2023; 44:4935-4949. [PMID: 37941454 PMCID: PMC10719496 DOI: 10.1093/eurheartj/ehad666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/20/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND AND AIMS Chronic inflammation and autoimmunity contribute to cardiovascular (CV) disease. Recently, autoantibodies (aAbs) against the CXC-motif-chemokine receptor 3 (CXCR3), a G protein-coupled receptor with a key role in atherosclerosis, have been identified. The role of anti-CXCR3 aAbs for CV risk and disease is unclear. METHODS Anti-CXCR3 aAbs were quantified by a commercially available enzyme-linked immunosorbent assay in 5000 participants (availability: 97.1%) of the population-based Gutenberg Health Study with extensive clinical phenotyping. Regression analyses were carried out to identify determinants of anti-CXCR3 aAbs and relevance for clinical outcome (i.e. all-cause mortality, cardiac death, heart failure, and major adverse cardiac events comprising incident coronary artery disease, myocardial infarction, and cardiac death). Last, immunization with CXCR3 and passive transfer of aAbs were performed in ApoE(-/-) mice for preclinical validation. RESULTS The analysis sample included 4195 individuals (48% female, mean age 55.5 ± 11 years) after exclusion of individuals with autoimmune disease, immunomodulatory medication, acute infection, and history of cancer. Independent of age, sex, renal function, and traditional CV risk factors, increasing concentrations of anti-CXCR3 aAbs translated into higher intima-media thickness, left ventricular mass, and N-terminal pro-B-type natriuretic peptide. Adjusted for age and sex, anti-CXCR3 aAbs above the 75th percentile predicted all-cause death [hazard ratio (HR) (95% confidence interval) 1.25 (1.02, 1.52), P = .029], driven by excess cardiac mortality [HR 2.51 (1.21, 5.22), P = .014]. A trend towards a higher risk for major adverse cardiac events [HR 1.42 (1.0, 2.0), P = .05] along with increased risk of incident heart failure [HR per standard deviation increase of anti-CXCR3 aAbs: 1.26 (1.02, 1.56), P = .03] may contribute to this observation. Targeted proteomics revealed a molecular signature of anti-CXCR3 aAbs reflecting immune cell activation and cytokine-cytokine receptor interactions associated with an ongoing T helper cell 1 response. Finally, ApoE(-/-) mice immunized against CXCR3 displayed increased anti-CXCR3 aAbs and exhibited a higher burden of atherosclerosis compared to non-immunized controls, correlating with concentrations of anti-CXCR3 aAbs in the passive transfer model. CONCLUSIONS In individuals free of autoimmune disease, anti-CXCR3 aAbs were abundant, related to CV end-organ damage, and predicted all-cause death as well as cardiac morbidity and mortality in conjunction with the acceleration of experimental atherosclerosis.
Collapse
Affiliation(s)
- Felix S Müller
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Marc W Heidorn
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Laurence Johanson
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Redouane Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Vincent ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
| | - Alejandro Pallares Robles
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
| | - Thomas Koeck
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- Center of Brain, Behavior, and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Lukas Brachaczek
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Finn Luebber
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Harald Heidecke
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Kai Schulze-Forster
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
| | - Ralf Dechend
- CellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany
- Experimental and Clinical Research Center, a cooperation of Charité—Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Karl J Lackner
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jasmin Ghaemi Kerahrodi
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Molecular Biology (IMB), Working Group Neurocognitive Mechanisms of Mental Resilience, Ackermannweg 4, 55128 Mainz, Germany
| | - Andreas Schwarting
- Department of Internal Medicine I, University Medical Center Mainz, Mainz, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Münzel
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- Centre for Infection and Inflammation Lübeck (ZIEL), University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- DZHK (German Centre for Cardiovascular Research), partner site RhineMain, Langenbeckstr. 1, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131 Mainz,Germany
- Institute for Molecular Biology (IMB), Mainz, Working Group Systems Medicine, Ackermannweg 4, 55128 Mainz, Germany
| |
Collapse
|
7
|
Yang D, Liu M, Khasiyev F, Rundek T, Brutto VD, Cheung YK, Gutierrez C, Hornig M, Elkind MSV, Gutierrez J. Immune Markers Are Associated With Asymptomatic Intracranial Large Artery Stenosis and Future Vascular Events in NOMAS. Stroke 2023; 54:3030-3037. [PMID: 37909207 PMCID: PMC10842368 DOI: 10.1161/strokeaha.123.044237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Inflammation contributes to atherosclerosis but is incompletely characterized in intracranial large artery stenosis (ICAS). We hypothesized that immune markers would be associated with ICAS and modify the risk ICAS confers on future vascular events. METHODS This study included a subsample of stroke-free participants in the prospective NOMAS (Northern Manhattan Study), who had blood samples analyzed with a 60-plex immunoassay (collected from 1993 to 2001) and ICAS assessment with time-of-flight magnetic resonance angiography (obtained from 2003 to 2008). We dichotomized ICAS as either ≥50% stenosis or not (including no ICAS). We ascertained post-magnetic resonance imaging vascular events. We used least absolute shrinkage and selection operator procedures to select immune markers independently associated with ICAS. Then, we grouped selected immune markers into a derived composite Z score. Using proportional odds regression, we quantified the association of the composite immune marker Z score, ICAS, and risk of vascular events. RESULTS Among 1211 participants (mean age, 71±9 years; 59% women; 65% Hispanic participants), 8% had ≥50% ICAS. Using least absolute shrinkage and selection operator regression, we identified CXCL9 (C-X-C motif chemokine ligand 9), HGF (hepatocyte growth factor), resistin, SCF (stem cell factor), and VEGF-A(vascular endothelial growth factor A) to have the strongest positive relationships with ≥50% ICAS in fully adjusted models. Selected markers were used to derive a composite immune marker Z score. Over an average follow-up of 12 years, we found that each unit increase in immune marker Z scores was associated with an 8% (95% CI, 1.05-1.11), 11% (95% CI, 1.06-1.16), and 5% (95% CI, 1.01-1.09) increased hazard of death, vascular death, and any vascular event, respectively, in adjusted models. We did not find a significant interaction between immune marker Z scores and ICAS in their relationship with any longitudinal outcome. CONCLUSIONS Among a diverse stroke-free population, selected serum immune markers were associated with ICAS and future vascular events. Further study is needed to better understand their role in the pathogenesis of ICAS and as a potential therapeutic target in stroke prevention.
Collapse
Affiliation(s)
- Dixon Yang
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Minghua Liu
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Farid Khasiyev
- Department of Neurology, Saint Louis University, Saint Louis, MO, USA
| | - Tatjana Rundek
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Victor Del Brutto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ying K Cheung
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Carolina Gutierrez
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mady Hornig
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jose Gutierrez
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
9
|
Laurans L, Mouttoulingam N, Chajadine M, Lavelle A, Diedisheim M, Bacquer E, Creusot L, Suffee N, Esposito B, Melhem NJ, Le Goff W, Haddad Y, Paul JL, Rainteau D, Tedgui A, Ait-Oufella H, Zitvogel L, Sokol H, Taleb S. An obesogenic diet increases atherosclerosis through promoting microbiota dysbiosis-induced gut lymphocyte trafficking into the periphery. Cell Rep 2023; 42:113350. [PMID: 37897726 DOI: 10.1016/j.celrep.2023.113350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Although high-fat diet (HFD)-induced gut microbiota dysbiosis is known to affect atherosclerosis, the underlying mechanisms remain to be fully explored. Here, we show that the progression of atherosclerosis depends on a gut microbiota shaped by an HFD but not a high-cholesterol (HC) diet and, more particularly, on low fiber (LF) intake. Mechanistically, gut lymphoid cells impacted by HFD- or LF-induced microbiota dysbiosis highly proliferate in mesenteric lymph nodes (MLNs) and migrate from MLNs to the periphery, which fuels T cell accumulation within atherosclerotic plaques. This is associated with the induction of mucosal addressin cell adhesion molecule 1 (MAdCAM-1) within plaques and the presence of enterotropic lymphocytes expressing β7 integrin. MLN resection or lymphocyte deficiency abrogates the pro-atherogenic effects of a microbiota shaped by LF. Our study shows a pathological link between a diet-shaped microbiota, gut immune cells, and atherosclerosis, suggesting that a diet-modulated microbiome might be a suitable therapeutic target to prevent atherosclerosis.
Collapse
Affiliation(s)
- Ludivine Laurans
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Nirmala Mouttoulingam
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Mouna Chajadine
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Aonghus Lavelle
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Marc Diedisheim
- Clinique Saint Gatien Alliance (NCT+), 37540 Saint-Cyr-sur-Loire, France; Institut Necker-Enfants Malades (INEM), Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, 75015 Paris, France
| | - Emilie Bacquer
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Laura Creusot
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Nadine Suffee
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France; INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, 75013 Paris, France
| | - Bruno Esposito
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Nada Joe Melhem
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Wilfried Le Goff
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, 75013 Paris, France
| | - Yacine Haddad
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France; Gustave Roussy, Villejuif, France; Institut National de la Santé et de la Recherche Médicale, Gustave Roussy, UMR1015, Villejuif, France
| | - Jean-Louis Paul
- Université Paris-Sud, Equipe d'Accueil 4529, UFR de Pharmacie, Chatenay-Malabry, France and Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Dominique Rainteau
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Clinical Metabolomics Department, 75012 Paris, France
| | - Alain Tedgui
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Hafid Ait-Oufella
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France; Institut National de la Santé et de la Recherche Médicale, Gustave Roussy, UMR1015, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France; Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | - Harry Sokol
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France; Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France; INRAe, Micalis & AgroParisTech, Jouy en Josas, France
| | - Soraya Taleb
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, 75015 Paris, France.
| |
Collapse
|
10
|
Joshi A, Bhambhani A, Barure R, Gonuguntla S, Sarathi V, Attia AM, Shrestha AB, Jaiswal V. Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as markers of stable ischemic heart disease in diabetic patients: An observational study. Medicine (Baltimore) 2023; 102:e32735. [PMID: 36749238 PMCID: PMC9902008 DOI: 10.1097/md.0000000000032735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ischemic heart disease (IHD) is a pressing public health concern with high prevalence, mortality, and morbidity. Although the value of neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) as markers of the acute coronary syndrome are well recognized, there is a paucity of data deciphering their role in screening for stable ischemic heart disease (SIHD) in the presence of type 2 diabetes mellitus (T2DM). The present study investigates the value of NLR and PLR as markers of SIHD in T2DM. We evaluated the predictive value of NLR and PLR for SIHD by comparing T2DM patients having angiographically proven SIHD to T2DM patients without IHD at different cutoff levels by evaluating the area under the curve (AUC) obtained from receiver-operating-characteristic analysis. Raised NLR and PLR were significantly associated with SIHD ( P < .001 for each). On performing AUC-receiver-operating-characteristic analysis, NLR of > 2.39 and PLR of > 68.80 were associated with the highest prevalence of SIHD (NLR, AUC: 0.652 [0.605-0.699]; CI: 95%; P < .001, PLR, AUC: 0.623 [0.575-0.671] CI: 95%; P < .001). The sensitivities and specificities for these cutoff values were 50% and 73% for NLR and 73% and 46% for PLR, respectively. NLR and PLR were significantly higher in SIHD compared to those without; however, these markers had limited predictive potential in the setting of T2DM.
Collapse
Affiliation(s)
- Amey Joshi
- Department of Cardiology, Vydehi Institute of Medical Sciences and Research Center, Whitefield, Bangalore, Karnataka, India
| | - Anupam Bhambhani
- Department of Cardiology, Vydehi Institute of Medical Sciences and Research Center, Whitefield, Bangalore, Karnataka, India
| | - Ramdas Barure
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Whitefield, Bangalore, Karnataka, India
| | - Samhitha Gonuguntla
- Department of Cardiology, Vydehi Institute of Medical Sciences and Research Center, Whitefield, Bangalore, Karnataka, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Whitefield, Bangalore, Karnataka, India
| | | | - Abhigan Babu Shrestha
- Department of Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh
- * Correspondence: Abhigan Babu Shrestha, Department of Medicine, M Abdur Rahim Medical College, Dinajpur 5200, Bangladesh (e-mail: )
| | | |
Collapse
|
11
|
Liu Y, Ye T, Chen L, Xu B, Wu G, Zong G. Preoperative lymphocyte to C-reactive protein ratio: A new prognostic indicator of post-primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Int Immunopharmacol 2023; 114:109594. [PMID: 36525793 DOI: 10.1016/j.intimp.2022.109594] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The lymphocyte-to-C-reactive protein ratio (LCR) is a novel inflammatory biomarker for many diseases. This study aimed to examine the association between LCR and major adverse cardiovascular events (MACEs) in patients with ST-segment elevation myocardial infarction (STEMI) who were undergoing percutaneous coronary intervention. METHODS A total of 382 patients with STEMI were included in this study; these patients were enrolled from January 2014 to January 2016 at a single center, and the LCR was calculated for each patient. During the in-hospital and long-term follow-up period, MACEs included cardiovascular death, new-onset non-fatal myocardial infarction, heart failure, malignant arrhythmias, revascularization in unstable angina, and new-onset atrial fibrillation. Using receiver operating characteristic curves, we assessed the predictive impact for MACEs using a combination of six inflammatory markers in patients with STEMI and focused on LCR to elucidate its prognostic value. Univariate and multivariate Cox proportional hazard models were used to define the factors associated with MACEs. RESULTS Among the assessed variables, preoperative LCR showed the highest accuracy in predicting hospitalized (AUC:0.71) and long-term follow-up(AUC:0.602) MACEs in patients with STEMI. Decreased preoperative LCR was significantly associated with the Gensini score (P < 0.05) and no-reflow (P < 0.05). Multivariate Cox analysis showed that a high preoperative LCR (cutoff threshold = 112.4) was an independent protective factor for hospitalized MACEs in patients with STEMI (hazard ratio, 0.409; 95 % confidence interval, 0.283-0.590; P < 0.001). A high preoperative LCR (cutoff threshold = 106.3) was an independent protective factor for long-term follow-up MACEs in patients with STEMI (hazard ratio, 0.552; 95 % confidence interval, 0.369-0.740; P < 0.001). CONCLUSION Preoperative LCR is a novel and valuable prognostic marker to determine the occurrence of MACEs in hospitals and long-term follow-up after primary percutaneous coronary intervention in patients with STEMI.
Collapse
Affiliation(s)
- Yehong Liu
- The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214000, PR China
| | - Ting Ye
- The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214000, PR China
| | - Liang Chen
- The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214000, PR China
| | - Baida Xu
- The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214000, PR China
| | - Gangyong Wu
- The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214000, PR China; Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, PR China.
| | - Gangjun Zong
- The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214000, PR China; Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214000, PR China.
| |
Collapse
|
12
|
Vadaq N, van de Wijer L, van Eekeren LE, Koenen H, de Mast Q, Joosten LAB, Netea MG, Matzaraki V, van der Ven AJAM. Targeted plasma proteomics reveals upregulation of distinct inflammatory pathways in people living with HIV. iScience 2022; 25:105089. [PMID: 36157576 PMCID: PMC9494231 DOI: 10.1016/j.isci.2022.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite antiretroviral therapy (ART), people living with HIV (PLHIV) display persistent inflammation leading to non-AIDS-related co-morbidities. To better understand underlying mechanisms, we compared targeted plasma inflammatory protein concentration (n = 92) between a cohort of 192 virally suppressed PLHIV, who were followed-up for five years, and 416 healthy controls (HC). Findings were validated in an independent cohort of 649 virally suppressed PLHIV and 98 HC. Compared to HC, PLHIV exhibited distinctively upregulated inflammatory proteins, including mucosal defense chemokines, CCR5 and CXCR3 ligands, and growth factors. Unsupervised clustering of inflammatory proteins clearly differentiated PLHIV with low (n = 123) and high inflammation (n = 65), the latter having a 3.4 relative risk (95% confidence interval 1.2-9.8) to develop malignancies and trend for cardiovascular events during a 5-year follow-up. The best protein predictors discriminating the two inflammatory endotypes were PD-L1, VEGFA, LAP TGF β-1, and TNFRSF9. Our data provide insights into co-morbidities associated inflammatory changes in PLHIV on long-term ART.
Collapse
Affiliation(s)
- Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Lisa van de Wijer
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Louise E van Eekeren
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Germany
| | - Vasiliki Matzaraki
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - André J A M van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud Institute of Health Science (RIHS), Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Demos C, Johnson J, Andueza A, Park C, Kim Y, Villa-Roel N, Kang DW, Kumar S, Jo H. Sox13 is a novel flow-sensitive transcription factor that prevents inflammation by repressing chemokine expression in endothelial cells. Front Cardiovasc Med 2022; 9:979745. [PMID: 36247423 PMCID: PMC9561411 DOI: 10.3389/fcvm.2022.979745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease and occurs preferentially in arterial regions exposed to disturbed blood flow (d-flow) while the stable flow (s-flow) regions are spared. D-flow induces endothelial inflammation and atherosclerosis by regulating endothelial gene expression partly through the flow-sensitive transcription factors (FSTFs). Most FSTFs, including the well-known Kruppel-like factors KLF2 and KLF4, have been identified from in vitro studies using cultured endothelial cells (ECs). Since many flow-sensitive genes and pathways are lost or dysregulated in ECs during culture, we hypothesized that many important FSTFs in ECs in vivo have not been identified. We tested the hypothesis by analyzing our recent gene array and single-cell RNA sequencing (scRNAseq) and chromatin accessibility sequencing (scATACseq) datasets generated using the mouse partial carotid ligation model. From the analyses, we identified 30 FSTFs, including the expected KLF2/4 and novel FSTFs. They were further validated in mouse arteries in vivo and cultured human aortic ECs (HAECs). These results revealed 8 FSTFs, SOX4, SOX13, SIX2, ZBTB46, CEBPβ, NFIL3, KLF2, and KLF4, that are conserved in mice and humans in vivo and in vitro. We selected SOX13 for further studies because of its robust flow-sensitive regulation, preferential expression in ECs, and unknown flow-dependent function. We found that siRNA-mediated knockdown of SOX13 increased endothelial inflammatory responses even under the unidirectional laminar shear stress (ULS, mimicking s-flow) condition. To understand the underlying mechanisms, we conducted an RNAseq study in HAECs treated with SOX13 siRNA under shear conditions (ULS vs. oscillatory shear mimicking d-flow). We found 94 downregulated and 40 upregulated genes that changed in a shear- and SOX13-dependent manner. Several cytokines, including CXCL10 and CCL5, were the most strongly upregulated genes in HAECs treated with SOX13 siRNA. The robust induction of CXCL10 and CCL5 was further validated by qPCR and ELISA in HAECs. Moreover, the treatment of HAECs with Met-CCL5, a specific CCL5 receptor antagonist, prevented the endothelial inflammation responses induced by siSOX13. In addition, SOX13 overexpression prevented the endothelial inflammation responses. In summary, SOX13 is a novel conserved FSTF, which represses the expression of pro-inflammatory chemokines in ECs under s-flow. Reduction of endothelial SOX13 triggers chemokine expression and inflammatory responses, a major proatherogenic pathway.
Collapse
Affiliation(s)
- Catherine Demos
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Janie Johnson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Aitor Andueza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Dong-Won Kang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Potashnikova DM, Saidova AA, Tvorogova AV, Anisimova AS, Botsina AY, Vasilieva EY, Margolis LB. CTLs From Patients With Atherosclerosis Show Elevated Adhesiveness and Distinct Integrin Expression Patterns on 2D Substrates. Front Med (Lausanne) 2022; 9:891916. [PMID: 35911408 PMCID: PMC9328274 DOI: 10.3389/fmed.2022.891916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is the major cause of cardiovascular disease that is characterized by plaque formation in the blood vessel wall. Atherosclerotic plaques represent sites of chronic inflammation with diverse cell content that is shifted toward the prevalence of cytotoxic T-lymphocytes (CTLs) upon plaque progression. The studies of CTL recruitment to atherosclerotic plaques require adequate in vitro models accounting for CTL interactions with chemokine-ligands and extracellular matrix fibers via surface chemokine receptors and integrins. Here we applied such a model by investigating CTL adhesion and migration on six types of coated surfaces. We assessed adhesion and motility metrics, the expression of chemokine receptors, and integrins in CTLs of patients with atherosclerosis and healthy donors. Using fibronectin, platelet-poor plasma from patients with atherosclerosis, and conditioned medium from atherosclerotic plaques we revealed the role of substrate in CTL adhesiveness: fibronectin alone and fibronectin combined with platelet-poor plasma and conditioned medium elevated the CTL adhesiveness - in patients the elevation was significantly higher than in healthy donors (p = 0.02, mixed 2-way ANOVA model). This was in line with our finding that the expression levels of integrin-coding mRNAs were elevated in the presence of fibronectin (p < 0.05) and ITGB1, ITGA1, and ITGA4 were specifically upregulated in patients compared to healthy donors (p < 0.01). Our experimental model did not affect the expression levels of mRNAs CCR4, CCR5, and CX3CR1 coding the chemokine receptors that drive T-lymphocyte migration to plaques. Thus, we demonstrated the substrate-dependence of integrin expression and discriminated CTLs from patients and healthy donors by adhesion parameters and integrin expression levels.
Collapse
Affiliation(s)
- Daria M. Potashnikova
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
- Moscow Department of Healthcare, City Clinical Hospital Named After I.V. Davydovsky, Moscow, Russia
| | - Aleena A. Saidova
- Moscow Department of Healthcare, City Clinical Hospital Named After I.V. Davydovsky, Moscow, Russia
| | - Anna V. Tvorogova
- Moscow Department of Healthcare, City Clinical Hospital Named After I.V. Davydovsky, Moscow, Russia
| | - Alexandra S. Anisimova
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
- Moscow Department of Healthcare, City Clinical Hospital Named After I.V. Davydovsky, Moscow, Russia
| | - Alexandra Yu Botsina
- Moscow Department of Healthcare, City Clinical Hospital Named After I.V. Davydovsky, Moscow, Russia
| | - Elena Yu Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
- Moscow Department of Healthcare, City Clinical Hospital Named After I.V. Davydovsky, Moscow, Russia
| | - Leonid B. Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Wang J, Chen X. Junctional Adhesion Molecules: Potential Proteins in Atherosclerosis. Front Cardiovasc Med 2022; 9:888818. [PMID: 35872908 PMCID: PMC9302484 DOI: 10.3389/fcvm.2022.888818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Junctional adhesion molecules (JAMs) are cell-cell adhesion molecules of the immunoglobulin superfamily and are involved in the regulation of diverse atherosclerosis-related processes such as endothelial barrier maintenance, leucocytes transendothelial migration, and angiogenesis. To combine and further broaden related results, this review concluded the recent progress in the roles of JAMs and predicted future studies of JAMs in the development of atherosclerosis.
Collapse
Affiliation(s)
- Junqi Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoping Chen,
| |
Collapse
|
16
|
van Eekeren LE, Matzaraki V, Zhang Z, van de Wijer L, Blaauw MJT, de Jonge MI, Vandekerckhove L, Trypsteen W, Joosten LAB, Netea MG, de Mast Q, Koenen HJPM, Li Y, van der Ven AJAM. People with HIV have higher percentages of circulating CCR5+ CD8+ T cells and lower percentages of CCR5+ regulatory T cells. Sci Rep 2022; 12:11425. [PMID: 35794176 PMCID: PMC9259737 DOI: 10.1038/s41598-022-15646-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
CCR5 is the main HIV co-receptor. We aimed to (1) compare CCR5 expression on immune cells between people living with HIV (PLHIV) using combination antiretroviral therapy (cART) and HIV-uninfected controls, (2) relate CCR5 expression to viral reservoir size and (3) assess determinants of CCR5 expression. This cross-sectional study included 209 PLHIV and 323 controls. Percentages of CCR5+ cells (%) and CCR5 mean fluorescence intensity assessed by flow cytometry in monocytes and lymphocyte subsets were correlated to host factors, HIV-1 cell-associated (CA)-RNA and CA-DNA, plasma inflammation markers and metabolites. Metabolic pathways were identified. PLHIV displayed higher percentages of CCR5+ monocytes and several CD8+ T cell subsets, but lower percentages of CCR5+ naive CD4+ T cells and regulatory T cells (Tregs). HIV-1 CA-DNA and CA-RNA correlated positively with percentages of CCR5+ lymphocytes. Metabolome analysis revealed three pathways involved in energy metabolism associated with percentage of CCR5+ CD8+ T cells in PLHIV. Our results indicate that CCR5 is differently expressed on various circulating immune cells in PLHIV. Hence, cell-trafficking of CD8+ T cells and Tregs may be altered in PLHIV. Associations between energy pathways and percentage of CCR5+ CD8+ T cells in PLHIV suggest higher energy demand of these cells in PLHIV.
Collapse
Affiliation(s)
- Louise E van Eekeren
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Vasiliki Matzaraki
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zhenhua Zhang
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa van de Wijer
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc J T Blaauw
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University & Ghent University Hospital, Ghent, Belgium
| | - Leo A B Joosten
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - André J A M van der Ven
- Department of General Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
The correlation of long non-coding RNAs IFNG-AS1 and ZEB2-AS1 with IFN-γ and ZEB-2 expression in PBMCs and clinical features of patients with coronary artery disease. Mol Biol Rep 2022; 49:3389-3399. [PMID: 35389131 DOI: 10.1007/s11033-022-07168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Aberrant expression of long non-coding RNAs (lncRNAs) can contribute to the pathogenesis of coronary artery disease (CAD). In this study, we aimed to evaluate the expression of lncRNA interferon γ-antisense 1 (IFNG-AS1), zinc finger E-box binding homeobox 2 antisense RNA 1 (ZEB2-AS1), and their direct target genes (IFN-γ and ZEB2, respectively) in peripheral blood mononuclear cell (PBMC) from CAD and healthy individuals. METHODS AND RESULTS We recruited 40 CAD patients and 40 healthy individuals. After doing some bioinformatics analyses, the expressions of IFNG-AS1/ ZEB2-AS1 lncRNAs and IFN-γ/ ZEB2 in PBMCs were measured using quantitative real-time PCR. The possible correlation between the putative lncRNAs and disease severity was also assessed. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive role of lncRNAs as diagnostic biomarkers in CAD patients. The expressions of IFNG-AS1 lncRNA as well as IFN-γ and ZEB2 genes were significantly reduced in CAD patients compared to healthy subjects. In contrast, the expression of ZEB2-AS1 was up-regulated in these patients. Linear regression analysis unveiled that there is a positive correlation between the expression of IFNG-AS1 and IFN-γ, also similarly, ZEB2-AS1 and ZEB2 in PBMCs of subjects. Moreover, the expression of IFNG-AS1 and ZEB2-AS1 correlated with the Gensini score. The area under the ROC curves ranged from 0.633-0.742 for ZEB2-AS1/ZEB2 and IFNG-AS1/IFN-γ, respectively. CONCLUSIONS Our results indicated that the dysregulation of IFNG-AS1/IFN-γ and ZEB2-AS1/ZEB2 in PBMCs of CAD patients may be involved in CAD pathogenesis.
Collapse
|
18
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Yu T, Xu B, Bao M, Gao Y, Zhang Q, Zhang X, Liu R. Identification of potential biomarkers and pathways associated with carotid atherosclerotic plaques in type 2 diabetes mellitus: A transcriptomics study. Front Endocrinol (Lausanne) 2022; 13:981100. [PMID: 36187128 PMCID: PMC9523108 DOI: 10.3389/fendo.2022.981100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) affects the formation of carotid atherosclerotic plaques (CAPs) and patients are prone to plaque instability. It is crucial to clarify transcriptomics profiles and identify biomarkers related to the progression of T2DM complicated by CAPs. Ten human CAP samples were obtained, and whole transcriptome sequencing (RNA-seq) was performed. Samples were divided into two groups: diabetes mellitus (DM) versus non-DM groups and unstable versus stable groups. The Limma package in R was used to identify lncRNAs, circRNAs, and mRNAs. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, protein-protein interaction (PPI) network creation, and module generation were performed for differentially expressed mRNAs. Cytoscape was used to create a transcription factor (TF)-mRNA regulatory network, lncRNA/circRNA-mRNA co-expression network, and a competitive endogenous RNA (ceRNA) network. The GSE118481 dataset and RT-qPCR were used to verify potential mRNAs.The regulatory network was constructed based on the verified core genes and the relationships were extracted from the above network. In total, 180 differentially expressed lncRNAs, 343 circRNAs, and 1092 mRNAs were identified in the DM versus non-DM group; 240 differentially expressed lncRNAs, 390 circRNAs, and 677 mRNAs were identified in the unstable versus stable group. Five circRNAs, 14 lncRNAs, and 171 mRNAs that were common among all four groups changed in the same direction. GO/KEGG functional enrichment analysis showed that 171 mRNAs were mainly related to biological processes, such as immune responses, inflammatory responses, and cell adhesion. Five circRNAs, 14 lncRNAs, 46 miRNAs, and 54 mRNAs in the ceRNA network formed a regulatory relationship. C22orf34-hsa-miR-6785-5p-RAB37, hsacirc_013887-hsa-miR-6785-5p/hsa-miR-4763-5p/hsa-miR-30b-3p-RAB37, MIR4435-1HG-hsa-miR-30b-3p-RAB37, and GAS5-hsa-miR-30b-3p-RAB37 may be potential RNA regulatory pathways. Seven upregulated mRNAs were verified using the GSE118481 dataset and RT-qPCR. The regulatory network included seven mRNAs, five circRNAs, six lncRNAs, and 14 TFs. We propose five circRNAs (hsacirc_028744, hsacirc_037219, hsacirc_006308, hsacirc_013887, and hsacirc_045622), six lncRNAs (EPB41L4A-AS1, LINC00969, GAS5, MIR4435-1HG, MIR503HG, and SNHG16), and seven mRNAs (RAB37, CCR7, CD3D, TRAT1, VWF, ICAM2, and TMEM244) as potential biomarkers related to the progression of T2DM complicated with CAP. The constructed ceRNA network has important implications for potential RNA regulatory pathways.
Collapse
Affiliation(s)
- Tian Yu
- Department of Very Important People (VIP) Unit, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baofeng Xu
- Department of Stroke Center, First Hospital of Jilin University, Changchun, China
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Yuanyuan Gao
- Department of Very Important People (VIP) Unit, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiujuan Zhang
- Department of Very Important People (VIP) Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Liu
- Department of Very Important People (VIP) Unit, China-Japan Union Hospital of Jilin University, Changchun, China
- School of Stomatology, Changsha Medical University, Changsha, China
- *Correspondence: Rui Liu,
| |
Collapse
|
21
|
Tong LC, Wang ZB, Zhang JQ, Wang Y, Liu WY, Yin H, Li JC, Su DF, Cao YB, Zhang LC, Li L. Swiprosin-1 deficiency in macrophages alleviated atherogenesis. Cell Death Discov 2021; 7:344. [PMID: 34759279 PMCID: PMC8580969 DOI: 10.1038/s41420-021-00739-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play a vital role in the development of atherosclerosis. Previously, we have found that swiprosin-1 was abundantly expressed in macrophages. Here, we investigated the role of swiprosin-1 expressed in macrophages in atherogenesis. Bone marrow transplantation was performed from swiprosin-1-knockout (Swp-/-) mice and age-matched ApoE-/- mice. Atherosclerotic lesion, serum lipid, and interleukin-β (IL-β) levels were detected. In vitro, the peritoneal macrophages isolated from Swp-/- and wild-type mice were stimulated with oxidized low-density lipoprotein (ox-LDL) and the macrophage of foam degree, cellular lipid content, apoptosis, inflammatory factor, migration, and autophagy were determined. Our results showed that swiprosin-1 was mainly expressed in macrophages of atherosclerotic plaques in aorta from ApoE-/- mice fed with high-cholesterol diet (HCD). The expression of swiprosin-1 in the foaming of RAW264.7 macrophages gradually increased with the increase of the concentration and time stimulated with ox-LDL. Atherosclerotic plaques, accumulation of macrophages, collagen content, serum total cholesterol, LDL, and IL-β levels were decreased in Swp-/- → ApoE-/- mice compared with Swp+/+ → ApoE-/- mice fed with HCD for 16 weeks. The macrophage foam cell formation and cellular cholesterol accumulation were reduced, while the lipid uptake and efflux increased in macrophages isolated from Swp-/- compared to wild-type mice treated with ox-LDL. Swiprosin-1 deficiency in macrophages could inhibit apoptosis, inflammation, migration, and promote autophagy. Taken together, our results demonstrated that swiprosin-1 deficiency in macrophages could alleviate the development and progression of AS. The role of swiprosin-1 may provide a promising new target for ameliorating AS.
Collapse
Affiliation(s)
- Ling-Chang Tong
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Zhi-Bin Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
- Department of Critical Care Medicine, Faculty of Anesthesiology, Naval Medical University, Shanghai, China
| | - Jia-Qi Zhang
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Wang
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Ye Liu
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Hao Yin
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Cheng Li
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding-Feng Su
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China.
| | - Ling Li
- Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Department of Pharmacology, College of Pharmacy, Naval Medical University, Shanghai, China.
| |
Collapse
|
22
|
Soni SS, Rodell CB. Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomater 2021; 133:139-152. [PMID: 33484909 DOI: 10.1016/j.actbio.2021.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Biomaterials continue to evolve as complex engineered tools for interactively instructing biological systems, aiding in the understanding and treatment of various disease states through intimate biological interaction. The immune response to polymeric materials is a critical area of study, as it governs the body's response to biomaterial implants, drug delivery vehicles, and even therapeutic drug formulations. Importantly, the development of the immune response to polymeric biomaterials spans length scales - from single molecular interactions to the complex sensing of bulk biophysical properties, all of which coordinate a tissue- and systems-level response. In this review, we specifically discuss a bottom-up approach to designing biomaterials that use molecular-scale interactions to drive immune response to polymers and discuss how these interactions can be leveraged for biomaterial design. STATEMENT OF SIGNIFICANCE: The immune system is an integral controller of (patho)physiological processes, affecting nearly all aspects of human health and disease. Polymeric biomaterials, whether biologically derived or synthetically produced, can potentially alter the behavior of immune cells due to their molecular-scale interaction with individual cells, as well as their interpretation at the bulk scale. This article reviews common mechanisms by which immune cells interact with polymers at the molecular level and discusses how these interactions are being leveraged to produce the next generation of biocompatible and immunomodulatory materials.
Collapse
|
23
|
Dettori P, Paliogiannis P, Pascale RM, Zinellu A, Mangoni AA, Pintus G. Blood Cell Count Indexes of Systemic Inflammation in Carotid Artery Disease: Current Evidence and Future Perspectives. Curr Pharm Des 2021; 27:2170-2179. [PMID: 33355049 DOI: 10.2174/1381612826666201222155630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
Carotid artery disease is commonly encountered in clinical practice and accounts for approximately 30% of ischemic strokes in the general population. Numerous biomarkers have been investigated as predictors of the onset and progression of carotid disease, the occurrence of cerebrovascular complications, and overall prognosis. Among them, blood cell count (BCC) indexes of systemic inflammation might be particularly useful, from a pathophysiological and clinical point of view, given the inflammatory nature of the atherosclerotic process. The aim of this review is to discuss the available evidence regarding the role of common BCC indexes, such as the neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), platelet to lymphocyte ratio (PLR), mean platelet volume (MPV), platelet distribution width (PDW), and red cell distribution width (RDW), in the diagnosis and risk stratification of carotid artery disease, and their potential clinical applications.
Collapse
Affiliation(s)
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
24
|
Fan W, Zhang Y, Gao X, Liu Y, Shi F, Liu J, Sun L. The Prognostic Value of a Derived Neutrophil-Lymphocyte Ratio in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Clin Appl Thromb Hemost 2021; 27:10760296211034579. [PMID: 34286626 PMCID: PMC8299898 DOI: 10.1177/10760296211034579] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The systemic immune-inflammatory index (SII) and derived neutrophil-lymphocyte ratio (dNLR) are novel indexes that simultaneously reflect the host inflammatory and immune status and have prognostic value in some cancers. SII was associated with major cardiovascular events in coronary artery disease patients who received percutaneous coronary intervention (PCI). However, dNLR correlations with clinical outcomes in acute coronary syndrome (ACS) patients undergoing PCI remain unclear. This study aimed to elucidate the predictive values of SII and dNLR on the long-term prognosis of patients with ACS undergoing PCI. In total, 1,553 ACS patients undergoing PCI were consecutively enrolled from January 2016 to December 2018. The subjects were divided into high and low SII and dNLR groups for comparison (high vs. low). The SII and dNLR cutoff values for predicting major adverse cardiovascular events (MACE) were calculated using receiver operating characteristic curves, and Kaplan-Meier curves and Cox regression models were used for survival analyses. The endpoint was a MACE, which included all-cause mortality and rehospitalization for severe heart failure during follow-up. The Kaplan-Meier curves showed that a higher SII or dNLR value was associated with a higher risk of MACE (all P < 0.001). Multivariate Cox regression models showed that SII (hazard ratio [HR]: 2.545; 95% confidence interval [CI]: 1.416-4.574; P = 0.002) and dNLR (HR: 2.610, 95% CI: 1.454-4.685, P = 0.001) were independent predictors for MACE. dNLR may be a suitable laboratory marker to identify high-risk ACS patients after PCI.
Collapse
Affiliation(s)
- Wenjun Fan
- Department of Cardiology, 117914The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Ying Zhang
- Department of Cardiology, 117914The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Xiuxin Gao
- Department of Cardiology, 117914The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Yixiang Liu
- Department of Cardiology, 117914The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Fei Shi
- Department of Cardiology, 117914The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Jingyi Liu
- Department of Cardiology, 117914The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| | - Lixian Sun
- Department of Cardiology, 117914The Affiliated Hospital of Chengde Medical University, Chengde, HeBei, China
| |
Collapse
|
25
|
Yeisley DJ, Arabiyat AS, Hahn MS. Cannabidiol-Driven Alterations to Inflammatory Protein Landscape of Lipopolysaccharide-Activated Macrophages In Vitro May Be Mediated by Autophagy and Oxidative Stress. Cannabis Cannabinoid Res 2021; 6:253-263. [PMID: 33998893 PMCID: PMC8217602 DOI: 10.1089/can.2020.0109] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: The nonpsychotropic phytocannabinoid cannabidiol (CBD) presents itself as a potentially safe and effective anti-inflammatory treatment relative to clinical standards. In this present study, we compare the capacity of CBD to the corticosteroid dexamethasone (Dex) in altering the secreted protein landscape of activated macrophages and speculate upon the mechanism underpinning these alterations. Materials and Methods: Human THP-1 monocytes were differentiated into macrophages (THP-1 derived macrophages [tMACs]), activated with lipopolysaccharide (LPS), and then treated with 5, 10, 25, 50, or 100 μM CBD or 10 μM Dex for 24 h. Following treatment, cytotoxicity of CBD and protein expression levels from culture supernatants and from whole cell lysates were assessed for secreted and intracellular proteins, respectively. Results: High concentration (50 and 100 μM) CBD treatments exhibit a cytotoxic effect on LPS-activated tMACs following the 24-h treatment. Relative to the LPS-activated and untreated control (M[LPS]), both 25 μM CBD and 10 μM Dex reduced expression of pro-inflammatory markers-tumor necrosis factor alpha, interleukin 1 beta, and regulated on activation, normal T cell expressed and secreted (RANTES)-as well as the pleiotropic marker interleukin-6 (IL-6). A similar trend was observed for anti-inflammatory markers interleukin-10 and vascular endothelial growth factor (VEGF). Dex further reduced secreted levels of monocyte chemoattractant protein-1 in addition to suppressing IL-6 and VEGF beyond treatments with CBD. The anti-inflammatory capacity of 25 μM CBD was concurrent with reduction in levels of phosphorylated mammalian target of rapamycin Ser 2448, endothelial nitric oxide synthase, and induction of cyclooxygenase 2 relative to M(LPS). This could suggest that the observed effects on macrophage immune profile may be conferred through inhibition of mammalian target of rapamycin complex 1 and ensuing induction of autophagy. Conclusion: Cumulatively, these data demonstrate cytotoxicity of high concentration CBD treatment. The data reported herein largely agree with other literature demonstrating the anti-inflammatory effects of CBD. However, there is discrepancy within literature surrounding efficacious concentrations and effects of CBD on specific secreted proteins. These data expand upon previous work investigating the effects of CBD on inflammatory protein expression in macrophages, as well as provide insight into the mechanism by which these effects are conferred.
Collapse
Affiliation(s)
- Daniel J. Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ahmad S. Arabiyat
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
26
|
Lorenzatti AJ. Anti-inflammatory Treatment and Cardiovascular Outcomes: Results of Clinical Trials. Eur Cardiol 2021; 16:e15. [PMID: 33976710 PMCID: PMC8086421 DOI: 10.15420/ecr.2020.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/20/2021] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder of the vasculature where cholesterol accumulates in the arterial wall stimulating infiltration of immune cells. This plays an important role in plaque formation, as well as complications caused by its build up. Pro-inflammatory cytokines and chemokines are implicated throughout the progression of the disease and different therapies that aim to resolve this chronic inflammation, reduce cardiovascular (CV) events and improve clinical outcomes have been tested. The results from the pivotal CANTOS trial show that targeting the pro-inflammatory cytokine IL-1β successfully reduces the incidence of secondary CV events. This review briefly assesses the role of inflammation in atherosclerosis, providing a picture of the multiple players involved in the process and offering a perspective on targeting inflammation to prevent atherosclerotic CV events, as well as focusing on the results of the latest Phase III clinical trials.
Collapse
|
27
|
Aguilera-Durán G, Romo-Mancillas A. Behavior of Chemokine Receptor 6 (CXCR6) in Complex with CXCL16 Soluble form Chemokine by Molecular Dynamic Simulations: General Protein‒Ligand Interaction Model and 3D-QSAR Studies of Synthetic Antagonists. Life (Basel) 2021; 11:life11040346. [PMID: 33920834 PMCID: PMC8071165 DOI: 10.3390/life11040346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023] Open
Abstract
The CXCR6‒CXCL16 axis is involved in several pathological processes, and its overexpression has been detected in different types of cancer, such as prostate, breast, ovary, and lung cancer, along with schwannomas, in which it promotes invasion and metastasis. Moreover, this axis is involved in atherosclerosis, type 1 diabetes, primary immune thrombocytopenia, vitiligo, and other autoimmune diseases, in which it is responsible for the infiltration of different immune system cells. The 3D structure of CXCR6 and CXCL16 has not been experimentally resolved; therefore, homology modeling and molecular dynamics simulations could be useful for the study of this signaling axis. In this work, a homology model of CXCR6 and a soluble form of CXCL16 (CXCR6‒CXCL16s) are reported to study the interactions between CXCR6 and CXCL16s through coarse-grained molecular dynamics (CG-MD) simulations. CG-MD simulations showed the two activation steps of CXCR6 through a decrease in the distance between the chemokine and the transmembrane region (TM) of CXCR6 and transmembrane rotational changes and polar interactions between transmembrane segments. The polar interactions between TM3, TM5, and TM6 are fundamental to functional conformation and the meta-active state of CXCR6. The interactions between D77-R280 and T243-TM7 could be related to the functional conformation of CXCR6; alternatively, the interaction between Q195-Q244 and N248 could be related to an inactive state due to the loss of this interaction, and an arginine cage broken in the presence of CXCL16s allows the meta-active state of CXCR6. A general protein‒ligand interaction supports the relevance of TM3‒TM5‒TM6 interactions, presenting three relevant pharmacophoric features: HAc (H-bond acceptor), HDn (H-bond donator), and Hph (hydrophobic), distributed around the space between extracellular loops (ECLs) and TMs. The HDn feature is close to TM3 and TM6; likewise, the HAc and Hph features are close to ECL1 and ECL2 and could block the rotation and interactions between TM3‒TM6 and the interactions of CXCL16s with the ECLs. Tridimensional quantitative structure-activity relationships (3D-QSAR) models show that the positive steric (VdW) and electrostatic fields coincide with the steric and positive electrostatic region of the exo-azabicyclo[3.3.1]nonane scaffold in the best pIC50 ligands. This substructure is close to the E274 residue and therefore relevant to the activity of CXCR6. These data could help with the design of new molecules that inhibit chemokine binding or antagonize the receptor based on the activation mechanism of CXCR6 and provoke a decrease in chemotaxis caused by the CXCR6‒CXCL16 axis.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico;
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
- Correspondence:
| |
Collapse
|
28
|
Abstract
Atherosclerotic lesions are populated by cells of the innate and adaptive immune system, including CD8+ T cells. The CD8+ T cell infiltrate has recently been characterized in mouse and human atherosclerosis and revealed activated, cytotoxic, and possibly dysfunctional and exhausted cell phenotypes. In mouse models of atherosclerosis, antibody-mediated depletion of CD8+ T cells ameliorates atherosclerosis. CD8+ T cells control monopoiesis and macrophage accumulation in early atherosclerosis. In addition, CD8+ T cells exert cytotoxic functions in atherosclerotic plaques and contribute to macrophage cell death and necrotic core formation. CD8+ T cell activation may be antigen-specific, and epitopes of atherosclerosis-relevant antigens may be targets of CD8+ T cells and their cytotoxic activity. CD8+ T cell functions are tightly controlled by costimulatory and coinhibitory immune checkpoints. Subsets of regulatory CD25+CD8+ T cells with immunosuppressive functions can inhibit atherosclerosis. Importantly, local cytotoxic CD8+ T cell responses may trigger endothelial damage and plaque erosion in acute coronary syndromes. Understanding the complex role of CD8+ T cells in atherosclerosis may pave the way for defining novel treatment approaches in atherosclerosis. In this review article, we discuss these aspects, highlighting the emerging and critical role of CD8+ T cells in atherosclerosis.
Collapse
|
29
|
He D, Hu J, Yang R, Zeng B, Yang D, Li D, Zhang M, Yang M, Ni Q, Ning R, Fan X, Li X, Mao X, Li Y. Evolutionary analysis of chemokine CXCL16 and its receptor CXCR6 in murine rodents. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103718. [PMID: 32360411 DOI: 10.1016/j.dci.2020.103718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The chemokine CXCL16 and its receptor CXCR6 are implicated in various physiological and pathological processes in cooperative and/or stand-alone fashions. Despite the significance of rodent animal models in elucidating the function and clinical relevance of the chemokine and its receptor, the evolutionary characterization of these molecules remains deficient for this taxon to a certain extent. In this study, we implemented a comparison of synonymous and nonsynonymous variation rates in combination with the maximum likelihood (ML) analysis and Tajima's test to evaluate the interspecific and intraspecific evolutions of CXCL16 and CXCR6 in murine rodents. Our results indicate that adaptive selection has frequently contributed to genetic diversity of both CXCL16 and CXCR6 in the murine lineage that is asynchronous with a relative dependence between these genes. This signature is radically different from the lineage-specific and concordant adaptive diversity of the primate homologues of these genes, which was reported in a previous study. The diversity identified in the present study shed further light on molecular strategies against the challenges towards CXCL16 and CXCR6.
Collapse
Affiliation(s)
- Dan He
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Jia Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Rongrong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Diyan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Ruihong Ning
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Xiaoyan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Xueping Mao
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China.
| |
Collapse
|
30
|
Gast M, Rauch BH, Haghikia A, Nakagawa S, Haas J, Stroux A, Schmidt D, Schumann P, Weiss S, Jensen L, Kratzer A, Kraenkel N, Müller C, Börnigen D, Hirose T, Blankenberg S, Escher F, Kühl AA, Kuss AW, Meder B, Landmesser U, Zeller T, Poller W. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc Res 2020; 115:1886-1906. [PMID: 30924864 DOI: 10.1093/cvr/cvz085] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/15/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Inflammation is a key driver of atherosclerosis and myocardial infarction (MI), and beyond proteins and microRNAs (miRs), long noncoding RNAs (lncRNAs) have been implicated in inflammation control. To obtain further information on the possible role of lncRNAs in the context of atherosclerosis, we obtained comprehensive transcriptome maps of circulating immune cells (peripheral blood mononuclear cells, PBMCs) of early onset MI patients. One lncRNA significantly suppressed in post-MI patients was further investigated in a murine knockout model. METHODS AND RESULTS Individual RNA-sequencing (RNA-seq) was conducted on PBMCs from 28 post-MI patients with a history of MI at age ≤50 years and stable disease ≥3 months before study participation, and from 31 healthy individuals without manifest cardiovascular disease or family history of MI as controls. RNA-seq revealed deregulated protein-coding transcripts and lncRNAs in post-MI PBMCs, among which nuclear enriched abundant transcript (NEAT1) was the most highly expressed lncRNA, and the only one significantly suppressed in patients. Multivariate statistical analysis of validation cohorts of 106 post-MI patients and 85 controls indicated that the PBMC NEAT1 levels were influenced (P = 0.001) by post-MI status independent of statin intake, left ventricular ejection fraction, low-density lipoprotein or high-density lipoprotein cholesterol, or age. We investigated NEAT1-/- mice as a model of NEAT1 deficiency to evaluate if NEAT1 depletion may directly and causally alter immune regulation. RNA-seq of NEAT1-/- splenocytes identified disturbed expression and regulation of chemokines/receptors, innate immunity genes, tumour necrosis factor (TNF) and caspases, and increased production of reactive oxygen species (ROS) under baseline conditions. NEAT1-/- spleen displayed anomalous Treg and TH cell differentiation. NEAT1-/- bone marrow-derived macrophages (BMDMs) displayed altered transcriptomes with disturbed chemokine/chemokine receptor expression, increased baseline phagocytosis (P < 0.0001), and attenuated proliferation (P = 0.0013). NEAT1-/- BMDMs responded to LPS with increased (P < 0.0001) ROS production and disturbed phagocytic activity (P = 0.0318). Monocyte-macrophage differentiation was deregulated in NEAT1-/- bone marrow and blood. NEAT1-/- mice displayed aortic wall CD68+ cell infiltration, and there was evidence of myocardial inflammation which could lead to severe and potentially life-threatening structural damage in some of these animals. CONCLUSION The study indicates distinctive alterations of lncRNA expression in post-MI patient PBMCs. Regarding the monocyte-enriched NEAT1 suppressed in post-MI patients, the data from NEAT1-/- mice identify NEAT1 as a novel lncRNA-type immunoregulator affecting monocyte-macrophage functions and T cell differentiation. NEAT1 is part of a molecular circuit also involving several chemokines and interleukins persistently deregulated post-MI. Individual profiling of this circuit may contribute to identify high-risk patients likely to benefit from immunomodulatory therapies. It also appears reasonable to look for new therapeutic targets within this circuit.
Collapse
Affiliation(s)
- Martina Gast
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Bernhard H Rauch
- Institute for Pharmacology, Universitätsmedizin Greifswald, Felix-Hausdorff-Strasse 3, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Site Greifswald, Felix-Hausdorff-Strasse 3, Greifswald
| | - Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan.,Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 jo, Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Jan Haas
- Department of Cardiology, Institute for Cardiomyopathies, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Site Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
| | - Andrea Stroux
- Institute for Biometry and Clinical Epidemiology, Hindenburgdamm 30, Berlin, Germany
| | - David Schmidt
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Paul Schumann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Lars Jensen
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Nicolle Kraenkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany
| | - Christian Müller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Daniela Börnigen
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Felicitas Escher
- German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Institute of Cardiac Diagnostics and Therapy (IKDT), Hindenburgdamm 30, Berlin, Germany.,Department of Cardiology CVK, Hindenburgdamm 30, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin-Core Unit Immunopathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas W Kuss
- Interfaculty Institute for Genetics and Functional Genome Research, University of Greifswald, Felix-Hausdorff-Strasse 8, Greifswald, Germany
| | - Benjamin Meder
- Department of Cardiology, Institute for Cardiomyopathies, University Hospital Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Site Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany.,Department of Genetics, Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Strasse 2, Berlin, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany.,German Center for Cardiovascular Research (DZHK), Site Hamburg/Lübeck/Kiel, Martinistrasse 52, Hamburg, Germany
| | - Wolfgang Poller
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11, Hindenburgdamm 30, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Site Berlin, Hindenburgdamm 30, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Hindenburgdamm 30, Berlin, Germany
| |
Collapse
|
31
|
Bullenkamp J, Mengoni V, Kaur S, Chhetri I, Dimou P, Astroulakis ZMJ, Kaski JC, Dumitriu IE. Interleukin-7 and interleukin-15 drive CD4+CD28null T lymphocyte expansion and function in patients with acute coronary syndrome. Cardiovasc Res 2020; 117:1935-1948. [PMID: 32647892 PMCID: PMC8262639 DOI: 10.1093/cvr/cvaa202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Inflammation has important roles in atherosclerosis. CD4+CD28null (CD28null) T cells are a specialized T lymphocyte subset that produce inflammatory cytokines and cytotoxic molecules. CD28null T cells expand preferentially in patients with acute coronary syndrome (ACS) rather than stable angina and are barely detectable in healthy subjects. Importantly, ACS patients with CD28null T-cell expansion have increased risk for recurrent acute coronary events and poor prognosis, compared to ACS patients in whom this cell subset does not expand. The mechanisms regulating CD28null T-cell expansion in ACS remain elusive. We therefore investigated the role of cytokines in CD28null T-cell expansion in ACS. METHODS AND RESULTS High-purity sorted CD4+ T cells from ACS patients were treated with a panel of cytokines (TNF-α, IL-1β, IL-6, IL-7, and IL-15), and effects on the number, phenotype, and function of CD28null T cells were analysed and compared to the control counterpart CD28+ T-cell subset. IL-7- and IL-15-induced expansion of CD28null T cells from ACS patients, while inflammatory cytokines TNF-α, IL-1β, and IL-6 did not. The mechanisms underlying CD28null T-cell expansion by IL-7/IL-15 were preferential activation and proliferation of CD28null T cells compared to control CD28+ T cells. Additionally, IL-7/IL-15 markedly augmented CD28null T-cell cytotoxic function and interferon-γ production. Further mechanistic analyses revealed differences in baseline expression of component chains of IL-7/IL-15 receptors (CD127 and CD122) and increased baseline STAT5 phosphorylation in CD28null T cells from ACS patients compared to the control CD28+ T-cell subset. Notably, we demonstrate that CD28null T-cell expansion was significantly inhibited by Tofacitinib, a selective JAK1/JAK3 inhibitor that blocks IL-7/IL-15 signalling. CONCLUSION Our novel data show that IL-7 and IL-15 drive the expansion and function of CD28null T cells from ACS patients suggesting that IL-7/IL-15 blockade may prevent expansion of these cells and improve patient outcomes.
Collapse
Affiliation(s)
- Jessica Bullenkamp
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Veronica Mengoni
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Satdip Kaur
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Ismita Chhetri
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Paraskevi Dimou
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Zoë M J Astroulakis
- Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| | - Ingrid E Dumitriu
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.,Cardiology Clinical Academic Group, St George's University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
32
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
34
|
Regal-McDonald K, Somarathna M, Lee T, Litovsky SH, Barnes J, Peretik JM, Traylor JG, Orr AW, Patel RP. Assessment of ICAM-1 N-glycoforms in mouse and human models of endothelial dysfunction. PLoS One 2020; 15:e0230358. [PMID: 32208424 PMCID: PMC7092995 DOI: 10.1371/journal.pone.0230358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/27/2020] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction is a critical event in vascular inflammation characterized, in part, by elevated surface expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1). ICAM-1 is heavily N-glycosylated, and like other surface proteins, it is largely presumed that fully processed, complex N-glycoforms are dominant. However, our recent studies suggest that hypoglycosylated or high mannose (HM)-ICAM-1 N-glycoforms are also expressed on the cell surface during endothelial dysfunction, and have higher affinity for monocyte adhesion and regulate outside-in endothelial signaling by different mechanisms. Whether different ICAM-1 N-glycoforms are expressed in vivo during disease is unknown. In this study, using the proximity ligation assay, we assessed the relative formation of high mannose, hybrid and complex α-2,6-sialyated N-glycoforms of ICAM-1 in human and mouse models of atherosclerosis, as well as in arteriovenous fistulas (AVF) of patients on hemodialysis. Our data demonstrates that ICAM-1 harboring HM or hybrid epitopes as well as ICAM-1 bearing α-2,6-sialylated epitopes are present in human and mouse atherosclerotic lesions. Further, HM-ICAM-1 positively associated with increased macrophage burden in lesions as assessed by CD68 staining, whereas α-2,6-sialylated ICAM-1 did not. Finally, both HM and α-2,6-sialylated ICAM-1 N-glycoforms were present in hemodialysis patients who had AVF maturation failure compared to successful AVF maturation. Collectively, these data provide evidence that HM- ICAM-1 N-glycoforms are present in vivo, and at levels similar to complex α-2,6-sialylated ICAM-1 underscoring the need to better understand their roles in modulating vascular inflammation.
Collapse
Affiliation(s)
- Kellie Regal-McDonald
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Maheshika Somarathna
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timmy Lee
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Silvio H. Litovsky
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jarrod Barnes
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. M. Peretik
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - J. G. Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Rakesh P. Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
35
|
Huang J, Zhang Q, Wang R, Ji H, Chen Y, Quan X, Zhang C. Systemic Immune-Inflammatory Index Predicts Clinical Outcomes for Elderly Patients with Acute Myocardial Infarction Receiving Percutaneous Coronary Intervention. Med Sci Monit 2019; 25:9690-9701. [PMID: 31849367 PMCID: PMC6930700 DOI: 10.12659/msm.919802] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We assessed the utility of the systemic immune-inflammatory index (SII) in estimating the in-hospital and long-term prognosis of elderly patients with acute myocardial infarction (AMI) who received percutaneous coronary intervention (PCI). MATERIAL AND METHODS Our study evaluated 711 consecutive elderly patients (age 65-85 years) from January 2015 to December 2017. The correlation between clinical outcomes and SII was analyzed through the stepwise Cox regression analysis and the Kaplan-Meier approach. The clinical endpoints were all-cause mortality and major adverse cardiovascular and cerebrovascular events (MACCE) in-hospital and during 3-year follow-up. RESULTS The study enrolled 711 elderly patients with AMI (66.95% male, 71.99±0.19 years). Kaplan-Meier analysis showed a lower survival rate in patients with higher SII scores, which also predicted in-hospital and long-term (≤3 years) outcomes. In multivariate analyses, SII showed an independent predictive value for in-hospital mortality (hazard ratio (HR), 3.32; 95% confidence interval (CI), 1.55-7.10; p<0.01), in-hospital MACCE (HR, 1.43; 95%CI, 1.02-2.00; p=0.04), long-term mortality (HR, 1.95; 95%CI, 1.23-3.09; p<0.01), along with long-term MACCE (HR, 1.72; 95%CI, 1.23-2.40; p<0.01). Moreover, SII showed a weak but significant positive relationship with the Gensini score among patients developing non-ST-segment elevation myocardial infarction (r=0.18; p<0.01). CONCLUSIONS SII, a readily available laboratory marker, is a potential indicator to predict the clinical endpoints for elderly patients with AMI undergoing PCI.
Collapse
Affiliation(s)
- Jiabao Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qing Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Runchang Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Hongyan Ji
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Yusi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xiaoqing Quan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China (mainland)
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
36
|
Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, Kim C, McSkimming C, Taylor AM, Nguyen AT, McNamara CA, Hedrick CC. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arterioscler Thromb Vasc Biol 2019; 39:25-36. [PMID: 30580568 DOI: 10.1161/atvbaha.118.311022] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective- Three distinct human monocyte subsets have been identified based on the surface marker expression of CD14 and CD16. We hypothesized that monocytes were likely more heterogeneous in composition. Approach and Results- We used the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). To study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an atheroprotective role. Conclusions- Our data demonstrate that human nonclassical monocytes are a heterogeneous population, existing of several subsets with functional differences. These subsets have changed frequencies in the setting of severe CAD. Understanding how these newly identified subsets modulate CAD will be important for CAD-based therapies that target myeloid cells.
Collapse
Affiliation(s)
- Anouk A J Hamers
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Huy Q Dinh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Graham D Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Paola Marcovecchio
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Amy Blatchley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Catherine S Nakao
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Allergy and Immunology, CA (C.K.)
| | - Chantel McSkimming
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Angela M Taylor
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| |
Collapse
|
37
|
Lou X, Ma X, Wang D, Li X, Sun B, Zhang T, Qin M, Ren L. Systematic analysis of long non-coding RNA and mRNA expression changes in ApoE-deficient mice during atherosclerosis. Mol Cell Biochem 2019; 462:61-73. [PMID: 31446617 PMCID: PMC6834762 DOI: 10.1007/s11010-019-03610-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022]
Abstract
Atherosclerosis plays an important role in the pathology of coronary heart disease, cerebrovascular disease, and systemic vascular disease. Long non-coding RNAs (lncRNAs) are involved in most biological processes and are deregulated in many human diseases. However, the expression alteration and precise role of lncRNAs during atherosclerosis are unknown. We report here the systematic profiling of lncRNAs and mRNAs in an ApoE-deficient (ApoE-/-) mouse model of atherosclerosis. Clariom D solutions for the mouse Affymetrix Gene Chip were employed to analyze the RNAs from control and ApoE-/- mice. The functions of the differentially expressed mRNAs and lncRNAs and the relationships of their expression with atherosclerosis were analyzed by gene ontology, co-expression network, pathway enrichment, and lncRNA target pathway network analyses. Quantitative real-time PCR (QRT-PCR) was used to determine the expression of mRNAs and lncRNAs. A total of 2212 differentially expressed lncRNAs were identified in ApoE-/- mice, including 1186 up-regulated and 1026 down-regulated lncRNAs (|FC| ≥ 1.1, p < 0.05). A total of 1190 differentially expressed mRNAs were found in the ApoE-/- mice with 384 up-regulated and 806 down-regulated (|FC| ≥ 1.1, p < 0.05). Bioinformatics analyses demonstrated extensive co-expression of lncRNAs and mRNAs and concomitant deregulation of multiple signaling pathways associated with the initiation and progression of atherosclerosis. The identified differentially expressed mRNAs and lncRNAs as well as the related signaling pathways may provide systematic information for understanding the pathogenesis and identifying biomarkers for the diagnosis, treatment, and prognosis of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Lou
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiaoyan Ma
- Department of Cardiology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, Jilin, People's Republic of China
| | - Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Bo Sun
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tong Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meng Qin
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Liqun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
38
|
Lin FY, Lin JY, Lo KY, Sun YS. Use Microfluidic Chips to Study the Phototaxis of Lung Cancer Cells. Int J Mol Sci 2019; 20:ijms20184515. [PMID: 31547262 PMCID: PMC6769873 DOI: 10.3390/ijms20184515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023] Open
Abstract
Cell migration is an important process involved in wound healing, tissue development, and so on. Many studies have been conducted to explore how certain chemicals and electric fields induce cell movements in specific directions, which are phenomena termed chemotaxis and electrotaxis, respectively. However, phototaxis, the directional migration of cells or organisms toward or away from light, is rarely investigated due to the difficulty of generating a precise and controllable light gradient. In this study, we designed and fabricated a microfluidic chip for simultaneously culturing cells and generating a blue light gradient for guiding cell migration. A concentration gradient was first established inside this chip, and by illuminating it with a blue light-emitting diode (LED), a blue light gradient was generated underneath. Cell migration in response to this light stimulus was observed. It was found that lung cancer cells migrated to the dark side of the gradient, and the intracellular reactive oxygen species (ROS) was proportional to the intensity of the blue light.
Collapse
Affiliation(s)
- Fong-Yi Lin
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Jin-Young Lin
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yung-Shin Sun
- Department of Physics, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
39
|
Liu C, Yang Y, Du L, Chen S, Zhang J, Zhang C, Zhou J. Platelet-leukocyte aggregate is associated with adverse events after surgical intervention for rheumatic heart disease. Sci Rep 2019; 9:13069. [PMID: 31506454 PMCID: PMC6737193 DOI: 10.1038/s41598-019-49253-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Platelet-leukocyte aggregate (PLA) is implicated in the etiology of both vascular lesions and cardiovascular events. This prospective cohort study aimed to examine the prognostic value of PLA for major adverse cardiac and cerebrovascular events (MACCE) and perioperative adverse events (AEs) in patients with rheumatic heart disease undergoing surgical intervention by Cox proportional hazard regression and logistic regression. A total of 244 patients were included, of whom 7 were lost to follow-up. Among the analyzed 237 subjects who completed 3-year follow-up, 30 experienced MACCE and 38 experienced perioperative AEs. Preoperative PLA was higher in subjects who developed MACCE (13.32%) than in those who did not (8.69%, p = 0.040). In multivariate regression, elevated PLA was associated with increased MACCE (hazard ratio 1.51 for each quartile, 95% CI 1.07-2.13; p = 0.020), and perioperative AEs (odds ratio 1.61, 95% CI 1.14-2.26; p = 0.007). The optimal PLA cut-off for predicting MACCE was 6.8%. Subjects with PLA > 6.8% had a higher prevalence of MACCE (17.1% vs. 5.5%, p = 0.009) and perioperative AEs (19.9% vs. 8.6%, p = 0.018). Kaplan-Meier analysis showed shorter MACCE-free survival in patients with PLA > 6.8% (p = 0.007, log rank). Elevated preoperative PLA is associated with increased MACCE and perioperative AEs in patients with rheumatic valve disease undergoing surgical intervention.
Collapse
Affiliation(s)
- Chaonan Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Anesthesiology, Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chongwei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
Mohammadi FS, Mosavat A, Shabestari M, Ghezeldasht SA, Shabestari M, Mozayani F, Farid Hosseini R, Garivani YA, Azad FJ, Rezaee SA. HTLV-1-host interactions facilitate the manifestations of cardiovascular disease. Microb Pathog 2019; 134:103578. [PMID: 31175973 DOI: 10.1016/j.micpath.2019.103578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a multifactorial life-threatening disease which an epidemiologic study in Northeastern Iran showed its association with HTLV-1 infection. Therefore, a cross-sectional study of 39 newly diagnosed subjects with angiography test in three groups including 14 coronary artery disease+HTLV-1+ (CAD+HTLV-1+), 8 CAD-HTLV-1+, and 17 CAD+HTLV-1- patients and 11 healthy subjects (CAD-HTLV-1-) were conducted. In the present study, Tax and proviral load (PVL) as HTLV-1 virulence factors, along with host chemokine receptor 1 (CCR1), and CCR2 were investigated. Real-time PCR TaqMan method was carried out for PVL measurement and HTLV-1-Tax, CCR1, and CCR2 expressions in peripheral blood mononuclear cells (PBMCs). Furthermore, the main risk factors, lipid profile, and complete blood count (CBC) were assessed. Expression of CCR1 in CAD+HTLV-1+ group was higher than CAD-HTLV-1+ (P = 0.01) and healthy subjects (P = 0.02). Expression of CCR1 in CAD+HTLV-1+ was higher in comparison with CAD+HTLV-1-group but did not meet 95% CI (P = 0.02), but meaningful at 91% CI. In addition, expression of CCR2 in CAD+HTLV-1+ subjects was higher than CAD-HTLV-1+ and CAD+HTLV-1- (P = 0.001, P = 0.005, respectively). In CAD+HTLV-1- subjects, CCR2 was higher than CAD-HTLV-1+ (P = 0.03). The mean PVL in CAD+HTLV-1+ group is more than CAD-HTLV-1+ (P = 0.041). In HTLV-1+ patients Tax had a positive correlation with cholesterol (R = 0.59, P = 0.01), LDL (R = 0.79, P = 0.004) and a negative correlation with HDL (R = -0.47, P = 0.04). These correlations were stronger in CAD+HTLV-1+. Findings showed that HTLV-1 could alter the expression of CCR2 and, less effect, on CCR1. Moreover, the strong correlation between CCR2 and HTLV-1-Tax with cholesterol, LDL and HDL showed that Tax as the main HTLV-1 virulence factor in cytokine deregulation might be had indirect effects on cholesterol, LDL, and HDL levels.
Collapse
Affiliation(s)
- Fatemeh Sadat Mohammadi
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Mohammad Shabestari
- Preventive Cardiovascular Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Mahmoud Shabestari
- Preventive Cardiovascular Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mozayani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Farid Hosseini
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Ali Garivani
- Preventive Cardiovascular Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Valga F, Monzón T, Henriquez F, Antón-Pérez G. Índices neutrófilo-linfocito y plaqueta-linfocito como marcadores biológicos de interés en la enfermedad renal. Nefrologia 2019; 39:243-249. [DOI: 10.1016/j.nefro.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 09/10/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022] Open
|
42
|
Vaccination against atherosclerosis. Curr Opin Immunol 2019; 59:15-24. [PMID: 30928800 DOI: 10.1016/j.coi.2019.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that causes most heart attacks and strokes, making it the biggest killer in the world. Although cholesterol-lowering drugs have dramatically reduced these major adverse cardiovascular events, there remains a high residual risk called inflammatory risk. Atherosclerosis has an autoimmune component that can be manipulated by immunologic approaches including vaccination. Vaccination is attractive, because it is antigen-specific, does not impair host defense, and provides long-term protection. Several candidate antigens for atherosclerosis vaccine development have been identified and have been shown to reduce atherosclerosis in animal models. In this review, we focus on two different types of atherosclerosis vaccines: antibody-inducing and regulatory T cell-inducing.
Collapse
|
43
|
Effector and Regulatory T Cells Roll at High Shear Stress by Inducible Tether and Sling Formation. Cell Rep 2019; 21:3885-3899. [PMID: 29281835 DOI: 10.1016/j.celrep.2017.11.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/04/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
The adaptive immune response involves T cell differentiation and migration to sites of inflammation. T cell trafficking is initiated by rolling on inflamed endothelium. Tethers and slings, discovered in neutrophils, facilitate cell rolling at high shear stress. Here, we demonstrate that the ability to form tethers and slings during rolling is highly inducible in T helper 1 (Th1), Th17, and regulatory T (Treg) cells but less in Th2 cells. In vivo, endogenous Treg cells rolled stably in cremaster venules at physiological shear stress. Quantitative dynamic footprinting nanoscopy of Th1, Th17, and Treg cells uncovered the formation of multiple tethers per cell. Human Th1 cells also showed tethers and slings. RNA sequencing (RNA-seq) revealed the induction of cell migration and cytoskeletal genes in sling-forming cells. We conclude that differentiated CD4 T cells stabilize rolling by inducible tether and sling formation. These phenotypic changes approximate the adhesion phenotype of neutrophils and support CD4 T cell access to sites of inflammation.
Collapse
|
44
|
Podolec J, Niewiara L, Skiba D, Siedlinski M, Baran J, Komar M, Guzik B, Kablak-Ziembicka A, Kopec G, Guzik T, Bartus K, Plazak W, Zmudka K. Higher levels of circulating naïve CD8 +CD45RA + cells are associated with lower extent of coronary atherosclerosis and vascular dysfunction. Int J Cardiol 2018; 259:26-30. [PMID: 29579606 DOI: 10.1016/j.ijcard.2018.01.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jakub Podolec
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland.
| | - Lukasz Niewiara
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Dominik Skiba
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Poland; British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Poland
| | - Jakub Baran
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Monika Komar
- Department of Cardiac and Vascular Diseases, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Bartlomiej Guzik
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Anna Kablak-Ziembicka
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Grzegorz Kopec
- Department of Cardiac and Vascular Diseases, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Tomasz Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Poland; British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Krzysztof Bartus
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Wojciech Plazak
- Department of Cardiac and Vascular Diseases, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Krzysztof Zmudka
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| |
Collapse
|
45
|
The role of UNC5b in ox-LDL inhibiting migration of RAW264.7 macrophages and the involvement of CCR7. Biochem Biophys Res Commun 2018; 505:637-643. [PMID: 30286954 DOI: 10.1016/j.bbrc.2018.09.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 11/23/2022]
Abstract
The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. The C-C chemokine receptor type 7 (CCR7) is positively correlated with the macrophage migration. But the mechanism of CCR7 regulation is not fully clearness. In the present study, we demonstrates that expression in UNC5b and netrin-1 was enhanced in respond to ox-LDL in Raw264.7 macrophage and associated with decreasing cell migration. Interestingly, it was found that ox-LDL significantly downregulate CCR7 gene expression. The expression of CCR7 in mRNA and protein levels were decreased in ox-LDL treated Raw264.7 macrophage when we over expression of UNC5b with pcDNA3.1-UNC5b plasmid. We got the inverse results after silence UNC5b gene with siUNC5b. Meanwhile, the data show that in ox-LDL inducement, UNC5b down-regulated CCR7, and then inhibited macrophage migration. This novel phenomenon is of a crucial highlights to understand deeply the pathogenesis of atherosclerosis. The molecular mechanism of CCR7 regulation deserves intensive study.
Collapse
|
46
|
Pan H, Palekar RU, Hou KK, Bacon J, Yan H, Springer LE, Akk A, Yang L, Miller MJ, Pham CT, Schlesinger PH, Wickline SA. Anti-JNK2 peptide-siRNA nanostructures improve plaque endothelium and reduce thrombotic risk in atherosclerotic mice. Int J Nanomedicine 2018; 13:5187-5205. [PMID: 30233180 PMCID: PMC6135209 DOI: 10.2147/ijn.s168556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A direct and independent role of inflammation in atherothrombosis was recently highlighted by the Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) trial, showing the benefit of inhibiting signaling molecules, eg, interleukins. Accordingly, we sought to devise a flexible platform for preventing the inflammatory drivers at their source to preserve plaque endothelium and mitigate procoagulant risk. METHODS p5RHH-siRNA nanoparticles were formulated through self-assembly processes. The therapeutic efficacy of p5RHH-JNK2 siRNA nanoparticles was evaluated both in vitro and in vivo. RESULTS Because JNK2 is critical to macrophage uptake of oxidized lipids through scavenger receptors that engender expression of myriad inflammatory molecules, we designed an RNA-silencing approach based on peptide-siRNA nanoparticles (p5RHH-siRNA) that localize to atherosclerotic plaques exhibiting disrupted endothelial barriers to achieve control of JNK2 expression by macrophages. After seven doses of p5RHH-JNK2 siRNA nanoparticles over 3.5 weeks in ApoE-/- mice on a Western diet, both JNK2 mRNA and protein levels were significantly decreased by 26% (P=0.044) and 42% (P=0.042), respectively. Plaque-macrophage populations were markedly depleted and NFκB and STAT3-signaling pathways inhibited by 47% (P<0.001) and 46% (P=0.004), respectively. Endothelial barrier integrity was restored (2.6-fold reduced permeability to circulating 200 nm nanoparticles in vivo, P=0.003) and thrombotic risk attenuated (200% increased clotting times to carotid artery injury, P=0.02), despite blood-cholesterol levels persistently exceeding 1,000 mg/dL. No adaptive or innate immunoresponses toward the nanoparticles were observed, and blood tests after the completion of treatment confirmed the largely nontoxic nature of this approach. CONCLUSION The ability to formulate these nanostructures rapidly and easily interchange or multiplex their oligonucleotide content represents a promising approach for controlling deleterious signaling events locally in advanced atherosclerosis.
Collapse
Affiliation(s)
- Hua Pan
- Department of Cardiovascular Sciences, USF Health, Morsani College of Medicine, The USF Health Heart Institute, University of South Florida, Tampa, FL, USA, ,
| | - Rohun U Palekar
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Kirk K Hou
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - John Bacon
- Department of Medicine, Washington University, St Louis, MO, USA
| | - Huimin Yan
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Luke E Springer
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Antonina Akk
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Lihua Yang
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Mark J Miller
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Christine Tn Pham
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Paul H Schlesinger
- Department of Biomedical Engineering, Washington University, St Louis, MO, USA
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, USF Health, Morsani College of Medicine, The USF Health Heart Institute, University of South Florida, Tampa, FL, USA, ,
| |
Collapse
|
47
|
Szentes V, Gazdag M, Szokodi I, Dézsi CA. The Role of CXCR3 and Associated Chemokines in the Development of Atherosclerosis and During Myocardial Infarction. Front Immunol 2018; 9:1932. [PMID: 30210493 PMCID: PMC6119714 DOI: 10.3389/fimmu.2018.01932] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The chemokine receptor CXCR3 and associated CXC chemokines have been extensively investigated in several inflammatory and autoimmune diseases as well as in tumor development. Recent studies have indicated the role of these chemokines also in cardiovascular diseases. We aimed to present current knowledge regarding the role of CXCR3-binding chemokines in the pathogenesis of atherosclerosis and during acute myocardial infarction.
Collapse
Affiliation(s)
- Veronika Szentes
- Department of Cardiology, Petz Aladár County Teaching Hospital, Győr, Hungary
| | | | - István Szokodi
- Heart Institute, Medical School, and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Csaba A Dézsi
- Department of Cardiology, Petz Aladár County Teaching Hospital, Győr, Hungary
| |
Collapse
|
48
|
Getz GS, Reardon CA. T Cells in Atherosclerosis in Ldlr-/- and Apoe-/- Mice. JOURNAL OF IMMUNOLOGICAL SCIENCES 2018; 2:69-76. [PMID: 30854522 PMCID: PMC6404748 DOI: 10.29245/2578-3009/2018/3.1144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is the underlying basis for most cardiovascular diseases. It is a chronic inflammation affecting the arterial intima and is promoted by hypercholesterolemia. Cells of both the innate and adaptive immune systems contribute to this inflammation with macrophages and T cells being the most abundant immune cells in the atherosclerotic plaques. In this review, we discuss the studies that examined the role of T cells and T cell subsets in Apoe-/- and Ldlr-/- murine models of atherosclerosis. While there is a general consensus that Th1 cells are pro-atherogenic and regulatory T cells are atheroprotective, the role of other subsets is more ambiguous. In addition, the results in the two models of atherosclerosis do not always yield similar results. Additional studies in the two murine models using cell specific gene manipulations are needed.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Catherine A. Reardon
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
49
|
Molina M, Allende LM, Ramos LE, Gutiérrez E, Pleguezuelo DE, Hernández ER, Ríos F, Fernández C, Praga M, Morales E. CD19 + B-Cells, a New Biomarker of Mortality in Hemodialysis Patients. Front Immunol 2018; 9:1221. [PMID: 29963040 PMCID: PMC6013647 DOI: 10.3389/fimmu.2018.01221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/15/2018] [Indexed: 12/19/2022] Open
Abstract
Background and objectives Mortality of patients on hemodialysis (HD) remains very high despite recent improvements in HD techniques. Cardiovascular (CV) complications and infections are the main causes of death. Some studies suggest that disturbances in the immune system could play a role in this disproportionate mortality, through the links of immunity with inflammation and propensity to infections. However, few studies have addressed the role of lymphocyte populations and the global and CV mortality of HD patients. Aim To analyze the relationship of peripheral blood lymphocyte populations (PBLP) and all-cause and CV mortality of HD patients. Design, setting, participants, and measurements We design a prospective observational single center study in a cohort of HD prevalent patients. PBLP were analyzed at baseline and after 1 year and patients were followed for a 5-year period. Main outcomes were all-cause and CV mortality. Results One hundred and four patients (51% male, mean age 64.8 ± 15 years) were included. Follow-up was 18 (7–47) months. Fifty-five patients (52.8%) died, main causes of death being CVD (40%) and infections (29.1%). Low total lymphocyte counts were found in 47 patients (45.2%), and the most frequency lymphopenias were CD19+ B-cell (57.7%), CD3+ (40.4%), and CD4+ (36.5%). After 1 year, all determinations were lower except CD56+CD16+CD3− natural killer. Patient survival was significantly lower in patients with a CD19+ B-cell count < 100 cells/μL at baseline as compared to patients with CD19+ B-cell ≥ 100 cells/μL counts at the end of follow-up (16.5 vs 54%, p = 0.003). By multivariable analysis, age, history of CV disease, Charlson index, a KT/V < 1.2, and a CD19+ B-cell count < 100 cells/μL at baseline and after 1-year were factors associated with of all-cause mortality. A CD19+ B-cell count < 100 cells/μL at baseline was associated with CV mortality. Conclusion CD19+ B-cell lymphopenia is very common among HD patients, and it could be an independent predictor of all-cause and CV mortality. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- María Molina
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Luis E Ramos
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Eduardo Gutiérrez
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Daniel E Pleguezuelo
- Department of Immunology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Eduardo R Hernández
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Francisco Ríos
- San Luciano Hemodialysis Unit, Fresenius Medical Care, Madrid, Spain
| | - Cristina Fernández
- Department of Epidemiology and Preventive Medicine, Hospital Universitario Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Enrique Morales
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| |
Collapse
|
50
|
Immune adjuvant effect of a Toxoplasma gondii profilin-like protein in autologous whole-tumor-cell vaccination in mice. Oncotarget 2018; 7:74107-74119. [PMID: 27687589 PMCID: PMC5342039 DOI: 10.18632/oncotarget.12316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/21/2016] [Indexed: 11/27/2022] Open
Abstract
Profilin-like protein in Toxoplasma gondii (TgPLP) is a Toll-like receptor (TLR) agonist. In this study, we investigated whether TgPLP has an adjuvant effect on immune function in autologous whole-tumor-cell vaccine (AWV) treatment. Mice vaccinated with AWV together with recombinant TgPLP protein had smaller CT26 tumors and increased survival. TgPLP treatment strongly increased the production of IL-12 through MyD88 signaling and several chemokines, including CCL5, CCL12, and XCL1, in bone marrow-derived macrophages (BMMs). In addition, TgPLP increased the phagocytosis of tumor cells by BMMs and promoted immune cell mobility on a tumor-matrigel scaffold. TgPLP triggered immune responses as demonstrated by increased expression of antigen presenting cell markers (MHC class I and II, B7.1, and B7.2) in BMMs and increased IL-12 and IFN-γ expression in mice. Mice vaccinated with AWV and TgPLP had more immune cells (CD4+ and CD8+ T cells, natural killer cells, and macrophages) in the spleen and higher total IgG and IgG2a concentrations in the blood than mice vaccinated with AWV alone. These findings suggest that TgPLP is a TLR-based vaccine adjuvant that enhances antitumor immune responses during vaccination with AWV.
Collapse
|