1
|
Erfan R, Shaker OG, Khalil MAF, Hassan AR, Abu-El-Azayem AK, Samy A, Abdelhamid H, Awaji AA, El Sayed HS, Mohammed A. LncRNA NEAT1 and miRNA 101 as potential diagnostic biomarkers in patients with alopecia areata. Noncoding RNA Res 2025; 10:35-40. [PMID: 39296639 PMCID: PMC11406671 DOI: 10.1016/j.ncrna.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024] Open
Abstract
Background Alopecia areata (AA) commonly displays as non-scarring, irregular hair loss. Experimental and clinical research have specifically implicated autoimmunity and genetics in the disruption of anagen hair follicles. AA patients' scalp lesions and peripheral blood mononuclear cells (PBMCs) exhibited an immune state imbalance. Numerous studies attempt to establish a connection between the occurrence and prognosis of AA and the epigenetic modulation of gene expression by long noncoding RNA (lncRNA) and microRNA (miRNA). The current study aimed to examine the serum levels of nuclear enriched abundant transcript 1 (NEAT1) and its target miRNA101 (miR-101) in AA and investigate the ability to use them as diagnostic biomarkers in the disease. Methods Seventy-two AA patients were included in this prospective cohort study. Demographics, patient history, laboratory characteristics, and treatments were recorded. The miR-101 and NEAT1 levels were evaluated. Results Serum NEAT1 levels were lower in AA patients, but there was no significant difference. However, there was no substantial disparity in NEAT1 level regarding other disease characteristics. There was a substantial positive association between NEAT1 and miR-101 levels among cases. On the other hand, the results showed a markedly low mean of miR-101 levels among patients, but the miR-101 marker shows no significant difference regarding different disease characteristics. The specificity and sensitivity test for the miR-101 marker shows a significant specificity of 60 % and sensitivity of 75 % with a p-value of 0.001 and a cut-off value of 0.897. Conclusions The current research determined that miR-101 works as a diagnostic biomarker for AA.
Collapse
Affiliation(s)
- Randa Erfan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Amel Raouf Hassan
- Department of Dermatology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| | - Abeer K Abu-El-Azayem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amira Samy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Haitham Abdelhamid
- Plastic Surgery and Hair Transplantation Center, Vertex Ästhetik Klinik, Cairo, Egypt
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hassan Salem El Sayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| | - Asmaa Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
2
|
Owen MD, Kennedy MG, Quilang RC, Scott EM, Forbes K. The role of microRNAs in pregnancies complicated by maternal diabetes. Clin Sci (Lond) 2024; 138:1179-1207. [PMID: 39289953 PMCID: PMC11409017 DOI: 10.1042/cs20230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
With the global prevalence of diabetes increasing, more people of reproductive age are experiencing hyperglycaemic pregnancies. Maternal Type 1 (T1DM) or Type 2 (T2DM) diabetes mellitus, and gestational diabetes mellitus (GDM) are associated with maternal cardiovascular and metabolic complications. Pregnancies complicated by maternal diabetes also increase the risk of short- and long-term health complications for the offspring, including altered fetal growth and the onset of T2DM and cardiometabolic diseases throughout life. Despite advanced methods for improving maternal glucose control, the prevalence of adverse maternal and offspring outcomes associated with maternal diabetes remains high. The placenta is a key organ at the maternal-fetal interface that regulates fetal growth and development. In pregnancies complicated by maternal diabetes, altered placental development and function has been linked to adverse outcomes in both mother and fetus. Emerging evidence suggests that microRNAs (miRNAs) are key molecules involved in mediating these changes. In this review, we describe the role of miRNAs in normal pregnancy and discuss how miRNA dysregulation in the placenta and maternal circulation is associated with suboptimal placental development and pregnancy outcomes in individuals with maternal diabetes. We also discuss evidence demonstrating that miRNA dysregulation may affect the long-term health of mothers and their offspring. As such, miRNAs are potential candidates as biomarkers and therapeutic targets in diabetic pregnancies at risk of adverse outcomes.
Collapse
Affiliation(s)
- Manon D Owen
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Margeurite G Kennedy
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Anthony Nolan Research Institute, Royal Free Hospital, Hampstead, London, U.K
- UCL Cancer Institute, Royal Free Campus, London, U.K
| | - Rachel C Quilang
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Eleanor M Scott
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| | - Karen Forbes
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, U.K
| |
Collapse
|
3
|
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRA, Ahmad SM, Pintus G, Zayed H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res 2024; 9:831-852. [PMID: 38586315 PMCID: PMC10995982 DOI: 10.1016/j.ncrna.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological processes and have been implicated in the development and progression of many diseases, including cancer. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and chemoresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceRNAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, their overexpression has been linked with preventing tumor formation and development. This review highlights the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Fatemeh Abdullah M. Ahmadi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nedal Al Husaini
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Rashid A.M. Al-Nuaimi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma M.S. Ahmad
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Ghamri KA. Mutual effects of gestational diabetes and schizophrenia: how can one promote the other?: A review. Medicine (Baltimore) 2024; 103:e38677. [PMID: 38905391 PMCID: PMC11191934 DOI: 10.1097/md.0000000000038677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024] Open
Abstract
Although the physical complications of gestational diabetes mellitus (GDM) are well known, emerging evidence suggests a significant link with psychiatric conditions such as schizophrenia (SCZ). This review aimed to explore the extent, nature, and implications of the association between GDM and SCZ, exploring how the 2 conditions may reciprocally influence each other. We conducted a comprehensive literature review and, analyzed clinical and mechanistic evidence supporting the mutual effects of GDM and SCZ. This review examined factors such as neurodevelopment and the impact of antipsychotics. The study found that Maternal GDM increases the risk of SCZ in offspring. Conversely, women with SCZ were more prone to hyperglycemic pregnancies. The research highlights significant regional variations in GDM prevalence, with the highest rate in the Middle East, North Africa, and South-East Asia regions. These regional variations may have an impact on the epidemiology of SCZ. Furthermore, this review identifies the potential biological and environmental mechanisms underlying these associations. There is a bidirectional relationship between GDM and SCZ, with each disorder potentially exacerbating the others. This relationship has significant implications for maternal and offspring health, particularly in regions with high GDM prevalence. These findings underline the need for integrated care approaches for women with SCZ during pregnancy and the importance of monitoring and managing GDM to mitigate the risk of SCZ in the offspring. Notably, this study recognizes the need for further research to fully understand these complex interactions and their implications for healthcare.
Collapse
Affiliation(s)
- Kholoud A. Ghamri
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Sánchez-Ceinos J, Hussain S, Khan AW, Zhang L, Almahmeed W, Pernow J, Cosentino F. Repressive H3K27me3 drives hyperglycemia-induced oxidative and inflammatory transcriptional programs in human endothelium. Cardiovasc Diabetol 2024; 23:122. [PMID: 38580969 PMCID: PMC10998410 DOI: 10.1186/s12933-024-02196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium. METHODS We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O2-) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice. RESULTS Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O2- generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice. CONCLUSIONS EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.
Collapse
Affiliation(s)
- Julia Sánchez-Ceinos
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shafaat Hussain
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Abdul Waheed Khan
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Liang Zhang
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - John Pernow
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
do Amaral CC, Nedel F, Ferrúa CP, Garcia TF, Corrêa GP, Giorgi R, Longoni dos Santos A, de Assis AM, de Avila Quevedo L, Ghisleni GC, de Matos MB, Pinheiro KAT, Trettim JP, Pinheiro RT. Maternal hsa-miR-423-5p associated with the cognitive development of babies in pregnant women without mental disorders. Front Hum Neurosci 2024; 18:1322820. [PMID: 38487105 PMCID: PMC10937415 DOI: 10.3389/fnhum.2024.1322820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs capable of regulating gene expression post-transcriptionally. MiRNAs are recognized as key regulators of diverse biological and developmental processes. During the pregnancy-puerperal cycle, numerous changes occur in the female body for the formation, growth, and development of the baby. After birth, there is a critical period in child development, as rapid gains in the physical, cognitive, and socio-emotional domains constitute the "building blocks" of children's later growth. Objective The aim of this study was to investigate the association between maternal expression of hsa-miR-423-5p during the first and second trimesters of pregnancy and neurocognitive development at 90 days of life in infants. Methods: This is a longitudinal study included in a population-based cohort study, carried out in a city in southern Brazil. The Bayley III was used to assess the babies' cognitive development. Blood samples from mothers were obtained for RNA extraction from serum and analysis of miRNA expression by qRT-PCR. Results In total, 87 dyads (mother-baby) were included. The average gestational age was 15.86 weeks (SD ± 5.55). An association of maternal miRNA with infant cognitive development was found; as maternal miR-423-5p increases, infants' cognitive development increases by 2.40 (95% CI 0.37; 4.43, p = 0.021) points at 3 months of age. Conclusion In this context, it is suggested to use this miRNA as a biomarker of child neurocognitive development detectable in the prenatal period, thus allowing the planning of early interventions.
Collapse
Affiliation(s)
- Cainá Corrêa do Amaral
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Fernanda Nedel
- Anatomy Department, Federal University of Pelotas, Pelotas, Brazil
| | - Camila Perelló Ferrúa
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Tiago Fernandez Garcia
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | - Roberta Giorgi
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | | | | | | | - Mariana Bonati de Matos
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | | | | |
Collapse
|
7
|
Ghanbari M, Khosroshahi NS, Alamdar M, Abdi A, Aghazadeh A, Feizi MAH, Haghi M. An Updated Review on the Significance of DNA and Protein Methyltransferases and De-methylases in Human Diseases: From Molecular Mechanism to Novel Therapeutic Approaches. Curr Med Chem 2024; 31:3550-3587. [PMID: 37287285 DOI: 10.2174/0929867330666230607124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
Epigenetic mechanisms are crucial in regulating gene expression. These mechanisms include DNA methylation and histone modifications, like methylation, acetylation, and phosphorylation. DNA methylation is associated with gene expression suppression; however, histone methylation can stimulate or repress gene expression depending on the methylation pattern of lysine or arginine residues on histones. These modifications are key factors in mediating the environmental effect on gene expression regulation. Therefore, their aberrant activity is associated with the development of various diseases. The current study aimed to review the significance of DNA and histone methyltransferases and demethylases in developing various conditions, like cardiovascular diseases, myopathies, diabetes, obesity, osteoporosis, cancer, aging, and central nervous system conditions. A better understanding of the epigenetic roles in developing diseases can pave the way for developing novel therapeutic approaches for affected patients.
Collapse
Affiliation(s)
- Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Alamdar
- Department of Genetics Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adel Abdi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-Soriano A, Casarini L, Salazar-Oroz A, García-Gasca A. Gestational diabetes mellitus: genetic factors, epigenetic alterations, and microbial composition. Acta Diabetol 2024; 61:1-17. [PMID: 37660305 DOI: 10.1007/s00592-023-02176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder, usually diagnosed during the third trimester of pregnancy that usually disappears after delivery. In GDM, the excess of glucose, fatty acids, and amino acids results in foetuses large for gestational age. Hyperglycaemia and insulin resistance accelerate the metabolism, raising the oxygen demand, and creating chronic hypoxia and inflammation. Women who experienced GDM and their offspring are at risk of developing type-2 diabetes, obesity, and other metabolic or cardiovascular conditions later in life. Genetic factors may predispose the development of GDM; however, they do not account for all GDM cases; lifestyle and diet also play important roles in GDM development by modulating epigenetic signatures and the body's microbial composition; therefore, this is a condition with a complex, multifactorial aetiology. In this context, we revised published reports describing GDM-associated single-nucleotide polymorphisms (SNPs), DNA methylation and microRNA expression in different tissues (such as placenta, umbilical cord, adipose tissue, and peripheral blood), and microbial composition in the gut, oral cavity, and vagina from pregnant women with GDM, as well as the bacterial composition of the offspring. Altogether, these reports indicate that a number of SNPs are associated to GDM phenotypes and may predispose the development of the disease. However, extrinsic factors (lifestyle, nutrition) modulate, through epigenetic mechanisms, the risk of developing the disease, and some association exists between the microbial composition with GDM in an organ-specific manner. Genes, epigenetic signatures, and microbiota could be transferred to the offspring, increasing the possibility of developing chronic degenerative conditions through postnatal life.
Collapse
Affiliation(s)
- Dennise Lizárraga
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Bruno Gómez-Gil
- Laboratory of Microbial Genomics, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Teresa García-Gasca
- Laboratory of Molecular and Cellular Biology, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias s/n, 76230, Juriquilla, Querétaro, Mexico
| | - Anaguiven Ávalos-Soriano
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41125, Modena, Italy
| | - Azucena Salazar-Oroz
- Maternal-Fetal Department, Instituto Vidalia, Hospital Sharp Mazatlán, Avenida Rafael Buelna y Dr. Jesús Kumate s/n, 82126, Mazatlán, Sinaloa, Mexico
| | - Alejandra García-Gasca
- Laboratory of Molecular and Cell Biology, Centro de Investigación en Alimentación y Desarrollo, Avenida Sábalo Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| |
Collapse
|
9
|
Diniz MS, Hiden U, Falcão-Pires I, Oliveira PJ, Sobrevia L, Pereira SP. Fetoplacental endothelial dysfunction in gestational diabetes mellitus and maternal obesity: A potential threat for programming cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166834. [PMID: 37541330 DOI: 10.1016/j.bbadis.2023.166834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity (MO) increase the risk of adverse fetal outcomes, and the incidence of cardiovascular disease later in life. Extensive research has been conducted to elucidate the underlying mechanisms by which GDM and MO program the offspring to disease. This review focuses on the role of fetoplacental endothelial dysfunction in programming the offspring for cardiovascular disease in GDM and MO pregnancies. We discuss how pre-existing maternal health conditions can lead to vascular dysfunction in the fetoplacental unit and the fetus. We also examine the role of fetoplacental endothelial dysfunction in impairing fetal cardiovascular system development and the involvement of nitric oxide and hydrogen sulfide in mediating fetoplacental vascular dysfunction. Furthermore, we suggest that the L-Arginine-Nitric Oxide and the Adenosine-L-Arginine-Nitric Oxide (ALANO) signaling pathways are pertinent targets for research. Despite significant progress in this area, there are still knowledge gaps that need to be addressed in future research.
Collapse
Affiliation(s)
- Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, 8063 Graz, Austria; Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico.
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal.
| |
Collapse
|
10
|
Kwon H, Jung YJ, Lee Y, Son GH, Kim HO, Maeng YS, Kwon JY. Impaired Angiogenic Function of Fetal Endothelial Progenitor Cells via PCDH10 in Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:16082. [PMID: 38003275 PMCID: PMC10671254 DOI: 10.3390/ijms242216082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Maternal hyperglycemia, induced by gestational diabetes mellitus (GDM), has detrimental effects on fetal vascular development, ultimately increasing the risk of cardiovascular diseases in offspring. The potential underlying mechanisms through which these complications occur are due to functional impairment and epigenetic changes in fetal endothelial progenitor cells (EPCs), which remain less defined. We confirm that intrauterine hyperglycemia leads to the impaired angiogenic function of fetal EPCs, as observed through functional assays of outgrowth endothelial cells (OECs) derived from fetal EPCs of GDM pregnancies (GDM-EPCs). Notably, PCDH10 expression is increased in OECs derived from GDM-EPCs, which is associated with the inhibition of angiogenic function in fetal EPCs. Additionally, increased PCDH10 expression is correlated with the hypomethylation of the PCDH10 promoter. Our findings demonstrate that in utero exposure to GDM can induce angiogenic dysfunction in fetal EPCs through altered gene expression and epigenetic changes, consequently increasing the susceptibility to cardiovascular diseases in the offspring of GDM mothers.
Collapse
Affiliation(s)
- Hayan Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Yun Ji Jung
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Yeji Lee
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Ga-Hyun Son
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Hyun Ok Kim
- Korea Cell-Based Artificial Blood Project, Regenerative Medicine Acceleration Foundation, Seoul 04512, Republic of Korea;
| | - Yong-Sun Maeng
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (H.K.); (Y.J.J.); (Y.L.)
| |
Collapse
|
11
|
Di Pietrantonio N, Cappellacci I, Mandatori D, Baldassarre MPA, Pandolfi A, Pipino C. Role of Epigenetics and Metabolomics in Predicting Endothelial Dysfunction in Type 2 Diabetes. Adv Biol (Weinh) 2023; 7:e2300172. [PMID: 37616517 DOI: 10.1002/adbi.202300172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Indexed: 08/26/2023]
Abstract
Type 2 diabetes (T2D) is a worldwide health problem and cardiovascular disease (CVD) is a leading cause of morbidity and mortality in T2D patients, making the prevention of CVD onset a major priority. It is therefore crucial to optimize diagnosis and treatment to reduce this burden. Endothelial dysfunction is one of the most important prognostic factors for CVD progression, thus novel approaches to identify the early phase of endothelial dysfunction may lead to specific preventive measures to reduce the occurrence of CVD. Nowadays, multiomics approaches have provided unprecedented opportunities to stratify T2D patients into endotypes, improve therapeutic treatment and outcome and amend the survival prediction. Among omics strategies, epigenetics and metabolomics are gaining increasing interest. Recently, a dynamic correlation between metabolic pathways and gene expression through chromatin remodeling, such as DNA methylation, has emerged, indicating new perspectives on the regulatory networks impacting cellular processes. Thus, a better understanding of epigenetic-metabolite relationships can provide insight into the physiological processes altered early in the endothelium that ultimately head to disease development. Here, recent studies on epigenetics and metabolomics related to CVD prevention potentially useful to identify disease biomarkers, as well as new therapies hopefully targeting the early phase of endothelial dysfunction are highlighted.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Ilaria Cappellacci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
12
|
Giordo R, Posadino AM, Mangoni AA, Pintus G. Metformin-mediated epigenetic modifications in diabetes and associated conditions: Biological and clinical relevance. Biochem Pharmacol 2023; 215:115732. [PMID: 37541452 DOI: 10.1016/j.bcp.2023.115732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
An intricate interplay between genetic and environmental factors contributes to the development of type 2 diabetes (T2D) and its complications. Therefore, it is not surprising that the epigenome also plays a crucial role in the pathogenesis of T2D. Hyperglycemia can indeed trigger epigenetic modifications, thereby regulating different gene expression patterns. Such epigenetic changes can persist after normalizing serum glucose concentrations, suggesting the presence of a 'metabolic memory' of previous hyperglycemia which may also be epigenetically regulated. Metformin, a derivative of biguanide known to reduce serum glucose concentrations in patients with T2D, appears to exert additional pleiotropic effects that are mediated by multiple epigenetic modifications. Such modifications have been reported in various organs, tissues, and cellular compartments and appear to account for the effects of metformin on glycemic control as well as local and systemic inflammation, oxidant stress, and fibrosis. This review discusses the emerging evidence regarding the reported metformin-mediated epigenetic modifications, particularly on short and long non-coding RNAs, DNA methylation, and histone proteins post-translational modifications, their biological and clinical significance, potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Arduino Aleksander Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, SA 5042, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA 5042, Australia.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
13
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
14
|
Yan YS, Feng C, Yu DQ, Tian S, Zhou Y, Huang YT, Cai YT, Chen J, Zhu MM, Jin M. Long-term outcomes and potential mechanisms of offspring exposed to intrauterine hyperglycemia. Front Nutr 2023; 10:1067282. [PMID: 37255932 PMCID: PMC10226394 DOI: 10.3389/fnut.2023.1067282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 06/01/2023] Open
Abstract
Diabetes mellitus during pregnancy, which can be classified into pregestational diabetes and gestational diabetes, has become much more prevalent worldwide. Maternal diabetes fosters an intrauterine abnormal environment for fetus, which not only influences pregnancy outcomes, but also leads to fetal anomaly and development of diseases in later life, such as metabolic and cardiovascular diseases, neuropsychiatric outcomes, reproduction malformation, and immune dysfunction. The underlying mechanisms are comprehensive and ambiguous, which mainly focus on microbiota, inflammation, reactive oxygen species, cell viability, and epigenetics. This review concluded with the influence of intrauterine hyperglycemia on fetal structure development and organ function on later life and outlined potential mechanisms that underpin the development of diseases in adulthood. Maternal diabetes leaves an effect that continues generations after generations through gametes, thus more attention should be paid to the prevention and treatment of diabetes to rescue the pathological attacks of maternal diabetes from the offspring.
Collapse
Affiliation(s)
- Yi-Shang Yan
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chun Feng
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dan-Qing Yu
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shen Tian
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhou
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Huang
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-Ting Cai
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Miao-Miao Zhu
- Department of Operating Theatre, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Jin
- Department of Reproductive Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Almaghrbi H, Giordo R, Pintus G, Zayed H. Non-coding RNAs as biomarkers of myocardial infarction. Clin Chim Acta 2023; 540:117222. [PMID: 36627010 DOI: 10.1016/j.cca.2023.117222] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Non-coding RNAs (ncRNAs) encompass a family of ubiquitous RNA molecules that lack protein-coding potential and have tissue-specific expression. A significant body of evidence indicates that ncRNA's aberrant expression plays a critical role in disease onset and development. NcRNAs' biochemical characteristics such as disease-associated concentration changes, structural stability, and high abundance in body fluids make them promising prognostic and diagnostic biomarkers. Myocardial infarction (MI) is a leading cause of mortality worldwide. Acute myocardial infarction (AMI), the term in use to describe MI's early phase, is generally diagnosed by physical examination, electrocardiogram (ECG), and the presence of specific biomarkers. In this regard, compared to standard MI biomarkers, such as the cardiac troponin isoforms (cTnT & cTnI) and the Creatinine Kinase (CK), ncRNAs appears to provide better sensitivity and specificity, ensuring a rapid and correct diagnosis, an earlier treatment, and consequently a good prognosis for the patients. This review aims to summarize and discuss the most promising and recent data on the potential clinical use of circulating ncRNAs as MI biomarkers. Specifically, we focused primarily on miRNAs and lncRNAs, highlighting their significant specificity and sensitivity, discussing their limitations, and suggesting possible overcoming approaches.
Collapse
Affiliation(s)
- Heba Almaghrbi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055 Dubai, United Arab Emirates
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy; Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates.
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
16
|
Li Z, Niu Y, Wu Y, Du B, Ye Y, Wang H, Meng Y, Lu Y, Sun K, Wang J. Association of Maternal Glucose Concentrations During Pregnancy With Cardiovascular Alterations in Early Childhood: A Prospective Birth Cohort Study. J Nutr 2023; 153:190-196. [PMID: 36913453 DOI: 10.1016/j.tjnut.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/23/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Maternal hyperglycemia has been associated with cardiovascular disease risks in offspring. Previous studies were mostly conducted to test this association in pregnancies with (pre)gestational diabetes mellitus. However, the association may not be limited to populations with diabetes only. OBJECTIVES The aim of this study was to assess the association between gestational glucose concentrations in women without (pre)gestational diabetes mellitus and childhood cardiovascular alterations at the age of 4 y. METHODS Our study was based on the Shanghai Birth Cohort. Briefly, among 1016 nondiabetic mothers (age: 30.8 ± 3.42 y; BMI: 21.3 ± 2.94) and their offsprings (age: 4.41 ± 0.22 y; BMI: 15.0 ± 1.56; 53.0% males), results of maternal 1-h oral OGTT between 24 and 28 gestational weeks were obtained. Childhood blood pressure (BP) measurement, echocardiography, and vascular ultrasound were performed at 4 y old. Linear regression and binary logistic regression were conducted to test the association between maternal glucose and childhood cardiovascular outcomes. RESULTS Compared with children from mothers with glucose concentrations in the lowest quartile, children from mothers in the highest quartile had higher BP (systolic: 97.0 ± 7.41 compared with 98.9 ± 7.82 mmHg, P = 0.006; diastolic: 56.8 ± 5.83 compared with 57.9 ± 6.03 mmHg, P = 0.051) and lower left ventricular ejection fraction (92.5 ± 9.15 compared with 90.8 ± 9.16 %, P = 0.046). Also, higher maternal OGTT 1-h glucose concentrations across the full range were associated with higher childhood BP (systolic: β: 0.56; 95% CI: 0.19, 0.93; diastolic: β: 0.36; 95% CI: 0.05, 0.66). Logistic regression showed, compared with children from mothers in the lowest quartile, children from mothers in the highest quartile had a 58% (OR=1.58; 95% CI: 1.01, 2.47) higher odds of elevated systolic BP (≥90th percentile). CONCLUSIONS In a population without (pre)gestational diabetes mellitus, higher maternal OGTT 1-h glucose were associated with childhood cardiovascular structure and function alterations. Further studies are needed to assess whether interventions to reduce gestational glucose will mitigate subsequent cardiometabolic risks in offspring.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Niu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujian Wu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Du
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujiao Ye
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hualing Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Meng
- Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Pan HT, Xiong YM, Zhu HD, Shi XL, Yu B, Ding HG, Xu RJ, Ding JL, Zhang T, Zhang J. Proteomics and bioinformatics analysis of cardiovascular related proteins in offspring exposed to gestational diabetes mellitus. Front Cardiovasc Med 2022; 9:1021112. [PMID: 36277748 PMCID: PMC9582427 DOI: 10.3389/fcvm.2022.1021112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Previous studies have demonstrated that exposed to the initial suboptimal intrauterine environment of gestational diabetes mellitus (GDM) may increase risk of cardiovascular disease in adulthood. Methods In order to investigate the underlying mechanisms involved in the increased risk of cardiovascular diseases (CVDs) in the offspring of GDM, we applied a high-throughput proteomics approach to compare the proteomic expression profile of human umbilical vessels of normal and GDM offspring. Results A total of significantly different 100 proteins were identified in umbilical vessels from GDM group compared with normal controls, among which 31 proteins were up-regulated, while 69 proteins were down-regulated. Differentially expressed proteins (DEPs) are validated using Western blotting analysis. The analysis of these differently expressed proteins (DEPs) related diseases and functions results, performed by Ingenuity Pathway Analysis (IPA) software. Based on "Diseases and Disorders" analysis, 17 proteins (ACTA2, ADAR, CBFB, DDAH1, FBN1, FGA, FGB, FGG, GLS, GSTM1, HBB, PGM3, PPP1R13L, S100A8, SLC12A4, TPP2, VCAN) were described to be associated with CVD, especially in Anemia, Thrombus and Myocardial infarction. Functional analysis indicated that DEPs involved in many cardiovascular functions, especially in "vasoconstriction of blood vessel" (related DEPs: ACTA2, DDAH1, FBN1, FGA, FGB, and FGG). Upstream regulator analyses of DEPs identifies STAT3 as inhibitor of ACTA2, FGA, FGB, and FGG. Conclusion The results of this study indicate that intrauterine hyperglycemia is associated with an elevated risk of cardiovascular risk in the offspring.
Collapse
Affiliation(s)
- Hai-Tao Pan
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yi-Meng Xiong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Dan Zhu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Xiao-Liang Shi
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Bin Yu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Hai-Gang Ding
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Ren-Jie Xu
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Jin-Long Ding
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Tao Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China,*Correspondence: Tao Zhang,
| | - Juan Zhang
- Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China,Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China,Juan Zhang,
| |
Collapse
|
18
|
Ormazabal V, Nair S, Carrión F, Mcintyre HD, Salomon C. The link between gestational diabetes and cardiovascular diseases: potential role of extracellular vesicles. Cardiovasc Diabetol 2022; 21:174. [PMID: 36057662 PMCID: PMC9441052 DOI: 10.1186/s12933-022-01597-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles are critical mediators of cell communication. They encapsulate a variety of molecular cargo such as proteins, lipids, and nucleic acids including miRNAs, lncRNAs, circular RNAs, and mRNAs, and through transfer of these molecular signals can alter the metabolic phenotype in recipient cells. Emerging studies show the important role of extracellular vesicle signaling in the development and progression of cardiovascular diseases and associated risk factors such as type 2 diabetes and obesity. Gestational diabetes mellitus (GDM) is hyperglycemia that develops during pregnancy and increases the future risk of developing obesity, impaired glucose metabolism, and cardiovascular disease in both the mother and infant. Available evidence shows that changes in maternal metabolism and exposure to the hyperglycemic intrauterine environment can reprogram the fetal genome, leaving metabolic imprints that define life-long health and disease susceptibility. Understanding the factors that contribute to the increased susceptibility to metabolic disorders of children born to GDM mothers is critical for implementation of preventive strategies in GDM. In this review, we discuss the current literature on the fetal programming of cardiovascular diseases in GDM and the impact of extracellular vesicle (EV) signaling in epigenetic programming in cardiovascular disease, to determine the potential link between EV signaling in GDM and the development of cardiovascular disease in infants.
Collapse
Affiliation(s)
- Valeska Ormazabal
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia.,Faculty of Biological Sciences, Pharmacology Department, University of Concepcion, Concepción, Chile
| | - Soumyalekshmi Nair
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - H David Mcintyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine + Biomedical Sciences, The University of Queensland, Building 71/918, Herston, QLD, 4029, Australia. .,Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
19
|
Lu W, Hu C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chin Med J (Engl) 2022; 135:1940-1951. [PMID: 36148588 PMCID: PMC9746787 DOI: 10.1097/cm9.0000000000002160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health. Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms, microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in screening and diagnosis.
Collapse
Affiliation(s)
- Wenqian Lu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510630, China
- Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to the Southern Medical University, Shanghai 201400, China
| |
Collapse
|
20
|
Correlation Analysis of Umbilical Cord Blood Metabolic Phenotype and Inflammation in Patients with Gestational Diabetes Mellitus Complicated with Overweight and Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6072286. [PMID: 35600958 PMCID: PMC9122673 DOI: 10.1155/2022/6072286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
Abstract
Background Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnancy. The incidence rate is increasing year by year, which seriously threatens the safety of maternal and infant. Obesity is a vital factor in inducing GDM. Pregnant women with GDM account for a large proportion of overweight and obese pregnant women. Our study aimed to explore the potential mechanism of differential metabolites on inflammation and find the intervention and management methods for GDM in overweight and obese pregnant women. Methods Umbilical cord blood samples and placenta were collected from normal weight pregnant women with GDM (control group) and overweight and obese pregnant women with GDM (obesity group) for a comparative study. Serum inflammatory factors IL-10, TNF-α, IL-6, lipopolysaccharide (LPS), and TLR4 expression were detected by ELISA. The expression levels of BCL-2 and caspase-3 were measured by Western blot. TUNEL staining was used to observe the apoptosis of placental villi. KEGG combined with metabolomics was used to compare the differences of metabolic maps between the two groups. Results Compared with the control group, the level of anti-inflammatory factor IL-10 in the cord blood was decreased in the obesity group, while the levels of proinflammatory factors TNF-α, IL-6, and LPS were increased. In the placental tissues, the obesity group had higher concentrations of LPS, TLR4, and caspase-3 and lower concentration of BCL-2. Placental villi in the obesity group were more likely to undergo apoptosis than the control group. Correlation analysis showed that the above metabolite concentrations were negatively correlated with TNF-α or LPS. Conclusion Metabolites could control obesity in the process of controlling the occurrence and development of inflammation.
Collapse
|
21
|
Genomics and Epigenomics of Gestational Diabetes Mellitus: Understanding the Molecular Pathways of the Disease Pathogenesis. Int J Mol Sci 2022; 23:ijms23073514. [PMID: 35408874 PMCID: PMC8998752 DOI: 10.3390/ijms23073514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most common complications during pregnancy is gestational diabetes mellitus (GDM), hyperglycemia that occurs for the first time during pregnancy. The condition is multifactorial, caused by an interaction between genetic, epigenetic, and environmental factors. However, the underlying mechanisms responsible for its pathogenesis remain elusive. Moreover, in contrast to several common metabolic disorders, molecular research in GDM is lagging. It is important to recognize that GDM is still commonly diagnosed during the second trimester of pregnancy using the oral glucose tolerance test (OGGT), at a time when both a fetal and maternal pathophysiology is already present, demonstrating the increased blood glucose levels associated with exacerbated insulin resistance. Therefore, early detection of metabolic changes and associated epigenetic and genetic factors that can lead to an improved prediction of adverse pregnancy outcomes and future cardio-metabolic pathologies in GDM women and their children is imperative. Several genomic and epigenetic approaches have been used to identify the genes, genetic variants, metabolic pathways, and epigenetic modifications involved in GDM to determine its etiology. In this article, we explore these factors as well as how their functional effects may contribute to immediate and future pathologies in women with GDM and their offspring from birth to adulthood. We also discuss how these approaches contribute to the changes in different molecular pathways that contribute to the GDM pathogenesis, with a special focus on the development of insulin resistance.
Collapse
|
22
|
Tocantins C, Diniz MS, Grilo LF, Pereira SP. The birth of cardiac disease: Mechanisms linking gestational diabetes mellitus and early onset of cardiovascular disease in offspring. WIREs Mech Dis 2022; 14:e1555. [PMID: 35304833 DOI: 10.1002/wsbm.1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the biggest killer worldwide, composing a major economic burden for health care systems. Obesity and diabetes are dual epidemics on the rise and major risk factors predisposing for CVD. Increased obesity- and diabetes-related incidence is now observed among children, adolescents, and young adults. Gestational diabetes mellitus (GDM) is the most common metabolic pregnancy disorder, and its prevalence is rapidly increasing. During pregnancies complicated by GDM, the offspring are exposed to a compromised intrauterine environment characterized by hyperglycemic periods. Unfavorable in utero conditions at critical periods of fetal cardiac development can produce developmental adaptations that remodel the cardiovascular system in a way that can contribute to adult-onset of heart disease due to the programming during fetal life. Epidemiological studies have reported increased cardiovascular complications among GDM-descendants, highlighting the urgent need to investigate and understand the mechanisms modulated during fetal development of in utero GDM-exposed offspring that predispose an individual to increased CVD during life. In this manuscript, we overview previous studies in this area and gather evidence linking GDM and CVD development in the offspring, providing new insights on novel mechanisms contributing to offspring CVD programming by GDM, from the role of maternal-fetal interactions to their impact on fetal cardiovascular development, how the perpetuation of cardiac programming is maintained in postnatal life, and advance the intergenerational implications contributing to increased CVD premature origin. Understanding the perpetuation of CVD can be the first step to manage and reverse this leading cause of morbidity and mortality. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Molecular and Cellular Physiology Metabolic Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
23
|
Zahari Sham SY, Ng CT, Azwar S, Yip WK, Abdullah M, Thevandran K, Osman M, Seow HF. Circulating miRNAs in Type 2 Diabetic Patients with and without Albuminuria in Malaysia. Kidney Blood Press Res 2022; 47:81-93. [PMID: 35158353 DOI: 10.1159/000518866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) remains the leading cause of chronic kidney disease. Dysregulation of circulating miRNAs has been reported, suggesting their pathological roles in DKD. This study aimed to investigate differentially expressed miRNAs in the sera of type 2 diabetes mellitus (T2DM) patients with and without albuminuria in a selected Malaysian population. METHOD Forty-one T2DM patients on follow-up at a community clinic were divided into normo-(NA), micro-(MIC), and macroalbuminuria (MAC) groups. Differential levels of miRNAs in 12 samples were determined using the pathway-focused (human fibrosis) miScript miRNA qPCR array and was validated in 33 samples, using the miScript custom qPCR array (CMIHS02742) (Qiagen GmbH, Hilden, Germany). RESULTS Trends of upregulation of 3 miRNAs in the serum, namely, miR-874-3p, miR-101-3p, and miR-145-5p of T2DM patients with MAC compared to those with NA. Statistically significant upregulation of miR-874-3p (p = 0.04) and miR-101-3p (p = 0.01) was seen in validation cohort. Significant negative correlations between the estimated glomerular filtration rate (eGFR) and miR-874-3p (p = 0.05), miR-101-3p (p = 0.03), and miR-145-5p (p = 0.05) as well as positive correlation between miR-874-3p and age (p = 0.03) were shown by Pearson's correlation coefficient analysis. CONCLUSION Upregulation of previously known miRNA, namely, miR-145-5p, and possibly novel ones, namely, miR-874-3p and miR-101-3p in the serum of T2DM patients, was found in this study. There was a significant correlation between the eGFR and these miRNAs. The findings of this study have provided encouraging evidence to further investigate the putative roles of these differentially expressed miRNAs in DKD.
Collapse
Affiliation(s)
- Siti Yazmin Zahari Sham
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chin Tat Ng
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wai Kien Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kalaiselvam Thevandran
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Malina Osman
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
24
|
Masete M, Dias S, Malaza N, Adam S, Pheiffer C. A Big Role for microRNAs in Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:892587. [PMID: 35957839 PMCID: PMC9357936 DOI: 10.3389/fendo.2022.892587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022] Open
Abstract
Maternal diabetes is associated with pregnancy complications and poses a serious health risk to both mother and child. Growing evidence suggests that pregnancy complications are more frequent and severe in pregnant women with pregestational type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) compared to women with gestational diabetes mellitus (GDM). Elucidating the pathophysiological mechanisms that underlie the different types of maternal diabetes may lead to targeted strategies to prevent or reduce pregnancy complications. In recent years, microRNAs (miRNAs), one of the most common epigenetic mechanisms, have emerged as key players in the pathophysiology of pregnancy-related disorders including diabetes. This review aims to provide an update on the status of miRNA profiling in pregnancies complicated by maternal diabetes. Four databases, Pubmed, Web of Science, EBSCOhost, and Scopus were searched to identify studies that profiled miRNAs during maternal diabetes. A total of 1800 articles were identified, of which 53 are included in this review. All studies profiled miRNAs during GDM, with no studies on miRNA profiling during pregestational T1DM and T2DM identified. Studies on GDM were mainly focused on the potential of miRNAs to serve as predictive or diagnostic biomarkers. This review highlights the lack of miRNA profiling in pregnancies complicated by T1DM and T2DM and identifies the need for miRNA profiling in all types of maternal diabetes. Such studies could contribute to our understanding of the mechanisms that link maternal diabetes type with pregnancy complications.
Collapse
Affiliation(s)
- Matladi Masete
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Nompumelelo Malaza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Center for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Carmen Pheiffer,
| |
Collapse
|
25
|
Li Y, Liu L. LncRNA OIP5-AS1 Signatures as a Biomarker of Gestational Diabetes Mellitus and a Regulator on Trophoblast Cells. Gynecol Obstet Invest 2021; 86:509-517. [PMID: 34844256 DOI: 10.1159/000520340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Gestational diabetes mellitus (GDM) is a common disorder in pregnant women. Long noncoding RNA (lncRNA) is a fundamental mediator in the pathogenesis of GDM. The study aimed to detect the clinical importance of lncRNA OIP5-AS1 and its underlying regulation on trophoblast cells. DESIGN The expression of OIP5-AS1 and miR-137-3p was assessed by the quantitative real-time PCR technique. The prognostic effect of OIP5-AS1 was analyzed by the receiver operating characteristic curve. The influences of OIP5-AS1 on cells were indicated by cell counting kit-8, transwell experiments, and flow cytometry. Luciferase activity assay was used to identify the target relationships among OIP5-AS1, miR-137-3p, and EZH2. PARTICIPANTS A total of 75 pregnant women with GDM who were treated in the Dongying People's Hospital were selected as the GDM group. Besides, 72 pregnant women with non-GDM who underwent physical examination in the same hospital were selected as the control group. RESULTS Decreased expression of OIP5-AS1 was confirmed in GDM patients, and the level of OIP5-AS1 could be used as a basis for evaluating GDM patients. Upregulation of OIP5-AS1 ameliorated the viability, migration, invasion, and apoptosis of HG-stimulated HTR-8/SVneo cells by sponging miR-137-3p. EZH2 was a direct target of miR-137-3p. CONCLUSIONS OIP5-AS1 level decreased in women with GDM. OIP5-AS1 appeared to help separating GDM patients from healthy pregnant women. The OIP5-AS1/miR-137-3p/EZH2 pathway could exert its function on HG-induced HTR-8/SVneo models.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Obstetrics, Dongying People's Hospital, Dongying, China
| | - Lei Liu
- Department of Obstetrics, Dongying People's Hospital, Dongying, China
| |
Collapse
|
26
|
Kornacki J, Gutaj P, Kalantarova A, Sibiak R, Jankowski M, Wender-Ozegowska E. Endothelial Dysfunction in Pregnancy Complications. Biomedicines 2021; 9:1756. [PMID: 34944571 PMCID: PMC8698592 DOI: 10.3390/biomedicines9121756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/29/2022] Open
Abstract
The endothelium, which constitutes the inner layer of blood vessels and lymphatic structures, plays an important role in various physiological functions. Alterations in structure, integrity and function of the endothelial layer during pregnancy have been associated with numerous gestational complications, including clinically significant disorders, such as preeclampsia, fetal growth restriction, and diabetes. While numerous experimental studies have focused on establishing the role of endothelial dysfunction in pathophysiology of these gestational complications, their mechanisms remain unknown. Numerous biomarkers of endothelial dysfunction have been proposed, together with the mechanisms by which they relate to individual gestational complications. However, more studies are required to determine clinically relevant markers specific to a gestational complication of interest, as currently most of them present a significant overlap. Although the independent diagnostic value of such markers remains to be insufficient for implementation in standard clinical practice at the moment, inclusion of certain markers in predictive multifactorial models can improve their prognostic value. The future of the research in this field lies in the fine tuning of the clinical markers to be used, as well as identifying possible therapeutic techniques to prevent or reverse endothelial damage.
Collapse
Affiliation(s)
- Jakub Kornacki
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| | - Anastasia Kalantarova
- Medicine Program, Poznan University of Medical Sciences, 41 Jackowskiego Street, 60-512 Poznan, Poland;
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland;
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (J.K.); (E.W.-O.)
| |
Collapse
|
27
|
Intermittent High Glucose Elevates Nuclear Localization of EZH2 to Cause H3K27me3-Dependent Repression of KLF2 Leading to Endothelial Inflammation. Cells 2021; 10:cells10102548. [PMID: 34685528 PMCID: PMC8534226 DOI: 10.3390/cells10102548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023] Open
Abstract
Epigenetic mechanisms have emerged as one of the key pathways promoting diabetes-associated complications. Herein, we explored the role of enhancer of zeste homolog 2 (EZH2) and its product histone 3 lysine 27 trimethylation (H3K27me3) in high glucose-mediated endothelial inflammation. To examine this, we treated cultured primary endothelial cells (EC) with different treatment conditions-namely, constant or intermittent or transient high glucose. Intermittent high glucose maximally induced endothelial inflammation by upregulating transcript and/or protein-level expression of ICAM1 and P-selectin and downregulating eNOS, KLF2, and KLF4 protein levels. We next investigated the underlining epigenetic mechanisms responsible for intermittent hyperglycemia-dependent endothelial inflammation. Compared with other high glucose treatment groups, intermittent high glucose-exposed EC exhibited an increased level of H3K27me3 caused by reduction in EZH2 threonine 367 phosphorylation and nuclear retention of EZH2. Intermittent high glucose also promoted polycomb repressive complex-2 (PRC2) assembly and EZH2's recruitment to histone H3. Abrupt enrichment of H3K27me3 on KLF2 and KLF4 gene promoters caused repression of these genes, further supporting endothelial inflammation. In contrast, reducing H3K27me3 through small molecule and/or siRNA-mediated inhibition of EZH2 rescued KLF2 level and inhibited endothelial inflammation in intermittent high glucose-challenged cultured EC and isolated rat aorta. These findings indicate that abrupt chromatin modifications cause high glucose-dependent inflammatory switch of EC.
Collapse
|
28
|
Epigenetic regulation of TXNIP-mediated oxidative stress and NLRP3 inflammasome activation contributes to SAHH inhibition-aggravated diabetic nephropathy. Redox Biol 2021; 45:102033. [PMID: 34119876 PMCID: PMC8209273 DOI: 10.1016/j.redox.2021.102033] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
S-adenosylhomocysteine (SAH) is hydrolyzed by SAH hydrolase (SAHH) to homocysteine and adenosine. Increased plasma SAH levels were associated with disturbed renal function in patients with diabetes. However, the role and mechanism of SAHH in diabetic nephropathy is still unknown. In the present study, we found that inhibition of SAHH by using its inhibitor adenosine dialdehyde (ADA) accumulates intracellular or plasma SAH levels and increases high glucose-induced podocyte injury and aggravates STZ-induced diabetic nephropathy, which is associated with Nod-like receptor protein 3 (NLRP3) inflammasome activation. Inhibition or knockout of NLRP3 attenuates SAHH inhibition-aggravated podocyte injury and diabetic nephropathy. Additionally, SAHH inhibition increases thioredoxin-interacting protein (TXNIP)-mediated oxidative stress and NLRP3 inflammasome activation, but these effects were not observed in TXNIP knockout mice. Mechanistically, SAHH inhibition increased TXNIP by inhibiting histone methyltransferase enhancer of zeste homolog 2 (EZH2) and reduced trimethylation of histone H3 lysine 27 and its enrichment at promoter of early growth response 1 (EGR1). Moreover, EGR1 is activated and enriched at promoters of TXNIP by SAHH inhibition and is essential for SAHH inhibition-induced TXNIP expression. Inhibition of EGR1 protected against SAHH inhibition-induced NLRP3 inflammasome activation and oxidative stress and diabetic nephropathy. Finally, the harmful effects of SAHH inhibition on inflammation and oxidative stress and diabetic nephropathy were also observed in heterozygote SAHH knockout mice. These findings suggest that EZH2/EGR1/TXNIP/NLRP3 signaling cascade contributes to SAHH inhibition-aggravated diabetic nephropathy. Our study firstly provides a novel insight into the role and mechanism of SAHH inhibition in diabetic nephropathy. SAHH inhibition accumulates SAH levels and aggravates podocyte injury and diabetic nephropathy. SAHH inhibition induces TXNIP-mediated oxidative stress and NLRP3 inflammasome activation. SAHH inhibition increases TXNIP by inhibiting EZH2 and reducing H3K27me3 and its enrichment at promoter of EGR1. EGR1 is required for SAHH inhibition-induced TXNIP and NLRP3 inflammasome activation and diabetic nephropathy.
Collapse
|
29
|
Cheng Z, Naga Srikanth Garikipati V, Truongcao MM, Cimini M, Huang G, Wang C, Benedict C, Gonzalez C, Mallaredy V, Goukassian DA, Verma SK, Kishore R. Serum-Derived Small Extracellular Vesicles From Diabetic Mice Impair Angiogenic Property of Microvascular Endothelial Cells: Role of EZH2. J Am Heart Assoc 2021; 10:e019755. [PMID: 33988033 PMCID: PMC8200714 DOI: 10.1161/jaha.120.019755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Impaired angiogenic abilities of the microvascular endothelial cell (MVEC) play a crucial role in diabetes mellitus–impaired ischemic tissue repair. However, the underlying mechanisms of diabetes mellitus–impaired MVEC function remain unclear. We studied the role of serum‐derived small extracellular vesicles (ssEVs) in diabetes mellitus–impaired MVEC function. Methods and Results ssEVs were isolated from 8‐week‐old male db/db and db/+ mice by ultracentrifugation and size/number were determined by the Nano‐sight tracking system. Diabetic ssEVs significantly impaired tube formation and migration abilities of human MVECs. Furthermore, local transplantation of diabetic ssEVs strikingly reduced blood perfusion and capillary/arteriole density in ischemic hind limb of wildtype C57BL/6J mice. Diabetic ssEVs decreased secretion/expression of several pro‐angiogenic factors in human MVECs. Mechanistically, expression of enhancer of zest homolog 2 (EZH2), the major methyltransferase responsible for catalyzing H3K27me3 (a transcription repressive maker), and H3K27me3 was increased in MVECs from db/db mice. Diabetic ssEVs increased EZH2 and H3K27me3 expression/activity in human MVECs. Expression of EZH2 mRNA was increased in diabetic ssEVs. EZH2‐specific inhibitor significantly reversed diabetic ssEVs‐enhanced expression of EZH2 and H3K27me3, impaired expression of angiogenic factors, and improved blood perfusion and vessel density in ischemic hind limb of C57BL/6J mice. Finally, EZH2 inactivation repressed diabetic ssEVs‐induced H3K27me3 expression at promoter of pro‐angiogenic genes. Conclusions Diabetic ssEVs impair the angiogenic property of MVECs via, at least partially, transferring EZH2 mRNA to MVECs, thus inducing the epigenetic mechanism involving EZH2‐enhanced expression of H3K27me3 and consequent silencing of pro‐angiogenic genes. Our findings unravel the cellular mechanism and expand the scope of bloodborne substances that impair MVEC function in diabetes mellitus.
Collapse
Affiliation(s)
- Zhongjian Cheng
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine Dorothy M. Davis Heart Lung and Research InstituteThe Ohio State University Wexner Medical Center Columbus OH
| | - May M Truongcao
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Maria Cimini
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Grace Huang
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Chunlin Wang
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Cindy Benedict
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Carolina Gonzalez
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - Vandana Mallaredy
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA
| | - David A Goukassian
- Cardiovascular Research CenterIcahn School of Medicine at Mount Sinai New York NY
| | - Suresh K Verma
- Department of Medicine-Cardiovascular Disease The University of Alabama at Birmingham Birmingham AL
| | - Raj Kishore
- Center for Translational Medicine Lewis Katz School of Medicine Temple University Philadelphia PA.,Department of Pharmacology Lewis Katz School of Medicine Temple University Philadelphia PA
| |
Collapse
|
30
|
Aboalgasm H, Ballo R, Mkatazo T, Gwanyanya A. Hyperglycaemia-Induced Contractile Dysfunction and Apoptosis in Cardiomyocyte-Like Pulsatile Cells Derived from Mouse Embryonic Stem Cells. Cardiovasc Toxicol 2021; 21:695-709. [PMID: 33983555 DOI: 10.1007/s12012-021-09660-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Hyperglycaemia, a key metabolic abnormality in diabetes mellitus, is implicated in pathological cardiogenesis during embryological development. However, the underlying mechanisms and potential therapeutic targets remain unknown. We, therefore, studied the effect of hyperglycaemia on mouse embryonic stem cell (mESC) cardiac differentiation. The mESCs were differentiated via embryoid body (EB) formation and cultured under conditions with baseline (25 mM) or high (50 mM) glucose. Time-lapse microscopy images of pulsatile mESCs and Ca2+ transients were recorded. Biomarkers of cellular changes were detected using immunocytochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and Western blot analyses. Differentiated, spontaneously beating mESCs stained positive for cardiac troponin T, α-actinin 2, myosin heavy chain, and connexin 43. Hyperglycaemia decreased the EB diameter and number of beating EBs as well as the cellular amplitude of contraction, the Ca2+ transient, and the contractile response to caffeine (1 mM), but had no effect on the expression of the sarco-endoplasmic reticulum calcium transport ATPase 2 (SERCA 2). Furthermore, hyperglycaemia decreased the expression of B cell lymphoma 2 (Bcl-2) and increased the expression of cytoplasmic cytochrome c and the number of TUNEL-positive cells, but had no effect on the expression of one of the mitochondrial fusion regulatory proteins, optic atrophy protein 1 (OPA1). Overall, hyperglycaemia suppressed the mESC cardiomyocyte-like differentiation and induced contractile dysfunction. The results are consistent with mechanisms involving abnormal Ca2+ handling and mitochondrial-dependent apoptosis, factors which represent potential therapeutic targets in developmental diabetic cardiac disease.
Collapse
Affiliation(s)
- Hamida Aboalgasm
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Robea Ballo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Thulisa Mkatazo
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
31
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
32
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|
33
|
Payen C, Guillot A, Paillat L, Fothi A, Dib A, Bourreau J, Schmitt F, Loufrani L, Aranyi T, Henrion D, Munier M, Fassot C. Pathophysiological adaptations of resistance arteries in rat offspring exposed in utero to maternal obesity is associated with sex-specific epigenetic alterations. Int J Obes (Lond) 2021; 45:1074-1085. [PMID: 33637953 DOI: 10.1038/s41366-021-00777-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/10/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity impacts vascular functions linked to metabolic disorders in offspring, leading to cardiovascular diseases during adulthood. Even if the relation between prenatal conditioning of cardiovascular diseases by maternal obesity and vascular function begins to be documented, little is known about resistance arteries. They are of particular interest because of their specific role in the regulation of local blood flow. Then our study aims to determine if maternal obesity can directly program fetal vascular dysfunction of resistance arteries, independently of metabolic disorders. METHODS With a model of rats exposed in utero to mild maternal diet-induced obesity (OMO), we investigated third-order mesenteric arteries of 4-month old rats in absence of metabolic disorders. The methylation profile of these vessels was determined by reduced representation bisulfite sequencing (RRBS). Vascular structure and reactivity were investigated using histomorphometry analysis and wire-myography. The metabolic function was evaluated by insulin and glucose tolerance tests, plasma lipid profile, and adipose tissue analysis. RESULTS At 4 months of age, small mesenteric arteries of OMO presented specific epigenetic modulations of matrix metalloproteinases (MMPs), collagens, and potassium channels genes in association with an outward remodeling and perturbations in the endothelium-dependent vasodilation pathways (greater contribution of EDHFs pathway in OMO males compared to control rats, and greater implication of PGI2 in OMO females compared to control rats). These vascular modifications were detected in absence of metabolic disorders. CONCLUSIONS Our study reports a specific methylation profile of resistance arteries associated with vascular remodeling and vasodilation balance perturbations in offspring exposed in utero to maternal obesity, in absence of metabolic dysfunctions.
Collapse
Affiliation(s)
- Cyrielle Payen
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Abigaëlle Guillot
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Lily Paillat
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Abel Fothi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Abdallah Dib
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Jennifer Bourreau
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Françoise Schmitt
- UPRES EA 3859, HIFIH laboratory, Angers, France.,University Hospital of Angers, Angers, France
| | - Laurent Loufrani
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France
| | - Tamas Aranyi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Daniel Henrion
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France.,University Hospital of Angers, Angers, France.,CARFI (Cardiovascular Function In Vitro) Facility, Angers, France
| | - Mathilde Munier
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France.,University Hospital of Angers, Angers, France.,Reference Center for Rare Disease of Thyroid and Hormone Receptors, University Hospital Angers, Angers, France
| | - Céline Fassot
- UMR CNRS 6015, INSERM U1083, Mitovasc Laboratory, University of Angers, Angers, France.
| |
Collapse
|
34
|
Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res 2021; 170:105520. [PMID: 33639232 DOI: 10.1016/j.phrs.2021.105520] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023]
Abstract
Diabetes is a metabolic disorder and its incidence is still increasing. Diabetic vascular complications cause major diabetic mobility and include accelerated atherosclerosis, nephropathy, retinopathy, and neuropathy. Hyperglycemia contributes to the pathogenesis of diabetic vascular complications via numerous mechanisms including the induction of oxidative stress, inflammation, metabolic alterations, and abnormal proliferation of EC and angiogenesis. In the past decade, epigenetic modifications have attracted more attention as they participate in the progression of diabetic vascular complications despite controlled glucose levels and regulate gene expression without altering the genomic sequence. DNA methylation and histone methylation, and acetylation are vital epigenetic modifications and their underlying mechanisms in diabetic vascular complication are still urgently needed to be investigated. Non-coding RNAs (nc RNAs) such as micro RNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circ RNAs) were found to exert transcriptional regulation in diabetic vascular complication. Although nc RNAs are not considered as epigenetic components, they are involved in epigenetic modifications. In this review, we summarized the investigations of non-coding RNAs involved in DNA methylation and histone methylation and acetylation. Their cross-talks might offer novel insights into the pathology of diabetic vascular complications.
Collapse
|
35
|
Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants (Basel) 2021; 10:antiox10020224. [PMID: 33540918 PMCID: PMC7913144 DOI: 10.3390/antiox10020224] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-associated long-term hyperglycaemia leads to oxidative stress-mediated fibrosis in different tissues and organs. Endothelial-to-mesenchymal-transition (EndMT) appears to play a role in diabetes-associated fibrotic conditions. Here, we investigate whether EndMT is implicated in the diabetic retinopathy fibrotic process and evaluate the possibility that resveratrol could counteract EndMT by inhibiting high glucose (HG)-induced increases in ROS. Primary Human Retinal Endothelial Cells (HRECs) were either pre-treated for 24 h with 1 µM resveratrol or left untreated, then glucose (30 mM) was applied at 3-day intervals for 10 days. qRT-PCR and ELISA were used to detect mRNA or protein expression of endothelial markers (CD31, CDH5, vWF) or mesenchymal markers (VIM, αSMA and collagen I), respectively. Intracellular ROS levels were measured with carboxy-DCFDA, while NOX-associated ROS levels were evaluated using the NADPH-specific redox biosensor p47-roGFP. Treatment of HRECs with HG increased intracellular ROS levels and promoted phenotype shifting towards EndMT, evidenced by decreased expression of endothelial markers concomitant with increased expression of mesenchymal ones. HG-induced EndMT appears to be mediated by NADPH-associated ROS generation as pre-treatment of HRECs with resveratrol or the NADPH inhibitor, diphenyleneiodonium chloride (DPI), attenuated ROS production and EndMT transition, suggesting that the effect of resveratrol on HG-induced ROS occurs via down-regulation of NADPH oxidase. It is worth noting that resveratrol or Chelerythrine, a Protein kinase C (PKC) inhibitor, reduce ROS and EndMT in HG-exposed cells, suggesting that NADPH activation occurs via a PKC-dependent mechanism. Taken together, our results provide the basis for a resveratrol-based potential protective therapy to prevent diabetic-associated complications.
Collapse
|
36
|
Zhang TN, Wang W, Huang XM, Gao SY. Non-Coding RNAs and Extracellular Vehicles: Their Role in the Pathogenesis of Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:664287. [PMID: 34093439 PMCID: PMC8173208 DOI: 10.3389/fendo.2021.664287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is defined as glucose intolerance with onset or first recognition in the second or third trimester of pregnancy. GDM has a considerable impact on health outcomes of the mother and offspring during pregnancy, delivery, and beyond. Although the exact mechanism regarding GDM remains unclear, numerous studies have suggested that non-coding RNAs, including long non-coding (lnc)RNAs, microRNAs, and circular RNAs, were involved in the pathogenesis of GDM in which they played vital regulatory roles. Additionally, several studies have revealed that extracellular vehicles also participated in the pathogenesis of GDM, highlighting their important role in this disease. Considering the lack of effective biomarkers for the early identification of and specific treatment for GDM, non-coding RNAs and extracellular vehicles may be promising biomarkers and even targets for GDM therapies. This review provides an update on our understanding of the role of non-coding RNAs and extracellular vehicles in GDM. As our understanding of the function of lncRNAs and extracellular vehicles improves, the future appears promising for their use as potential biomarkers and treatment targets for GDM in clinical practice.
Collapse
Affiliation(s)
- Tie-Ning Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Xin-Mei Huang, ; Shan-Yan Gao,
| | - Shan-Yan Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin-Mei Huang, ; Shan-Yan Gao,
| |
Collapse
|
37
|
Liu ZN, Jiang Y, Liu XQ, Yang MM, Chen C, Zhao BH, Huang HF, Luo Q. MiRNAs in Gestational Diabetes Mellitus: Potential Mechanisms and Clinical Applications. J Diabetes Res 2021; 2021:4632745. [PMID: 34869778 PMCID: PMC8635917 DOI: 10.1155/2021/4632745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy complication which is normally diagnosed in the second trimester of gestation. With an increasing incidence, GDM poses a significant threat to maternal and offspring health. Therefore, we need a deeper understanding of GDM pathophysiology and novel investigation on the diagnosis and treatment for GDM. MicroRNAs (miRNAs), a class of endogenic small noncoding RNAs with a length of approximately 19-24 nucleotides, have been reported to exert their function in gene expression by binding to proteins or being enclosed in membranous vesicles, such as exosomes. Studies have investigated the roles of miRNAs in the pathophysiological mechanism of GDM and their potential as noninvasive biological candidates for the management of GDM, including diagnosis and treatment. This review is aimed at summarizing the pathophysiological significance of miRNAs in GDM development and their potential function in GDM clinical diagnosis and therapeutic approach. In this review, we summarized an integrated expressional profile and the pathophysiological significance of placental exosomes and associated miRNAs, as well as other plasma miRNAs such as exo-AT. Furthermore, we also discussed the practical application of exosomes in GDM postpartum outcomes and the potential function of several miRNAs as therapeutic target in the GDM pathological pathway, thus providing a novel clinical insight of these biological signatures into GDM therapeutic approach.
Collapse
Affiliation(s)
- Zhao-Nan Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Ying Jiang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Xuan-Qi Liu
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Meng-Meng Yang
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Cheng Chen
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Bai-Hui Zhao
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| | - He-Feng Huang
- Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
38
|
Differential Expression of miR-136 in Gestational Diabetes Mellitus Mediates the High-Glucose-Induced Trophoblast Cell Injury through Targeting E2F1. Int J Genomics 2020; 2020:3645371. [PMID: 33150164 PMCID: PMC7603599 DOI: 10.1155/2020/3645371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/28/2022] Open
Abstract
Background Gestational diabetes mellitus (GDM) seriously affects the health of mothers and infants. The high-glucose-induced inhibition in trophoblast cell viability is an important event in GDM pathogenesis. This study evaluated the expression and clinical significance of miR-136 in GDM patients, and the biological function and related mechanisms of miR-136 in the regulation of trophoblast cell proliferation were explored. Methods The expression of miR-136 in serum and placenta of GDM patients was measured using quantitative Real-Time PCR. Trophoblast cells were stimulated with high-glucose medium to mimic the pathological changes of GDM, and the effect of miR-136 was examined by CCK-8 assay. A luciferase reporter assay was used to confirm the target gene of miR-136, and the relationship of E2F transcription factor 1 (E2F1) with miR-136 in GDM was further analyzed. Results miR-136 expression was significantly elevated in GDM serum and tissue samples. By high-glucose treatment, trophoblast cell proliferation was inhibited and miR-136 expression was promoted. The knockdown of miR-136 could promote the proliferation of trophoblast cells exposed to high glucose, whereas the overexpression of miR-136 could suppress it. In addition, E2F1 was identified as a target gene of miR-136, which could mediate the regulatory effect of miR-136 on trophoblast cell proliferation. Conclusion Collectively, miR-136 expression is increased in both serum and placental tissues in GDM patients, and miR-136 mediates the inhibiting effect of high glucose on trophoblast cell viability by targeting E2F1.
Collapse
|
39
|
Lin YCD, Huang HY, Shrestha S, Chou CH, Chen YH, Chen CR, Hong HC, Li J, Chang YA, Chiew MY, Huang YR, Tu SJ, Sun TH, Weng SL, Tseng CP, Huang HD. Multi-omics profiling reveals microRNA-mediated insulin signaling networks. BMC Bioinformatics 2020; 21:389. [PMID: 32938376 PMCID: PMC7496206 DOI: 10.1186/s12859-020-03678-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background MicroRNAs (miRNAs) play a key role in mediating the action of insulin on cell growth and the development of diabetes. However, few studies have been conducted to provide a comprehensive overview of the miRNA-mediated signaling network in response to glucose in pancreatic beta cells. In our study, we established a computational framework integrating multi-omics profiles analyses, including RNA sequencing (RNA-seq) and small RNA sequencing (sRNA-seq) data analysis, inverse expression pattern analysis, public data integration, and miRNA targets prediction to illustrate the miRNA-mediated regulatory network at different glucose concentrations in INS-1 pancreatic beta cells (INS-1), which display important characteristics of the pancreatic beta cells. Results We applied our computational framework to the expression profiles of miRNA/mRNA of INS-1, at different glucose concentrations. A total of 1437 differentially expressed genes (DEGs) and 153 differentially expressed miRNAs (DEmiRs) were identified from multi-omics profiles. In particular, 121 DEmiRs putatively regulated a total of 237 DEGs involved in glucose metabolism, fatty acid oxidation, ion channels, exocytosis, homeostasis, and insulin gene regulation. Moreover, Argonaute 2 immunoprecipitation sequencing, qRT-PCR, and luciferase assay identified Crem, Fn1, and Stc1 are direct targets of miR-146b and elucidated that miR-146b acted as a potential regulator and promising target to understand the insulin signaling network. Conclusions In this study, the integration of experimentally verified data with system biology framework extracts the miRNA network for exploring potential insulin-associated miRNA and their target genes. The findings offer a potentially significant effect on the understanding of miRNA-mediated insulin signaling network in the development and progression of pancreatic diabetes.
Collapse
Affiliation(s)
- Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China
| | - Sirjana Shrestha
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chih-Hung Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yen-Hua Chen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Chi-Ru Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsiao-Chin Hong
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China
| | - Jing Li
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China
| | - Yi-An Chang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Men-Yee Chiew
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ya-Rong Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Siang-Jyun Tu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Ting-Hsuan Sun
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynecology, Hsinchu Mackay Memorial Hospital, Hsinchu, 300, Taiwan
| | - Ching-Ping Tseng
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan.
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China. .,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Longgang District, Shenzhen, 518172, Guangdong Province, China. .,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
40
|
Słupecka-Ziemilska M, Wychowański P, Puzianowska-Kuznicka M. Gestational Diabetes Mellitus Affects Offspring's Epigenome. Is There a Way to Reduce the Negative Consequences? Nutrients 2020; 12:nu12092792. [PMID: 32933073 PMCID: PMC7551316 DOI: 10.3390/nu12092792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is the most common pregnancy complication worldwide and may result in short-term and long-term consequences for offspring. The present review highlights evidence of epigenetic programming, mostly from human studies, which occurs in offspring exposed to maternal GDM during different stages of development, paying special attention to the differences in sensitivity of offspring to maternal hyperglycemia as a result of sex-related factors. We also aim to answer the following question: If these epigenetic changes are constant throughout the lifetime of the offspring, how do they present phenotypically?
Collapse
Affiliation(s)
- Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland;
- Correspondence: ; Tel.: +48-2-2608-6401; Fax: +48-2-2608-6410
| | - Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, Binickiego 6, 02-097 Warsaw, Poland;
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 61/63 Kleczewska Street, 01-826 Warsaw, Poland
| |
Collapse
|
41
|
Peng HY, Li MQ, Li HP. MiR-137 Restricts the Viability and Migration of HTR-8/SVneo Cells by Downregulating FNDC5 in Gestational Diabetes Mellitus. Curr Mol Med 2020; 19:494-505. [PMID: 31109274 DOI: 10.2174/1566524019666190520100422] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/29/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND An increasing number of studies have described the pathological changes of placenta tissues in gestational diabetes mellitus (GDM), although the underlying mechanisms involved in this process remain uncertain. The aim of the present study was to verify the possible role of microRNA-137 (miR)-137 and FNDC5 in regulating the biological function of trophoblasts in high glucose (HG) conditions during the GDM period. METHODS Expression levels of miR-137 and FNDC5 were measured in placenta specimens, the HG-treated trophoblast cell line HTR-8/SVneo and miR-137- overexpressing HTR-8/SVneo cells using reverse transcription quantitative-PCR or western blotting. The viability of HTR-8/SVneo cells was tested using a Cell Counting kit- 8 (CCK8) assay, with cell migration assessed using scratch and transwell assays. RESULTS It was observed that the expression levels of miR-137 were increased and the expression levels of FNDC5 were decreased in the placenta tissues of women with severe GDM and in HG-exposed HTR-8/SVneo cells. In addition, upregulating miR-137 in HTR-8/SVneo cells downregulated the expression levels of FNDC5. The viability and migration of HTR-8/SVneo cells were suppressed by increased miR-137 expression levels, and upregulating FNDC5 in miR-137-overexpressing HTR-8/SVneo cells resulted in the reversal of all these effects. CONCLUSIONS The data from the present study suggest that miR-137 suppresses the viability and migration of trophoblasts via downregulating FNDC5 in GDM, which may contribute to the pathology of placenta tissues and occurrence of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hai-Yan Peng
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.,Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai 200032, China
| | - Hua-Ping Li
- Department of Gynecology and Obstetrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
42
|
Capobianco G, Gulotta A, Tupponi G, Dessole F, Pola M, Virdis G, Petrillo M, Mais V, Olzai G, Antonucci R, Saderi L, Cherchi PL, Dessole S, Sotgiu G. Materno-Fetal and Neonatal Complications of Diabetes in Pregnancy: A Retrospective Study. J Clin Med 2020; 9:jcm9092707. [PMID: 32825775 PMCID: PMC7564828 DOI: 10.3390/jcm9092707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this case-control study was to evaluate maternal-fetal and neonatal clinical outcomes in a group of patients with gestational diabetes mellitus (GDM) and pregestational diabetes such as diabetes mellitus type 1 (DM1) and diabetes mellitus type 2 (DM2) and compare them with those of patients without diabetes. A total of 414 pregnant women, nulliparous and multiparous, with single pregnancy were recruited. The selected patients were divided into two groups. Among 207 patients (group cases), 183 had GDM and 24 pregestational diabetes (of which n = 17 diagnosed with DM1 and n = 7 with diagnosis of DM2). Two-hundred-seven patients with a negative pathologic history of GDM, DM1 and DM2 represented the population of controls (group control). We reported an incidence of preterm delivery of 23.2% in the group of cases, of 18.3% in the group of patients with GDM and 66.7% in the group of patients DM1/2. Fetal growth disorders, such as intrauterine growth retardation (IUGR), small for gestational age (SGA), fetal macrosomia, were detected in four fetuses out of 207 (1.93%) in the control group and 20 fetuses out of 207 in the case group (9.67%, p-value 0.001); of these 16 of 183 fetuses of the GDM group (8.74%, p-value 0.002) and 4 of 24 fetuses of the DM1/2 group (16.67%, p-value 0.005). A very strong correlation between diabetes mellitus type 1 and preeclampsia (p-value < 0.0001) was observed. Close monitoring of pregnant women with diabetes is recommended to prevent maternal-fetal and neonatal complications.
Collapse
Affiliation(s)
- Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
- Correspondence: ; Tel.: +39-3392-897-821; Fax: +39-079-228-265
| | - Alessandra Gulotta
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
| | - Giulio Tupponi
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
| | - Francesco Dessole
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
| | - Maddalena Pola
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
| | - Giuseppe Virdis
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
| | - Marco Petrillo
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
| | - Valerio Mais
- Gynecologic and Obstetric Clinic, University of Cagliari, 09121 Cagliari, Italy;
| | - Giorgio Olzai
- Neonatal Intensive Care Unit (NICU), Sassari University, 07100 Sassari, Italy;
| | | | - Laura Saderi
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (L.S.); (G.S.)
| | - Pier Luigi Cherchi
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
| | - Salvatore Dessole
- Gynecologic and Obstetric Clinic, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (A.G.); (G.T.); (F.D.); (M.P.); (G.V.); (M.P.); (P.L.C.); (S.D.)
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (L.S.); (G.S.)
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW This review examines the impact of early life exposures on glucose metabolism in the offspring and explores potential metabolic mechanisms leading to type 2 diabetes in childhood. RECENT FINDINGS One in five adolescents is diagnosed with prediabetes. Recent studies have elucidated the impact of early exposures such as maternal diabetes, but also hyperglycemia below the threshold of gestational diabetes, obesity, hyperlipidemia, and paternal obesity on the future metabolic health of the offspring. Mechanisms affecting the developmental programing of offspring toward type 2 diabetes include epigenetic modifications, alterations in stem cell differentiation, metabolome and microbiome variation, immune dysregulation, and neonatal nutrition. The risk of type 2 diabetes in offspring is increased not only by diabetes exposure in utero but also by exposure to a heterogeneous milieu of factors that accompany maternal obesity that provoke a vicious cycle of metabolic disease. The key period for intervention to prevent type 2 diabetes is within the first 1000 days of life.
Collapse
Affiliation(s)
- Ankur Rughani
- Division of Pediatric Diabetes/Endocrinology, Harold Hamm Diabetes Center, Children's Hospital, The University of Oklahoma Health Sciences Center, 1200 Children's Ave Suite 4D, Oklahoma City, OK, 73104, USA
| | - Jacob E Friedman
- Division of Pediatric Diabetes/Endocrinology, Harold Hamm Diabetes Center, Children's Hospital, The University of Oklahoma Health Sciences Center, 1200 Children's Ave Suite 4D, Oklahoma City, OK, 73104, USA
| | - Jeanie B Tryggestad
- Division of Pediatric Diabetes/Endocrinology, Harold Hamm Diabetes Center, Children's Hospital, The University of Oklahoma Health Sciences Center, 1200 Children's Ave Suite 4D, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
44
|
Exosomal MicroRNA Expression Profiling Analysis of the Effects of Lycium Barbarum Polysaccharide on Gestational Diabetes Mellitus Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2953502. [PMID: 32802120 PMCID: PMC7414337 DOI: 10.1155/2020/2953502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Abstract
Objective Gestational diabetes mellitus (GDM) is a pathological condition, affecting an increasing number of pregnant women worldwide. Safe and effective treatment for GDM is very important for the public health. In this study, we utilized a high-fat diet-induced GDM model to evaluate the effects of LBP on GDM and examined the changes of exosomal microRNA expression profiling to decipher the potential underlying mechanism of LBP. Methods Female C57BL/6J mice were fed a control diet, HFD, or 150 mg/kg LBP-supplemented HFD for 6 weeks before conception and throughout gestation. Oral glucose tolerance test and plasma lipid levels were determined, and liver histopathology was assessed. Sequencing was used to define the microRNA expression profiling of plasma exosomes in the three groups of mice, and protein expression levels of the candidate target genes were analyzed. Results LBP significantly relieved glucose intolerance, abnormal plasma lipid levels, and pathomorphological changes of liver histopathology in HFD-induced GDM mice. Moreover, we found that this effect of LBP was mediated by downregulation of the increase of 6 miRNAs (miR-93-3p, miR-188-5p, miR-466k, miR-1188-5p, miR-7001-3p, and miR-7115-5p) and reversing the increase of the protein expression of CPT1A, which is the target gene of miR-188-5p. Conclusions Our findings provide novel insights into the biological activities of LBP in the treatment of GDM.
Collapse
|
45
|
Non-Coding RNA: Role in Gestational Diabetes Pathophysiology and Complications. Int J Mol Sci 2020; 21:ijms21114020. [PMID: 32512799 PMCID: PMC7312670 DOI: 10.3390/ijms21114020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance that develops in the second or third trimester of pregnancy. GDM can lead to short-term and long-term complications both in the mother and in the offspring. Diagnosing and treating this condition is therefore of great importance to avoid poor pregnancy outcomes. There is increasing interest in finding new markers with potential diagnostic, prognostic and therapeutic utility in GDM. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs, are critically involved in metabolic processes and their dysregulated expression has been reported in several pathological contexts. The aberrant expression of several circulating or placenta-related ncRNAs has been linked to insulin resistance and β-cell dysfunction, the key pathophysiological features of GDM. Furthermore, significant associations between altered ncRNA profiles and GDM-related complications, such as macrosomia or trophoblast dysfunction, have been observed. Remarkably, the deregulation of ncRNAs, which might be linked to a detrimental intrauterine environment, can lead to changes in the expression of target genes in the offspring, possibly contributing to the development of long-term GDM-related complications, such as metabolic and cardiovascular diseases. In this review, all the recent findings on ncRNAs and GDM are summarized, particularly focusing on the molecular aspects and the pathophysiological implications of this complex relationship.
Collapse
|
46
|
Liao X, Zhou Z, Zhang X. Effects of miR‑195‑5p on cell proliferation and apoptosis in gestational diabetes mellitus via targeting EZH2. Mol Med Rep 2020; 22:803-809. [PMID: 32626980 PMCID: PMC7339727 DOI: 10.3892/mmr.2020.11142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a type of diabetes mellitus (DM) that occurs during pregnancy. The present study aimed to investigate the roles of microRNA (miR)‑195‑5p and enhancer of zeste homolog 2 (EZH2) in GDM, and their potential association. Human umbilical vein endothelial cells (HUVECs) were collected from healthy and GDM umbilical cords, and the endothelial properties were detected by flow cytometry. mRNA expression levels of miR‑195‑5p and EZH2, and EZH2 protein expression levels were detected by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis, respectively. Cell colony formation and flow cytometry were performed to determine cell proliferation and apoptosis. Furthermore, the target gene of miR‑195‑5p was predicted and assessed using a dual‑luciferase reporter assay. The levels of cell viability, proliferation and apoptosis following the overexpression of miR‑195‑5p, EZH2 or miR‑195‑5p + EZH2, were detected using Cell Counting Kit‑8, colony formation and flow cytometry assays, respectively. In addition, the mRNA expression levels of miR‑195‑59 and EZH2, and EZH2 protein expression levels following transfection with overexpression plasmids were detected using RT‑qPCR and western blot analysis, respectively. It was identified that high mRNA expression of miR‑195‑5p, and low EZH2 mRNA and protein expression levels decreased the level of cell proliferation and the high apoptotic rate of GDM‑HUVECs. In addition, miR‑195‑5p was predicted and identified to target EZH2, and miR‑195‑5p overexpression was identified to inhibit cell proliferation and promote apoptosis. However, it was demonstrated that upregulation of EZH2 could alleviate the inhibition of cell proliferation and the increased apoptotic rate induced by miR‑195‑5p overexpression. Therefore, the present results suggested that miR‑195‑5p may inhibit cell viability, proliferation and promote apoptosis by targeting EZH2 in GDM‑induced HUVECs.
Collapse
Affiliation(s)
- Xiaojie Liao
- Department of Obstetrics, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Zhuolin Zhou
- Family Planning Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Xiaoliu Zhang
- Department of Obstetrics, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
47
|
miRNA Reference Genes in Extracellular Vesicles Released from Amniotic Membrane-Derived Mesenchymal Stromal Cells. Pharmaceutics 2020; 12:pharmaceutics12040347. [PMID: 32290510 PMCID: PMC7238137 DOI: 10.3390/pharmaceutics12040347] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Human amniotic membrane and amniotic membrane-derived mesenchymal stromal cells (hAMSCs) have produced promising results in regenerative medicine, especially for the treatment of inflammatory-based diseases and for different injuries including those in the orthopedic field such as tendon disorders. hAMSCs have been proposed to exert their anti-inflammatory and healing potential via secreted factors, both free and conveyed within extracellular vesicles (EVs). In particular, EV miRNAs are considered privileged players due to their impact on target cells and tissues, and their future use as therapeutic molecules is being intensely investigated. In this view, EV-miRNA quantification in either research or future clinical products has emerged as a crucial paradigm, although, to date, largely unsolved due to lack of reliable reference genes (RGs). In this study, a panel of thirteen putative miRNA RGs (let-7a-5p, miR-16-5p, miR-22-5p, miR-23a-3p, miR-26a-5p, miR-29a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, miR-660-5p and U6 snRNA) that were identified in different EV types was assessed in hAMSC-EVs. A validated experimental pipeline was followed, sifting the output of four largely accepted algorithms for RG prediction (geNorm, NormFinder, BestKeeper and ΔCt method). Out of nine RGs constitutively expressed across all EV isolates, miR-101-3p and miR-22-5p resulted in the most stable RGs, whereas miR-423-5p and U6 snRNA performed poorly. miR-22-5p was also previously reported to be a reliable RG in adipose-derived MSC-EVs, suggesting its suitability across samples isolated from different MSC types. Further, to shed light on the impact of incorrect RG choice, the level of five tendon-related miRNAs (miR-29a-3p, miR-135a-5p, miR-146a-5p, miR-337-3p, let-7d-5p) was compared among hAMSC-EVs isolates. The use of miR-423-5p and U6 snRNA did not allow a correct quantification of miRNA incorporation in EVs, leading to less accurate fingerprinting and, if used for potency prediction, misleading indication of the most appropriate clinical batch. These results emphasize the crucial importance of RG choice for EV-miRNAs in hAMSCs studies and contribute to the identification of reliable RGs such as miR-101-3p and miR-22-5p to be validated in other MSC-EVs related fields.
Collapse
|
48
|
Abstract
The vasculature not only transports oxygenated blood, metabolites, and waste products but also serves as a conduit for hormonal communication between distant tissues. Therefore, it is important to maintain homeostasis within the vasculature. Recent studies have greatly expanded our understanding of the regulation of vasculature development and vascular-related diseases at the epigenetic level, including by protein posttranslational modifications, DNA methylation, and noncoding RNAs. Integrating epigenetic mechanisms into the pathophysiologic conceptualization of complex and multifactorial vascular-related diseases may provide promising therapeutic approaches. Several reviews have presented detailed discussions of epigenetic mechanisms not including histone methylation in vascular biology. In this review, we primarily discuss histone methylation in vascular development and maturity, and in vascular diseases.
Collapse
|
49
|
Use of Human Umbilical Vein Endothelial Cells (HUVEC) as a Model to Study Cardiovascular Disease: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030938] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, and extensive research has been performed to understand this disease better, using various experimental models. The endothelium plays a crucial role in the development of CVD, since it is an interface between bloodstream components, such as monocytes and platelets, and other arterial wall components. Human umbilical vein endothelial cell (HUVEC) isolation from umbilical cord was first described in 1973. To date, this model is still widely used because of the high HUVEC isolation success rate, and because HUVEC are an excellent model to study a broad array of diseases, including cardiovascular and metabolic diseases. We here review the history of HUVEC isolation, the HUVEC model over time, HUVEC culture characteristics and conditions, advantages and disadvantages of this model and finally, its applications in the area of cardiovascular diseases.
Collapse
|
50
|
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne) 2020; 11:655. [PMID: 33042016 PMCID: PMC7516342 DOI: 10.3389/fendo.2020.00655] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
- *Correspondence: Colm J. McElwain
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|