1
|
Yvan-Charvet L, Barouillet T, Borowczyk C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01108-9. [PMID: 39743562 DOI: 10.1038/s41569-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of 'haematometabolism' (metabolic-dependent haematopoietic stem cell skewing) and 'efferotabolism' (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
2
|
Juhasz V, Charlier FT, Zhao TX, Tsiantoulas D. Targeting the adaptive immune continuum in atherosclerosis and post-MI injury. Atherosclerosis 2024; 399:118616. [PMID: 39546915 DOI: 10.1016/j.atherosclerosis.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Atherosclerotic disease is a cholesterol-rich lipoprotein particle-driven disease resulting in the formation of atherosclerotic plaques in large and medium size arteries. Rupture or erosion of atherosclerotic plaques can trigger the formation of a thrombus causing the obstruction of the blood flow in the coronary artery and thereby leading to myocardial infarction (MI). Inflammation is a crucial pillar of the mechanisms leading to atherosclerosis and governing the cardiac repair post-MI. Dissecting the complex and sophisticated networks of the immune responses underlying the formation of atherosclerotic plaques and affecting the healing of the heart after MI will allow the designing of highly precise immunomodulatory therapies for these settings. Notably, MI also accelerates atherosclerosis via modulating the response of the immune system. Therefore, for the identification of effective and safe therapeutic targets, it is critical to consider the inflammatory continuum that interconnects the two pathologies and identify immunomodulatory strategies that confer a protective effect in both settings or at least, affect each pathology independently. Adaptive immunity, which consists of B and T lymphocytes, is a major regulator of atherosclerosis and post-MI cardiac repair. Here, we review and discuss the effect of potential adaptive immunity-targeting therapies, such as cell-depleting therapies, in atherosclerosis and post-MI cardiac injury.
Collapse
Affiliation(s)
- Viktoria Juhasz
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fiona T Charlier
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tian X Zhao
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Cardiology, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | | |
Collapse
|
3
|
Hong NE, Chaplin A, Di L, Ravodina A, Bevan GH, Gao H, Asase C, Gangwar RS, Cameron MJ, Mignery M, Cherepanova O, Finn AV, Nayak L, Pieper AA, Maiseyeu A. Nanoparticle-based itaconate treatment recapitulates low-cholesterol/low-fat diet-induced atherosclerotic plaque resolution. Cell Rep 2024; 43:114911. [PMID: 39466775 DOI: 10.1016/j.celrep.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Current pharmacologic treatments for atherosclerosis do not completely protect patients; additional protection can be achieved by dietary modifications, such as a low-cholesterol/low-fat diet (LCLFD), that mediate plaque stabilization and inflammation reduction. However, this lifestyle modification can be challenging for patients. Unfortunately, incomplete understanding of the underlying mechanisms has thwarted efforts to mimic the protective effects of a LCLFD. Here, we report that the tricarboxylic acid cycle intermediate itaconate (ITA), produced by plaque macrophages, is key to diet-induced plaque resolution. ITA is produced by immunoresponsive gene 1 (IRG1), which we observe is highly elevated in myeloid cells of vulnerable plaques and absent from early or stable plaques in mice and humans. We additionally report development of an ITA-conjugated lipid nanoparticle that accumulates in plaque and bone marrow myeloid cells, epigenetically reduces inflammation via H3K27ac deacetylation, and reproduces the therapeutic effects of LCLFD-induced plaque resolution in multiple atherosclerosis models.
Collapse
Affiliation(s)
- Natalie E Hong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Di
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anastasia Ravodina
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Huiyun Gao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Courteney Asase
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Roopesh Singh Gangwar
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Matthew Mignery
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Olga Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Aloke V Finn
- Department of Internal Medicine, Cardiovascular Division, University of Maryland School of Medicine, Baltimore, MD, USA; CVPath Institute, Inc., Gaithersburg, MD, USA
| | - Lalitha Nayak
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA; Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Louis Stokes VA Medical Center, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Andrei Maiseyeu
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
4
|
Keever K, Askari B. Exacerbation of atherosclerosis, hyperlipidemia and inflammation by MK886, an inhibitor of leukotriene biosynthesis, in obese and diabetic mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100203. [PMID: 39497763 PMCID: PMC11532750 DOI: 10.1016/j.crphar.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Leukotrienes are potent mediators of the inflammatory response and 5-lipoxygenase, the enzyme responsible for their synthesis, is dependent on its interaction with 5-lipoxygenase activating protein for optimum catalysis. Previous studies had demonstrated that macrophage infiltration into adipose tissue is associated with obesity and atherosclerosis in LDLR-/- mice fed a high fat-high carbohydrate. The present study was undertaken to determine whether inhibition of 5-lipoxygenase activating protein is efficacious in attenuating adipose tissue inflammation in LDLR-/- mice fed a high fat-high carbohydrate. 10-week old male LDLR-/- mice were fed a high fat-high carbohydrate diet for 22-weeks, with or without MK886 (40 mg/kg/day, ad libitum) a well-established 5-lipoxygenase activating protein inhibitor. All mice had an approximate 2-fold increase in total body weight, but a 6-week course of MK886 treatment had differential effects on adipose tissue size, without affecting macrophage accumulation. MK886 exacerbated the dyslipidemia, increased serum amyloid A content of high-density lipoproteins and caused a profound hepatomegaly. Dyslipidemia and increased serum amyloid A were concomitant with increases in atherosclerosis. In conclusion, MK886 paradoxically exacerbated hyperlipidemia and the pro-inflammatory phenotype in a mouse model of diet-induced atherosclerosis, possibly via a disruption of hepatic lipid metabolism and increased inflammation.
Collapse
Affiliation(s)
- Katherine Keever
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Bardia Askari
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, NY, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
5
|
Mullur N, Morissette A, Morrow NM, Mulvihill EE. GLP-1 receptor agonist-based therapies and cardiovascular risk: a review of mechanisms. J Endocrinol 2024; 263:e240046. [PMID: 39145614 PMCID: PMC11466209 DOI: 10.1530/joe-24-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Cardiovascular outcome trials (CVOTs) in people living with type 2 diabetes mellitus and obesity have confirmed the cardiovascular benefits of glucagon-like peptide 1 receptor agonists (GLP-1RAs), including reduced cardiovascular mortality, lower rates of myocardial infarction, and lower rates of stroke. The cardiovascular benefits observed following GLP-1RA treatment could be secondary to improvements in glycemia, blood pressure, postprandial lipidemia, and inflammation. Yet, the GLP-1R is also expressed in the heart and vasculature, suggesting that GLP-1R agonism may impact the cardiovascular system. The emergence of GLP-1RAs combined with glucose-dependent insulinotropic polypeptide and glucagon receptor agonists has shown promising results as new weight loss medications. Dual-agonist and tri-agonist therapies have demonstrated superior outcomes in weight loss, lowered blood sugar and lipid levels, restoration of tissue function, and enhancement of overall substrate metabolism compared to using GLP-1R agonists alone. However, the precise mechanisms underlying their cardiovascular benefits remain to be fully elucidated. This review aims to summarize the findings from CVOTs of GLP-1RAs, explore the latest data on dual and tri-agonist therapies, and delve into potential mechanisms contributing to their cardioprotective effects. It also addresses current gaps in understanding and areas for further research.
Collapse
Affiliation(s)
- Neerav Mullur
- The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | | | - Nadya M Morrow
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Martini T, Gobet C, Salati A, Blanc J, Mookhoek A, Reinehr M, Knott G, Sordet-Dessimoz J, Naef F. A sexually dimorphic hepatic cycle of periportal VLDL generation and subsequent pericentral VLDLR-mediated re-uptake. Nat Commun 2024; 15:8422. [PMID: 39341814 PMCID: PMC11438914 DOI: 10.1038/s41467-024-52751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Recent single-cell transcriptomes revealed spatiotemporal programmes of liver function on the sublobular scale. However, how sexual dimorphism affected this space-time logic remained poorly understood. We addressed this by performing scRNA-seq in the mouse liver, which revealed that sex, space and time together markedly influence xenobiotic detoxification and lipoprotein metabolism. The very low density lipoprotein receptor (VLDLR) exhibits a pericentral expression pattern, with significantly higher mRNA and protein levels in female mice. Conversely, VLDL assembly is periportally biased, suggesting a sexually dimorphic hepatic cycle of periportal formation and pericentral uptake of VLDL. In humans, VLDLR expression is also pericentral, with higher mRNA and protein levels in premenopausal women compared to similarly aged men. Individuals with low hepatic VLDLR expression show a high prevalence of atherosis in the coronary artery already at an early age and an increased incidence of heart attack.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cédric Gobet
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrea Salati
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jérôme Blanc
- Bioelectron Microscopy Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aart Mookhoek
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Michael Reinehr
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Graham Knott
- Bioelectron Microscopy Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jessica Sordet-Dessimoz
- Histology Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Vass Z, Shenker-Horváth K, Bányai B, Vető KN, Török V, Gém JB, Nádasy GL, Kovács KB, Horváth EM, Jakus Z, Hunyady L, Szekeres M, Dörnyei G. Investigating the Role of Cannabinoid Type 1 Receptors in Vascular Function and Remodeling in a Hypercholesterolemic Mouse Model with Low-Density Lipoprotein-Cannabinoid Type 1 Receptor Double Knockout Animals. Int J Mol Sci 2024; 25:9537. [PMID: 39273484 PMCID: PMC11395437 DOI: 10.3390/ijms25179537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Hypercholesterolemia forms the background of several cardiovascular pathologies. LDL receptor-knockout (LDLR-KO) mice kept on a high-fat diet (HFD) develop high cholesterol levels and atherosclerosis (AS). Cannabinoid type 1 receptors (CB1Rs) induce vasodilation, although their role in cardiovascular pathologies is still controversial. We aimed to reveal the effects of CB1Rs on vascular function and remodeling in hypercholesterolemic AS-prone LDLR-KO mice. Experiments were performed on a newly established LDLR and CB1R double-knockout (KO) mouse model, in which KO and wild-type (WT) mice were kept on an HFD or a control diet (CD) for 5 months. The vascular functions of abdominal aorta rings were tested with wire myography. The vasorelaxation effects of acetylcholine (Ach, 1 nM-1 µM) were obtained after phenylephrine precontraction, which was repeated with inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX), Nω-nitro-L-arginine (LNA), and indomethacin (INDO), respectively. Blood pressure was measured with the tail-cuff method. Immunostaining of endothelial NOS (eNOS) was carried out. An HFD significantly elevated the cholesterol levels in the LDLR-KO mice more than in the corresponding WT mice (mean values: 1039 ± 162 mg/dL vs. 91 ± 18 mg/dL), and they were not influenced by the presence of the CB1R gene. However, with the defect of the CB1R gene, damage to the Ach relaxation ability was moderated. The blood pressure was higher in the LDLR-KO mice compared to their WT counterparts (systolic/diastolic values: 110/84 ± 5.8/6.8 vs. 102/80 ± 3.3/2.5 mmHg), which was significantly elevated with an HFD (118/96 ± 1.9/2 vs. 100/77 ± 3.4/3.1 mmHg, p < 0.05) but attenuated in the CB1R-KO HFD mice. The expression of eNOS was depressed in the HFD WT mice compared to those on the CD, but it was augmented if CB1R was knocked out. This newly established double-knockout mouse model provides a tool for studying the involvement of CB1Rs in the development of hypercholesterolemia and atherosclerosis. Our results indicate that knocking out the CB1R gene significantly attenuates vascular damage in hypercholesterolemic mice.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Acetylcholine/pharmacology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/etiology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/genetics
- Hypercholesterolemia/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type III/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Receptors, LDL/deficiency
- Vascular Remodeling/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Zsolt Vass
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
| | - Kinga Shenker-Horváth
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
- Center for Sports Nutrition Science, Hungarian University of Sports Science, 42-48 Alkotás Street, 1123 Budapest, Hungary
| | - Bálint Bányai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Kinga Nóra Vető
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
| | - Viktória Török
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
| | - Janka Borbála Gém
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Kinga Bernadett Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Eszter Mária Horváth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Zoltán Jakus
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, 1117 Budapest, Hungary
| | - Mária Szekeres
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
- Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary; (B.B.); (J.B.G.); (G.L.N.); (K.B.K.); (E.M.H.); (Z.J.); (L.H.)
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 17 Vas Street, 1088 Budapest, Hungary; (Z.V.); (K.S.-H.); (K.N.V.); (V.T.); (G.D.)
| |
Collapse
|
8
|
Wadding-Lee CA, Jay M, Jones SM, Thompson J, Howatt DA, Daugherty A, Mackman N, Owens AP. Attenuation of Atherosclerosis with PAR4 Deficiency: Differential Platelet Outcomes in apoE -/- vs. Ldlr -/- Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606266. [PMID: 39211209 PMCID: PMC11361089 DOI: 10.1101/2024.08.01.606266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Cardiovascular disease (CVD) is a significant burden globally and, despite current therapeutics, remains the leading cause of death. Platelet inhibitors are of interest in CVD treatment to reduce thrombus formation post-plaque rupture as well their contribution to inflammation throughout the progression of atherosclerosis. Protease activated receptor 4 (PAR4) is a receptor highly expressed by platelets, strongly activated by thrombin, and plays a vital role in platelet activation and aggregation. However, the role of PAR4. Approach and Results Mice on a low-density lipoprotein receptor-deficient ( Ldlr -/- ) background were bred with Par4 deficient ( Par4 -/- ) mice to create Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- cousin lines. Mice were fed high fat (42%) and cholesterol (0.2%) 'Western' diet for 12 weeks for all studies. Bone marrow transplant (BMT) studies were conducted by irradiating Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- mice with 550 rads (2x, 4 hours apart) and then repopulated with Par4 +/+ or Par4 -/- bone marrow. To determine if the effects of thrombin were mediated solely by PAR4, the thrombin inhibitor dabigatran was added to the 'Western' diet. Ldlr -/- /Par4 -/- given dabigatran did not further decrease their atherosclerotic burden. Differences between apolipoprotein E deficient ( apoE -/- ) and Ldlr -/- platelets were assessed for changes in reactivity. We observed higher PAR4 abundance in arteries with atherosclerosis in human and mice versus healthy controls. PAR4 deficiency attenuated atherosclerosis in the aortic sinus and root versus proficient controls. BMT studies demonstrated this effect was due to hematopoietic cells, most likely platelets. PAR4 appeared to be acting independent of PAR1, as there werer no changes with addition of dabigatran to PAR4 deficient mice. apoE -/- platelets are hyperreactive compared to Ldlr -/- platelets. Conclusions Hematopoietic-derived PAR4, most likely platelets, plays a vital role in the development and progression of atherosclerosis. Specific targeting of PAR4 may be a potential therapeutic target for CVD. Highlights Deficiency of protease-activated receptor 4 attenuates the development of diet-induced atherosclerosis in a Ldlr -/- mouse model. PAR4 deficiency in hematopoietic cells is atheroprotective. PAR4 deficiency accounts for the majority of thrombin-induced atherosclerosis in a Ldlr -/- mouse model. The examination of platelet-specific proteins and platelet activation should be carefully considered before using the apoE -/- or Ldlr -/- mouse models of atherosclerosis.
Collapse
|
9
|
He L, Chen Q, Wang L, Pu Y, Huang J, Cheng CK, Luo JY, Kang L, Lin X, Xiang L, Fang L, He B, Xia Y, Lui KO, Pan Y, Liu J, Zhang CL, Huang Y. Activation of Nrf2 inhibits atherosclerosis in ApoE -/- mice through suppressing endothelial cell inflammation and lipid peroxidation. Redox Biol 2024; 74:103229. [PMID: 38870781 PMCID: PMC11247299 DOI: 10.1016/j.redox.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, is critically involved in the regulation of oxidative stress and inflammation. However, the role of endothelial Nrf2 in atherogenesis has yet to be defined. In addition, how endothelial Nrf2 is activated and whether Nrf2 can be targeted for the prevention and treatment of atherosclerosis is not explored. METHODS RNA-sequencing and single-cell RNA sequencing analysis of mouse atherosclerotic aortas were used to identify the differentially expressed genes. In vivo endothelial cell (EC)-specific activation of Nrf2 was achieved by injecting adeno-associated viruses into ApoE-/- mice, while EC-specific knockdown of Nrf2 was generated in Cdh5CreCas9floxed-stopApoE-/- mice. RESULTS Endothelial inflammation appeared as early as on day 3 after feeding of a high cholesterol diet (HCD) in ApoE-/- mice, as reflected by mRNA levels, immunostaining and global mRNA profiling, while the immunosignal of the end-product of lipid peroxidation (LPO), 4-hydroxynonenal (4-HNE), started to increase on day 10. TNF-α, 4-HNE, and erastin (LPO inducer), activated Nrf2 signaling in human ECs by increasing the mRNA and protein expression of Nrf2 target genes. Knockdown of endothelial Nrf2 resulted in augmented endothelial inflammation and LPO, and accelerated atherosclerosis in Cdh5CreCas9floxed-stopApoE-/- mice. By contrast, both EC-specific and pharmacological activation of Nrf2 inhibited endothelial inflammation, LPO, and atherogenesis. CONCLUSIONS Upon HCD feeding in ApoE-/- mice, endothelial inflammation is an earliest event, followed by the appearance of LPO. EC-specific activation of Nrf2 inhibits atherosclerosis while EC-specific knockdown of Nrf2 results in the opposite effect. Pharmacological activators of endothelial Nrf2 may represent a novel therapeutic strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Lei He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Juan Huang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, PR China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Jiang-Yun Luo
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, PR China
| | - Liang Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yin Xia
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China
| | - Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, PR China
| | - Yong Pan
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, PR China.
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
10
|
Mullis DM, Padilla-Lopez A, Wang H, Zhu Y, Elde S, Bonham SA, Yajima S, Kocher ON, Krieger M, Woo YJ. Stromal cell-derived factor-1 alpha improves cardiac function in a novel diet-induced coronary atherosclerosis model, the SR-B1ΔCT/LDLR KO mouse. Atherosclerosis 2024; 395:117518. [PMID: 38627162 PMCID: PMC11254567 DOI: 10.1016/j.atherosclerosis.2024.117518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND AIMS There are a limited number of pharmacologic therapies for coronary artery disease, and few rodent models of occlusive coronary atherosclerosis and consequent myocardial infarction with which one can rapidly test new therapeutic approaches. Here, we characterize a novel, fertile, and easy-to-use HDL receptor (SR-B1)-based model of atherogenic diet-inducible, fatal coronary atherosclerosis, the SR-B1ΔCT/LDLR KO mouse. Additionally, we test intramyocardial injection of Stromal Cell-Derived Factor-1 alpha (SDF-1α), a potent angiogenic cytokine, as a possible therapy to rescue cardiac function in this mouse. METHODS SR-B1ΔCT/LDLR KO mice were fed the Paigen diet or standard chow diet, and we determined the effects of the diets on cardiac function, histology, and survival. After two weeks of feeding either the Paigen diet (n = 24) or standard chow diet (n = 20), the mice received an intramyocardial injection of either SDF-1α or phosphate buffered saline (PBS). Cardiac function and angiogenesis were assessed two weeks later. RESULTS When six-week-old mice were fed the Paigen diet, they began to die as early as 19 days later and 50% had died by 38 days. None of the mice maintained on the standard chow diet died by day 72. Hearts from mice on the Paigen diet showed evidence of cardiomegaly, myocardial infarction, and occlusive coronary artery disease. For the five mice that survived until day 28 that underwent an intramyocardial injection of PBS on day 15, the average ejection fraction (EF) decreased significantly from day 14 (the day before injection, 52.1 ± 4.3%) to day 28 (13 days after the injection, 30.6 ± 6.8%) (paired t-test, n = 5, p = 0.0008). Of the 11 mice fed the Paigen diet and injected with SDF-1α on day 15, 8 (72.7%) survived to day 28. The average EF for these 8 mice increased significantly from 48.2 ± 7.2% on day 14 to63.6 ± 6.9% on day 28 (Paired t-test, n = 8, p = 0.003). CONCLUSIONS This new mouse model and treatment with the promising angiogenic cytokine SDF-1α may lead to new therapeutic approaches for ischemic heart disease.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12/metabolism
- Chemokine CXCL12/genetics
- Disease Models, Animal
- Mice, Knockout
- Coronary Artery Disease
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Scavenger Receptors, Class B/genetics
- Male
- Neovascularization, Physiologic/drug effects
- Mice, Inbred C57BL
- Diet, Atherogenic
- Mice
- Ventricular Function, Left
- Myocardium/pathology
- Myocardium/metabolism
- Diet, High-Fat
Collapse
Affiliation(s)
- Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Spencer A Bonham
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Olivier N Kocher
- Department of Pathology, Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, MA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Getz GS, Reardon CA. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int J Mol Sci 2024; 25:6375. [PMID: 38928086 PMCID: PMC11204064 DOI: 10.3390/ijms25126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
12
|
Christ C, Ocskay Z, Kovács G, Jakus Z. Characterization of Atherosclerotic Mice Reveals a Sex-Dependent Susceptibility to Plaque Calcification but No Major Changes in the Lymphatics in the Arterial Wall. Int J Mol Sci 2024; 25:4046. [PMID: 38612867 PMCID: PMC11012298 DOI: 10.3390/ijms25074046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Lymphatics participate in reverse cholesterol transport, and their presence in the arterial wall of the great vessels and prior experimental results suggest their possible role in the development of atherosclerosis. The aim of this study was to characterize the lymphatic vasculature of the arterial wall in atherosclerosis. Tissue sections and tissue-cleared aortas of wild-type mice unveiled significant differences in the density of the arterial lymphatic network throughout the arterial tree. Male and female Ldlr-/- and ApoE-/- mice on a Western diet showed sex-dependent differences in plaque formation and calcification. Female mice on a Western diet developed more calcification of atherosclerotic plaques than males. The lymphatic vessels within the aortic wall of these mice showed no major changes regarding the number of lymphatic junctions and end points or the lymphatic area. However, female mice on a Western diet showed moderate dilation of lymphatic vessels in the abdominal aorta and exhibited indications of increased peripheral lymphatic function, findings that require further studies to understand the role of lymphatics in the arterial wall during the development of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; (C.C.); (Z.O.); (G.K.)
| |
Collapse
|
13
|
Castro R, Kalecký K, Huang NK, Petersen K, Singh V, Ross AC, Neuberger T, Bottiglieri T. A very-low carbohydrate content in a high-fat diet modifies the plasma metabolome and impacts systemic inflammation and experimental atherosclerosis. J Nutr Biochem 2024; 126:109562. [PMID: 38176626 DOI: 10.1016/j.jnutbio.2023.109562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/08/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Ketogenic diets (KDs) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD). Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal:81:1:18, fat/carbohydrate/protein), a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal:40:42:18, fat/carbohydrate/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system. KD was atherogenic when compared to the control diet, but KD mice, when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic metabolites and an increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; and (4) presented significantly lower aortic plaque burden. KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA; Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| | - Karel Kalecký
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA; Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Neil K Huang
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA; Jean Mayer USDA Human Nutrition Research Center on Aging, Cardiovascular Nutrition Laboratory, Tufts University, Boston, Massachusetts, USA
| | - Kristina Petersen
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - A Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, Pennsylvania, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA; Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, Texas, USA
| |
Collapse
|
14
|
Volpatti LR, de Matos SN, Borjas G, Reda J, Watkins EA, Zhou Z, Nguyen M, Solanki A, Fang Y, Hubbell JA. LDL-Binding IL-10 Reduces Vascular Inflammation in Atherosclerotic Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.582839. [PMID: 38496521 PMCID: PMC10942346 DOI: 10.1101/2024.03.04.582839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease associated with the accumulation of low-density lipoprotein (LDL) in arterial walls. Higher levels of the anti-inflammatory cytokine IL-10 in serum are correlated with reduced plaque burden. However, cytokine therapies have not translated well to the clinic, partially due to their rapid clearance and pleiotropic nature. Here, we engineered IL-10 to overcome these challenges by hitchhiking on LDL to atherosclerotic plaques. Specifically, we constructed fusion proteins in which one domain is IL-10 and the other is an antibody fragment (Fab) that binds to protein epitopes of LDL. In murine models of atherosclerosis, we show that systemically administered Fab-IL-10 constructs bind circulating LDL and traffic to atherosclerotic plaques. One such construct, 2D03-IL-10, significantly reduces aortic immune cell infiltration to levels comparable to healthy mice, whereas non-targeted IL-10 has no therapeutic effect. Mechanistically, we demonstrate that 2D03-IL-10 preferentially associates with foamy macrophages and reduces pro-inflammatory activation markers. This platform technology can be applied to a variety of therapeutics and shows promise as a potential targeted anti-inflammatory therapy in atherosclerosis.
Collapse
Affiliation(s)
- Lisa R. Volpatti
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, United States
| | - Salvador Norton de Matos
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
- Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, IL, 60637, United States
| | - Gustavo Borjas
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Joseph Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Elyse A. Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Zhengjie Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637, United States
| | - Mindy Nguyen
- Animal Resources Center, University of Chicago, Chicago, IL 60637, United States
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL 60637, United States
| | - Yun Fang
- Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL 60637, United States
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Committee on Molecular Medicine, University of Chicago, Chicago, IL, 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
- Committee on Immunology, University of Chicago, Chicago, IL 60637, United States
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
15
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
16
|
Parikh M, Pierce GN. Considerations for choosing an optimal animal model of cardiovascular disease. Can J Physiol Pharmacol 2024; 102:75-85. [PMID: 37748198 DOI: 10.1139/cjpp-2023-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The decision to use the optimal animal model to mimic the various types of cardiovascular disease is a critical one for a basic scientist. Clinical cardiovascular disease can be complex and presents itself as atherosclerosis, hypertension, ischemia/reperfusion injury, myocardial infarcts, and cardiomyopathies, amongst others. This may be further complicated by the simultaneous presence of two or more cardiovascular lesions (for example, atherosclerosis and hypertension) and co-morbidities (i.e., diabetes, infectious disease, obesity, etc). This variety and merging of disease states creates an unusually difficult situation for the researcher who needs to identify the optimal animal model that is available to best represent all of the characteristics of the clinical cardiovascular disease. The present manuscript reviews the characteristics of the various animal models of cardiovascular disease available today, their advantages and disadvantages, with the goal to allow the reader access to the most recent data available for optimal choices prior to the initiation of the study. The animal species that can be chosen, the methods of generating these models of cardiovascular disease, as well as the specific cardiovascular lesions involved in each of these models are reviewed. A particular focus on the JCR:LA-cp rat as a model of cardiovascular disease is discussed.
Collapse
Affiliation(s)
- Mihir Parikh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB, Canada
| | - Grant N Pierce
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St. Boniface Hospital, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Sansonetti M, Al Soodi B, Thum T, Jung M. Macrophage-based therapeutic approaches for cardiovascular diseases. Basic Res Cardiol 2024; 119:1-33. [PMID: 38170281 PMCID: PMC10837257 DOI: 10.1007/s00395-023-01027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Despite the advances in treatment options, cardiovascular disease (CVDs) remains the leading cause of death over the world. Chronic inflammatory response and irreversible fibrosis are the main underlying pathophysiological causes of progression of CVDs. In recent decades, cardiac macrophages have been recognized as main regulatory players in the development of these complex pathophysiological conditions. Numerous approaches aimed at macrophages have been devised, leading to novel prospects for therapeutic interventions. Our review covers the advancements in macrophage-centric treatment plans for various pathologic conditions and examines the potential consequences and obstacles of employing macrophage-targeted techniques in cardiac diseases.
Collapse
Affiliation(s)
- Marida Sansonetti
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Bashar Al Soodi
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- REBIRTH-Center for Translational Regenerative Medicine, Hannover Medical School, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), 30625, Hannover, Germany.
| | - Mira Jung
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
18
|
Andrews SG, Koehle AM, Paudel D, Neuberger T, Ross AC, Singh V, Bottiglieri T, Castro R. Diet-Induced Severe Hyperhomocysteinemia Promotes Atherosclerosis Progression and Dysregulates the Plasma Metabolome in Apolipoprotein-E-Deficient Mice. Nutrients 2024; 16:330. [PMID: 38337615 PMCID: PMC10856797 DOI: 10.3390/nu16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Stephen G. Andrews
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Anthony M. Koehle
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Devendra Paudel
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Vishal Singh
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA;
| | - Rita Castro
- Department of Nutritional Sciences, Penn State University, University Park, PA 16802, USA; (S.G.A.); (A.M.K.); (D.P.); (A.C.R.); (V.S.)
- Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
19
|
Czuba-Pakuła E, Pelikant-Małecka I, Lietzau G, Wójcik S, Smoleński RT, Kowiański P. Accelerated Extracellular Nucleotide Metabolism in Brain Microvascular Endothelial Cells in Experimental Hypercholesterolemia. Cell Mol Neurobiol 2023; 43:4245-4259. [PMID: 37801200 PMCID: PMC10661815 DOI: 10.1007/s10571-023-01415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Hypercholesterolemia affects the neurovascular unit, including the cerebral blood vessel endothelium. Operation of this system, especially in the context of energy metabolism, is controlled by extracellular concentration of purines, regulated by ecto-enzymes, such as e-NTPDase-1/CD39, ecto-5'-NT/CD73, and eADA. We hypothesize that hypercholesterolemia, via modulation of the activity of nucleotide metabolism-regulating ecto-enzymes, deteriorates glycolytic efficiency and energy metabolism of endothelial cells, which may potentially contribute to development of neurodegenerative processes. We aimed to determine the effect of hypercholesterolemia on the concentration of purine nucleotides, glycolytic activity, and activity of ecto-enzymes in the murine brain microvascular endothelial cells (mBMECs). We used 3-month-old male LDLR-/-/Apo E-/- double knockout mice to model hypercholesterolemia and atherosclerosis. The age-matched wild-type C57/BL6 mice were a control group. The intracellular concentration of ATP and NAD and extracellular activity of the ecto-enzymes were measured by HPLC. The glycolytic function of mBMECs was assessed by means of the extracellular acidification rate (ECAR) using the glycolysis stress test. The results showed an increased activity of ecto-5'-NT and eADA in mBMECs of the hypercholesterolemic mice, but no differences in intracellular concentration of ATP, NAD, and ECAR between the hypercholesterolemic and control groups. The changed activity of ecto-5'-NT and eADA leads to increased purine nucleotides turnover and a shift in their concentration balance towards adenosine and inosine in the extracellular space. However, no changes in the energetic metabolism of the mBMECs are reported. Our results confirm the influence of hypercholesterolemia on regulation of purine nucleotides metabolism, which may impair the function of the cerebral vascular endothelium. The effect of hypercholesterolemia on the murine brain microvascular endothelial cells (mBMECs). An increased activity of ecto-5'-NT and eADA in mBMECs of the LDLR-/-/Apo E-/- mice leads to a shift in the concentration balance towards adenosine and inosine in the extracellular space with no differences in intracellular concentration of ATP. Figure was created with Biorender.com.
Collapse
Affiliation(s)
- Ewelina Czuba-Pakuła
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
| | - Iwona Pelikant-Małecka
- Division of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Ryszard T Smoleński
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland.
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200, Słupsk, Poland.
| |
Collapse
|
20
|
Burke-Kleinman J, Gotlieb AI. Progression of Arterial Vasa Vasorum from Regulator of Arterial Homeostasis to Promoter of Atherogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1468-1484. [PMID: 37356574 DOI: 10.1016/j.ajpath.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The vasa vasorum (vessels of vessels) are a dynamic microvascular system uniquely distributed to maintain physiological homeostasis of the artery wall by supplying nutrients and oxygen to the outer layers of the artery wall, adventitia, and perivascular adipose tissue, and in large arteries, to the outer portion of the medial layer. Vasa vasorum endothelium and contractile mural cells regulate direct access of bioactive cells and factors present in both the systemic circulation and the arterial perivascular adipose tissue and adventitia to the artery wall. Experimental and human data show that proatherogenic factors and cells gain direct access to the artery wall via the vasa vasorum and may initiate, promote, and destabilize the plaque. Activation and growth of vasa vasorum occur in all blood vessel layers primarily by angiogenesis, producing fragile and permeable new microvessels that may cause plaque hemorrhage and fibrous cap rupture. Ironically, invasive therapies, such as angioplasty and coronary artery bypass grafting, injure the vasa vasorum, leading to treatment failures. The vasa vasorum function both as a master integrator of arterial homeostasis and, once perturbed or injured, as a promotor of atherogenesis. Future studies need to be directed at establishing reliable in vivo and in vitro models to investigate the cellular and molecular regulation of the function and dysfunction of the arterial vasa vasorum.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Lyons SA, Beaudry JL. Synergistic Combinations of Gut- and Pancreas-Hormone-Based Therapies: Advancements in Treatments for Metabolic Diseases. Endocrinology 2023; 164:bqad153. [PMID: 37823483 PMCID: PMC10612476 DOI: 10.1210/endocr/bqad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Metabolic diseases, such as obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease, and liver disease, have become increasingly prevalent around the world. As an alternative to bariatric surgery, glucagon-like peptide 1 (GLP-1) receptor agonists have been at the forefront of weight loss medication to combat these metabolic complications. Recently, there has been an exciting rapid emergence of new weight loss medications that combine GLP-1 receptor (GLP-1R) agonists with other gut- and pancreatic-derived hormones, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon (GCG) receptor agonists. Dual-agonist (GLP-1/GIP and GLP-1/GCG) and tri-agonist (GLP-1/GIP/GCG) administration generally result in greater weight loss, reduction of blood sugar and lipid levels, restoration of tissue function, and improvement in whole-body substrate metabolism compared to when GLP-1R agonists are used alone. The aim of this review is to summarize the recent literature of both preclinical and clinical studies on how these emerging gut-peptide therapies further improve weight loss and metabolic health outcomes for various metabolic diseases.
Collapse
Affiliation(s)
- Sulayman Aslan Lyons
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Jacqueline Leah Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
22
|
Busnelli M, Manzini S, Colombo A, Franchi E, Chiara M, Zaffaroni G, Horner D, Chiesa G. Effect of diet and genotype on the miRNome of mice with altered lipoprotein metabolism. iScience 2023; 26:107615. [PMID: 37664585 PMCID: PMC10474470 DOI: 10.1016/j.isci.2023.107615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
The molecular mechanism by which lipid/lipoprotein biosynthesis is regulated in mammals involves a very large number of genes that are subject to multiple levels of regulation. miRNAs are recognized contributors to lipid homeostasis at the post-transcriptional level, although the elucidation of their role is made difficult by the multiplicity of their targets and the ability of more miRNAs to affect the same mRNAs. In this study, an evaluation of how miRNA expression varies in organs playing a key role in lipid/lipoprotein metabolism was conducted in control mice and in two mouse models carrying genetic ablations which differently affect low-density lipoprotein metabolism. Mice were fed a lipid-poor standard diet and a diet enriched in cholesterol and saturated fat. The results obtained showed that there are no miRNAs whose expression constantly vary with dietary or genetic changes. Furthermore, it appears that diet, more than genotype, impacts on organ-specific miRNA expression profiles.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Gaia Zaffaroni
- Institute for Globally Distributed Open Research and Education, Gothenburg, Sweden
| | - David Horner
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
23
|
Chong SY, Wang X, van Bloois L, Huang C, Syeda NS, Zhang S, Ting HJ, Nair V, Lin Y, Lou CKL, Benetti AA, Yu X, Lim NJY, Tan MS, Lim HY, Lim SY, Thiam CH, Looi WD, Zharkova O, Chew NWS, Ng CH, Bonney GK, Muthiah M, Chen X, Pastorin G, Richards AM, Angeli V, Storm G, Wang JW. Injectable liposomal docosahexaenoic acid alleviates atherosclerosis progression and enhances plaque stability. J Control Release 2023; 360:344-364. [PMID: 37406819 DOI: 10.1016/j.jconrel.2023.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory vascular disease that is characterized by the accumulation of lipids and immune cells in plaques built up inside artery walls. Docosahexaenoic acid (DHA, 22:6n-3), an omega-3 polyunsaturated fatty acid (PUFA), which exerts anti-inflammatory and antioxidant properties, has long been purported to be of therapeutic benefit to atherosclerosis patients. However, large clinical trials have yielded inconsistent data, likely due to variations in the formulation, dosage, and bioavailability of DHA following oral intake. To fully exploit its potential therapeutic effects, we have developed an injectable liposomal DHA formulation intended for intravenous administration as a plaque-targeted nanomedicine. The liposomal formulation protects DHA against chemical degradation and increases its local concentration within atherosclerotic lesions. Mechanistically, DHA liposomes are readily phagocytosed by activated macrophages, exert potent anti-inflammatory and antioxidant effects, and inhibit foam cell formation. Upon intravenous administration, DHA liposomes accumulate preferentially in atherosclerotic lesional macrophages and promote polarization of macrophages towards an anti-inflammatory M2 phenotype, resulting in attenuation of atherosclerosis progression in both ApoE-/- and Ldlr-/- experimental models. Plaque composition analysis demonstrates that liposomal DHA inhibits macrophage infiltration, reduces lipid deposition, and increases collagen content, thus improving the stability of atherosclerotic plaques against rupture. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) further reveals that DHA liposomes can partly restore the complex lipid profile of the plaques to that of early-stage plaques. In conclusion, DHA liposomes offer a promising approach for applying DHA to stabilize atherosclerotic plaques and attenuate atherosclerosis progression, thereby preventing atherosclerosis-related cardiovascular events.
Collapse
Affiliation(s)
- Suet Yen Chong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Xiaoyuan Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Louis van Bloois
- Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Nilofer Sayed Syeda
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Vaarsha Nair
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Yuanzhe Lin
- Department of Biomedical Engineering, National University of Singapore, 117583 Singapore, Singapore
| | - Charles Kang Liang Lou
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Ayca Altay Benetti
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543 Singapore, Singapore
| | - Xiaodong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Nicole Jia Ying Lim
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Michelle Siying Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore
| | - Hwee Ying Lim
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Sheau Yng Lim
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Chung Hwee Thiam
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Wen Donq Looi
- Bruker Daltonics, Bruker Singapore Pte. Ltd., 138671 Singapore, Singapore
| | - Olga Zharkova
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Nicholas W S Chew
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Department of Cardiology, National University Heart Centre, National University Hospital, 119074 Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Glenn Kunnath Bonney
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital, 119074 Singapore, Singapore
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, 119074 Singapore, Singapore; National University Centre for Organ Transplantation, National University Health System, 119074 Singapore, Singapore
| | - Xiaoyuan Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 119074 Singapore, Singapore; Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117575 Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543 Singapore, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456 Singapore, Singapore
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, the Netherlands.
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117609 Singapore, Singapore; Department of Physiology, National University of Singapore, 117593 Singapore, Singapore.
| |
Collapse
|
24
|
Martínez-Parra L, Piñol-Cancer M, Sanchez-Cano C, Miguel-Coello AB, Di Silvio D, Gomez AM, Uriel C, Plaza-García S, Gallego M, Pazos R, Groult H, Jeannin M, Geraki K, Fernández-Méndez L, Urkola-Arsuaga A, Sánchez-Guisado MJ, Carrillo-Romero J, Parak WJ, Prato M, Herranz F, Ruiz-Cabello J, Carregal-Romero S. A Comparative Study of Ultrasmall Calcium Carbonate Nanoparticles for Targeting and Imaging Atherosclerotic Plaque. ACS NANO 2023; 17:13811-13825. [PMID: 37399106 PMCID: PMC10900527 DOI: 10.1021/acsnano.3c03523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Atherosclerosis is a complex disease that can lead to life-threatening events, such as myocardial infarction and ischemic stroke. Despite the severity of this disease, diagnosing plaque vulnerability remains challenging due to the lack of effective diagnostic tools. Conventional diagnostic protocols lack specificity and fail to predict the type of atherosclerotic lesion and the risk of plaque rupture. To address this issue, technologies are emerging, such as noninvasive medical imaging of atherosclerotic plaque with customized nanotechnological solutions. Modulating the biological interactions and contrast of nanoparticles in various imaging techniques, including magnetic resonance imaging, is possible through the careful design of their physicochemical properties. However, few examples of comparative studies between nanoparticles targeting different hallmarks of atherosclerosis exist to provide information about the plaque development stage. Our work demonstrates that Gd (III)-doped amorphous calcium carbonate nanoparticles are an effective tool for these comparative studies due to their high magnetic resonance contrast and physicochemical properties. In an animal model of atherosclerosis, we compare the imaging performance of three types of nanoparticles: bare amorphous calcium carbonate and those functionalized with the ligands alendronate (for microcalcification targeting) and trimannose (for inflammation targeting). Our study provides useful insights into ligand-mediated targeted imaging of atherosclerosis through a combination of in vivo imaging, ex vivo tissue analysis, and in vitro targeting experiments.
Collapse
Affiliation(s)
- Lydia Martínez-Parra
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Marina Piñol-Cancer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
| | - Ana B Miguel-Coello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Desirè Di Silvio
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Ana M Gomez
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, 28006 Madrid, Spain
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Marta Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Raquel Pazos
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - Hugo Groult
- Biotechnologies et Chimie des Bioressources pour la Santé, Littoral Environment et Sociétés (LIENSs Laboratory), UMR CNRS 7266, 17000 La Rochelle, France
| | - Marc Jeannin
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement (LaSIE), UMR-CNRS 7536, La Rochelle Université, 7356 La Rochelle, France
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Laura Fernández-Méndez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Ainhize Urkola-Arsuaga
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
| | - María Jesús Sánchez-Guisado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Juliana Carrillo-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Basque Res & Technol Alliance BRTA, GAIKER, Technol Ctr, 48170 Zamudio, Spain
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Fernando Herranz
- NanoMedMol, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), Madrid 28006, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
25
|
Poznyak AV, Orekhova VA, Sukhorukov VN, Khotina VA, Popov MA, Orekhov AN. Atheroprotective Aspects of Heat Shock Proteins. Int J Mol Sci 2023; 24:11750. [PMID: 37511509 PMCID: PMC10380699 DOI: 10.3390/ijms241411750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is a major global health problem. Being a harbinger of a large number of cardiovascular diseases, it ultimately leads to morbidity and mortality. At the same time, effective measures for the prevention and treatment of atherosclerosis have not been developed, to date. All available therapeutic options have a number of limitations. To understand the mechanisms behind the triggering and development of atherosclerosis, a deeper understanding of molecular interactions is needed. Heat shock proteins are important for the normal functioning of cells, actively helping cells adapt to gradual changes in the environment and survive in deadly conditions. Moreover, multiple HSP families play various roles in the progression of cardiovascular disorders. Some heat shock proteins have been shown to have antiatherosclerotic effects, while the role of others remains unclear. In this review, we considered certain aspects of the antiatherosclerotic activity of a number of heat shock proteins.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Varvara A Orekhova
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Vasily N Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | - Victoria A Khotina
- Institute of General Pathology and Pathophysiology, 8, Baltiyskaya St., 125315 Moscow, Russia
| | - Mikhail A Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), 61/2, Shchepkin St., 129110 Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| |
Collapse
|
26
|
He Y, Tian W, Zhang M, Qiu H, Li H, Shi X, Song S, Wen C, Chen J. Jieduquyuziyin prescription alleviates SLE complicated by atherosclerosis via promoting cholesterol efflux and suppressing TLR9/MyD88 activation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116283. [PMID: 36898449 DOI: 10.1016/j.jep.2023.116283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieduquyuziyin prescription (JP), as a traditional Chinese medicine formula, is extensively applied to treat systemic lupus erythematosus (SLE). Its prescription is based on clinical practice and an evidence-based application of traditional medicines. It is approved by use in Chinese hospitals as a clinical prescription that can be directly used. AIM OF THE STUDY The study aims to elucidate JP's efficacy on lupus-like disease combined with atherosclerosis and to explore its mechanism. MATERIALS AND METHODS To conduct in vivo experiments, we established a model of lupus-like disease with atherosclerosis in ApoE-/- mice fed a high-fat diet and injected intraperitoneally with pristane. In addition, oxidized low-density lipoprotein (ox-LDL) and a TLR9 agonist (CpG-ODN2395) were utilized to examine the mechanism of JP on SLE combined with AS in RAW264.7 macrophages in vitro. RESULTS Results indicated that JP reduced hair loss and levels of the spleen index, maintained stable body weight, alleviated kidney damage in mice, and reduced the expression levels of urinary protein, autoantibodies, and inflammatory factors in serum. Furthermore, JP is effective at alleviating the lupus-like symptoms observed in mice. In mice, JP inhibited aortic plaque deposition, stimulated lipid metabolism, and increased the expression of genes that regulate cholesterol efflux, including ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette subfamily G member 1 (ABCG1), scavenger receptor class B type I (SR-BI), and peroxisome proliferator-activated receptor γ (PPAR-γ). In vivo, JP inhibited the expression of the Toll-like receptor 9 (TLR9)-induced signaling pathway, which links TLR9/MyD88/NF-kB to the expression of subsequent inflammatory factors. Furthermore, JP inhibited the expression of TLR9 and MyD88 in vitro. In addition, the JP treatment effectively reduced foam cell formation in RAW264.7 macrophages by increasing the expression of ABCA1/G1, PPAR-γ and SR-BI. CONCLUSIONS JP played a therapeutic role in ApoE-/- mice with pristane-induced lupus-like diseases and AS, possibly through inhibition of TLR9/MyD88 signaling and promotion of cholesterol efflux.
Collapse
Affiliation(s)
- Yuanfang He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Weiyu Tian
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Miao Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Haonan Qiu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Haichang Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Xiaowei Shi
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Siyue Song
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China.
| | - Juan Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China.
| |
Collapse
|
27
|
Czuba-Pakuła E, Głowiński S, Wójcik S, Lietzau G, Zabielska-Kaczorowska M, Kowiański P. The extent of damage to the blood-brain barrier in the hypercholesterolemic LDLR -/-/Apo E -/- double knockout mice depends on the animal's age, duration of pathology and brain area. Mol Cell Neurosci 2023; 125:103860. [PMID: 37182573 DOI: 10.1016/j.mcn.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
One of the effects of hypercholesterolemia (Hch) exerted on the central nervous system (CNS) is damage to the blood-brain barrier (BBB). Increased permeability of BBB results from structural changes in the vascular wall, loss of the tight junctions and barrier function, as well as alterations in the concentration of proteins located in the layers of the vascular wall. These changes occur in the course of metabolic and neurodegenerative diseases. The important role in the course of these processes is attributed to agrin, matrix metalloproteinase-9, and aquaporin-4. In this study, we aimed to determine: 1) the extent of Hch-induced damage to the BBB during maturation, and 2) the distribution of the above-mentioned markers in the vascular wall. Immunohistochemical staining and confocal microscopy were used for vascular wall protein assessment. The size of BBB damage was studied based on perivascular leakage of fluorescently labeled dextran. Three- and twelve-month-old male LDLR-/-/Apo E-/- double knockout mice (EX) developing Hch were used in the study. Age-matched male wild-type (WT) C57BL/6 mice were used as a control group. Differences in the concentration of studied markers coexisted with BBB disintegration, especially in younger mice. A relationship between the maturation of the vascular system and reduction of the BBB damage was also observed. We conclude that the extent of BBB permeability depends on animal age, duration of Hch, and brain region. These may explain different susceptibility of various brain areas to Hch, and different presentation of this pathology depending on age and its duration.
Collapse
Affiliation(s)
- Ewelina Czuba-Pakuła
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Sebastian Głowiński
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland.
| | - Sławomir Wójcik
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Grażyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Zabielska-Kaczorowska
- Department of Physiology, Medical University of Gdańsk, 1 Dębinki Str., 80-211 Gdańsk, Poland; Department of Biochemistry, Medical University of Gdańsk, 1 Dębinki Str., 80-211 Gdańsk, Poland.
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland; Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland.
| |
Collapse
|
28
|
Erikson KM, El-Khouri K, Petric R, Tang C, Chen J, Vasquez DEC, Fordahl SC, Jia Z. Carbon Nanodots Attenuate Lipid Peroxidation in the LDL Receptor Knockout Mouse Brain. Antioxidants (Basel) 2023; 12:1081. [PMID: 37237947 PMCID: PMC10215887 DOI: 10.3390/antiox12051081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Abnormal cholesterol metabolism can lead to oxidative stress in the brain. Low-density lipoprotein receptor (LDLr) knockout mice are models for studying altered cholesterol metabolism and oxidative stress onset in the brain. Carbon nanodots are a new class of carbon nanomaterials that possess antioxidant properties. The goal of our study was to evaluate the effectiveness of carbon nanodots in preventing brain lipid peroxidation. LDLr knockout mice and wild-type C57BL/6J mice were treated with saline or 2.5 mg/kg bw of carbon nanodots for a 16-week period. Brains were removed and dissected into the cortex, midbrain, and striatum. We measured lipid peroxidation in the mouse brain tissues using the Thiobarbituric Acid Reactive Substances Assay and iron and copper concentrations using Graphite Furnace Atomic Absorption Spectroscopy. We focused on iron and copper due to their association with oxidative stress. Iron concentrations were significantly elevated in the midbrain and striatum of the LDLr knockout mice compared to the C57BL/6J mice, whereas lipid peroxidation was greatest in the midbrain and cortex of the LDLr knockout mice. Treatment with carbon nanodots in the LDLr knockout mice attenuated both the rise in iron and lipid peroxidation, but they had no negative effect in the C57BL/6J mice, indicating the anti-oxidative stress properties of carbon nanodots. We also assessed locomotor and anxiety-like behaviors as functional indicators of lipid peroxidation and found that treatment with carbon nanodots prevented the anxiety-like behaviors displayed by the LDLr knockout mice. Overall, our results show that carbon nanodots are safe and may be an effective nanomaterial for combating the harmful effects caused by lipid peroxidation.
Collapse
Affiliation(s)
- Keith M. Erikson
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Kristina El-Khouri
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Radmila Petric
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
- Institute for the Environment, University of North Carolina, Chapel-Hill, NC 27517, USA
| | - Chenhao Tang
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| | - Jinlan Chen
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| | | | - Steve C. Fordahl
- Department of Nutrition, University of North Carolina, Greensboro, NC 27401, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina, Greensboro, NC 27401, USA
| |
Collapse
|
29
|
Poznyak AV, Sukhorukov VN, Eremin II, Nadelyaeva II, Orekhov AN. Diagnostics of atherosclerosis: Overview of the existing methods. Front Cardiovasc Med 2023; 10:1134097. [PMID: 37229223 PMCID: PMC10203409 DOI: 10.3389/fcvm.2023.1134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Atherosclerosis was and remains an extremely common and serious health problem. Since the elderly are most at risk of cardiovascular risk, and the average life expectancy is increasing, the spread of atherosclerosis and its consequences increases as well. One of the features of atherosclerosis is its asymptomaticity. This factor makes it difficult to make a timely diagnosis. This entails the lack of timely treatment and even prevention. To date, in the arsenal of physicians, there is only a limited set of methods to suspect and fully diagnose atherosclerosis. In this review, we have tried to briefly describe the most common and effective methods for diagnosing atherosclerosis.
Collapse
|
30
|
Torikai H, Chen MH, Jin L, He J, Angle JF, Shi W. Atherogenesis in Apoe-/- and Ldlr-/- Mice with a Genetically Resistant Background. Cells 2023; 12:1255. [PMID: 37174655 PMCID: PMC10177018 DOI: 10.3390/cells12091255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Apoe-deficient (Apoe-/-) and Ldlr-deficient (Ldlr-/-) mice are two common animal models of hypercholesterolemia and atherosclerosis. The two models differ in lipid and glucose metabolism and other mechanisms involved in atherogenesis. Here we examined atherosclerotic lesion formation in the two models with an atherosclerosis-resistant C3H/HeJ (C3H) background. 3-month-old C3H-Ldlr-/- and C3H-Apoe-/- mice developed minimal atherosclerotic lesions in the aortic root when fed a chow diet. After 12 weeks on a Western diet, C3H-Ldlr-/- mice developed 3-fold larger lesions than C3H-Apoe-/- mice in the aortic root (127,386 ± 13,439 vs. 41,542 ± 5075 μm2/section; p = 0.00028), but neither knockout formed any lesion in the carotid artery. After being ligated near its bifurcation, the common carotid artery developed intimal lesions in both knockouts 4 weeks after ligation, significantly larger in C3H-Ldlr-/- than C3H-Apoe-/- mice (68,721 ± 2706 vs. 47,472 ± 8146 μm2/section; p = 0.028). Compared to C3H-Apoe-/- mice, C3H-Ldlr-/- mice showed a 50% reduction in plasma MCP-1 levels, similar levels of malondialdehyde, an oxidative stress biomarker, on both chow and Western diets, but higher small dense LDL levels on the Western diet. These results suggest a more significant role for small dense LDL than inflammation and oxidative stress in the different susceptibility of the mouse models to atherosclerosis.
Collapse
Affiliation(s)
- Hideyuki Torikai
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Mei-Hua Chen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Li Jin
- Orthopedic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - John F. Angle
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Weibin Shi
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
31
|
Ribatti D. Liver angiocrine factors. Tissue Cell 2023; 81:102027. [PMID: 36657255 DOI: 10.1016/j.tice.2023.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Endothelial cells secrete growth factors, chemokines, and extracellular matrix components, including angiocrine factors or angiokines, involved in the regulation of organ morphogenesis, homeostasis, and regeneration. The concepts of angiocrine signaling have been demonstrated in the liver, pancreas, brain, lung, heart, kidney, skin, bone marrow, as well as in pathological conditions, including cancer. The aim of this review article is to analyze the role of angiocrine factors in the liver in physiological as well as in pathological conditions.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences,University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, 70124 Bari, Italy.
| |
Collapse
|
32
|
Centner AM, Khalili L, Ukhanov V, Kadyan S, Nagpal R, Salazar G. The Role of Phytochemicals and Gut Microbiome in Atherosclerosis in Preclinical Mouse Models. Nutrients 2023; 15:1212. [PMID: 36904211 PMCID: PMC10005405 DOI: 10.3390/nu15051212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Gut microbiome alterations have recently been linked to many chronic conditions including cardiovascular disease (CVD). There is an interplay between diet and the resident gut microbiome, where the food eaten affects populations of certain microbes. This is important, as different microbes are associated with various pathologies, as they can produce compounds that are disease-promoting or disease-protecting. The Western diet negatively affects the host gut microbiome, ultimately resulting in heightened arterial inflammation and cell phenotype changes as well as plaque accumulation in the arteries. Nutritional interventions including whole foods rich in fiber and phytochemicals as well as isolated compounds including polyphenols and traditional medicinal plants show promise in positively influencing the host gut microbiome to alleviate atherosclerosis. This review investigates the efficacy of a vast array of foods and phytochemicals on host gut microbes and atherosclerotic burden in mice. Reduction in plaque by interventions was associated with increases in bacterial diversity, reduction in the Firmicutes/Bacteroidetes (F/B) ratio, and upregulation of Akkermansia. Upregulation in CYP7 isoform in the liver, ABC transporters, bile acid excretion, and the level of acetic acid, propionic acid, and butyric acid were also noted in several studies reducing plaque. These changes were also associated with attenuated inflammation and oxidative stress. In conclusion, an increase in the abundance of Akkermansia with diets rich in polyphenols, fiber, and grains is likely to reduce plaque burden in patients suffering from CVD.
Collapse
Affiliation(s)
- Ann M. Centner
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Leila Khalili
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Vladimir Ukhanov
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
33
|
Mérian J, Ghezali L, Trenteseaux C, Duparc T, Beuzelin D, Bouguetoch V, Combes G, Sioufi N, Martinez LO, Najib S. Intermittent Fasting Resolves Dyslipidemia and Atherogenesis in Apolipoprotein E-Deficient Mice in a Diet-Dependent Manner, Irrespective of Sex. Cells 2023; 12:533. [PMID: 36831200 PMCID: PMC9953823 DOI: 10.3390/cells12040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In humans and animal models, intermittent fasting (IF) interventions promote body weight loss, improve metabolic health, and are thought to lower cardiovascular disease risk. However, there is a paucity of reports on the relevance of such nutritional interventions in the context of dyslipidemia and atherosclerotic cardiovascular diseases. The present study assessed the metabolic and atheroprotective effects of intermittent fasting intervention (IF) in atherosclerosis-prone apolipoprotein E-deficient (Apoe-/-) mice. Groups of male and female Apoe-/- mice were fed a regular (chow) or atherogenic (high-fat, high-cholesterol, HFCD) diet for 4 months, either ad libitum or in an alternate-day fasting manner. The results show that IF intervention improved glucose and lipid metabolism independently of sex. However, IF only decreased body weight gain in males fed chow diet and differentially modulated adipose tissue parameters and liver steatosis in a diet composition-dependent manner. Finally, IF prevented spontaneous aortic atherosclerotic lesion formation in mice fed chow diet, irrespective of sex, but failed to reduce HFCD-diet-induced atherosclerosis. Overall, the current work indicates that IF interventions can efficiently improve glucose homeostasis and treat atherogenic dyslipidemia, but a degree of caution is warranted with regard to the individual sex and the composition of the dietary regimen.
Collapse
Affiliation(s)
- Jules Mérian
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Lamia Ghezali
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Charlotte Trenteseaux
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Thibaut Duparc
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Diane Beuzelin
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Vanessa Bouguetoch
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Guillaume Combes
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Nabil Sioufi
- Lifesearch SAS, 195 Route d’Espagne, 31100 Toulouse, France
| | - Laurent O. Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| | - Souad Najib
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, Inserm, Université Toulouse III—Paul Sabatier (UPS), UMR1297, 31432 Toulouse, France
| |
Collapse
|
34
|
Mirabegron-induced brown fat activation does not exacerbate atherosclerosis in mice with a functional hepatic ApoE-LDLR pathway. Pharmacol Res 2023; 187:106634. [PMID: 36574856 DOI: 10.1016/j.phrs.2022.106634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Activation of brown adipose tissue (BAT) with the β3-adrenergic receptor agonist CL316,243 protects mice from atherosclerosis development, and the presence of metabolically active BAT is associated with cardiometabolic health in humans. In contrast, exposure to cold or treatment with the clinically used β3-adrenergic receptor agonist mirabegron to activate BAT exacerbates atherosclerosis in apolipoprotein E (ApoE)- and low-density lipoprotein receptor (LDLR)-deficient mice, both lacking a functional ApoE-LDLR pathway crucial for lipoprotein remnant clearance. We, therefore, investigated the effects of mirabegron treatment on dyslipidemia and atherosclerosis development in APOE*3-Leiden.CETP mice, a humanized lipoprotein metabolism model with a functional ApoE-LDLR clearance pathway. Mirabegron activated BAT and induced white adipose tissue (WAT) browning, accompanied by selectively increased fat oxidation and attenuated fat mass gain. Mirabegron increased the uptake of fatty acids derived from triglyceride (TG)-rich lipoproteins by BAT and WAT, which was coupled to increased hepatic uptake of the generated cholesterol-enriched core remnants. Mirabegron also promoted hepatic very low-density lipoprotein (VLDL) production, likely due to an increased flux of fatty acids from WAT to the liver, and resulted in transient elevation in plasma TG levels followed by a substantial decrease in plasma TGs. These effects led to a trend toward lower plasma cholesterol levels and reduced atherosclerosis. We conclude that BAT activation by mirabegron leads to substantial metabolic benefits in APOE*3-Leiden.CETP mice, and mirabegron treatment is certainly not atherogenic. These data underscore the importance of the choice of experimental models when investigating the effect of BAT activation on lipoprotein metabolism and atherosclerosis.
Collapse
|
35
|
Gan G, Zhang R, Lu B, Luo Y, Chen S, Lei H, Li Y, Cai Z, Huang X. Gut microbiota may mediate the impact of chronic apical periodontitis on atherosclerosis in apolipoprotein E-deficient mice. Int Endod J 2023; 56:53-68. [PMID: 36208054 DOI: 10.1111/iej.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
AIM There are growing evidences linking chronic apical periodontitis (CAP) to atherosclerosis. Gut microbiota is found to be involved in the development of atherosclerosis. Recent studies have shown that CAP could change the diversity and composition of the gut microbiota. It was therefore, we hypothesized that gut microbiota and its metabolites could mediate the impact of CAP on atherosclerosis. METHODOLOGY Twenty-four 5-week-old lipoprotein E knockout (apoE-/- ) mice were randomly divided into four groups: the CAP group, Con group, Co-CAP (cohoused with CAP) and Co-Con (cohoused with Con) group. In the CAP group, sterile cotton wool containing P. gingivalis was placed into the exposed pulp chamber, followed by coronal resin-based composite restoration of the bilateral maxillary first and second molars. In the Con group, a sham operation was performed. Biweekly, mice in the CAP group were anaesthetised to check the sealing of coronal access. Meanwhile, the animals in the Con group were anaesthetised. The cohousing approach was used to introduce gut microbiota from the CAP and Con groups into the Co-CAP and Co-Con groups, respectively. Alterations in the abundance and diversity of the gut microbiota were detected using 16S rRNA sequencing, Oil-red O staining was used to demonstrate the extent of lesions, and serum levels of trimethylamine N-oxide (TMAO), and immunohistochemistry of flavin-containing monooxygenase 3 (FMO3) in liver were used to assess TMAO-related metabolic alterations. RESULTS Alterations of alpha and beta diversity were shown both in the CAP and the Co-CAP groups. Moreover, the percentage of atherosclerotic lesion area increased in the CAP and Co-CAP groups (p < .05). Linear discriminant analysis effect size (LEfSe) at the family level found the increases of Lachnospiraceae and Ruminococcaceae (p < .05), which were positively correlated with serum TMAO levels (p < .05). In the redundancy analysis technique (RDA), serum levels of TMAO were positively associated with the atherosclerotic lesions. Co-occurrence analysis revealed that the relative abundances of Lachnospiraceae and Porphyromonadacae were positively correlated with both the percentage of lesion area and TMAO level (p < .05). CONCLUSION Thus, within the limitations of this study, the data suggest that the gut microbiota can mediate the effects of CAP on atherosclerosis.
Collapse
Affiliation(s)
- Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ren Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Beibei Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yijun Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Shin E, Kim D, Choi YY, Youn H, Seong KM, Youn B. LDR-adapted liver-derived cytokines have potential to induce atherosclerosis. Int J Radiat Biol 2022; 99:791-806. [PMID: 36383216 DOI: 10.1080/09553002.2023.2145028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Atherosclerosis is a lipid-driven chronic inflammatory disease that causes cardiovascular diseases (CVD). The association between radiation and atherosclerosis has already been demonstrated; however, the effects of low-dose radiation (LDR) exposure on atherosclerosis have not been reported. Our study aims to propose that LDR may cause atherosclerosis phenotypes by the upregulation of plasminogen activator inhibitor-1 (PAI-1) and downregulation of androgen receptor (AR), which are cytokines secreted from the liver. METHODS Low-density lipoprotein (LDL) receptor deficient (Ldlr-/-) mice were irradiated at 50 mGy, 100 mGy, and 1000 mGy. LDR irradiated Ldlr-/- mice serum was analyzed by cytokine array and proteomics with silver staining. Oil Red O staining and BODIPY staining were performed to determine lipid accumulation in Human umbilical vein endothelial cells (HUVECs). Foam cell formation and monocyte recruitment were assessed through co-culture system with HUVECs and THP-1 cells. RESULTS After irradiation with LDR (100 mGy) the mice showed atherosclerotic phenotypes and through analysis results, we selected regulated cytokines, PAI-1 and AR, and found that these were changed in the liver. LDR-regulated cytokines have the potential to be transported to endothelial cells and induce lipid accumulation, inflammation of monocytes, increased oxidized low-density lipoprotein (oxLDL) and foam cells formation, that were series of phenotypes lead to plaque formation in endothelial cells and induces atherosclerosis. As a further aspect of this study, testosterone undecanoate (TU) was found to pharmacologically inhibit a series of atherosclerotic phenotypes exhibited by LDR. This study suggests a role for PAI-1 and AR in regulating the development of atherosclerosis after LDR exposure. Targeting PAI-1 and AR could serve as an attractive strategy for the management of atherosclerosis following LDR exposure.
Collapse
Affiliation(s)
- Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Dahye Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - You Yeon Choi
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, Korea
| | - Ki Moon Seong
- Laboratory of Biological Dosimetry, National Radiation Emergency Medical Center (NREMC), Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
- Department of Biological Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
37
|
Yang Y, Chen Y, Li Y, Feng Y, Hu N, Xue L. Expression and Significance of Programmed Death-1 and Its Ligands in the Accelerated Formation of Atherosclerosis in an Induced Murine Lupus Model. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6255383. [PMID: 39050559 PMCID: PMC11268968 DOI: 10.1155/2022/6255383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 07/27/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that occurs in artery walls, which seriously affects the survival and prognosis of patients with systemic lupus erythematosus (SLE). Immune and inflammatory responses have notable effects on all stages of AS. In this study, we modeled SLE combined with AS in vivo via intraperitoneal injection of pristane (2,6,10,14-tetramethylpentadecane) into apolipoprotein E-knockout (ApoE-/- ) mice that had accelerated atherosclerotic lesions compared with wild-type (WT) ApoE-/- mice. In pristane-induced ApoE-/- mice, expression of programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in peripheral blood and on the surfaces of atherosclerotic lesions significantly increased, and levels of proinflammatory cytokines, namely, interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in peripheral blood were elevated. We did not detect expression of programmed death-ligand 2 (PD-L2) in the arterial plaques of either pristane-induced or WT ApoE-/- mice, nor did we observe any significant difference in PD-L2 expression in peripheral blood between the two groups. Taken together, these results suggested that PD-1/PD-L1 signaling pathway might play an important regulatory role in the progression of AS in an induced murine lupus model which implies a potential target for treatment of AS in SLE.
Collapse
Affiliation(s)
- Yue Yang
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yueying Chen
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yongming Li
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiyi Feng
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Na Hu
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Luan Xue
- Department of Rheumatology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
38
|
Guo S, Li A, Fu X, Li Z, Cao K, Song M, Huang S, Li Z, Yan J, Wang L, Dai X, Feng D, Wang Y, He J, Huo Y, Xu Y. Gene-dosage effect of Pfkfb3 on monocyte/macrophage biology in atherosclerosis. Br J Pharmacol 2022; 179:4974-4991. [PMID: 35834356 PMCID: PMC10420406 DOI: 10.1111/bph.15926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Macrophage-rich atherosclerotic arteries are highly active in glycolysis. PFKFB3, a key glycolytic enzyme, has emerged as a potential therapeutic target in atherosclerosis. Small-molecule inhibitors of PFKFB3, such as 3PO and PFK158, have demonstrated efficacy in hampering atherogenesis in preclinical models. However, genetic studies elucidating the role of Pfkfb3 in atherogenesis need to be conducted to validate pharmacological findings and to unveil potential pharmacological side effects. EXPERIMENTAL APPROACH Apoe-/- mice with global heterozygous or myeloid cell-specific Pfkfb3 deficiency were fed a Western diet (WD), after which atherosclerosis development was determined. Monocyte subsets in atherosclerotic mice and patients were examined by flow cytometry. Monocyte infiltration was assayed by a Ly6Chi monocyte-specific latex labelling procedure. In situ efferocytosis was assessed on mouse aortic root sections. Additionally, metabolic status, macrophage motility, efferocytosis, and involved mechanisms were analysed in peritoneal macrophages. KEY RESULTS Global heterozygous or myeloid cell-specific Pfkfb3 deficiency reduced atherogenesis in Apoe-/- mice. Mechanistic studies showed that PFKFB3 controlled the proliferation and infiltration of proinflammatory monocytes. Moreover, PFKFB3 expression was associated with inflammatory monocyte expansion in patients with atherosclerotic coronary artery disease. Surprisingly, homozygous loss of Pfkfb3 impaired macrophage efferocytosis and exacerbated atherosclerosis in Apoe-/- mice. Mechanistically, PFKFB3-driven glycolysis was shown to be essential for actin polymerization, thus aiding the efferocytotic function of macrophages. CONCLUSION AND IMPLICATIONS Collectively, these findings suggest the existence of a double-edged sword effect of myeloid PFKFB3 on the pathogenesis of atherosclerosis and highlight the need for caution in developing anti-atherosclerotic strategies that target PFKFB3.
Collapse
Affiliation(s)
- Shuai Guo
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Anqi Li
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaodong Fu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zou Li
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kaixiang Cao
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingchuan Song
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuqi Huang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ziling Li
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingwei Yan
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Litao Wang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Dai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Du Feng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun He
- Department of Rehabilitation Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yiming Xu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Braczko A, Kutryb-Zajac B, Jedrzejewska A, Krol O, Mierzejewska P, Zabielska-Kaczorowska M, Slominska EM, Smolenski RT. Cardiac Mitochondria Dysfunction in Dyslipidemic Mice. Int J Mol Sci 2022; 23:ijms231911488. [PMID: 36232794 PMCID: PMC9570391 DOI: 10.3390/ijms231911488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr−/−) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates’ pool in the hearts of 6-month Ldlr−/− mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr−/− vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr−/− mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.
Collapse
Affiliation(s)
- Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| | - Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Department of Physiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
- Correspondence: (B.K.-Z.); (R.T.S.); Tel.: +48-58-349-14-14 (B.K.-Z.); +48-58-349-14-60 (R.T.S.)
| |
Collapse
|
40
|
Kalot G, Godard A, Busser B, Bendellaa M, Dalonneau F, Paul C, Le Guével X, Josserand V, Coll JL, Denat F, Bodio E, Goze C, Gautier T, Sancey L. Lipoprotein interactions with water-soluble NIR-II emitting aza-BODIPYs boost the fluorescence signal and favor selective tumor targeting. Biomater Sci 2022; 10:6315-6325. [PMID: 36149672 DOI: 10.1039/d2bm01271e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Following intravenous administration, the interaction of fluorescent exogenous molecules with circulating endogenous transporters can influence their photophysical properties as well as their fate and distribution, and possibly their recognition by different cell types. This type of interaction can be used to optimize the drug delivery but also the imaging properties of a compound of interest. In this study, we investigated the behavior of SWIR-WAZABY-01 fluorophore, a water-soluble aza-BODIPY dye emitting in the NIR-II region, both in vitro and in vivo. While the fluorescence emission of SWIR-WAZABY-01 was weak in aqueous solutions, it was intensely magnified in plasma (∼ ×30). Further analyses using lipoprotein gel electrophoresis and ultracentrifugation revealed interactions between SWIR-WAZABY-01 and plasma lipoproteins in vitro and ex vivo, in particular with LDL. The tumor uptake mechanism of SWIR-WAZABY-01 was investigated based on the presence of low-density lipoprotein (LDL) receptors and passive tumor uptake. Overall, we found that SWIR-WAZABY-01 interacts with lipoproteins enhancing their NIR-II fluorescence emission, and driving the tumor accumulation with regards to the expression of lipoprotein receptors (LDLR, SR-BI). Moreover, SWIR-WAZABY-01, by exploiting endogenous lipoproteins, arises as a new, potent and relevant tool to efficiently label LDL involved in pathologies.
Collapse
Affiliation(s)
- Ghadir Kalot
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, Dijon, France
| | - Benoit Busser
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France. .,Institut Universitaire de France (IUF), France.,Grenoble Alpes University Hospital (CHUGA), Grenoble, France
| | - Mohamed Bendellaa
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Fabien Dalonneau
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Université de Bourgogne, Dijon, France
| | - Xavier Le Guével
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Véronique Josserand
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France. .,OPTIMAL, Small animal Imaging Platform, 38000 Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| | - Franck Denat
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, Dijon, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, Dijon, France
| | - Thomas Gautier
- INSERM UMR1231, UFR Sciences de santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Lucie Sancey
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France.
| |
Collapse
|
41
|
Bi X, Stankov S, Lee PC, Wang Z, Wu X, Li L, Ko YA, Cheng L, Zhang H, Hand NJ, Rader DJ. ILRUN Promotes Atherosclerosis Through Lipid-Dependent and Lipid-Independent Factors. Arterioscler Thromb Vasc Biol 2022; 42:1139-1151. [PMID: 35861973 PMCID: PMC9420832 DOI: 10.1161/atvbaha.121.317156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Common genetic variation in close proximity to the ILRUN gene are significantly associated with coronary artery disease as well as with plasma lipid traits. We recently demonstrated that hepatic inflammation and lipid regulator with ubiquitin-associated domain-like and NBR1-like domains (ILRUN) regulates lipoprotein metabolism in vivo in mice. However, whether ILRUN, which is expressed in vascular cells, directly impacts atherogenesis remains unclear. We sought to determine the role of ILRUN in atherosclerosis development in mice. METHODS For our study, we generated global Ilrun-deficient (IlrunKO) male and female mice on 2 hyperlipidemic backgrounds: low density lipoprotein receptor knockout (LdlrKO) and apolipoprotein E knockout (ApoeKO; double knockout [DKO]). RESULTS Compared with littermate control mice (single LdlrKO or ApoeKO), deletion of Ilrun in DKO mice resulted in significantly attenuated both early and advanced atherosclerotic lesion development, as well as reduced necrotic area. DKO mice also had significantly decreased plasma cholesterol levels, primarily attributable to non-HDL (high-density lipoprotein) cholesterol. Hepatic-specific reconstitution of ILRUN in DKO mice on the ApoeKO background normalized plasma lipids, but atherosclerotic lesion area and necrotic area remained reduced in DKO mice. Further analysis showed that loss of Ilrun increased efferocytosis receptor MerTK expression in macrophages, enhanced in vitro efferocytosis, and significantly improved in situ efferocytosis in advanced lesions. CONCLUSIONS Our results support ILRUN as an important novel regulator of atherogenesis that promotes lesion progression and necrosis. It influences atherosclerosis through both plasma lipid-dependent and lipid-independent mechanisms. These findings support ILRUN as the likely causal gene responsible for genetic association of variants with coronary artery disease at this locus and suggest that suppression of ILRUN activity might be expected to reduce atherosclerosis.
Collapse
Affiliation(s)
- Xin Bi
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sylvia Stankov
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul C. Lee
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ziyi Wang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Xun Wu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Li Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-An Ko
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lan Cheng
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas J. Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Ilyas I, Little PJ, Liu Z, Xu Y, Kamato D, Berk BC, Weng J, Xu S. Mouse models of atherosclerosis in translational research. Trends Pharmacol Sci 2022; 43:920-939. [PMID: 35902281 DOI: 10.1016/j.tips.2022.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/21/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD), the major cause of premature human mortality, is a chronic and progressive metabolic and inflammatory disease in large- and medium-sized arteries. Mouse models are widely used to gain mechanistic insights into the pathogenesis of atherosclerosis and have facilitated the discovery of anti-atherosclerotic drugs. Despite promising preclinical studies, many drug candidates have not translated to clinical use because of the complexity of disease patho-mechanisms including lipid metabolic traits and inflammatory, genetic, and hemodynamic factors. We review the current preclinical utility and translation potential of traditional [apolipoprotein E (APOE)- and low-density lipoprotein (LDL) receptor (LDLR)-deficient mice] and emerging mouse models that include partial carotid ligation and AAV8-Pcsk9-D377Y injection in atherosclerosis research and drug discovery. This article represents an important resource in atherosclerosis research.
Collapse
Affiliation(s)
- Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danielle Kamato
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia; Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Australia
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China; Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China; Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
43
|
Ldlr-Deficient Mice with an Atherosclerosis-Resistant Background Develop Severe Hyperglycemia and Type 2 Diabetes on a Western-Type Diet. Biomedicines 2022; 10:biomedicines10061429. [PMID: 35740449 PMCID: PMC9220196 DOI: 10.3390/biomedicines10061429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 01/10/2023] Open
Abstract
Apoe-/- and Ldlr-/- mice are two animal models extensively used for atherosclerosis research. We previously reported that Apoe-/- mice on certain genetic backgrounds, including C3H/HeJ (C3H), develop type 2 diabetes when fed a Western diet. We sought to characterize diabetes-related traits in C3H-Ldlr-/- mice through comparing with C3H-Apoe-/- mice. On a chow diet, Ldlr-/- mice had lower plasma total and non-HDL cholesterol levels but higher HDL levels than Apoe-/- mice. Fasting plasma glucose was much lower in Ldlr-/- than Apoe-/- mice (male: 122.5 ± 5.9 vs. 229.4 ± 17.5 mg/dL; female: 144.1 ± 12.4 vs. 232.7 ± 6.4 mg/dL). When fed a Western diet, Ldlr-/- and Apoe-/- mice developed severe hypercholesterolemia and also hyperglycemia with fasting plasma glucose levels exceeding 250 mg/dL. Both knockouts had similar non-HDL cholesterol and triglyceride levels, and their fasting glucose levels were also similar. Male Ldlr-/- mice exhibited greater glucose tolerance and insulin sensitivity compared to their Apoe-/- counterpart. Female mice showed similar glucose tolerance and insulin sensitivity though Ldlr-/- mice had higher non-fasting glucose levels. Male Ldlr-/- and Apoe-/- mice developed moderate obesity on the Western diet, but female mice did not. These results indicate that the Western diet and ensuing hyperlipidemia lead to the development of type 2 diabetes, irrespective of underlying genetic causes.
Collapse
|
44
|
da Silva IV, Gullette S, Florindo C, Huang NK, Neuberger T, Ross AC, Soveral G, Castro R. The Effect of Nutritional Ketosis on Aquaporin Expression in Apolipoprotein E-Deficient Mice: Potential Implications for Energy Homeostasis. Biomedicines 2022; 10:biomedicines10051159. [PMID: 35625895 PMCID: PMC9138310 DOI: 10.3390/biomedicines10051159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE−/− (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Sean Gullette
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16802, USA; (S.G.); (T.N.)
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, State College, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Correspondence: (G.S.); (R.C.)
| | - Rita Castro
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA; (N.K.H.); (A.C.R.)
- Correspondence: (G.S.); (R.C.)
| |
Collapse
|
45
|
Smeets D, Gisterå A, Malin SG, Tsiantoulas D. The Spectrum of B Cell Functions in Atherosclerotic Cardiovascular Disease. Front Cardiovasc Med 2022; 9:864602. [PMID: 35497984 PMCID: PMC9051234 DOI: 10.3389/fcvm.2022.864602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
B cells are a core element of the pathophysiology of atherosclerotic cardiovascular disease (ASCVD). Multiple experimental and epidemiological studies have revealed both protective and deleterious functions of B cells in atherosclerotic plaque formation. The spearhead property of B cells that influences the development of atherosclerosis is their unique ability to produce and secrete high amounts of antigen-specific antibodies that can act at distant sites. Exposure to an atherogenic milieu impacts B cell homeostasis, cell differentiation and antibody production. However, it is not clear whether B cell responses in atherosclerosis are instructed by atherosclerosis-specific antigens (ASA). Dissecting the full spectrum of the B cell properties in atherosclerosis will pave the way for designing innovative therapies against the devastating consequences of ASCVD.
Collapse
Affiliation(s)
- Diede Smeets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Anton Gisterå
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stephen G. Malin
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
46
|
Gaul S, Shahzad K, Medert R, Gadi I, Mäder C, Schumacher D, Wirth A, Ambreen S, Fatima S, Boeckel JN, Khawaja H, Haas J, Brune M, Nawroth PP, Isermann B, Laufs U, Freichel M. Novel Nongenetic Murine Model of Hyperglycemia and Hyperlipidemia-Associated Aggravated Atherosclerosis. Front Cardiovasc Med 2022; 9:813215. [PMID: 35350534 PMCID: PMC8957812 DOI: 10.3389/fcvm.2022.813215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/24/2023] Open
Abstract
Objective Atherosclerosis, the main pathology underlying cardiovascular diseases is accelerated in diabetic patients. Genetic mouse models require breeding efforts which are time-consuming and costly. Our aim was to establish a new nongenetic model of inducible metabolic risk factors that mimics hyperlipidemia, hyperglycemia, or both and allows the detection of phenotypic differences dependent on the metabolic stressor(s). Methods and Results Wild-type mice were injected with gain-of-function PCSK9D377Y (proprotein convertase subtilisin/kexin type 9) mutant adeno-associated viral particles (AAV) and streptozotocin and fed either a high-fat diet (HFD) for 12 or 20 weeks or a high-cholesterol/high-fat diet (Paigen diet, PD) for 8 weeks. To evaluate atherosclerosis, two different vascular sites (aortic sinus and the truncus of the brachiocephalic artery) were examined in the mice. Combined hyperlipidemic and hyperglycemic (HGHCi) mice fed a HFD or PD displayed characteristic features of aggravated atherosclerosis when compared to hyperlipidemia (HCi HFD or PD) mice alone. Atherosclerotic plaques of HGHCi HFD animals were larger, showed a less stable phenotype (measured by the increased necrotic core area, reduced fibrous cap thickness, and less α-SMA-positive area) and had more inflammation (increased plasma IL-1β level, aortic pro-inflammatory gene expression, and MOMA-2-positive cells in the BCA) after 20 weeks of HFD. Differences between the HGHCi and HCi HFD models were confirmed using RNA-seq analysis of aortic tissue, revealing that significantly more genes were dysregulated in mice with combined hyperlipidemia and hyperglycemia than in the hyperlipidemia-only group. The HGHCi-associated genes were related to pathways regulating inflammation (increased Cd68, iNos, and Tnfa expression) and extracellular matrix degradation (Adamts4 and Mmp14). When comparing HFD with PD, the PD aggravated atherosclerosis to a greater extent in mice and showed plaque formation after 8 weeks. Hyperlipidemic and hyperglycemic mice fed a PD (HGHCi PD) showed less collagen (Sirius red) and increased inflammation (CD68-positive cells) within aortic plaques than hyperlipidemic mice (HCi PD). HGHCi-PD mice represent a directly inducible hyperglycemic atherosclerosis model compared with HFD-fed mice, in which atherosclerosis is severe by 8 weeks. Conclusion We established a nongenetically inducible mouse model allowing comparative analyses of atherosclerosis in HCi and HGHCi conditions and its modification by diet, allowing analyses of multiple metabolic hits in mice.
Collapse
Affiliation(s)
- Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Khurrum Shahzad
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Ihsan Gadi
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Christina Mäder
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Saira Ambreen
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Sameen Fatima
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hamzah Khawaja
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
- Department of Internal Medicine III, Heidelberg University, Heidelberg, Germany
| | - Maik Brune
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Peter P. Nawroth
- Internal Medicine I and Clinical Chemistry, German Diabetes Center (DZD), Heidelberg University, Heidelberg, Germany
| | - Berend Isermann
- Department of Diagnostics, Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital Leipzig, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| |
Collapse
|
47
|
Pig and Mouse Models of Hyperlipidemia and Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:379-411. [PMID: 35237978 DOI: 10.1007/978-1-0716-1924-7_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Resident cells of the artery wall and cells of the immune system participate in atherogenesis. This process is influenced by plasma lipoproteins, genetics, and the hemodynamics of the blood flow in the artery. A variety of animal models have been used to study the pathophysiology and mechanisms that contribute to atherosclerotic lesion formation. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis and lipoprotein profile. In this chapter we will discuss pig and mouse models of experimental atherosclerosis. The similarity of pig lipoprotein metabolism and the pathophysiology of the lesions in these animals with that of humans is a major advantage. While a few genetically engineered pig models have been generated, the ease of genetic manipulation in mice and the relatively short time frame for the development of atherosclerosis has made them the most extensively used model. Newer approaches to induce hypercholesterolemia in mice have been developed that do not require germline modifications. These approaches will facilitate studies on atherogenic mechanisms.
Collapse
|
48
|
Bjørklund MM, Bernal JA, Bentzon JF. Atherosclerosis Induced by Adeno-Associated Virus Encoding Gain-of-Function PCSK9. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:461-473. [PMID: 35237981 DOI: 10.1007/978-1-0716-1924-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induction of atherosclerosis in mice with one or more genetic alterations (e.g., conditional deletion of a gene of interest) has traditionally required crossbreeding with Apoe or Ldlr deficient mice to achieve sufficient hypercholesterolemia. However, this procedure is time consuming and generates a surplus of mice with genotypes that are irrelevant for experiments. Several alternative methods exist that obviate the need to work in mice with germline-encoded hypercholesterolemia. In this chapter, we detail an efficient and increasingly used method to induce hypercholesterolemia in mice through adeno-associated virus-mediated transfer of the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene.
Collapse
Affiliation(s)
- Martin Mæng Bjørklund
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
49
|
Cheng CK, Lin X, Pu Y, Tse JKY, Wang Y, Zhang CL, Cao X, Lau CW, Huang J, He L, Luo JY, Shih YT, Wan S, Ng CF, Wang L, Ma RCW, Chiu JJ, Chan TF, Yu Tian X, Huang Y. SOX4 is a novel phenotypic regulator of endothelial cells in atherosclerosis revealed by single-cell analysis. J Adv Res 2022; 43:187-203. [PMID: 36585108 PMCID: PMC9811326 DOI: 10.1016/j.jare.2022.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Atherosclerotic complications represent the leading cause of cardiovascular mortality globally. Dysfunction of endothelial cells (ECs) often initiates the pathological events in atherosclerosis. OBJECTIVES In this study, we sought to investigate the transcriptional profile of atherosclerotic aortae, identify novel regulator in dysfunctional ECs and hence provide mechanistic insights into atherosclerotic progression. METHODS We applied single-cell RNA sequencing (scRNA-seq) on aortic cells from Western diet-fed apolipoprotein E-deficient (ApoE-/-) mice to explore the transcriptional landscape and heterogeneity of dysfunctional ECs. In vivo validation of SOX4 upregulation in ECs were performed in atherosclerotic tissues, including mouse aortic tissues, human coronary arteries, and human renal arteries. Single-cell analysis on human aortic aneurysmal tissue was also performed. Downstream vascular abnormalities induced by EC-specific SOX4 overexpression, and upstream modulators of SOX4 were revealed by biochemical assays, immunostaining, and wire myography. Effects of shear stress on endothelial SOX4 expression was investigated by in vitro hemodynamic study. RESULTS Among the compendium of aortic cells, mesenchymal markers in ECs were significantly enriched. Two EC subsets were subsequently distinguished, as the 'endothelial-like' and 'mesenchymal-like' subsets. Conventional assays consistently identified SOX4 as a novel atherosclerotic marker in mouse and different human arteries, additional to a cancer marker. EC-specific SOX4 overexpression promoted atherogenesis and endothelial-to-mesenchymal transition (EndoMT). Importantly, hyperlipidemia-associated cytokines and oscillatory blood flow upregulated, whereas the anti-diabetic drug metformin pharmacologically suppressed SOX4 level in ECs. CONCLUSION Our study unravels SOX4 as a novel phenotypic regulator during endothelial dysfunction, which exacerbates atherogenesis. Our study also pinpoints hyperlipidemia-associated cytokines and oscillatory blood flow as endogenous SOX4 inducers, providing more therapeutic insights against atherosclerotic diseases.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Department of Biomedical Sciences, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yujie Pu
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Joyce Ka Yu Tse
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yu Wang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Cheng-Lin Zhang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Xiaoyun Cao
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Chi Wai Lau
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Juan Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Lei He
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Jiang-Yun Luo
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Song Wan
- Department of Surgery, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Chi Fai Ng
- Department of Surgery, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Li Wang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Xiao Yu Tian
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region.
| | - Yu Huang
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region; Department of Biomedical Sciences, City University of Hong Kong, 999077, Hong Kong Special Administrative Region.
| |
Collapse
|
50
|
Gomes D, Wang S, Goodspeed L, Turk KE, Wietecha T, Liu Y, Bornfeldt KE, O'Brien KD, Chait A, den Hartigh LJ. Comparison between genetic and pharmaceutical disruption of Ldlr expression for the development of atherosclerosis. J Lipid Res 2022; 63:100174. [PMID: 35101425 PMCID: PMC8953673 DOI: 10.1016/j.jlr.2022.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
Antisense oligonucleotides (ASOs) against Ldl receptor (Ldlr-ASO) represent a promising strategy to promote hypercholesterolemic atherosclerosis in animal models without the need for complex breeding strategies. Here, we sought to characterize and contrast atherosclerosis in mice given Ldlr-ASO with those bearing genetic Ldlr deficiency. To promote atherosclerosis, male and female C57Bl6/J mice were either given weekly injections of Ldlr-ASO (5 mg/kg once per week) or genetically deficient in Ldlr (Ldlr-/-). Mice consumed either standard rodent chow or a diet high in saturated fat and sucrose with 0.15% added cholesterol for 16 weeks. While both models of Ldlr deficiency promoted hypercholesterolemia, Ldlr-/- mice exhibited nearly 2-fold higher cholesterol levels than Ldlr-ASO mice, reflected by increased VLDL and LDL levels. Consistent with this, the en face atherosclerotic lesion area was 3-fold and 3.6-fold greater in male and female mice with genetic Ldlr deficiency, respectively, as compared with the modest atherosclerosis observed following Ldlr-ASO treatment. Aortic sinus lesion sizes, fibrosis, smooth muscle actin, and necrotic core areas were also larger in Ldlr-/- mice, suggesting a more advanced phenotype. Despite a more modest effect on hypercholesterolemia, Ldlr-ASO induced greater hepatic inflammatory gene expression, macrophage accumulation, and histological lobular inflammation than was observed in Ldlr-/- mice. We conclude Ldlr-ASO is a promising tool for the generation of complex rodent models with which to study atherosclerosis but does not promote comparable levels of hypercholesterolemia or atherosclerosis as Ldlr-/- mice and increases hepatic inflammation. Thus, genetic Ldlr deficiency may be a superior model, depending on the proposed use.
Collapse
Affiliation(s)
- Diego Gomes
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Leela Goodspeed
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Katherine E Turk
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Tomasz Wietecha
- Diabetes Institute, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yongjun Liu
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kevin D O'Brien
- Diabetes Institute, University of Washington, Seattle, WA, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Alan Chait
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Laura J den Hartigh
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|