1
|
Van Wauwe J, Mahy A, Craps S, Ekhteraei-Tousi S, Vrancaert P, Kemps H, Dheedene W, Doñate Puertas R, Trenson S, Roderick HL, Beerens M, Luttun A. PRDM16 determines specification of ventricular cardiomyocytes by suppressing alternative cell fates. Life Sci Alliance 2024; 7:e202402719. [PMID: 39304345 PMCID: PMC11415600 DOI: 10.26508/lsa.202402719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
PRDM16 is a transcription factor with histone methyltransferase activity expressed at the earliest stages of cardiac development. Pathogenic mutations in humans lead to cardiomyopathy, conduction abnormalities, and heart failure. PRDM16 is specifically expressed in ventricular but not atrial cardiomyocytes, and its expression declines postnatally. Because in other tissues PRDM16 is best known for its role in binary cell fate decisions, we hypothesized a similar decision-making function in cardiomyocytes. Here, we demonstrated that cardiomyocyte-specific deletion of Prdm16 during cardiac development results in contractile dysfunction and abnormal electrophysiology of the postnatal heart, resulting in premature death. By combined RNA+ATAC single-cell sequencing, we found that PRDM16 favors ventricular working cardiomyocyte identity, by opposing the activity of master regulators of ventricular conduction and atrial fate. Myocardial loss of PRDM16 during development resulted in hyperplasia of the (distal) ventricular conduction system. Hence, PRDM16 plays an indispensable role during cardiac development by driving ventricular working cardiomyocyte identity.
Collapse
Affiliation(s)
- Jore Van Wauwe
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Alexia Mahy
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Craps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Samaneh Ekhteraei-Tousi
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Vrancaert
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Hannelore Kemps
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Dheedene
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Sander Trenson
- Cardiology Lab, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Manu Beerens
- Institute for Clinical Chemistry and Laboratory Medicine, Medizinische Klinik und Poliklinik Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg, Luebeck, Kiel, Hamburg, Germany
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Stougiannou TM, Christodoulou KC, Karangelis D. In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between. Biomedicines 2024; 12:2714. [PMID: 39767621 PMCID: PMC11726960 DOI: 10.3390/biomedicines12122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB). Not only can they recapitulate 3D form and function, but the developmental programs governing the self-organization of cell populations into more complex tissues as well. Many different organoids and SCME constructs have been generated in recent years to recreate cardiac tissue and the complex developmental programs that give rise to its cellular composition and unique tissue morphology. It is thus the purpose of this narrative literature review to describe and summarize many of the recently derived cardiac organoid models as well as their use for the recapitulation of genetic and acquired disease. Owing to the cellular composition of the models examined, this review will focus on disease and tissue injury associated with embryonic/fetal tissues.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, Democritus University of Thrace University General Hospital, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
3
|
Boulgakoff L, D'Amato G, Miquerol L. Molecular Regulation of Cardiac Conduction System Development. Curr Cardiol Rep 2024; 26:943-952. [PMID: 38990492 DOI: 10.1007/s11886-024-02094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW The cardiac conduction system, composed of pacemaker cells and conducting cardiomyocytes, orchestrates the propagation of electrical activity to synchronize heartbeats. The conduction system plays a crucial role in the development of cardiac arrhythmias. In the embryo, the cells of the conduction system derive from the same cardiac progenitors as the contractile cardiomyocytes and and the key question is how this choice is made during development. RECENT FINDINGS This review focuses on recent advances in developmental biology using the mouse as animal model to better understand the cellular origin and molecular regulations that control morphogenesis of the cardiac conduction system, including the latest findings in single-cell transcriptomics. The conducting cell fate is acquired during development starting with pacemaking activity and last with the formation of a complex fast-conducting network. Cardiac conduction system morphogenesis is controlled by complex transcriptional and gene regulatory networks that differ in the components of the cardiac conduction system.
Collapse
Affiliation(s)
| | - Gaetano D'Amato
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France.
| |
Collapse
|
4
|
Ata F. Atrioventricular block in patients with hyperthyroidism: a narrative review. J Int Med Res 2024; 52:3000605231223040. [PMID: 38206211 PMCID: PMC10785734 DOI: 10.1177/03000605231223040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Atrioventricular block (AVB) is a rare cardiac manifestation of hyperthyroidism (HTH). The scientific literature contains multiple reports of AVB in patients with HTH, ranging from subclinical to overt HTH and even thyroid storm. However, much remains unknown about the true prevalence, clinical course, optimal management, and outcomes of AVB in patients with HTH. Such patients are possibly overtreated with pacemakers because of a lack of understanding that AVB might be secondary to the hyperthyroid state and thus reversible. This narrative review discusses the pathophysiology of AVB in patients with HTH in the context of the available evidence.
Collapse
Affiliation(s)
- Fateen Ata
- Department of Endocrinology, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
5
|
Kugler S, Tőkés A, Nagy N, Fintha A, Danics K, Sághi M, Törő K, Rácz G, Nemeskéri Á. Strong desmin immunoreactivity in the myocardial sleeves around pulmonary veins, superior caval vein and coronary sinus supports the presumed arrhythmogenicity of these regions. J Anat 2024; 244:120-132. [PMID: 37626442 PMCID: PMC10734648 DOI: 10.1111/joa.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Myocardial sleeve around human pulmonary veins plays a critical role in the pathomechanism of atrial fibrillation. Besides the well-known arrhythmogenicity of these veins, there is evidence that myocardial extensions into caval veins and coronary sinus may exhibit similar features. However, studies investigating histologic properties of these structures are limited. We aimed to investigate the immunoreactivity of myocardial sleeves for intermediate filament desmin, which was reported to be more abundant in Purkinje fibers than in ventricular working cardiomyocytes. Sections of 16 human (15 adult and 1 fetal) hearts were investigated. Specimens of atrial and ventricular myocardium, sinoatrial and atrioventricular nodes, pulmonary veins, superior caval vein and coronary sinus were stained with anti-desmin monoclonal antibody. Intensity of desmin immunoreactivity in different areas was quantified by the ImageJ program. Strong desmin labeling was detected at the pacemaker and conduction system as well as in the myocardial sleeves around pulmonary veins, superior caval vein, and coronary sinus of adult hearts irrespective of sex, age, and medical history. In the fetal heart, prominent desmin labeling was observed at the sinoatrial nodal region and in the myocardial extensions around the superior caval vein. Contrarily, atrial and ventricular working myocardium exhibited low desmin immunoreactivity in both adults and fetuses. These differences were confirmed by immunohistochemical quantitative analysis. In conclusion, this study indicates that desmin is abundant in the conduction system and venous myocardial sleeves of human hearts.
Collapse
Affiliation(s)
- Szilvia Kugler
- Heart and Vascular CentreSemmelweis UniversityBudapestHungary
| | - Anna‐Mária Tőkés
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Nándor Nagy
- Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| | - Attila Fintha
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Krisztina Danics
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Márton Sághi
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Klára Törő
- Department of Pathology, Forensic and Insurance MedicineSemmelweis UniversityBudapestHungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
| | - Ágnes Nemeskéri
- Department of Anatomy, Histology and EmbryologySemmelweis UniversityBudapestHungary
| |
Collapse
|
6
|
Schmidt C, Deyett A, Ilmer T, Haendeler S, Torres Caballero A, Novatchkova M, Netzer MA, Ceci Ginistrelli L, Mancheno Juncosa E, Bhattacharya T, Mujadzic A, Pimpale L, Jahnel SM, Cirigliano M, Reumann D, Tavernini K, Papai N, Hering S, Hofbauer P, Mendjan S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell 2023; 186:5587-5605.e27. [PMID: 38029745 DOI: 10.1016/j.cell.2023.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/31/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal. By leveraging 2D and 3D differentiation, we efficiently generated progenitor subsets with distinct first, anterior, and posterior second heart field identities. This advance enabled the reproducible generation of cardioids with compartment-specific in vivo-like gene expression profiles, morphologies, and functions. We used this platform to unravel the ontogeny of signal and contraction propagation between interacting heart chambers and dissect how mutations, teratogens, and drugs cause compartment-specific defects in the developing human heart.
Collapse
Affiliation(s)
- Clara Schmidt
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Alison Deyett
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tobias Ilmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria
| | - Simon Haendeler
- Center for Integrative Bioinformatics Vienna, Max Perutz Laboratories, University of Vienna, Medical University of Vienna, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Aranxa Torres Caballero
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter, 1030 Vienna, Austria
| | - Michael A Netzer
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Lavinia Ceci Ginistrelli
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Estela Mancheno Juncosa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Tanishta Bhattacharya
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Amra Mujadzic
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Lokesh Pimpale
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Martina Cirigliano
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Daniel Reumann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Katherina Tavernini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Nora Papai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, and Medical University of Vienna, 1030 Vienna, Austria
| | - Steffen Hering
- Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Pablo Hofbauer
- HeartBeat.bio AG, Dr. Bohr Gasse 7, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
7
|
Abstract
Ventricular tachycardia (VT) describes rapid heart rhythms originating from the ventricles. Accurate diagnosis of VT is important to allow prompt referral to specialist services for ongoing management. The diagnosis of VT is usually made based on electrocardiographic data, most commonly 12-lead echocardiography (ECG), as well as supportive cardiac telemetric monitoring. Distinguishing between VT and supraventricular arrhythmias on ECG can be difficult. However, the VT diagnosis frequently needs to be made rapidly in the acute setting. In this review, we discuss the definition of VT, review features of wide-complex tachycardia (WCT) on ECG that might be helpful in diagnosing VT, discuss the different substrates in which VT can occur and offer brief comments on management considerations for patients found to have VT.
Collapse
Affiliation(s)
- John Whitaker
- School of Biomedical Engineering and Imaging Sciences at King's College, London, UK and Cardiovascular Directorate Guy's and St Thomas's NHS Foundation Trust, London, UK
| | - Matthew J Wright
- School of Biomedical Engineering and Imaging Sciences at King's College, London, UK and Cardiovascular Directorate Guy's and St Thomas's NHS Foundation Trust, London, UK
| | - Usha Tedrow
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Inokaitis H, Pauziene N, Pauza DH. The distribution of sinoatrial nodal cells and their innervation in the pig. Anat Rec (Hoboken) 2023; 306:2333-2344. [PMID: 35643929 DOI: 10.1002/ar.24998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
The sinoatrial node (SAN) has been the object of interest of various studies. In experimental neurocardiology, the real challenge is the choice of the most appropriate animal model. Pig is routinely used animal due to its size and physiological features. Despite this, the anatomy and innervation of the pig SAN are not completely examined. This study analyses the distribution of SAN cells and their innervation in whole-mount preparations and the cross-sections of the pig right atrium. Our findings revealed the differences in the distribution of the SAN cells and their innervation pattern between pigs and other animals. The pig SAN myocytes were distributed around the root of the anterior vena cava. A meshwork of nerve fibers (NFs) in this area was four-fold denser compared to other right atrial areas and contained the adrenergic (positive for TH), cholinergic (positive for ChAT), nitrergic (positive for nNOS), and potentially sensory (positive for SP) NFs. The SAN area contained 98 ± 10 ganglia that involved 21 ± 2 neuronal somata per ganglion. The determined chemical phenotypes of ganglionic cells demonstrate their diversity in the pig SAN area as there were identified neuronal somata positive for ChAT, nNOS, TH, and simultaneously for ChAT/nNOS and ChAT/TH. Small intensively fluorescent cells were also abundant. The broad distribution of SAN cells, the chemical diversity, and the high density of neural components in the SAN area are comparable to the human one and, therefore, the pig may be considered as the appropriate animal model for experimental cardiology.
Collapse
Affiliation(s)
- Hermanas Inokaitis
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Neringa Pauziene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
9
|
Karimi T, Pan Z, Potaman VN, Alt EU. Conversion of Unmodified Stem Cells to Pacemaker Cells by Overexpression of Key Developmental Genes. Cells 2023; 12:1381. [PMID: 37408215 PMCID: PMC10216671 DOI: 10.3390/cells12101381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Arrhythmias of the heart are currently treated by implanting electronic pacemakers and defibrillators. Unmodified adipose tissue-derived stem cells (ASCs) have the potential to differentiate into all three germ layers but have not yet been tested for the generation of pacemaker and Purkinje cells. We investigated if-based on overexpression of dominant conduction cell-specific genes in ASCs-biological pacemaker cells could be induced. Here we show that by overexpression of certain genes that are active during the natural development of the conduction system, the differentiation of ASCs to pacemaker and Purkinje-like cells is feasible. Our study revealed that the most effective procedure consisted of short-term upregulation of gene combinations SHOX2-TBX5-HCN2, and to a lesser extent SHOX2-TBX3-HCN2. Single-gene expression protocols were ineffective. Future clinical implantation of such pacemaker and Purkinje cells, derived from unmodified ASCs of the same patient, could open up new horizons for the treatment of arrythmias.
Collapse
Affiliation(s)
- Tahereh Karimi
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
| | - Zhizhong Pan
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vladimir N. Potaman
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
| | - Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- Isar Klinikum Munich, Sonnenstr 24-26, 80331 Munich, Germany
| |
Collapse
|
10
|
Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages. Nat Commun 2022; 13:7960. [PMID: 36575170 PMCID: PMC9794824 DOI: 10.1038/s41467-022-35691-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Heart development is a continuous process involving significant remodeling during embryogenesis and neonatal stages. To date, several groups have used single-cell sequencing to characterize the heart transcriptomes but failed to capture the progression of heart development at most stages. This has left gaps in understanding the contribution of each cell type across cardiac development. Here, we report the transcriptional profile of the murine heart from early embryogenesis to late neonatal stages. Through further analysis of this dataset, we identify several transcriptional features. We identify gene expression modules enriched at early embryonic and neonatal stages; multiple cell types in the left and right atriums are transcriptionally distinct at neonatal stages; many congenital heart defect-associated genes have cell type-specific expression; stage-unique ligand-receptor interactions are mostly between epicardial cells and other cell types at neonatal stages; and mutants of epicardium-expressed genes Wt1 and Tbx18 have different heart defects. Assessment of this dataset serves as an invaluable source of information for studies of heart development.
Collapse
|
11
|
Sarzani R, Allevi M, Di Pentima C, Schiavi P, Spannella F, Giulietti F. Role of Cardiac Natriuretic Peptides in Heart Structure and Function. Int J Mol Sci 2022; 23:ijms232214415. [PMID: 36430893 PMCID: PMC9697447 DOI: 10.3390/ijms232214415] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP) are true hormones produced and released by cardiomyocytes, exerting several systemic effects. Together with C-type NP (CNP), mainly expressed by endothelial cells, they also exert several paracrine and autocrine activities on the heart itself, contributing to cardiovascular (CV) health. In addition to their natriuretic, vasorelaxant, metabolic and antiproliferative systemic properties, NPs prevent cardiac hypertrophy, fibrosis, arrhythmias and cardiomyopathies, counteracting the development and progression of heart failure (HF). Moreover, recent studies revealed that a protein structurally similar to NPs mainly produced by skeletal muscles and osteoblasts called musclin/osteocrin is able to interact with the NPs clearance receptor, attenuating cardiac dysfunction and myocardial fibrosis and promoting heart protection during pathological overload. This narrative review is focused on the direct activities of this molecule family on the heart, reporting both experimental and human studies that are clinically relevant for physicians.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
- Correspondence: (R.S.); Tel.: +39-071-5964696
| | - Massimiliano Allevi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| | - Paola Schiavi
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Nazionale di Ricovero e Cura per Anziani (IRCCS INRCA), 60127 Ancona, Italy
| |
Collapse
|
12
|
Chaturvedi P, Kalani A, Chaturvedi P, Kalani K, Verma VK, Tyagi SC. Exercise mitigates calpain induced Purkinje cell loss in diabetes. Life Sci 2022; 308:120982. [PMID: 36150460 DOI: 10.1016/j.lfs.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022]
Abstract
Calpain-1 is a ubiquitous calcium dependent cysteine protease and found in cytoplasm as well as mitochondria. We have earlier reported that active calpain-1 is translocated from cytosol to mitochondria and activates MMP9. Calpain-1 activation is detrimental to the heart in several different ways, but there is little evidence that it can degrade Purkinje cell protein (PCP-4) and impair contractility in diabetes. Our hypothesis is that in diabetes, PCP-4 is degraded by calpain-1, causing contractile dysfunction that can be mitigated by exercise. To test this hypothesis, we recruited four groups of mice, 1) db/+ control, 2) db/+ with exercise, 3) db/db, 4) db/db with exercise. The mice were exercised on treadmill for 8 weeks as per American Veterinary Research Guidelines. Adding calcium to isolated cardiomyocytes caused them to lose shape and die. Compared with live myocytes, we observed high calpain-1 levels as well as significantly lower levels of PCP-4 and increased levels of calmodulin and calmodulin kinase II (CaMKII) in dead myocytes. We used the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) plasmid to knock down calpain-1 in HL-1 myocytes which restored the levels of PCP-4 along with calmodulin and CaMKII. In vivo, we found upregulated levels of calpain-1 in db/db mice (diabetic) as compared to db/+ which were mitigated in the exercised mice. Conclusively our data strongly suggests that in diabetes there is high induction of calpain-1 with degrades PCP-4, a protein important for contractility and exercise can mitigate this.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Department of Physiology and Biophysics, University of Louisville, KY, USA
| | - Anuradha Kalani
- Department of Physiology and Biophysics, University of Louisville, KY, USA; Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, U.P., India.
| | - Poonam Chaturvedi
- Department of Physiotherapy, Lovely Professional University, Phagwara, Punjab, India
| | - Komal Kalani
- Department of Chemistry, Biotechnology Sciences and Engineering Building, University of Texas at San Antonio, San Antonio, TX, USA
| | - Vinod K Verma
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, U.P., India
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, KY, USA
| |
Collapse
|
13
|
Peischard S, Möller M, Disse P, Ho HT, Verkerk AO, Strutz-Seebohm N, Budde T, Meuth SG, Schweizer PA, Morris S, Mücher L, Eisner V, Thomas D, Klingel K, Busch K, Seebohm G. Virus-induced inhibition of cardiac pacemaker channel HCN4 triggers bradycardia in human-induced stem cell system. Cell Mol Life Sci 2022; 79:440. [PMID: 35864219 PMCID: PMC9304080 DOI: 10.1007/s00018-022-04435-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022]
Abstract
The enterovirus Coxsackievirus B3 (CVB3) is known to be a major source for the development of cardiac dysfunctions like viral myocarditis (VMC) and dilatative cardiomyopathy (DCM), but also results in bradycardia and fatal cardiac arrest. Besides clinical reports on bradycardia and sudden cardiac death, very little is known about the influence of CVB3 on the activity of human cardiac pacemaker cells. Here, we address this issue using the first human induced pluripotent stem cell (hiPSC)-derived pacemaker-like cells, in which the expression of a transgenic non-infectious variant of CVB3 can be controlled dose- and time-dependently. We found that CVB3 drastically changed hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) distribution and function in hiPSC-derived pacemaker-like tissue. In addition, using HCN4 cell expression systems, we found that HCN4 currents were decreased with altered voltage dependency of activation when CVB3 was expressed. Increased autophagosome formation and autophagosomal HCN4 insertion was observed in hiPSC-derived pacemaker-like cells under CVB3 expression as well. Individual effects of single, non-structural CVB3 proteins were analyzed and demonstrated that CVB3 proteins 2C and 3A had the most robust effect on HCN4 activity. Treatment of cells with the Rab7 inhibitor CID 106770 or the CVB3-3A inhibitor GW5074 led to the recovery of the cytoplasmatic HCN4 accumulation into a healthy appearing phenotype, indicating that malfunctioning Rab7-directed autophagosome transport is involved in the disturbed, cytoplasmatic HCN4 accumulation in CVB3-expressing human pacemaker-like cells. Summarizing, the enterovirus CVB3 inhibits human cardiac pacemaker function by reducing the pacemaker channel plasma membrane density, an effect that can be corrected by pharmacological intervention of endocytic vesicle trafficking.
Collapse
Affiliation(s)
- Stefan Peischard
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Melina Möller
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Huyen Tran Ho
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105, Amsterdam, The Netherlands
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany.,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Institute of Physiology I, Westfälische-Wilhems Universität Münster, 48149, Münster, Germany
| | - Sven G Meuth
- GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.,Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Silke Morris
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Lena Mücher
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany
| | - Verónica Eisner
- Department of Cellular and Molecular Biology, School of Biological Sciences, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, 69120, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital of Tuebingen, 72076, Tübingen, Germany
| | - Karin Busch
- Institute for Integrative Cell Biology and Physiology, Department of Biology, University of Münster, 48149, Münster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, 48149, Münster, Germany. .,GRK 2515, Chemical Biology of Ion Channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
14
|
Pustovit KB, Samoilova DV, Abramochkin DV, Filatova TS, Kuzmin VS. α1-adrenergic receptors accompanied by GATA4 expression are related to proarrhythmic conduction and automaticity in rat interatrial septum. J Physiol Biochem 2022; 78:793-805. [PMID: 35802254 DOI: 10.1007/s13105-022-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
Abstract
The development of interatrial septum (IAS) is a complicated process, which continues during postnatal life. The hypertrophic signals in developing heart are mediated among others by α-adrenergic pathways. These facts suggest the presence of specific electrophysiological features in developing IAS. This study was aimed to investigate the electrical activity in the tissue preparations of IAS from rat heart in normal conditions and under stimulation of adrenoreceptors. Intracellular recording of electrical activity revealed less negative level of resting membrane potential in IAS if compared to myocardium of left atrium. In normal conditions, non-paced IAS preparations were quiescent, but noradrenaline (10-5 M) and phenylephrine (10-5 M) induced spontaneous action potentials, which could be abolished by α1-blocker prazosin (10-5 M), but not β1-blocker atenolol (10-5 M). Optical mapping showed drastic phenylephrine-induced slowing of conduction in adult rat IAS. The α1-dependent ectopic automaticity of IAS myocardium might be explained by immunohistochemical data indicating the presence of transcription factor GATA4 and abundant α1A-adrenoreceptors in myocytes from adult rat IAS. An elevated sensitivity to adrenergic stimulation due to involvement of α1-adrenergic pathways may underlie increased proarrhythmic potential of adult IAS at least in rats.
Collapse
Affiliation(s)
- Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Daria V Samoilova
- N. N. Blokhin National Medical Research Centre of Oncology, Kashirskoye sh., 24, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya, 15a, Moscow, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| |
Collapse
|
15
|
George RM, Guo S, Firulli BA, Rubart M, Firulli AB. Neonatal Deletion of Hand1 and Hand2 within Murine Cardiac Conduction System Reveals a Novel Role for HAND2 in Rhythm Homeostasis. J Cardiovasc Dev Dis 2022; 9:214. [PMID: 35877576 PMCID: PMC9324487 DOI: 10.3390/jcdd9070214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
The cardiac conduction system, a network of specialized cells, is required for the functioning of the heart. The basic helix loop helix factors Hand1 and Hand2 are required for cardiac morphogenesis and have been implicated in cardiac conduction system development and maintenance. Here we use embryonic and post-natal specific Cre lines to interrogate the role of Hand1 and Hand2 in the function of the murine cardiac conduction system. Results demonstrate that loss of HAND1 in the post-natal conduction system does not result in any change in electrocardiogram parameters or within the ventricular conduction system as determined by optical voltage mapping. Deletion of Hand2 within the post-natal conduction system results in sex-dependent reduction in PR interval duration in these mice, suggesting a novel role for HAND2 in regulating the atrioventricular conduction. Surprisingly, results show that loss of both HAND factors within the post-natal conduction system does not cause any consistent changes in cardiac conduction system function. Deletion of Hand2 in the embryonic left ventricle results in inconsistent prolongation of PR interval and susceptibility to atrial arrhythmias. Thus, these results suggest a novel role for HAND2 in homeostasis of the murine cardiac conduction system and that HAND1 loss potentially rescues the shortened HAND2 PR phenotype.
Collapse
Affiliation(s)
- Rajani M. George
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| | - Shuai Guo
- Division of Cardiology, Department of Medicine, The Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Beth A. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| | - Michael Rubart
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
- Division of Cardiology, Department of Medicine, The Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Anthony B. Firulli
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis, IN 46202, USA; (R.M.G.); (B.A.F.)
| |
Collapse
|
16
|
Jiang S, Feng W, Chang C, Li G. Modeling Human Heart Development and Congenital Defects Using Organoids: How Close Are We? J Cardiovasc Dev Dis 2022; 9:jcdd9050125. [PMID: 35621836 PMCID: PMC9145739 DOI: 10.3390/jcdd9050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
The emergence of human-induced Pluripotent Stem Cells (hiPSCs) has dramatically improved our understanding of human developmental processes under normal and diseased conditions. The hiPSCs have been differentiated into various tissue-specific cells in vitro, and the advancement in three-dimensional (3D) culture has provided a possibility to generate those cells in an in vivo-like environment. Tissues with 3D structures can be generated using different approaches such as self-assembled organoids and tissue-engineering methods, such as bioprinting. We are interested in studying the self-assembled organoids differentiated from hiPSCs, as they have the potential to recapitulate the in vivo developmental process and be used to model human development and congenital defects. Organoids of tissues such as those of the intestine and brain were developed many years ago, but heart organoids were not reported until recently. In this review, we will compare the heart organoids with the in vivo hearts to understand the anatomical structures we still lack in the organoids. Specifically, we will compare the development of main heart structures, focusing on their marker genes and regulatory signaling pathways.
Collapse
|
17
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
18
|
Züger F, Marsano A, Poggio M, Gullo MR. Nanocomposites in 3D Bioprinting for Engineering Conductive and Stimuli‐Responsive Constructs Mimicking Electrically Sensitive Tissue. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Fabian Züger
- Institute for Medical Engineering and Medical Informatics University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH 4312 Switzerland
- Swiss Nanoscience Institute University of Basel Klingelbergstrasse 82 Basel CH 4056 Switzerland
| | - Anna Marsano
- Cardiac Surgery and Engineering Department of Biomedicine University Hospital Basel Basel CH 4031 Switzerland
| | - Martino Poggio
- Nanomechanics and Nanomagnetism Department of Physics University of Basel Basel CH 4056 Switzerland
| | - Maurizio R. Gullo
- 3D bioprinting and biohybrid microsystems University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH 4312 Switzerland
| |
Collapse
|
19
|
Topriceanu CC, Moon JC, Hardy R, Hughes AD, Captur G. Childhood Bradycardia Associates With Atrioventricular Conduction Defects in Older Age: A Longitudinal Birth Cohort Study. J Am Heart Assoc 2021; 10:e021877. [PMID: 34569262 PMCID: PMC8649134 DOI: 10.1161/jaha.121.021877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study explored the association between childhood bradycardia and later‐life cardiac phenotype using longitudinal data from the 1946 National Survey of Health and Development (NSHD) birth cohort. Methods and Results Resting heart rate was recorded at 6 and 7 years of age to provide the bradycardia exposure defined as a childhood resting heart rate <75 bpm. Three outcomes were studied: (1) echocardiographic data at 60 to 64 years of age, consisting of ejection fraction, left ventricular mass index, myocardial contraction fraction index, and E/e′; (2) electrocardiographic evidence of atrioventricular or ventricular conduction defects by 60 to 64 years of age; and (3) all‐cause and cardiovascular mortality. Generalized linear models or Cox regression models were used, and adjustment was made for relevant demographic and health‐related covariates, and for multiple testing. Mixed generalized linear models and fractional polynomials were used as sensitivity analyses. One in 3 older adults with atrioventricular conduction defects had been bradycardic in childhood, with defects being serious (Mobitz type II second‐degree atrioventricular block or higher) in 12%. In fully adjusted models, childhood bradycardia was associated with 2.91 higher odds of atrioventricular conduction defects (95% CI, 1.59–5.31; P=0.0005). Associations persisted in random coefficients mixed generalized linear models (odds ratio, 2.50; 95% CI, 1.01–4.31). Fractional polynomials confirmed a linear association between the log odds of atrioventricular conduction defects at 60 to 64 years of age and resting heart rate at 7 years of age. There was no association between bradycardia in childhood and mortality outcomes or with echocardiographic parameters and ventricular conduction defects in older age. Conclusions Longitudinal birth cohort data indicate that childhood bradycardia trebles the odds of having atrioventricular conduction defects in older age, 88% of which are benign. In addition, it does not influence mortality or heart size and function. Future research should concentrate on identifying children at risk.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- University College London (UCL) Medical Research Council (MRC) Unit for Lifelong Health and AgeingUniversity College London London United Kingdom
| | - James C Moon
- UCL Institute of Cardiovascular Science University College London London United Kingdom.,Cardiac MRI Unit Barts Heart Centre London United Kingdom
| | - Rebecca Hardy
- CLOSER Social Research Institute London United Kingdom
| | - Alun D Hughes
- University College London (UCL) Medical Research Council (MRC) Unit for Lifelong Health and AgeingUniversity College London London United Kingdom.,UCL Institute of Cardiovascular Science University College London London United Kingdom
| | - Gabriella Captur
- University College London (UCL) Medical Research Council (MRC) Unit for Lifelong Health and AgeingUniversity College London London United Kingdom.,UCL Institute of Cardiovascular Science University College London London United Kingdom.,Cardiology Department Centre for Inherited Heart Muscle Conditions Royal Free Hospital London United Kingdom
| |
Collapse
|
20
|
Kahr PC, Tao G, Kadow ZA, Hill MC, Zhang M, Li S, Martin JF. A novel transgenic Cre allele to label mouse cardiac conduction system. Dev Biol 2021; 478:163-172. [PMID: 34245725 PMCID: PMC8482537 DOI: 10.1016/j.ydbio.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/06/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022]
Abstract
The cardiac conduction system is a network of heterogeneous cell population that initiates and propagates electric excitations in the myocardium. Purkinje fibers, a network of specialized myocardial cells, comprise the distal end of the conduction system in the ventricles. The developmental origins of Purkinje fibers and their roles during cardiac physiology and arrhythmia have been reported. However, it is not clear if they play a role during ischemic injury and heart regeneration. Here we introduce a novel tamoxifen-inducible Cre allele that specifically labels a broad range of components in the cardiac conduction system while excludes other cardiac cell types and vital organs. Using this new allele, we investigated the cellular and molecular response of Purkinje fibers to myocardial injury. In a neonatal mouse myocardial infarction model, we observed significant increase in Purkinje cell number in regenerating myocardium. RNA-Seq analysis using laser-captured Purkinje fibers showed a unique transcriptomic response to myocardial infarction. Our finds suggest a novel role of cardiac Purkinje fibers in heart injury.
Collapse
Affiliation(s)
- Peter C Kahr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, 8091, Switzerland
| | - Ge Tao
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Zachary A Kadow
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Hill
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Min Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Shuang Li
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Texas Heart Institute, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Ramzan S, Tennstedt S, Tariq M, Khan S, Noor Ul Ayan H, Ali A, Munz M, Thiele H, Korejo AA, Mughal AR, Jamal SZ, Nürnberg P, Baig SM, Erdmann J, Ahmad I. A Novel Missense Mutation in TNNI3K Causes Recessively Inherited Cardiac Conduction Disease in a Consanguineous Pakistani Family. Genes (Basel) 2021; 12:genes12081282. [PMID: 34440456 PMCID: PMC8395014 DOI: 10.3390/genes12081282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiac conduction disease (CCD), which causes altered electrical impulse propagation in the heart, is a life-threatening condition with high morbidity and mortality. It exhibits genetic and clinical heterogeneity with diverse pathomechanisms, but in most cases, it disrupts the synchronous activity of impulse-generating nodes and impulse-conduction underlying the normal heartbeat. In this study, we investigated a consanguineous Pakistani family comprised of four patients with CCD. We applied whole exome sequencing (WES) and co-segregation analysis, which identified a novel homozygous missense mutation (c.1531T>C;(p.Ser511Pro)) in the highly conserved kinase domain of the cardiac troponin I-interacting kinase (TNNI3K) encoding gene. The behaviors of mutant and native TNNI3K were compared by performing all-atom long-term molecular dynamics simulations, which revealed changes at the protein surface and in the hydrogen bond network. Furthermore, intra and intermolecular interaction analyses revealed that p.Ser511Pro causes structural variation in the ATP-binding pocket and the homodimer interface. These findings suggest p.Ser511Pro to be a pathogenic variant. Our study provides insights into how the variant perturbs the TNNI3K structure-function relationship, leading to a disease state. This is the first report of a recessive mutation in TNNI3K and the first mutation in this gene identified in the Pakistani population.
Collapse
Affiliation(s)
- Shafaq Ramzan
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Stephanie Tennstedt
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- University Heart Center Lübeck, 23562 Lübeck, Germany
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Sheraz Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Hafiza Noor Ul Ayan
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (H.T.); (P.N.)
| | - Asad Aslam Korejo
- National Institute of Cardiovascular Disease, Karachi 75510, Pakistan; (A.A.K.); (S.Z.J.)
| | | | - Syed Zahid Jamal
- National Institute of Cardiovascular Disease, Karachi 75510, Pakistan; (A.A.K.); (S.Z.J.)
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; (H.T.); (P.N.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan; (M.T.); (S.K.); (A.A.); (S.M.B.)
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
- Pakistan Science Foundation (PSF), 1-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- University Heart Center Lübeck, 23562 Lübeck, Germany
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany; (S.R.); (S.T.); (H.N.U.A.); (M.M.); (J.E.)
- DZHK (German Research Centre for Cardiovascular Research) Partner Site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- University Heart Center Lübeck, 23562 Lübeck, Germany
- Correspondence: ; Tel.: +49-(0)451-3101-8320
| |
Collapse
|
22
|
Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021; 5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Indexed: 12/17/2022]
Abstract
A sound understanding of developmental biology is part of the foundation of effective stem cell-derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Hadel Al Asafen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
23
|
Dong Y, Qian L, Liu J. Molecular and cellular basis of embryonic cardiac chamber maturation. Semin Cell Dev Biol 2021; 118:144-149. [PMID: 33994094 DOI: 10.1016/j.semcdb.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Heart malformation is the leading cause of human birth defects, and many of the congenital heart diseases (CHDs) originate from genetic defects that impact cardiac development and maturation. During development, the vertebrate heart undergoes a series of complex morphogenetic processes that increase its ability to pump blood. One of these processes leads to the formation of the sheet-like muscular projections called trabeculae. Trabeculae increase cardiac output and permit nutrition and oxygen uptake in the embryonic myocardium prior to coronary vascularization without increasing heart size. Cardiac trabeculation is also crucial for the development of the intraventricular fast conduction system. Alterations in cardiac trabecular development can manifest as a variety of congenital defects such as left ventricular noncompaction. In this review, we discuss the latest advances in understanding the molecular and cellular mechanisms underlying cardiac trabecular development.
Collapse
Affiliation(s)
- Yanhan Dong
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
24
|
Kawashima T, Sato F. First in situ 3D visualization of the human cardiac conduction system and its transformation associated with heart contour and inclination. Sci Rep 2021; 11:8636. [PMID: 33883659 PMCID: PMC8060315 DOI: 10.1038/s41598-021-88109-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Current advanced imaging modalities with applied tracing and processing techniques provide excellent visualization of almost all human internal structures in situ; however, the actual 3D internal arrangement of the human cardiac conduction system (CCS) is still unknown. This study is the first to document the successful 3D visualization of the CCS from the sinus node to the bundle branches within the human body, based on our specialized physical micro-dissection and its CT imaging. The 3D CCS transformation by cardiac inclination changes from the standing to the lying position is also provided. Both actual dissection and its CT image-based simulation identified that when the cardiac inclination changed from standing to lying, the sinus node shifted from the dorso-superior to the right outer position and the atrioventricular conduction axis changed from a vertical to a leftward horizontal position. In situ localization of the human CCS provides accurate anatomical localization with morphometric data, and it indicates the useful correlation between heart inclination and CCS rotation axes for predicting the variable and invisible human CCS in the living body. Advances in future imaging modalities and methodology are essential for further accurate in situ 3D CCS visualization.
Collapse
Affiliation(s)
- Tomokazu Kawashima
- Department of Anatomy, School of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Fumi Sato
- Department of Anatomy, School of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
25
|
Coronel R, Potse M, Haïssaguerre M, Derval N, Rivaud MR, Meijborg VMF, Cluitmans M, Hocini M, Boukens BJ. Why Ablation of Sites With Purkinje Activation Is Antiarrhythmic: The Interplay Between Fast Activation and Arrhythmogenesis. Front Physiol 2021; 12:648396. [PMID: 33833689 PMCID: PMC8021688 DOI: 10.3389/fphys.2021.648396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Ablation of sites showing Purkinje activity is antiarrhythmic in some patients with idiopathic ventricular fibrillation (iVF). The mechanism for the therapeutic success of ablation is not fully understood. We propose that deeper penetrance of the Purkinje network allows faster activation of the ventricles and is proarrhythmic in the presence of steep repolarization gradients. Reduction of Purkinje penetrance, or its indirect reducing effect on apparent propagation velocity may be a therapeutic target in patients with iVF.
Collapse
Affiliation(s)
- Ruben Coronel
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Mark Potse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,UMR5251 Institut de mathématiques de Bordeaux, Talence, France.,Carmen Team, Inria Bordeaux - Sud-Ouest, Talence, France
| | - Michel Haïssaguerre
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Nicolas Derval
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Mathilde R Rivaud
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Matthijs Cluitmans
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mélèze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Hendrickson T, Mancino C, Whitney L, Tsao C, Rahimi M, Taraballi F. Mimicking cardiac tissue complexity through physical cues: A review on cardiac tissue engineering approaches. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102367. [PMID: 33549819 DOI: 10.1016/j.nano.2021.102367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Cardiovascular diseases are the number one killer in the world.1,2 Currently, there are no clinical treatments to regenerate damaged cardiac tissue, leaving patients to develop further life-threatening cardiac complications. Cardiac tissue has multiple functional demands including vascularization, contraction, and conduction that require many synergic components to properly work. Most of these functions are a direct result of the cardiac tissue structure and composition, and, for this reason, tissue engineering strongly proposed to develop substitute engineered heart tissues (EHTs). EHTs usually have combined pluripotent stem cells and supporting scaffolds with the final aim to repair or replace the damaged native tissue. However, as simple as this idea is, indeed, it resulted, after many attempts in the field, to be very challenging. Without design complexity, EHTs remain unable to mature fully and integrate into surrounding heart tissue resulting in minimal in vivo effects.3 Lately, there has been a growing body of evidence that a complex, multifunctional approach through implementing scaffold designs, cellularization, and molecular release appears to be essential in the development of a functional cardiac EHTs.4-6 This review covers the advancements in EHTs developments focusing on how to integrate contraction, conduction, and vascularization mimics and how combinations have resulted in improved designs thus warranting further investigation to develop a clinically applicable treatment.
Collapse
Affiliation(s)
- Troy Hendrickson
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston Methodist, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA; Texas A&M MD/PhD Program, Texas A&M Health Science Center, College Station, TX, USA
| | - Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston Methodist, Houston, TX, USA; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, (MI), Italy
| | - Lauren Whitney
- Texas A&M Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Chris Tsao
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston Methodist, Houston, TX, USA
| | - Maham Rahimi
- Department of Cardiovascular Surgery, Houston Methodist, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston Methodist, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
27
|
da Silva RM, de Souza Maciel A. Conduction Disorders: The Value of Surface ECG. Curr Cardiol Rev 2021; 17:173-181. [PMID: 32392118 PMCID: PMC8226204 DOI: 10.2174/1573403x16666200511090151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE OF REVIEW The purpose of the current mini-review is to describe the importance of surface ECG for the diagnosis of conduction disorder. METHODS The MEDLINE/PubMed database was used, with the keywords "ECG" and "conduction disorders"; over the past 10 years. Other documents were included because of their relevance. MAIN FINDINGS Data on the anatomy and function of the cardiac electrical system have been described. Conduction disorders including sinus node dysfunction, atrioventricular blocks, intraventricular conduction disorders are exposed as to their epidemiology, etiology, presentation, anatomical site of impaired conduction of the electrical stimulus. The importance of ECG in patients with a cardiac implantable electronic device was also discussed, in addition to future perspectives. CONCLUSION Surface ECG allows the diagnosis of atrioventricular and intraventricular conduction disorder and its anatomical block site most of the time, without the need for invasive tests such as electrophysiological study. Dysfunctions of cardiac implantable electronic devices can be diagnosed by ECG, as well as the prediction of response to cardiac resynchronization therapy.
Collapse
Affiliation(s)
- Rose M.F.L. da Silva
- Department of Internal Medicine, Faculty of Medicine, University of Minas Gerais, Hospital das Clínicas, Federal, Belo Horizonte/Minas Gerais, Brazil
| | - Alessandra de Souza Maciel
- Department of Internal Medicine, Faculty of Medicine, University of Minas Gerais, Hospital das Clínicas, Federal, Belo Horizonte/Minas Gerais, Brazil
| |
Collapse
|
28
|
Brown SM, Larsen NK, Thankam FG, Agrawal DK. Fetal cardiomyocyte phenotype, ketone body metabolism, and mitochondrial dysfunction in the pathology of atrial fibrillation. Mol Cell Biochem 2020; 476:1165-1178. [PMID: 33188453 DOI: 10.1007/s11010-020-03980-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Even though hypertension, congestive heart failure, pulmonary disease, and coronary artery disease are the potential risk factors for AF, the underlying molecular pathology is largely unknown. The reversion of the mature cardiomyocytes to fetal phenotype, impaired ketone body metabolism, mitochondrial dysfunction, and the cellular effect of reactive oxygen species (ROS) are the major underlying biochemical events associated with the molecular pathology of AF. On this background, the present manuscript sheds light into these biochemical events in regard to the metabolic derangements in cardiomyocyte leading to AF, especially with respect to structural, contractile, and electrophysiological properties. In addition, the article critically reviews the current understanding, potential demerits, and translational strategies in the management of AF.
Collapse
Affiliation(s)
- Sean M Brown
- Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
29
|
Christoffels V, Jensen B. Cardiac Morphogenesis: Specification of the Four-Chambered Heart. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037143. [PMID: 31932321 DOI: 10.1101/cshperspect.a037143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early heart morphogenesis involves a process in which embryonic precursor cells are instructed to form a cyclic contracting muscle tube connected to blood vessels, pumping fluid. Subsequently, the heart becomes structurally complex and its size increases several orders of magnitude to functionally keep up with the demands of the growing organism. Programmed transcriptional regulatory networks control the early steps of cardiac development. However, already during the early stages of its assembly, the heart tube starts to produce electrochemical potentials, contractions, and flow, which are transduced into signals that feed back into the process of morphogenesis itself. Heart morphogenesis, thus, involves the interplay between progressively changing genetic networks, function, and shape. Morphogenesis is evolutionarily conserved, but species-specific differences occur and in mouse, for instance, distinct phases of development become overlapping and compounded in an extremely fast gestation. Here, we review the early morphogenesis of the chambered heart that maintains a circulation supporting development of an organism rapidly growing in size and requirements.
Collapse
Affiliation(s)
- Vincent Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| | - Bjarke Jensen
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105AZ, The Netherlands
| |
Collapse
|
30
|
Ribeiro da Silva A, Neri EA, Turaça LT, Dariolli R, Fonseca-Alaniz MH, Santos-Miranda A, Roman-Campos D, Venturini G, Krieger JE. NOTCH1 is critical for fibroblast-mediated induction of cardiomyocyte specialization into ventricular conduction system-like cells in vitro. Sci Rep 2020; 10:16163. [PMID: 32999360 PMCID: PMC7527973 DOI: 10.1038/s41598-020-73159-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac fibroblasts are present throughout the myocardium and are enriched in the microenvironment surrounding the ventricular conduction system (VCS). Several forms of arrhythmias are linked to VCS abnormalities, but it is still unclear whether VCS malformations are cardiomyocyte autonomous or could be linked to crosstalk between different cell types. We reasoned that fibroblasts influence cardiomyocyte specialization in VCS cells. We developed 2D and 3D culture models of neonatal rat cardiac cells to assess the influence of cardiac fibroblasts on cardiomyocytes. Cardiomyocytes adjacent to cardiac fibroblasts showed a two-fold increase in expression of VCS markers (NAV1.5 and CONTACTIN 2) and calcium transient duration, displaying a Purkinje-like profile. Fibroblast-conditioned media (fCM) was sufficient to activate VCS-related genes (Irx3, Scn5a, Connexin 40) and to induce action potential prolongation, a hallmark of Purkinge phenotype. fCM-mediated response seemed to be spatially-dependent as cardiomyocyte organoids treated with fCM had increased expression of connexin 40 and NAV1.5 primarily on its outer surface. Finally, NOTCH1 activation in both cardiomyocytes and fibroblasts was required for connexin 40 up-regulation (a proxy of VCS phenotype). Altogether, we provide evidence that cardiac fibroblasts influence cardiomyocyte specialization into VCS-like cells via NOTCH1 signaling in vitro.
Collapse
Affiliation(s)
- Agatha Ribeiro da Silva
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Elida A Neri
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Lauro Thiago Turaça
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Rafael Dariolli
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Miriam H Fonseca-Alaniz
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Artur Santos-Miranda
- Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Danilo Roman-Campos
- Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Gabriela Venturini
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil
| | - Jose E Krieger
- Lab Genetics & Molec Cardiology, Instituto do Coracao (InCor) da Faculdade de Medicina da Universidade de Sao Paulo (FMUSP), São Paulo, Brazil.
| |
Collapse
|
31
|
Protze SI, Lee JH, Keller GM. Human Pluripotent Stem Cell-Derived Cardiovascular Cells: From Developmental Biology to Therapeutic Applications. Cell Stem Cell 2020; 25:311-327. [PMID: 31491395 DOI: 10.1016/j.stem.2019.07.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in our understanding of cardiovascular development have provided a roadmap for the directed differentiation of human pluripotent stem cells (hPSCs) to the major cell types found in the heart. In this Perspective, we review the state of the field in generating and maturing cardiovascular cells from hPSCs based on our fundamental understanding of heart development. We then highlight their applications for studying human heart development, modeling disease-performing drug screening, and cell replacement therapy. With the advancements highlighted here, the promise that hPSCs will deliver new treatments for degenerative and debilitating diseases may soon be fulfilled.
Collapse
Affiliation(s)
- Stephanie I Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Jee Hoon Lee
- BlueRock Therapeutics ULC, Toronto, ON M5G 1L7, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
32
|
Conjugated activation of myocardial-specific transcription of Gja5 by a pair of Nkx2-5-Shox2 co-responsive elements. Dev Biol 2020; 465:79-87. [PMID: 32687896 DOI: 10.1016/j.ydbio.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The sinoatrial node (SAN) is the primary pacemaker in the heart. During cardiogenesis, Shox2 and Nkx2-5 are co-expressed in the junction domain of the SAN and regulate pacemaker cell fate through a Shox2-Nkx2-5 antagonism. Cx40 is a marker of working myocardium and an Nkx2-5 transcriptional output antagonized by Shox2, but the underlying regulatory mechanisms remain elusive. Here we characterized a bona fide myocardial-specific Gja5 (coding gene of Cx40) distal enhancer consisting of a pair of Nkx2-5 and Shox2 co-bound elements in the regulatory region of Gja5. Transgenic reporter assays revealed that neither element alone, but the conjugation of both elements together, drives myocardial-specific transcription. Genetic analyses confirmed that the activation of this enhancer depends on Nkx2-5 but is inhibited by Shox2 in vivo, and its presence is essential for Gja5 expression in the myocardium but not the endothelial cells of the heart. Furthermore, chromatin conformation analysis showed an Nkx2-5-dependent loop formation between these two elements and the Gja5 promoter in vivo, indicating that Nkx2-5 bridges the conjugated activation of this enhancer by pairing the two elements to the Gja5 promoter.
Collapse
|
33
|
Wittig JG, Münsterberg A. The Chicken as a Model Organism to Study Heart Development. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037218. [PMID: 31767650 DOI: 10.1101/cshperspect.a037218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart development is a complex process and begins with the long-range migration of cardiac progenitor cells during gastrulation. This culminates in the formation of a simple contractile tube with multiple layers, which undergoes remodeling into a four-chambered heart. During this morphogenesis, additional cell populations become incorporated. It is important to unravel the underlying genetic and cellular mechanisms to be able to identify the embryonic origin of diseases, including congenital malformations, which impair cardiac function and may affect life expectancy or quality. Owing to the evolutionary conservation of development, observations made in nonamniote and amniote vertebrate species allow us to extrapolate to human. This review will focus on the contributions made to a better understanding of heart development through studying avian embryos-mainly the chicken but also quail embryos. We will illustrate the classic and recent approaches used in the avian system, give an overview of the important discoveries made, and summarize the early stages of cardiac development up to the establishment of the four-chambered heart.
Collapse
Affiliation(s)
- Johannes G Wittig
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
34
|
Arai S, Lloyd K, Takahashi T, Mammoto K, Miyazawa T, Tamura K, Kaneko T, Ishida K, Moriyama Y, Mitsui T. Dynamic Properties of Heart Fragments from Different Regions and Their Synchronization. Bioengineering (Basel) 2020; 7:E81. [PMID: 32751255 PMCID: PMC7552607 DOI: 10.3390/bioengineering7030081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022] Open
Abstract
The dynamic properties of the heart differ based on the regions that effectively circulate blood throughout the body with each heartbeat. These properties, including the inter-beat interval (IBI) of autonomous beat activity, are retained even in in vitro tissue fragments. However, details of beat dynamics have not been well analyzed, particularly at the sub-mm scale, although such dynamics of size are important for regenerative medicine and computational studies of the heart. We analyzed the beat dynamics in sub-mm tissue fragments from atria and ventricles of hearts obtained from chick embryos over a period of 40 h. The IBI and contraction speed differed by region and atrial fragments retained their values for a longer time. The major finding of this study is synchronization of these fragment pairs physically attached to each other. The probability of achieving this and the time required differ for regional pairs: atrium-atrium, ventricle-ventricle, or atrium-ventricle. Furthermore, the time required to achieve 1:1 synchronization does not depend on the proximity of initial IBI of paired fragments. Various interesting phenomena, such as 1:n synchronization and a reentrant-like beat sequence, are revealed during synchronization. Finally, our observation of fragment dynamics indicates that mechanical motion itself contributes to the synchronization of atria.
Collapse
Affiliation(s)
- Shin Arai
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kento Lloyd
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Tomonori Takahashi
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kazuki Mammoto
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Takashi Miyazawa
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Kei Tamura
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Tomoyuki Kaneko
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan;
| | - Kentaro Ishida
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Yuuta Moriyama
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| | - Toshiyuki Mitsui
- Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan; (S.A.); (K.L.); (T.T.); (K.M.); (T.M.); (K.T.); (K.I.); (Y.M.)
| |
Collapse
|
35
|
Almahameed ST, Kaufman ES. Idiopathic Ventricular Fibrillation: Diagnosis, Ablation of Triggers, Gaps in Knowledge, and Future Directions. J Innov Card Rhythm Manag 2020; 11:4135-4146. [PMID: 32596029 PMCID: PMC7313628 DOI: 10.19102/icrm.2020.110604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/12/2020] [Indexed: 01/14/2023] Open
Abstract
Idiopathic ventricular fibrillation (IVF) is a diagnosis of exclusion made when no underlying cause is identified in a cardiac arrest survivor. Although the frequency of this diagnosis has declined over time due to advances in diagnostic techniques, it remains a substantial cause of sudden cardiac arrest. Further, IVF tends to recur. This article reviews the criteria for diagnosis, patient characteristics, the two primary arrhythmic phenotypes—short-coupled variant of torsades de pointes and recurrent paroxysmal IVF—and the electrophysiologic features, treatment, and ablation of premature ventricular complexes that can trigger IVF.
Collapse
Affiliation(s)
- Soufian T Almahameed
- Heart and Vascular Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, USA
| | - Elizabeth S Kaufman
- Heart and Vascular Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res 2020; 117:712-726. [PMID: 32514522 DOI: 10.1093/cvr/cvaa159] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the molecular mechanisms regulating cardiomyocyte (CM) proliferation and differentiation has increased exponentially in recent years. Such insights together with the availability of more efficient protocols for generation of CMs from induced pluripotent stem cells (iPSCs) have raised expectations for new therapeutic strategies to treat congenital and non-congenital heart diseases. However, the poor regenerative potential of the postnatal heart and the incomplete maturation of iPSC-derived CMs represent important bottlenecks for such therapies in future years. CMs undergo dramatic changes at the doorstep between prenatal and postnatal life, including terminal cell cycle withdrawal, change in metabolism, and further specialization of the cellular machinery required for high-performance contraction. Here, we review recent insights into pre- and early postnatal developmental processes that regulate CM maturation, laying specific focus on genetic and metabolic pathways that control transition of CMs from the embryonic and perinatal to the fully mature adult CM state. We recapitulate the intrinsic features of CM maturation and highlight the importance of external factors, such as energy substrate availability and endocrine regulation in shaping postnatal CM development. We also address recent approaches to enhance maturation of iPSC-derived CMs in vitro, and summarize new discoveries that might provide useful tools for translational research on repair of the injured human heart.
Collapse
Affiliation(s)
- Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Rhein-Main, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
37
|
Coban-Akdemir ZH, Charng WL, Azamian M, Paine IS, Punetha J, Grochowski CM, Gambin T, Valdes S, Cannon B, Zapata G, Hernandez PP, Jhangiani S, Doddapaneni H, Hu J, Boricha F, Muzny DM, Boerwinkle E, Yang Y, Gibbs RA, Posey JE, Wehrens XH, Belmont JW, Kim JJ, Miyake CY, Lupski JR, Lalani SR. Wolff-Parkinson-White syndrome: De novo variants and evidence for mutational burden in genes associated with atrial fibrillation. Am J Med Genet A 2020; 182:1387-1399. [PMID: 32233023 PMCID: PMC7275694 DOI: 10.1002/ajmg.a.61571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Wolff-Parkinson-White (WPW) syndrome is a relatively common arrhythmia affecting ~1-3/1,000 individuals. Mutations in PRKAG2 have been described in rare patients in association with cardiomyopathy. However, the genetic basis of WPW in individuals with a structurally normal heart remains poorly understood. Sudden death due to atrial fibrillation (AF) can also occur in these individuals. Several studies have indicated that despite ablation of an accessory pathway, the risk of AF remains high in patients compared to general population. METHODS We applied exome sequencing in 305 subjects, including 65 trios, 80 singletons, and 6 multiple affected families. We used de novo analysis, candidate gene approach, and burden testing to explore the genetic contributions to WPW. RESULTS A heterozygous deleterious variant in PRKAG2 was identified in one subject, accounting for 0.6% (1/151) of the genetic basis of WPW in this study. Another individual with WPW and left ventricular hypertrophy carried a known pathogenic variant in MYH7. We found rare de novo variants in genes associated with arrhythmia and cardiomyopathy (ANK2, NEBL, PITX2, and PRDM16) in this cohort. There was an increased burden of rare deleterious variants (MAF ≤ 0.005) with CADD score ≥ 25 in genes linked to AF in cases compared to controls (P = .0023). CONCLUSIONS Our findings show an increased burden of rare deleterious variants in genes linked to AF in WPW syndrome, suggesting that genetic factors that determine the development of accessory pathways may be linked to an increased susceptibility of atrial muscle to AF in a subset of patients.
Collapse
Affiliation(s)
- Zeynep H. Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- These authors contributed equally to the work
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Current affiliation: Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
- These authors contributed equally to the work
| | - Mahshid Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ingrid Sophie Paine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Current affiliation: Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Santiago Valdes
- Department of Pediatrics, Division of Cardiology, Texas Children’s Hospital, Houston, Texas
| | - Bryan Cannon
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Gladys Zapata
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Patricia P. Hernandez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Shalini Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Fatima Boricha
- Department of Pediatrics, the University of Texas Health Science Center at Houston, Houston, Texas
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics Laboratories, Baylor College of Medicine, Houston, Texas
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Xander H.T. Wehrens
- Department of Pediatrics, Division of Cardiology, Texas Children’s Hospital, Houston, Texas
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
| | - John W. Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Division of Cardiology, Texas Children’s Hospital, Houston, Texas
| | - Jeffrey J. Kim
- Department of Pediatrics, Division of Cardiology, Texas Children’s Hospital, Houston, Texas
| | - Christina Y. Miyake
- Department of Pediatrics, Division of Cardiology, Texas Children’s Hospital, Houston, Texas
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Texas Children’s Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
38
|
Subramani S, Arora L, Krishnan S, Hanada S, Sharma A, Ramakrishna H. Analysis of Conduction Abnormalities and Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement. J Cardiothorac Vasc Anesth 2020; 34:1082-1093. [DOI: 10.1053/j.jvca.2019.07.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
|
39
|
Yuan SM, Xu ZY. Fetal arrhythmias: prenatal evaluation and intrauterine therapeutics. Ital J Pediatr 2020; 46:21. [PMID: 32050988 PMCID: PMC7017517 DOI: 10.1186/s13052-020-0785-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction Fetal arrhythmias are a common phenomenon with rather complicated etiologies. Debates remain regarding prenatal diagnosis and treatment of fetal arrhythmias. Methods The literature reporting on prenatal diagnosis and treatment of fetal arrhythmias published in the recent two decades were retrieved, collected and analyzed. Results Both fetal magnetocardiogram and electrocardiogram provide information of cardiac time intervals, including the QRS and QT durations. M-mode ultrasound detects the AV and VA intervals, fetal heart rate, and AV conduction. By using Doppler ultrasound, simultaneous recording of the atrial and ventricular waves can be obtained. Benign fetal arrhythmias, including premature contractions and sinus tachycardia, do not need any treatment before and after birth. Sustained fetal arrhythmias that predispose to the occurrence of hydrops fetalis, cardiac dysfunction or eventual fetal demise require active treatments. Intrauterine therapy of fetal tachyarrhythmias has been carried out by the transplacental route. If maternal transplacental treatment fails, intraumbilical, intraperitoneal, or direct fetal intramuscular injection of antiarrhythmic agents can be attempted. Conclusions The outcomes of intrauterine therapy of fetal tachyarrhythmias depend on the types or etiology of fetal arrhythmias and fetal conditions. Most are curable to a transplacental treatment by the first-line antiarrhythmic agents. Fetal cardiac pacings are effective methods to restore sinus rhythm in drug-resistant or hemodynamically compromised cases. Immediate postnatal pacemaker implantation is warranted in refractory cases.
Collapse
Affiliation(s)
- Shi-Min Yuan
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, 389 Longdejing Street, Chengxiang District, Putian, 351100, Fujian Province, People's Republic of China
| | - Zhi-Yang Xu
- Department of Cardiothoracic Surgery, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, 389 Longdejing Street, Chengxiang District, Putian, 351100, Fujian Province, People's Republic of China.
| |
Collapse
|
40
|
Uhm JS, Lee Y, Roh YH, Lee J, Kang D, Jin MN, Kim IS, Yu HT, Kim TH, Kim JY, Joung B, Pak HN, Lee MH. Nonspecific intraventricular conduction delay is associated with future occurrence of atrial fibrillation in patients with structurally normal heart. Eur J Intern Med 2020; 72:67-72. [PMID: 31735548 DOI: 10.1016/j.ejim.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND We aimed to elucidate the long-term prognosis of nonspecific intraventricular conduction delay (NIVCD) in patients with structurally normal heart. METHODS We included 107,838 patients (age, 52.1 ± 15.5 years; men, 46.8%) who underwent electrocardiography in outpatient clinics or medical checkup (unmatched cohort). NIVCD was defined as QRS duration ≥110 ms without meeting the criteria for bundle branch block. Patients with structurally normal heart and sinus rhythm were assigned to the NIVCD and normal QRS groups according to propensity score with matching variables of age, sex, hypertension, and diabetes (matched cohort 1), and additional PR interval (matched cohort 2). Baseline characteristics, electrocardiographic parameters, and clinical outcomes were compared in the unmatched cohort and the matched cohort. RESULTS In the unmatched cohort, the frequencies of male sex and preexisting atrial fibrillation were significantly higher in the NIVCD group than in the normal QRS group. In matched cohort 1 (n = 690), the NIVCD group exhibited significant slower sinus rate and longer PR interval than the normal QRS group. In matched cohort 2 (n = 598), the cumulative incidence of atrial fibrillation was significantly higher in the NIVCD group than in the normal QRS group during a follow-up period of 8.8 ± 2.9 years. NIVCD significantly increased the risk for AF (hazard ratio, 2.571; 95% confidence interval, 1.074-6.156; p = 0.034). CONCLUSIONS It is suggested that NIVCD may be associated with future occurrence of atrial fibrillation in patients with structurally normal heart and sinus rhythm.
Collapse
Affiliation(s)
- Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Youngchae Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yun Ho Roh
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinae Lee
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongseon Kang
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moo-Nyun Jin
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea
| | - In-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jong-Youn Kim
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
41
|
Abstract
Cardiogenesis is a complex developmental process involving multiple overlapping stages of cell fate specification, proliferation, differentiation, and morphogenesis. Precise spatiotemporal coordination between the different cardiogenic processes is ensured by intercellular signalling crosstalk and tissue-tissue interactions. Notch is an intercellular signalling pathway crucial for cell fate decisions during multicellular organismal development and is aptly positioned to coordinate the complex signalling crosstalk required for progressive cell lineage restriction during cardiogenesis. In this Review, we describe the role of Notch signalling and the crosstalk with other signalling pathways during the differentiation and patterning of the different cardiac tissues and in cardiac valve and ventricular chamber development. We examine how perturbation of Notch signalling activity is linked to congenital heart diseases affecting the neonate and adult, and discuss studies that shed light on the role of Notch signalling in heart regeneration and repair after injury.
Collapse
|
42
|
Vincentz JW, Firulli BA, Toolan KP, Arking DE, Sotoodehnia N, Wan J, Chen PS, de Gier-de Vries C, Christoffels VM, Rubart-von der Lohe M, Firulli AB. Variation in a Left Ventricle-Specific Hand1 Enhancer Impairs GATA Transcription Factor Binding and Disrupts Conduction System Development and Function. Circ Res 2019; 125:575-589. [PMID: 31366290 DOI: 10.1161/circresaha.119.315313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE The ventricular conduction system (VCS) rapidly propagates electrical impulses through the working myocardium of the ventricles to coordinate chamber contraction. GWAS (Genome-wide association studies) have associated nucleotide polymorphisms, most are located within regulatory intergenic or intronic sequences, with variation in VCS function. Two highly correlated polymorphisms (r2>0.99) associated with VCS functional variation (rs13165478 and rs13185595) occur 5' to the gene encoding the basic helix-loop-helix transcription factor HAND1 (heart- and neural crest derivatives-expressed protein 1). OBJECTIVE Here, we test the hypothesis that these polymorphisms influence HAND1 transcription thereby influencing VCS development and function. METHODS AND RESULTS We employed transgenic mouse models to identify an enhancer that is sufficient for left ventricle (LV) cis-regulatory activity. Two evolutionarily conserved GATA transcription factor cis-binding elements within this enhancer are bound by GATA4 and are necessary for cis-regulatory activity, as shown by in vitro DNA binding assays. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated deletion of this enhancer dramatically reduces Hand1 expression solely within the LV but does not phenocopy previously published mouse models of cardiac Hand1 loss-of-function. Electrophysiological and morphological analyses reveals that mice homozygous for this deleted enhancer display a morphologically abnormal VCS and a conduction system phenotype consistent with right bundle branch block. Using 1000 Genomes Project data, we identify 3 additional single nucleotide polymorphisms (SNPs), located within the Hand1 LV enhancer, that compose a haplotype with rs13165478 and rs13185595. One of these SNPs, rs10054375, overlaps with a critical GATA cis-regulatory element within the Hand1 LV enhancer. This SNP, when tested in electrophoretic mobility shift assays, disrupts GATA4 DNA-binding. Modeling 2 of these SNPs in mice causes diminished Hand1 expression and mice present with abnormal VCS function. CONCLUSIONS Together, these findings reveal that SNP rs10054375, which is located within a necessary and sufficient LV-specific Hand1 enhancer, exhibits reduces GATA DNA-binding in electrophoretic mobility shift assay, and this enhancer in total, is required for VCS development and function in mice and perhaps humans.
Collapse
Affiliation(s)
- Joshua W Vincentz
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Beth A Firulli
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Kevin P Toolan
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (D.E.A.)
| | - Nona Sotoodehnia
- Department of Epidemiology, Division of Cardiology, University of Washington, Seattle (N.S.)
| | - Juyi Wan
- Division of Cardiology, Department of Medicine, Krannert Institute of Cardiology, Indianapolis (J.W., P.-S.C.).,Department of Cardiothoracic Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China (J.W.)
| | - Peng-Sheng Chen
- Division of Cardiology, Department of Medicine, Krannert Institute of Cardiology, Indianapolis (J.W., P.-S.C.)
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, the Netherlands (C.d.G.V., V.M.C.)
| | - Vincent M Christoffels
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, the Netherlands (C.d.G.V., V.M.C.)
| | - Michael Rubart-von der Lohe
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| | - Anthony B Firulli
- From the Herman B Wells Center for Pediatric Research, Departments of Pediatrics, Anatomy and Medical and Molecular Genetics, Indiana Medical School, Indianapolis (J.W.V., B.A.F., K.P.T., M.R.L., A.B.F.)
| |
Collapse
|
43
|
Morris GM, Ariyaratnam JP. Embryology of the Cardiac Conduction System Relevant to Arrhythmias. Card Electrophysiol Clin 2019; 11:409-420. [PMID: 31400866 DOI: 10.1016/j.ccep.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Embryogenesis of the heart involves the complex cellular differentiation of slow-conducting primary myocardium into the rapidly conducting chamber myocardium of the adult. However, small areas of relatively undifferentiated cells remain to form components of the adult cardiac conduction system (CCS) and nodal tissues. Further investigation has revealed additional areas of nodal-like tissues outside of the established CCS. The embryologic origins of these areas are similar to those of the adult CCS. Under pathologic conditions, these areas can give rise to important clinical arrhythmias. Here, we review the embryologic basis for these proarrhythmic structures within the heart.
Collapse
Affiliation(s)
- Gwilym M Morris
- Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK.
| | - Jonathan P Ariyaratnam
- Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
44
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
45
|
Tarnawski L, Eugster E, DeCamp L, Jovinge S. The Efficacy and Safety ofSendaiViral Reprograming of Mouse Primary Cells Using Human Vectors. Cell Reprogram 2019; 21:78-88. [DOI: 10.1089/cell.2018.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Laura Tarnawski
- Department of Medicine, Center for Bioelectronic Medicine, Bioclinicum, Solna, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Stefan Jovinge
- Van Andel Institute, Grand Rapids, Michigan
- DeVos Cardiovascular Research Program of Spectrum Health, Grand Rapids, Michigan
- Cardiovascular Institute, Stanford University, Palo Alto, California
- Spectrum Health Frederik Meijer Heart and Vascular Institute, Grand Rapids, Michigan
| |
Collapse
|
46
|
Rogers AJ, Kannappan R, Abukhalifeh H, Ghazal M, Miller JM, El-Baz A, Fast VG, Sethu P. Hemodynamic Stimulation Using the Biomimetic Cardiac Tissue Model (BCTM) Enhances Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells Tissues Organs 2019; 206:82-94. [PMID: 30840966 DOI: 10.1159/000496934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived cardio-myocytes (hiPSC-CMs) hold great promise for cardiovascular disease modeling and regenerative medicine. However, these cells are both structurally and functionally -immature, primarily due to their differentiation into cardiomyocytes occurring under static culture which only reproduces biomolecular cues and ignores the dynamic hemo-dynamic cues that shape early and late heart development during cardiogenesis. To evaluate the effects of hemodynamic stimuli on hiPSC-CM maturation, we used the biomimetic cardiac tissue model to reproduce the hemodynamics and pressure/volume changes associated with heart development. Following 7 days of gradually increasing stimulation, we show that hemodynamic loading results in (a) enhanced alignment of the cells and extracellular matrix, (b) significant increases in genes associated with physiological hypertrophy, (c) noticeable changes in sarcomeric organization and potential changes to cellular metabolism, and (d) a significant increase in fractional shortening, suggestive of a positive force frequency response. These findings suggest that culture of hiPSC-CMs under conditions that accurately reproduce hemodynamic cues results in structural orga-nization and molecular signaling consistent with organ growth and functional maturation.
Collapse
Affiliation(s)
- Aaron J Rogers
- Division of Cardiovascular Disease, Departments of Medicine and Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA,
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hadil Abukhalifeh
- College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mohammed Ghazal
- College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Jessica M Miller
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Vladimir G Fast
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Palaniappan Sethu
- Division of Cardiovascular Disease, Departments of Medicine and Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
47
|
Mohan RA, Mommersteeg MTM, Domínguez JN, Choquet C, Wakker V, de Gier-de Vries C, Boink GJJ, Boukens BJ, Miquerol L, Verkerk AO, Christoffels VM. Embryonic Tbx3 + cardiomyocytes form the mature cardiac conduction system by progressive fate restriction. Development 2018; 145:dev167361. [PMID: 30042181 DOI: 10.1242/dev.167361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
A small network of spontaneously active Tbx3+ cardiomyocytes forms the cardiac conduction system (CCS) in adults. Understanding the origin and mechanism of development of the CCS network are important steps towards disease modeling and the development of biological pacemakers to treat arrhythmias. We found that Tbx3 expression in the embryonic mouse heart is associated with automaticity. Genetic inducible fate mapping revealed that Tbx3+ cells in the early heart tube are fated to form the definitive CCS components, except the Purkinje fiber network. At mid-fetal stages, contribution of Tbx3+ cells was restricted to the definitive CCS. We identified a Tbx3+ population in the outflow tract of the early heart tube that formed the atrioventricular bundle. Whereas Tbx3+ cardiomyocytes also contributed to the adjacent Gja5+ atrial and ventricular chamber myocardium, embryonic Gja5+ chamber cardiomyocytes did not contribute to the Tbx3+ sinus node or to atrioventricular ring bundles. In conclusion, the CCS is established by progressive fate restriction of a Tbx3+ cell population in the early developing heart, which implicates Tbx3 as a useful tool for developing strategies to study and treat CCS diseases.
Collapse
Affiliation(s)
- Rajiv A Mohan
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Jorge N Domínguez
- Department of Experimental Biology, University of Jaén, Jaén 23071, Spain
| | - Caroline Choquet
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
- Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Lucile Miquerol
- Aix Marseille University, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
48
|
Shiraishi I. Basic and Comprehensive Outlines of Cardiovascular Embryology and Morphogenesis. ACTA ACUST UNITED AC 2018. [DOI: 10.9794/jspccs.34.88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Isao Shiraishi
- Department of Education and Research Promotion, Research and Development Initiative Center, National Cerebral and Cardiovascular Center
- Division of Pediatric Cardiology, National Cerebral and Cardiovascular Center
| |
Collapse
|
49
|
Shekhar A, Lin X, Lin B, Liu FY, Zhang J, Khodadadi-Jamayran A, Tsirigos A, Bu L, Fishman GI, Park DS. ETV1 activates a rapid conduction transcriptional program in rodent and human cardiomyocytes. Sci Rep 2018; 8:9944. [PMID: 29967479 PMCID: PMC6028599 DOI: 10.1038/s41598-018-28239-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023] Open
Abstract
Rapid impulse propagation is a defining attribute of the pectinated atrial myocardium and His-Purkinje system (HPS) that safeguards against atrial and ventricular arrhythmias, conduction block, and myocardial dyssynchrony. The complex transcriptional circuitry that dictates rapid conduction remains incompletely understood. Here, we demonstrate that ETV1 (ER81)-dependent gene networks dictate the unique electrophysiological characteristics of atrial and His-Purkinje myocytes. Cardiomyocyte-specific deletion of ETV1 results in cardiac conduction abnormalities, decreased expression of rapid conduction genes (Nkx2-5, Gja5, and Scn5a), HPS hypoplasia, and ventricularization of the unique sodium channel properties that define Purkinje and atrial myocytes in the adult heart. Forced expression of ETV1 in postnatal ventricular myocytes (VMs) reveals that ETV1 promotes a HPS gene signature while diminishing ventricular and nodal gene networks. Remarkably, ETV1 induction in human induced pluripotent stem cell-derived cardiomyocytes increases rapid conduction gene expression and inward sodium currents, converting them towards a HPS phenotype. Our data identify a cardiomyocyte-autonomous, ETV1-dependent pathway that is responsible for specification of rapid conduction zones in the heart and demonstrate that ETV1 is sufficient to promote a HPS transcriptional and functional program upon VMs.
Collapse
Affiliation(s)
- Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Xianming Lin
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Bin Lin
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Alireza Khodadadi-Jamayran
- Center for Health Informatics and Bioinformatics, New York University Langone Health, New York, New York, 10016, USA
| | - Aristotelis Tsirigos
- Center for Health Informatics and Bioinformatics, New York University Langone Health, New York, New York, 10016, USA
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA.
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, 10016, USA.
| |
Collapse
|
50
|
Characterizing the role of atrial natriuretic peptide signaling in the development of embryonic ventricular conduction system. Sci Rep 2018; 8:6939. [PMID: 29720615 PMCID: PMC5932026 DOI: 10.1038/s41598-018-25292-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Patients born with congenital heart defects frequently encounter arrhythmias due to defects in the ventricular conduction system (VCS) development. Although recent studies identified transcriptional networks essential for the heart development, there is scant information on the mechanisms regulating VCS development. Based on the association of atrial natriuretic peptide (ANP) expression with VCS forming regions, it was reasoned that ANP could play a critical role in differentiation of cardiac progenitor cells (CPCs) and cardiomyocytes (CMs) toward a VCS cell lineage. The present study showed that treatment of embryonic ventricular cells with ANP or cell permeable 8-Br-cGMP can induce gene expression of important VCS markers such as hyperpolarization-activated cyclic nucleotide-gated channel-4 (HCN4) and connexin 40 (Cx40). Inhibition of protein kinase G (PKG) via Rp-8-pCPT-cGMPS further confirmed the role of ANP/NPRA/cGMP/PKG pathway in the regulation of HCN4 and Cx40 gene expression. Additional experiments indicated that ANP may regulate VCS marker gene expression by modulating levels of miRNAs that are known to control the stability of transcripts encoding HCN4 and Cx40. Genetic ablation of NPRA revealed significant decreases in VCS marker gene expression and defects in Purkinje fiber arborisation. These results provide mechanistic insights into the role of ANP/NPRA signaling in VCS formation.
Collapse
|